WorldWideScience

Sample records for energy systems evaluation

  1. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  2. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  3. Energy and environmental evaluation of tri-generation energy systems

    International Nuclear Information System (INIS)

    Chicco, G.; Mancarella, P.

    2008-01-01

    Tri generation facilities manufactured with various technologies represent an important alternative solution for the development more efficient energy systems and low environmental impact. Are described the issues related to modelling and energy and environmental evaluation [it

  4. Evaluation of two typical distributed energy systems

    Science.gov (United States)

    Han, Miaomiao; Tan, Xiu

    2018-03-01

    According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.

  5. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  6. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  7. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  8. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  9. Lower-Energy Energy Storage System (LEESS) Component Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Shi, Y.; Saxon, A.; Pesaran, A.

    2014-10-01

    Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to traditional battery storage systems. If such lower-energy ESS (LEESS) devices can also be shown to maintain high HEV fuel savings, future HEVs designed with these devices could have an increased value proposition relative to conventional vehicles. NREL's vehicle test platform is helping validate the in-vehicle performance capability of alternative LEESS devices and identify unforeseen issues. NREL created the Ford Fusion Hybrid test platform for in-vehicle evaluation of such alternative LEESS devices, bench testing of the initial LIC pack, integration and testing of the LIC pack in the test vehicle, and bench testing and installation of an EDLC module pack. EDLC pack testing will continue in FY15. The in-vehicle LIC testing results suggest technical viability of LEESS devices to support HEV operation. Several LIC configurations tested demonstrated equivalent fuel economy and acceleration performance as the production nickel-metal-hydride ESS configuration across all tests conducted. The lowest energy LIC scenario demonstrated equivalent performance over several tests, although slightly higher fuel consumption on the US06 cycle and slightly slower acceleration performance. More extensive vehicle-level calibration may be able to reduce or eliminate these performance differences. The overall results indicate that as long as critical attributes such as engine start under worst case conditions can be retained, considerable ESS downsizing may minimally impact HEV fuel savings.

  10. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    Science.gov (United States)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  11. Evaluating the environmental impacts of the energy system: The ENPEP [ENergy and Power Evaluation Program] approach

    International Nuclear Information System (INIS)

    Hamilton, B.P.; Sapinski, P.F.; Cirillo, R.R.; Buehring, W.A.

    1990-01-01

    Argonne National Laboratory (ANL) has developed the ENergy and Power Evaluation Program (ENPEP), a PC-based energy planning package intended for energy/environmental analysis in developing countries. The IMPACTS module of ENPEP examines environmental implications of overall energy and electricity supply strategies that can be developed with other ENPEP modules, including ELECTRIC, the International Atomic Energy Agency's Wien Automatic System Planning Package (WASP-III). The paper presents the status and characteristics of a new IMPACTS module that is now under development at ANL. 3 figs

  12. An urban energy performance evaluation system and its computer implementation.

    Science.gov (United States)

    Wang, Lei; Yuan, Guan; Long, Ruyin; Chen, Hong

    2017-12-15

    To improve the urban environment and effectively reflect and promote urban energy performance, an urban energy performance evaluation system was constructed, thereby strengthening urban environmental management capabilities. From the perspectives of internalization and externalization, a framework of evaluation indicators and key factors that determine urban energy performance and explore the reasons for differences in performance was proposed according to established theory and previous studies. Using the improved stochastic frontier analysis method, an urban energy performance evaluation and factor analysis model was built that brings performance evaluation and factor analysis into the same stage for study. According to data obtained for the Chinese provincial capitals from 2004 to 2013, the coefficients of the evaluation indicators and key factors were calculated by the urban energy performance evaluation and factor analysis model. These coefficients were then used to compile the program file. The urban energy performance evaluation system developed in this study was designed in three parts: a database, a distributed component server, and a human-machine interface. Its functions were designed as login, addition, edit, input, calculation, analysis, comparison, inquiry, and export. On the basis of these contents, an urban energy performance evaluation system was developed using Microsoft Visual Studio .NET 2015. The system can effectively reflect the status of and any changes in urban energy performance. Beijing was considered as an example to conduct an empirical study, which further verified the applicability and convenience of this evaluation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. INPRO Methodology to evaluate the Mexico nuclear energy system

    International Nuclear Information System (INIS)

    Cruz S, R. R.; Martin del C, C.

    2016-09-01

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  14. Evaluating energy saving system of data centers based on AHP and fuzzy comprehensive evaluation model

    Science.gov (United States)

    Jiang, Yingni

    2018-03-01

    Due to the high energy consumption of communication, energy saving of data centers must be enforced. But the lack of evaluation mechanisms has restrained the process on energy saving construction of data centers. In this paper, energy saving evaluation index system of data centers was constructed on the basis of clarifying the influence factors. Based on the evaluation index system, analytical hierarchy process was used to determine the weights of the evaluation indexes. Subsequently, a three-grade fuzzy comprehensive evaluation model was constructed to evaluate the energy saving system of data centers.

  15. A qualitative evaluation approach for energy system modelling frameworks

    DEFF Research Database (Denmark)

    Wiese, Frauke; Hilpert, Simon; Kaldemeyer, Cord

    2018-01-01

    properties define how useful it is in regard to the existing challenges. For energy system models, evaluation methods exist, but we argue that many decisions upon properties are rather made on the model generator or framework level. Thus, this paper presents a qualitative approach to evaluate frameworks...

  16. Design of Graphic Aggregation Model for Evaluation of Energy Systems

    International Nuclear Information System (INIS)

    An, Sang Ha; Jeong, Yong Hoon; Chang, Won Joon; Chang, Soon Heung; Kim, Sung Ho; Kim, Tae Woon

    2006-01-01

    Korea is meeting the growing electric power needs by mix of nuclear, fossil, hydro energy and so on. But we can not depend on fossil energy forever, and the people's concern about environment has been changed. So it is time to plan future energy mix considering multiple parameters such as economics, environment, social, energy security, etc. A multiple aggregation model has been used for decision making process in which multiple variables should be considered like energy mix. In this context, we designed Graphic Aggregation Model for Evaluation of energy systems (GAME) for the dynamic analysis of decision on the energy systems. It can support Analytic Hierarchy Process (AHP) analysis based on Graphic User Interface

  17. Solar energy system economic evaluation for Solaron Akron, Akron, Ohio

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.

  18. Performance evaluation of various cryogenic energy storage systems

    International Nuclear Information System (INIS)

    Abdo, Rodrigo F.; Pedro, Hugo T.C.; Koury, Ricardo N.N.; Machado, Luiz; Coimbra, Carlos F.M.; Porto, Matheus P.

    2015-01-01

    This work compares various CES (cryogenic energy storage) systems as possible candidates to store energy from renewable sources. Mitigating solar and wind power variability and its direct effect on local grid stability are already a substantial technological bottleneck for increasing market penetration of these technologies. In this context, CES systems represent low-cost solutions for variability that can be used to set critical power ramp rates. We investigate the different thermodynamic and engineering constraints that affect the design of CES systems, presenting theoretical simulations, indicating that optimization is also needed to improve the cryogenic plant performance. - Highlights: • We assessed the performance of cryogenic energy storage systems. • We re-evaluated the Linde–Hampson cycle proposed by Chen. • We proposed the Claude and Collins cycles as alternatives for the Linde–Hampson cycle. • We concluded that Claude cycle is the best alternative for the simulated conditions.

  19. Solar energy system economic evaluation for Seeco Lincoln, Lincoln, Nebraska

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  20. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has been tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.

  1. Solar energy system economic evaluation: Contemporary Newman, Georgia

    Science.gov (United States)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  2. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  3. Integral evaluation of energy supply systems at mountain refuges

    Energy Technology Data Exchange (ETDEWEB)

    Aschauer, C. [Univ. of Natural Resources and Applied Life Sciences, Vienna (Austria). Inst. for Chemical and Energy Engineering; Steinbacher, G. [Steinbacher and Steinbacher Civil Engineering Inc. (Austria); Weber, P. [DAV-Deutscher Alpenverein e.V. (Germany). Bundesgeschaeftsstelle; Deubler, Hubert

    2010-07-01

    Most of the mountain refuges scattered over the Alps (more than 1500) are not connected to public infrastructure, requiring decentralized supply and disposal and are therefore called island systems. The increasing number of guests goes along with a higher demand for comport and thus puts pressure on available resources. There are numerous challenges like remoteness, transport, low temperatures, seasonal operation and climate change to be faced. Furthermore, the supply and disposal system of an alpine hut has to merge different interests of the alpine associations, refuge operators, legal authorities and the alpine tourists. Therefore the respective infracstructure has to be managed as an overall-self-contained system. Energy supply is the central issue showing complex interaction with water supply, wastewater treatment and waste disposal. Many problems according to planning, decision-making, construction and operation concerning alpine infrastructure are reported. However detailed information on experiences made in these fields is missing at an international level so far. To correct this lack of data, the German Alpine Association (DAV) initiated the project ''Integral Evaluation of Supply and Disposal Systems of Mountain Refuges, IEVEBS'' in 2006, inviting all stakeholders (Alpine Associations, Legal Authorities, Planners, and Researchers) to participate. Additionally to the final project report which contains a detailed description and evaluation of the supply systems, guidelines will be elaborated in 2010 for planning, implementation and operation, all applicable at an international level. (orig.)

  4. EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas

    International Nuclear Information System (INIS)

    Girardin, Luc; Marechal, Francois; Dubuis, Matthias; Calame-Darbellay, Nicole; Favrat, Daniel

    2010-01-01

    A geographical information system has been developed to model the energy requirements of an urban area. The purpose of the platform is to model with sufficient detail the energy services requirements of a given geographical area in order to allow the evaluation of the integration of advanced integrated energy conversion systems. This tool is used to study the emergence of more efficient cities that realize energy efficiency measures, integrate energy efficient conversion technologies and promote the use of endogenous renewable energy. The model is illustrated with case studies for the energetic planning of the Geneva district (Switzerland).

  5. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  6. Design, modeling, simulation and evaluation of a distributed energy system

    Science.gov (United States)

    Cultura, Ambrosio B., II

    This dissertation presents the design, modeling, simulation and evaluation of distributed energy resources (DER) consisting of photovoltaics (PV), wind turbines, batteries, a PEM fuel cell and supercapacitors. The distributed energy resources installed at UMass Lowell consist of the following: 2.5kW PV, 44kWhr lead acid batteries and 1500W, 500W & 300W wind turbines, which were installed before year 2000. Recently added to that are the following: 10.56 kW PV array, 2.4 kW wind turbine, 29 kWhr Lead acid batteries, a 1.2 kW PEM fuel cell and 4-140F supercapacitors. Each newly added energy resource has been designed, modeled, simulated and evaluated before its integration into the existing PV/Wind grid-connected system. The Mathematical and Simulink model of each system was derived and validated by comparing the simulated and experimental results. The Simulated results of energy generated from a 10.56kW PV system are in good agreement with the experimental results. A detailed electrical model of a 2.4kW wind turbine system equipped with a permanent magnet generator, diode rectifier, boost converter and inverter is presented. The analysis of the results demonstrates the effectiveness of the constructed simulink model, and can be used to predict the performance of the wind turbine. It was observed that a PEM fuel cell has a very fast response to load changes. Moreover, the model has validated the actual operation of the PEM fuel cell, showing that the simulated results in Matlab Simulink are consistent with the experimental results. The equivalent mathematical equation, derived from an electrical model of the supercapacitor, is used to simulate its voltage response. The model is completely capable of simulating its voltage behavior, and can predict the charge time and discharge time of voltages on the supercapacitor. The bi-directional dc-dc converter was designed in order to connect the 48V battery bank storage to the 24V battery bank storage. This connection was

  7. Economic effect of fusion in energy market. Various externalities of energy systems and the integrated evaluation

    International Nuclear Information System (INIS)

    Ito, Keishiro

    2002-01-01

    The primacy of a nuclear fusion reactor in a competitive energy market remarkably depends on to what extent the reactor contributes to reduce the externalities of energy. The reduction effects are classified into two effects, which have quite dissimilar characteristics. One is an effect of environmental dimensions. The other is related to energy security. In this study I took up the results of EC's ExternE project studies as a representative example of the former effect. Concerning the latter effect, I clarified the fundamental characteristics of externalities related to energy security and the conceptual framework for the purpose of evaluation. In the socio-economical evaluation of research into and development investments in nuclear fusions reactors, the public will require the development of integrated evaluation systems to support the cost-effect analysis of how well the reduction effects of externalities have been integrated with the effects of technological innovation, learning, spillover, etc. (author)

  8. Solar energy system economic evaluation for Colt Pueblo, Pueblo, Colorado

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at Pueblo, Colorado; Yosemite, California; Albuquerque, New Mexico; Fort Worth, Texas; and Washington, D.C. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  9. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  10. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  11. Economic evaluation of innovative storage technologies in energy systems with a high share of renewable energies

    International Nuclear Information System (INIS)

    Kondziella, Hendrik

    2017-01-01

    This work addresses the question of whether the ongoing transformation to a low-carbon energy system in Germany will also create market opportunities for innovative market participants, in particular for storage operators. The economic effects that occur in energy systems with high levels of variable renewable energy (vEE) can be measured by their integration costs. Scientific research into the additional storage and flexibility needs of such an energy system often addresses imbalances in the system balance sheet. The respective methods are, however, based on different assumptions and framework conditions, so that the results can only be compared with one another to a limited extent. The hourly fluctuating wholesale price on the electricity exchange is an important indicator to signal the need for flexibility. Many analyzes use historical or predicted pricing time series to evaluate storage options. However, while the feedback of the operation of an energy storage on the market prices is left out. Therefore, a method is developed in this work to estimate the impact of an increasing market volume of storage and other flexibility options on spot market prices. The influence of storage use on electricity demand and spot market prices in 2020 and 2030 is examined. The scenarios to be defined for the electricity market are model-based and evaluated. To answer the question, techno-economic models, e.g. The MICOES power market model for power plant deployment planning, the DeSiflex model for smoothing residual load through integrated flexibility options and the Arturflex model for estimating arbitrage gains through the use of flexibility options on the spot market. [de

  12. Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.

  13. Development of evaluation techniques for electrochemical energy storage systems

    Science.gov (United States)

    Gaines, L. H.; Nazimek, K.

    1980-03-01

    The development of standardized techniques for the comparative evaluation of electric vehicle battery technologies is summarized. The methodology considers both the traditional measures of battery performance (energy density, energy storage costs, and cycle life) and the equally important usage related battery characteristics (probability of technical success, operating and maintenance parameters, and safety/environmental impact). This comparative rationale is supplemented by the ability to generate battery test programs normalized to specific technologies and electric vehicle mission specifications. These test programs allow the evaluation of different battery technologies at comparable levels of electric vehicle performance. It was found that cost optimized electric passenger vehicles will have range specifications of 100 to 110 KM, depending on the specific performance of the battery. Longer range vehicles are penalized by higher first costs while shorter range vehicles suffer from reduced battery life and the need for more frequent alternative car rentals (presumably petroleum fueled) for trips which exceed the EV's range capability.

  14. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Uppsala

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Uppsala. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives

  15. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Summary report

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. Case studies were performed for three different municipalities: Uppsala, Stockholm, and Aelvdalen. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management systems of the three municipalities studied, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are

  16. A Correlated Model for Evaluating Performance and Energy of Cloud System Given System Reliability

    Directory of Open Access Journals (Sweden)

    Hongli Zhang

    2015-01-01

    Full Text Available The serious issue of energy consumption for high performance computing systems has attracted much attention. Performance and energy-saving have become important measures of a computing system. In the cloud computing environment, the systems usually allocate various resources (such as CPU, Memory, Storage, etc. on multiple virtual machines (VMs for executing tasks. Therefore, the problem of resource allocation for running VMs should have significant influence on both system performance and energy consumption. For different processor utilizations assigned to the VM, there exists the tradeoff between energy consumption and task completion time when a given task is executed by the VMs. Moreover, the hardware failure, software failure and restoration characteristics also have obvious influences on overall performance and energy. In this paper, a correlated model is built to analyze both performance and energy in the VM execution environment given the reliability restriction, and an optimization model is presented to derive the most effective solution of processor utilization for the VM. Then, the tradeoff between energy-saving and task completion time is studied and balanced when the VMs execute given tasks. Numerical examples are illustrated to build the performance-energy correlated model and evaluate the expected values of task completion time and consumed energy.

  17. Solar energy system economic evaluation for IBM System 3, Glendo, Wyoming

    Science.gov (United States)

    1980-01-01

    This analysis was based on the technical and economic models in f-chart design procedures with inputs based on the characteristics of the parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings, and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated.

  18. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Stockholm

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from the waste is positive, from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Stockholm. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives less

  19. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Aelvdalen

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Aelvdalen, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to

  20. Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania

    Science.gov (United States)

    1980-01-01

    The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.

  1. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  2. Evaluation of scenarios for energy systems. Potentials, limits and acceptance

    International Nuclear Information System (INIS)

    Schubert, Daniel Kurt Josef

    2016-01-01

    In contrast to previous approaches in connection with the energy transition, the dissertation leads to a change of perspective towards social consideration. Previous scenario studies focused on technical feasibility as well as individual cost and environmental aspects, as shown in the pre-analysis. Society plays a secondary role in this case. Instead of being taken into account in the prior decision-making process, time and effort are often invested in the downstream conviction of the population only after that. The approach pursued in the work consistently focuses on incorporating social preferences and barriers into the decision-making process in advance, so that decisions themselves have lasting validity. Representative telephone surveys are used to determine the preferences of the population on the one hand and the limits of acceptance in the form of willingness to pay on the other hand. Only then are scenario calculations carried out in order to be able to quantitatively evaluate energy policy options for action. In the subsequent comparison of social barriers and model results, however, the limits of this approach are also made clear: a desired action option from the perspective of the population (here the brown coal exit) can also fail because of political and legal barriers. [de

  3. A nonparametric approach for evaluating long-term energy policy scenarios: An application to the Greek energy system

    OpenAIRE

    Halkos, George; Tzeremes, Nickolaos; Tzeremes, Panagiotis

    2014-01-01

    This paper by using Long-range Energy Alternatives Planning System (LEAP) constructs four different renewable energy scenarios for the Greek transport, energy, and industry sectors. By projecting the demand for renewable energy and the associated resulting carbon dioxide emissions up to the years 2020 and 2030, the paper applies in a second stage data envelopment analysis (DEA) evaluating the Greek renewable energy policy. As a result, it provides a quantitative measure for future renewable e...

  4. Energy evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    These 8 charts bring information on with the primary energy consumption, energy indicators, energy bill, prices and electric power, petroleum, natural gas and solid mineral fuels from January 2003 to January 2006. (A.L.B.)

  5. Multi-criteria sustainability assessment: A tool for evaluation of new energy system

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2007-01-01

    Full Text Available One of perspective methods for the evaluation of quality of energy system is the multi-criteria sustainability assessment, based on the analysis and synthesis of indicators expressing different aspects of the system. Application of this methodology in the cases of information deficiency (ASPID methodology enables evaluation of various energy systems. In the paper, the multi-criteria sustainability assessment of energy systems of various energy sources is used to evaluate the energy power system of Bosnia and Herzegovina. Eight different energy system options are taken into a consideration as the potential options for the capacity building within the energy power system of Bosnia and Herzegovina. It has included various renewable sources and fossil fuel clean technologies. Within the multi-criteria sustainability assessment method, sustainability indicators and weighting coefficients are defined and calculated, including: resource indicator, environment indicator, social indicator and economic indicator with respective weighting factors. The methodology includes the system of stochastic models of uncertainty in order to realize the assessment from various supporting systems, and to obtain respective normalization indexes by using non-numeric (ordinal, non-exact (interval, and non-complete information (NNN- information, for sources of various reliability and probability. By the analysis of multi-criteria sustainability assessment of selected options, the decision makers could be enabled to form opinion on quality of considered energy systems, and from the aspect of sustainability, make selection an optimum option of energy system. .

  6. Review of Comprehensive Evaluation Methods for Power Quality and Its Trend in New Generation Energy System

    Science.gov (United States)

    Liu, Ruihua; Wang, Rong; Liu, Qunying; Yang, Li; Xi, Chuan; Wang, Wei; Li, Lingzhou; Zhao, Zhoufang; Zhou, Ying

    2018-02-01

    With China’s new energy generation grid connected capacity being in the forefront of the world and the uncertainty of new energy sources, such as wind energy and solar energy, it is be of great significance to study scientific and comprehensive assessment of power quality. On the foundation of analysizing the current power quality index systematically and objectively, the new energy grid power quality analysis method and comprehensive evaluation method, this paper tentatively explored the trend of the new generation of energy system power quality comprehensive evaluation.

  7. Direct evaluation of free energy for large system through structure integration approach.

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2015-09-30

    We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.

  8. Energy evaluation of optimal control strategies for central VWV chiller systems

    International Nuclear Information System (INIS)

    Jin Xinqiao; Du Zhimin; Xiao Xiaokun

    2007-01-01

    Under various conditions, the actual load of the heating, ventilation and air conditioning (HVAC) systems is less than it is originally designed in most operation periods. To save energy and to optimize the controls for chilling systems, the performance of variable water volume (VWV) systems and characteristics of control systems are analyzed, and three strategies are presented and tested based on simulation in this paper. Energy evaluation for the three strategies shows that they can save energy to some extent, and there is potential remained. To minimize the energy consumption of chilling system, the setpoints of controls of supply chilled water temperature and supply head of secondary pump should be optimized simultaneously

  9. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  10. Evaluation of turbine systems for compressed air energy storage plants. Final report for FY 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kartsounes, G.T.

    1976-10-01

    Compressed air energy storage plants for electric utility peak-shaving applications comprise four subsystems: a turbine system, compressor system, an underground air storage reservoir, and a motor/generator. Proposed plant designs use turbines that are derived from available gas and steam turbines with proven reliability. The study examines proposed turbine systems and presents an evaluation of possible systems that may reduce capital cost and/or improve performance. Six new turbine systems are identified for further economic evaluation.

  11. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  12. Evaluating energy

    International Nuclear Information System (INIS)

    Gates, D.M.

    1985-01-01

    Intended as a primer on the relationship between the development and use of various energy resources and resulting ecological consequences, the book is designed for a course that can serve students with or without much background in the biological or physical sciences. A review is presented of the major concepts used in atmospheric science, the general picture of energy principles and laws, the status of energy resources both in the United States and worldwide, and an analysis of how questions of energy demand are approached. Three classes of energy sources are addressed: solar, biomass, and coal. The ecological impacts of carbon dioxide, acid deposition, petroleum, electrical power-generation, and nuclear technology are discussed. Also given is a discussion of alternative technologies in energy production

  13. Solar energy system performance evaluation. Seasonal report for Wormser, Columbia, South Carolina

    Science.gov (United States)

    1980-01-01

    The Wormser Solar Energy System's operational performance from April 1979 through March 1980 was evaluated. The space heating subsystem met 42 percent of the measured space heating load and the hot water subsystem met 23 percent of the measured hot water demand. Net electrical energy savings were 4.36 million Btu's or 1277 kwh. Fossil energy savings will increase considerably if the uncontrolled solar energy input to the building is considered.

  14. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    Science.gov (United States)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  15. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  16. The Evaluation of Feasibility of Thermal Energy Storage System at Riga TPP-2

    Science.gov (United States)

    Ivanova, P.; Linkevics, O.; Cers, A.

    2015-12-01

    The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP-2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen - the increase of cogeneration unit efficiency during the summer.

  17. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  18. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  19. Evaluation of an earth heat storage system in a solar energy greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Langrell, J.; Boris, R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering

    2010-07-01

    Greenhouses store solar energy in the walls and floors during the daytime and release the stored energy back to the greenhouse at night. In this study, an earth heat storage system was constructed and tested in a solar energy greenhouse in order to enhance energy storage. The system consisted of a network of perforated pipes buried in the soil at depths from 0.3 to 1 m. The warm air near the greenhouse ceiling was drawn to the buried pipes. Soil and air temperatures were recorded at various locations by a network of thermocouples. The energy balance was analyzed in order to evaluate the effectiveness of the earth heat storage system. The temperature profiles in the soil were used to determine the summer recharge and winter energy depletion behaviour of the system.

  20. Numerical evaluation of energy barriers and magnetic relaxation in interacting nanostructured magnetic systems

    International Nuclear Information System (INIS)

    Chubykalo-Fesenko, Oksana A.; Chantrell, Roy W.

    2004-01-01

    We discuss a model to quantify long-time thermally induced magnetization reversal in magnetic systems with distributed properties. Two algorithms, based on kinetic and Metropolis Monte Carlo are introduced. While the former requires the constant recalculation of all energy barriers and is useful when the interactions are weak, the latter uses the Metropolis Monte Carlo to estimate the magnetization trajectory and, consequently, only the most probable transition rates are evaluated. The ridge optimization method is used to evaluate the energy barriers in a multidimensional energy landscape. The algorithms are applied to a granular system modeled by means of Voronoi polyhedra and having random in-plane anisotropy

  1. Solar energy system performance evaluation report for IBM System 4 at Clinton, Mississippi

    Science.gov (United States)

    1980-07-01

    The IBM System 4 Solar Energy System is described and evaluated. The system was designed to provide 35 percent of the space heating and 63 percent of the domestic hot water preheating for a single family residence located within the United States. The system consists of 259 square feet of flat plate air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing. In general, the performance of the system did not meet design expectations, since the overall design solar fraction was 48 percent and the measured value was 32 percent. Although the measured space heating solar fraction at 32 percent did agree favorably with the design space heating solar fraction at 35 percent, the hot water measured solar fraction at 33 percent did not agree favorably with the design hot water solar fraction of 63 percent. In particular collector array air leakage, dust covered collectors, abnormal hot water demand, and the preheat tank by pass valve problem are main reasons for the lower performance.

  2. Solar energy system economic evaluation for IBM system 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    The economic performance of an operational test site of a solar energy system is described. The viability of the system was tested over a broad range of environmental and economic conditions. Significant results are reported.

  3. Technical evaluation of Aerojet Energy Conversion Company's topical report on a mobile volume reduction system

    International Nuclear Information System (INIS)

    Henscheid, J.W.

    1984-01-01

    This report summarizes EG and G Idaho's review of Aerojet Energy Conversion Company's (AECC's) topical report on a Mobile Volume Reduction System. The review evaluated compliance with pertinent codes, standards and regulations. The initial review was discussed with AECC by EG and G Idaho and the NRC, and all outstanding issues resolved before this final evaluation was made

  4. Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics

    International Nuclear Information System (INIS)

    Halasah, Suleiman A.; Pearlmutter, David; Feuermann, Daniel

    2013-01-01

    In this study we employ Life-Cycle Assessment to evaluate the energy-related impacts of photovoltaic systems at different scales of integration, in an arid region with especially high solar irradiation. Based on the electrical output and embodied energy of a selection of fixed and tracking systems and including concentrator photovoltaic (CPV) and varying cell technology, we calculate a number of energy evaluation metrics, including the energy payback time (EPBT), energy return factor (ERF), and life-cycle CO 2 emissions offset per unit aperture and land area. Studying these metrics in the context of a regionally limited setting, it was found that utilizing existing infrastructure such as existing building roofs and shade structures does significantly reduce the embodied energy requirements (by 20–40%) and in turn the EPBT of flat-plate PV systems due to the avoidance of energy-intensive balance of systems (BOS) components like foundations. Still, high-efficiency CPV field installations were found to yield the shortest EPBT, the highest ERF and the largest life-cycle CO 2 offsets—under the condition that land availability is not a limitation. A greater life-cycle energy return and carbon offset per unit land area is yielded by locally-integrated non-concentrating systems, despite their lower efficiency per unit module area. - Highlights: ► We evaluate life-cycle energy impacts of PV systems at different scales. ► We calculate the energy payback time, return factor and CO 2 emissions offset. ► Utilizing existing structures significantly improves metrics of flat-plate PV. ► High-efficiency CPV installations yield best return and offset per aperture area. ► Locally-integrated flat-plate systems yield best return and offset per land area.

  5. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  6. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  7. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    Science.gov (United States)

    Green, Cedric Fitzgerald

    run the Sustainable Systems Analysis Algorithm (SSAA) and the multi-criteria decision analysis (MCDA) decision models. The following alternative energy sources for electricity (kilo- and megawatt output) will be assessed in this paper: solar, biomass and biofuels, hydro, geothermal, onshore wind, offshore wind, tidal, and natural gas. The SSAA methodology, in conjunction with the MCDA model techniques, will be used to obtain sustainable, alternative energy source system options; the system will attempt to balance its three linked aspects (environmental, economic, and technical). The results, based on the Sustainability Directive three-dimensional vector calculations from each alternative energy source option, are presented in this paper. Moving towards sustainability is a dynamically changing process, and the SSAA methodology is a synergist for system modifications that strives for continuous improvement toward the Ideal Sustainability Directive.

  8. A study on the proliferation resistance evaluation methodology for nuclear energy system

    International Nuclear Information System (INIS)

    Kim, Min Su

    2007-02-01

    The framework of proliferation resistance evaluation methodology, based on attribute analysis and scenario analysis, for nuclear energy system is suggested in order to allow for the comprehensive assessment of proliferation resistance by addressing the intrinsic and extrinsic features of nuclear energy system. Proliferation resistance is viewed within the context of the success tree model of proliferator's diversion attempt and expressed by the value of top event probability of the success tree model. This study focused on the method that the value of top event is estimated. The methodology uses two different methods to quantify the likelihood of basic events constituting the top event. The likelihood of basic event success affected by intrinsic feature of nuclear energy system was assessed by using multi-attribute utility theory and likelihood of basic event related to the diversion detection measures was assessed by direct expert elicitation. The value of top event was calculated based on the intersection of probabilities of basic event success. Feasibility of the methodology was explored by applying it to selected reference nuclear energy systems. System-Integrated Modular Advanced Reactor (SMART) system and Light Water Reactor (LWR) were chosen as reference systems and the value proliferation resistance of SMART and LWR were evaluated. Characteristics of inherent features and hypothesized safeguards measures of both systems were identified and used as input data to evaluate proliferation resistance. The results and conclusions are applicable only within the context of subjectivity of this methodology

  9. Solar energy system performance evaluation: Scattergood School Recreation Center, West Branch, Iowa, September 1977--May 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    An operational summary is provided of the solar energy system performance at Scattergood School, West Branch, Iowa. This analysis is made by evaluation of measured system performance and by comparison of measured climatic data with long term average climatic conditions. Performance of major subsystems is also presented to illustrate their operation. The solar energy system, utilizing 2496 square feet of flat plate, air collectors, supplies a portion of the space heating and domestic hot water requirements for the 6900 square foot gymnasium and 1966 square feet of locker rooms at the Scattergood School, West Branch, Iowa. The solar energy system was installed during building construction. A 6000 bushel grain dryer, installed later, may also use the solar system during its operation. Included are: a brief system description, review of actual system performance during the report period, analysis of performance based on evaluation of climatic, load and operational conditions, and an overall discussion of results. The Scattergood solar energy system availability was 65 percent for the ECSS subsystem, 95 percent for the space heating subsystem and 55 percent for the hot water heating subsystem. The ECSS availability was affected by a malfunction of the total solar system during April 1--8 and April 14 through May 11. The hot water availability was greatly affected by the failure of the subsystem and resultant repair interval. The space heating subsystem operated throughout the entire reporting period except when the solar system was down in April and May.

  10. Evaluation of in-situ thermal energy storage for lunar based solar dynamic systems

    Science.gov (United States)

    Crane, Roger A.

    1991-01-01

    A practical lunar based thermal energy storage system, based on locally available materials, could significantly reduce transportation requirements and associated costs of a continuous, solar derived power system. The concept reported here is based on a unique, in-situ approach to thermal energy storage. The proposed design is examined to assess the problems of start-up and the requirements for attainment of stable operation. The design remains, at this stage, partially conceptional in nature, but certain aspects of the design, bearing directly on feasibility, are examined in some detail. Specifically included is an engineering evaluation of the projected thermal performance of this system. Both steady state and start-up power requirements are evaluated and the associated thermal losses are evaluated as a basis for establishing potential system performance.

  11. Geographic information systems - tool for evaluation of the hydro-energy performance of water supply systems

    OpenAIRE

    Aline Christian Pimentel Almeida Santos; José Almir Rodrigues Pereira; Augusto da Gama Rego; Rogério da Silva Santos

    2017-01-01

    The most relevant challenges in the water supply system (WSS) are high water losses and the waste of electric energy. This paper aimed to assess the capacity of the Geographic Information System (GIS) in the analysis of the hydro-energy performance of WSSs. The Stage 1 comprises the selection of data and the respective hydro-energy indexes are defined; cartographic data are defined in Stage 2 and a geo-referenced database is constructed in Stage 3. In the stage 4, the data of the Central Wate...

  12. Evaluation of reinitialization-free nonvolatile computer systems for energy-harvesting Internet of things applications

    Science.gov (United States)

    Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro

    2017-08-01

    In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.

  13. Evaluating the benefits of an electrical energy storage system in a future smart grid

    International Nuclear Information System (INIS)

    Wade, N.S.; Taylor, P.C.; Lang, P.D.; Jones, P.R.

    2010-01-01

    Interest in electrical energy storage systems is increasing as the opportunities for their application become more compelling in an industry with a back-drop of ageing assets, increasing distributed generation and a desire to transform networks into Smart Grids. A field trial of an energy storage system designed and built by ABB is taking place on a section of 11 kV distribution network operated by EDF Energy Networks in Great Britain. This paper reports on the findings from simulation software developed at Durham University that evaluates the benefits brought by operating an energy storage system in response to multiple events on multiple networks. The tool manages the allocation of a finite energy resource to achieve the most beneficial shared operation across two adjacent areas of distribution network. Simulations account for the key energy storage system parameters of capacity and power rating. Results for events requiring voltage control and power flow management show how the choice of operating strategy influences the benefits achieved. The wider implications of these results are discussed to provide an assessment of the role of electrical energy storage systems in future Smart Grids.

  14. Energy systems evaluation of potential for incidents having health or safety impact

    International Nuclear Information System (INIS)

    Speas, I.G.

    1986-01-01

    The paper discusses the results of safety surveys of Martin Marietta Energy Systems - operated nuclear facilities. The purpose was to identify potential incidents that could cause large numbers of casualties, evaluate existing prevention/response actions, and identify possible improvements. The survey findings indicate the potential for an accident with consequences similar to those at Bhopal, India, is essentially non-existent

  15. Geographic information systems - tool for evaluation of the hydro-energy performance of water supply systems

    Directory of Open Access Journals (Sweden)

    Aline Christian Pimentel Almeida Santos

    2017-05-01

    Full Text Available The most relevant challenges in the water supply system (WSS are high water losses and the waste of electric energy. This paper aimed to assess the capacity of the Geographic Information System (GIS in the analysis of the hydro-energy performance of WSSs. The Stage 1 comprises the selection of data and the respective hydro-energy indexes are defined; cartographic data are defined in Stage 2 and a geo-referenced database is constructed in Stage 3. In the stage 4, the data of the Central Water Supply Zone administered by the Water Works Company of the state of Pará in Belém, Brazil were employed to assess its applicability, in which the sectors with the worst hydro-energy performance were identified, such as Sector 9, with the highest water loss rates (59.11% and electric energy consumption per m3 of water produced (1.57 kwh m-³. The results shows that geo-referential assessment of the hydro-energy performance of WSSs provided accurate information for decision-taking related to the rational use of water and electricity in the systems.

  16. Evaluation of a hybrid system for a nearly zero energy greenhouse

    International Nuclear Information System (INIS)

    Yildirim, Nurdan; Bilir, Levent

    2017-01-01

    Highlights: • A nearly zero energy greenhouse concept was foreseen for three products. • A hybrid system with photovoltaics and a ground source heat pump was evaluated. • Annual photovoltaics electricity generation was found as 21510.4 kWh. • Yearly coverage ratio values were determined between 86.8% and 104.5%. • Economic and environmental analyses were also conducted. - Abstract: Greenhouses are widely used in the World, especially in the Mediterranean climate, to provide suitable environment in cultivation of different agricultural crops. Significant amount of energy is necessary to produce, process and distribute these crops. Various systems, including steam or hot water radiation system and hot air heater system, are being used in greenhouse heating. A ground source heat pump system, generally seen as a favorable option since it can provide both heating and cooling energy, is considered for a greenhouse in this study. The aim of this study is to evaluate a renewable energy option for the required total energy need of a greenhouse. Grid connected solar photovoltaic panels are selected to assist a ground source heat pump, and generate sufficient electrical energy for lighting. In this way, a nearly zero energy greenhouse concept is foreseen for three different agricultural products. Monthly and annual heating, cooling and lighting energy load of the greenhouse for these agricultural products were computed. The monthly average electricity generation of 66 photovoltaic panels, which cover 50% of the southern face part of the asymmetric roof, was calculated. Annual photovoltaic electricity generation was found as 21510.4 kWh. It was observed that photovoltaic electricity generation can meet 33.2–67.2% of greenhouse demand in summer operation months. Nevertheless, the coverage ratio, calculated by dividing the photovoltaic panels electricity generation to the electricity demand of the greenhouse (heating, cooling and lighting) for each crop, were very

  17. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  18. Solar energy system performance evaluation: Seasonal report for IBM system 1A, Huntsville, Alabama

    Science.gov (United States)

    1980-01-01

    The operational and thermal performance of the solar energy system, Sims Prototype System 1A, is described. The system was designed by IBM to provide 50 to 60 percent of the space heating and domestic hot water preheating load to a 2,000 square foot floor space single family residence in the Huntsville area. The load design temperature inside the building was to be maintained at 70 degrees fahrenheit with auxiliary energy for heating supplied by an electric heat pump assisted by an electric resistance strip heater. In general the disappointing operation of this system is attributed to the manner in which it was used. The system was designed for residential application and used to satisfy the demands of an office environment. The differences were: (1) inside temperature was not maintained at 70 F as expected; and (2) hot water usage was much lower than expected. The conclusion is that the solar energy system must be designed for the type of application in which it is used. Misapplication usually will have an adverse affect on system performance.

  19. Evaluation of Wind Energy Production in Texas using Geographic Information Systems (GIS)

    Science.gov (United States)

    Ferrer, L. M.

    2017-12-01

    Texas has the highest installed wind capacity in the United States. The purpose of this research was to estimate the theoretical wind turbine energy production and the utilization ratio of wind turbines in Texas. Windfarm data was combined applying Geographic Information System (GIS) methodology to create an updated GIS wind turbine database, including location and technical specifications. Applying GIS diverse tools, the windfarm data was spatially joined with National Renewable Energy Laboratory (NREL) wind data to calculate the wind speed at each turbine hub. The power output for each turbine at the hub wind speed was evaluated by the GIS system according the respective turbine model power curve. In total over 11,700 turbines are installed in Texas with an estimated energy output of 60 GWh per year and an average utilization ratio of 0.32. This research indicates that applying GIS methodologies will be crucial in the growth of wind energy and efficiency in Texas.

  20. A MILP model for integrated plan and evaluation of distributed energy systems

    International Nuclear Information System (INIS)

    Ren, Hongbo; Gao, Weijun

    2010-01-01

    In the last decade, technological innovations and a changing economic and regulatory environment have resulted in a renewed interest for distributed energy resources (DER). However, because of the lack of a suitable design tool, the expected potential of DER penetration is not always exerted sufficiently. In this paper, a mixed-integer linear programming (MILP) model has been developed for the integrated plan and evaluation of DER systems. Given the site's energy loads, local climate data, utility tariff structure, and information (both technical and financial) on candidate DER technologies, the model minimizes overall energy cost for a test year by selecting the units to install and determining their operating schedules. Furthermore, the economic, energetic and environmental effects of the DER system can be evaluated. As an illustrative example, an investigation has been conducted of economically optimal DER system for an eco-campus in Kitakyushu, Japan. The result illustrates that gas engine is currently the most popular DER technology from the economic point of view. Although holding reasonable economic merits, unless combined with heat recovery units, the introduction of DER technologies may result in marginal or even adverse environmental effects. Furthermore, according to the results of sensitivity analysis, the optimal system combination and corresponding economic and environmental performances are more or less sensitive to the scale of energy demand, energy prices (both electricity and city gas), as well as carbon tax rate. (author)

  1. Dimensioning and efficiency evaluation of hybrid solar systems for energy production

    Directory of Open Access Journals (Sweden)

    Elia Stefano

    2008-01-01

    Full Text Available Nowadays hybrid panels for joint production of thermal and electrical energy are available on the market. The main contribution of this work is to evaluate the performances of hybrid systems and to determine the field of application. Mathematical models of panels are considered to evaluate thermal and electrical behavior of the problem. A software produced by the authors is shown that calculates the energy production of these devices in several operating situations; a comparison to that of photovoltaic and thermal systems is performed. Moreover, the economic validity of a such investment is evaluated. Finally a simplified criterion has been developed to calculate the best subdivision of the available deployment surface among thermal, photovoltaic, and hybrid panels.

  2. Evaluation of security of supplies for the Danish energy system up to 1995

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.; Daub, J.; Dietrich, O.W.; Laut, P.

    1979-03-01

    Security of energy supplies is one of the criteria which ought to enter into the future extension possibilities for the Danish energy system. But security of supply is a difficult concept to quantify involving as it does both technical and political aspects. The report attempts to encircle the problems relating to security of supply, partly by describing and evaluating the supply structure and the amount of the resource which could be thought of as entering into the future Danish pattern of energy supply, and partly by analyzing the consequences for the Danish consumer of a break in the supply of a specific fuel. It is noted that a supply breakdown in the electric system is not treated in the report except insofar as the fuel entering into the electric system is covered in the study. (author)

  3. Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Harajli, Hassan A.; Jones, Craig I.; Winnett, Adrian B.

    2012-01-01

    Energy analysis, environmental life-cycle assessment (LCA) and economic appraisals have been utilised to study the performance of a domestic building integrated photovoltaic (BIPV) system on a ‘whole systems’ basis. Energy analysis determined that the system paid back its embodied energy in just 4.5 years. LCA revealed that the embodied impacts were offset by the electricity generated to provide a net environmental benefit in most categories. Only carcinogens, ecotoxicity and minerals had a small net lifetime burden. A financial analysis was undertaken from the householder's perspective, alongside cost-benefit analysis from a societal perspective. The results of both indicated that the systems are unlikely to pay back their investment over the 25 year lifetime. However, the UK is in an important period (2010/11) of policy transition with a move away from the ‘technology subsidies’ of the Low Carbon Buildings Programme (LCBP) and towards a ‘market development policy’ of feed-in tariffs. Representing the next stage on an innovation S-curve this is expected to facilitate rapid PV uptake, as experienced in countries such as Germany, Denmark, and Spain. The results of the present study clearly demonstrate the importance of the new government support scheme to the future uptake of BIPV. - Highlights: ► LCA and economic appraisals of a UK domestic building integrated PV system. ► Energy analysis determined that the system paid back its embodied energy in 4.5 years. ► UK moved towards a market development policy of feed-in tariffs. ► Financial analysis shows the importance of the new FiT scheme to the uptake of PV.

  4. Evaluation of the differential energy distribution of systems of non-thermally activated molecules

    International Nuclear Information System (INIS)

    Rogers, E.B.

    1986-01-01

    A non-thermally activated molecule may undergo pressure dependent deactivation or energy dependent decomposition. It should be possible to use the pressure dependent stabilization/decomposition yields to determine the energy distribution in non-thermal systems. The numerical technique of regularization has been applied to this chemical problem to evaluate this distribution. The resulting method has been tested with a number of simulated distributions and kinetic models. Application was then made to several real chemical systems to determine the energy distribution resulting from the primary excitation process. Testing showed the method to be quite effective in reproducing input distributions from simulated data in all test cases. The effect of experimental error proved to be negligible when the error-filled data were first smoothed with a parabolic spline. This method has been applied to three different hot atom activated systems. Application to 18 F-for-F substituted CH 3 CF 3 generated a broad distribution extending from 62 to 318 kcal/mol, with a median energy of 138 kcal/mol. The shape of this distribution (and those from the other applications) indicated the involvement of two mechanisms in the excitation process. Analysis of the T-for-H substituted CH 3 CH 2 F system showed a more narrow distribution (56-218 kcal/mol) with a median energy of 79.8 kcal/mol. The distribution of the T-for-H substituted CH 3 CH 2 Cl system, extending from 54.5 to 199 kcal/mol was seen to be quite similar. It was concluded that this method is a valid approach to evaluating differential energy distributions in non-thermal systems, specifically those activated by hot atom substitution

  5. Coal structure construction system with construction knowledge and partial energy evaluation; Kochiku chishiki to bubunteki energy hyoka ni yoru sekitan bunshi kozo kochiku system

    Energy Technology Data Exchange (ETDEWEB)

    Okawa, T.; Sasai, T.; Komoda, N. [Osaka University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    The computer aided coal structure construction system is proposed, and a computational construction example is presented. The coal structure construction engine of this system fabricates molecular structure by connecting fragments sequentially inputted through a user interface. The best structure candidate is determined using construction knowledge and partial energy evaluation every addition of one fragment, and this process is subsequently repeated. The structure evaluation engine analyzes the 3-D conformation candidate by molecular dynamics, and evaluates the conformation by determining the energy value of an optimum structure. As an example, this system was applied to construction of coal molecular structure based on the actual data of partial structure composed of 26 structures from 2l kinds of aromatic cluster structures, 27 bonds from 2 kinds of bridged bonds, and 16 groups from 2 kinds of terminal substitutional groups. As a result, this system could construct a superior structure according to expert knowledge from the viewpoint of energy. 6 refs., 5 figs., 2 tabs.

  6. Evaluation of a ground thermal energy storage system for heating and cooling of an existing dwelling

    Energy Technology Data Exchange (ETDEWEB)

    Leong, W.H; Lawrence, C.J. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Tarnawski, V.R. [Saint Mary' s Univ., Halifax, NS (Canada). Dept. of Engineering; Rosen, M.A. [University of Ontario Institute of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2006-07-01

    A ground-coupled heat pump (GCHP) system for heating and cooling a residential house in Ontario was simulated. The system uses the surface ground as a thermal energy storage for storing thermal energy in the summer for later use in the winter. In the summer, the ground receives both solar energy and the heat rejected by the system during cooling operation. The relationship between a heat pump and the ground is a ground heat exchanger (GHE). This presentation described the vertical and horizontal configurations of the GHE, which are the 2 basic configurations. It also described the modelling and analysis of the GCHP system. The modelling involved both simplified and comprehensive models. The simplified models of heating and cooling loads of a building, a heat pump unit, and heat transfer at the ground heat exchanger provided a direct link to the comprehensive model of heat and moisture transfer in the ground, based on the finite element method. This combination of models provided an accurate and practical simulation tool for GCHP systems. The energy analysis was used to evaluate the performance of the system. The use of a horizontal ground heat exchanging pipe and the impact of heat deposition and extraction through it in the ground were also studied with reference to the length of pipe, depth of pipe and layout of the pipe loop. The objective of the analysis was to find ways to optimize the thermal performance of the system and environmental sustainability of the ground. 14 refs., 3 tabs., 5 figs.

  7. Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production

    International Nuclear Information System (INIS)

    Lettens, Suzanna; Muys, Bart; Ceulemans, Reinhart; Moons, Ellen; Garcia, Juan; Coppin, Pol

    2003-01-01

    The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr. Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most

  8. BiomaSoft: data processing system for monitoring and evaluating food and energy production. Part I

    International Nuclear Information System (INIS)

    Quevedo, J. R.; Suárez, J.

    2015-01-01

    The integrated food and energy production in Cuba demands to process diverse and voluminous information to make local, sectoral and national decisions, in order to have incidence on public policies, for which the support of automated systems that facilitate the monitoring and evaluation (M&E) of the integrated food and energy production in Cuban municipalities is necessary. The objective of this research was to identify the tools for the design of the data processing system BiomaSoft and to contextualize its application environment. The software development methodology was RUP (Rational Unified Process), with UML (Unified Modeling Language) as modeling language and PHP (Hypertext Pre-Processor) as programming language. The environment was conceptualized through a dominion model and the functional and non-functional requisites that should be fulfilled, as well as the Use Case Diagram of the system, with the description of actors, were specified. For the display of BiomaSoft a configuration based on two types of physical nodes (a web server and client computers) was conceived, in the municipalities that participate in the project «Biomass as renewable energy source for Cuban rural areas» (BIOMAS-CUBA). It is concluded that the monitoring and evaluation of integrated food and energy production under Cuban conditions can be made through the automated system BiomaSoft, and the identification of tools for its design and the contextualization of its application environment contribute to this purpose. (author)

  9. Solar energy system performance evaluation: Seasonal report for Contemporary-Manchester, Manchester, New Hampshire

    Science.gov (United States)

    1980-01-01

    The operational and thermal performance of the solar energy system, Contemporary-Manchester, is described. The system was designed by Contemporary Systems Incorporated to provide space heating and domestic hot water preheating for a three story dwelling located on the New Hampshire Vocational Technical College campus, Manchester, New Hampshire. The net fossil energy savings for the period from March, 1979 to February, 1980 was 14.52 million Btu. However, the performance of the system must be degraded due to the fact that the building was unoccupied throughout the data assessment and analysis period. The unoccupied status prevented the normal adjustment of heating and ventilating controls for maintenance of comfort levels within the building. This lack of occupancy also prevented the typical family hot water usage, which would have allowed for more realistic evaluation of the hot water subsystem.

  10. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    International Nuclear Information System (INIS)

    Ren, Hongbo; Zhou, Weisheng; Nakagami, Ken'ichi; Gao, Weijun

    2010-01-01

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  11. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  12. An Optimization Framework for Investment Evaluation of Complex Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    David Olave-Rojas

    2017-07-01

    Full Text Available Enhancing the role of renewable energies in existing power systems is one of the most crucial challenges that society faces today. However, the high variability of their generation potential and the temporal disparity between the demand and the generation potential represent technological and operational gaps that burden the massive incorporation of renewable sources into power systems. Energy storage technologies are an alternative to tackle this gap; nonetheless, their incorporation within large-scale power grids calls for decision-making tools that ensure an appropriate design and sizing of power systems that exploit the benefits of incorporating storage facilities along with renewable generation power. In this paper, we present an optimization framework for aiding the evaluation of the strategic design of complex renewable power systems. The developed tool relies on an optimization problem, the generation, transmission, storage energy location and sizing problem, which allows one to compute economically-attractive investment plans given by the location and sizing of generation and storage energy systems, along with the corresponding layout of transmission lines. Results on a real case study (located in the central region of Chile, characterized by carefully-curated data, show the potential of the developed tool for aiding long-term investment planning.

  13. An evaluation and implementation of rule-based Home Energy Management System using the Rete algorithm.

    Science.gov (United States)

    Kawakami, Tomoya; Fujita, Naotaka; Yoshihisa, Tomoki; Tsukamoto, Masahiko

    2014-01-01

    In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume "IF-THEN" rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps.

  14. Energy and environmental evaluation of combined cooling heating and power system

    Science.gov (United States)

    Bugaj, Andrzej

    2017-11-01

    The paper addresses issues involving problems of implementing combined cooling, heating and power (CCHP) system to industrial facility with well-defined demand profiles of cooling, heating and electricity. The application of CCHP system in this particular industrial facility is being evaluated by comparison with the reference system that consists of three conventional methods of energy supply: (a) electricity from external grid, (b) heat from gas-fired boilers and (c) cooling from vapour compression chillers run by electricity from the grid. The CCHP system scenario is based on the combined heat and power (CHP) plant with gas turbine-compressor arrangement and water/lithium bromide absorption chiller of a single-effect type. Those two scenarios are analysed in terms of annual primary energy usage as well as emissions of CO2. The results of the analysis show an extent of primary energy savings of the CCHP system in comparison with the reference system. Furthermore, the environmental impact of the CCHP usage, in the form of greenhouse gases emission reductions, compares quite favourably with the reference conventional option.

  15. Extended risk and benefit evaluation of energy systems for policy analysis

    International Nuclear Information System (INIS)

    Kotte, E.U.

    1984-01-01

    The social compatibility of future energy scenarios is analysed in order to improve the political decision making. Social compatibility analysis is a form of technology assessment focusing on societal and social issues. The value tree analysis method is applied to collect and structure the values and concerns of important societal groups. Nine relevant groups and organizations in the society of the Federal Republic of Germany are included in the study. A combined value tree is formed by integration of the individual value trees. The overall value tree is transformed into an operational and systematic catalogue of criteria. Measurement instructions and scales are introduced as indicators for the extended risk and benefit evaluation of energy systems. The assessment of specified future energy options is performed by selected scientific experts. The results can improve the political decision-making process with respect to societal needs and desires. (author)

  16. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    Directory of Open Access Journals (Sweden)

    Abermann S.

    2012-10-01

    Full Text Available The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  17. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  18. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-01-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel

  19. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Takayuki [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki-ken 319-1194 (Japan); Ohta, Hirokazu; Ogata, Takanari [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-15

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel.

  20. Solar-energy system performance evaluation. San Anselmo School, San Jose, California, July 1980-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Pakkala, P.A.

    1981-01-01

    The San Anselmo School is a one-story, brick elementary school building located in San Jose, California. The active solar energy system is designed to supply 70% of the heating load and 72% of the cooling load. It is equipped with 3.740 square feet of evacuated tube collectors, 2175-gallon tank for storage, four auxiliary gas-fired absorption chiller/heaters, and a solar-supplied absorption chiller. The measured heating and cooling solar fractions were 9% and 19%, respectively, for an overall solar fraction of 16%, the lowered performance being attributed to severe system control problems. Performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Performance data are presented for the overall system and for each subsystem. System operation and solar energy utilization data are included. Also included are a description of the system, performance evaluation techniques, sensor technology, and typical performance data for a month. Weather data are also tabulated. (LEW)

  1. Evaluation of maximum power point tracking in hydrokinetic energy conversion systems

    Directory of Open Access Journals (Sweden)

    Jahangir Khan

    2015-11-01

    Full Text Available Maximum power point tracking is a mature control issue for wind, solar and other systems. On the other hand, being a relatively new technology, detailed discussion on power tracking of hydrokinetic energy conversion systems are generally not available. Prior to developing sophisticated control schemes for use in hydrokinetic systems, existing know-how in wind or solar technologies can be explored. In this study, a comparative evaluation of three generic classes of maximum power point scheme is carried out. These schemes are (a tip speed ratio control, (b power signal feedback control, and (c hill climbing search control. In addition, a novel concept for maximum power point tracking: namely, extremum seeking control is introduced. Detailed and validated system models are used in a simulation environment. Potential advantages and drawbacks of each of these schemes are summarised.

  2. Evaluating energy-system alternatives in the context of sustainable development

    International Nuclear Information System (INIS)

    Wilson, D.

    1993-01-01

    Growing awareness of the negative social, environmental and economic impacts caused by the production, distribution and end-use consumption of energy has led the search for alternatives to become increasingly urgent and complex. The need for analytical methods and tools for evaluating options and opportunities is particularly acute in rapidly developing countries. The aim of this article is to illustrate the broad range of issues and impacts that are important for evaluating and comparing energy-system alternatives in the context of sustainable development. The feasibility of producing and utilizing biomass-based ethanol as an alternative transportation fuel in Thailand is explored herein to provide examples and a forum for discussion of these issues. Scenarios describe the conditions under which a significant potential for fuel-switching to domestically-produced ethanol appears to exist. Harnessing this potential could lead to important improvements in the energy system's impacts on human health, Thailand's economy, and the environment. Achieving these improvements, however, would require comprehensive and long-term planning and support on the part of the Thai government

  3. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  4. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    Science.gov (United States)

    Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.

    2011-03-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  5. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    International Nuclear Information System (INIS)

    Haruna, J; Itoh, J; Murai, K; Yamada, N; Hirano, Y; Homma, T; Fujimori, T

    2011-01-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  6. Evaluation of energy fluxes in the NCEP climate forecast system version 2.0 (CFSv2)

    Science.gov (United States)

    Rai, Archana; Saha, Subodh Kumar

    2018-01-01

    The energy fluxes at the surface and top of the atmosphere (TOA) from a long free run by the NCEP climate forecast system version 2.0 (CFSv2) are validated against several observation and reanalysis datasets. This study focuses on the annual mean energy fluxes and tries to link it with the systematic cold biases in the 2 m air temperature, particularly over the land regions. The imbalance in the long term mean global averaged energy fluxes are also evaluated. The global averaged imbalance at the surface and at the TOA is found to be 0.37 and 6.43 Wm-2, respectively. It is shown that CFSv2 overestimates the land surface albedo, particularly over the snow region, which in turn contributes to the cold biases in 2 m air temperature. On the other hand, surface albedo is highly underestimated over the coastal region around Antarctica and that may have contributed to the warm bias over that oceanic region. This study highlights the need for improvements in the parameterization of snow/sea-ice albedo scheme for a realistic simulation of surface temperature and that may have implications on the global energy imbalance in the model.

  7. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Directory of Open Access Journals (Sweden)

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  8. Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration

    Science.gov (United States)

    Siler-Evans, Kyle

    There is growing interest in reducing the environmental and human-health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly suggested solutions. Such interventions may provide health and environmental benefits by displacing emissions from conventional power plants. However, the generation mix varies considerably from region to region and emissions vary by the type and age of a generator. Thus, the benefits of an intervention will depend on the specific generators that are displaced, which vary depending on the timing and location of the intervention. Marginal emissions factors (MEFs) give a consistent measure of the avoided emissions per megawatt-hour of displaced electricity, which can be used to evaluate the change in emissions resulting from a variety of interventions. This thesis presents the first systematic calculation of MEFs for the U.S. electricity system. Using regressions of hourly generation and emissions data from 2006 through 2011, I estimate regional MEFs for CO2, NO x, and SO2, as well as the share of marginal generation from coal-, gas-, and oil-fired generators. This work highlights significant regional differences in the emissions benefits of displacing a unit of electricity: compared to the West, displacing one megawatt-hour of electricity in the Midwest is expected to avoid roughly 70% more CO2, 12 times more SO 2, and 3 times more NOx emissions. I go on to explore regional variations in the performance of wind turbines and solar panels, where performance is measured relative to three objectives: energy production, avoided CO2 emissions, and avoided health and environmental damages from criteria pollutants. For 22 regions of the United States, I use regressions of historic emissions and generation data to estimate marginal impact factors, a measure of the avoided health and environmental damages per megawatt-hour of displaced electricity. Marginal impact factors are used

  9. Stochastic Signal Processing for Sound Environment System with Decibel Evaluation and Energy Observation

    Directory of Open Access Journals (Sweden)

    Akira Ikuta

    2014-01-01

    Full Text Available In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are usually contaminated by external noise (e.g., background noise of non-Gaussian distribution type. Furthermore, there potentially exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural method are considered. By introducing an estimation method of the system parameters reflecting correlation information for conditional probability distribution under existence of the external noise, a prediction method of output response probability for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by applying it to the observed data in sound environment systems.

  10. An evaluation of negative-emission transportation-energy systems for the US

    Science.gov (United States)

    Larson, E. D.; Meerman, J. C.

    2017-12-01

    We present technical, economic, and carbon footprint evaluations of alternative technological pathways for negative emissions transportation energy from sustainably-sourced lignocellulosic biomass in the U.S. We combine the understanding of alternative technological pathways with spatially-resolved projections of the sustainable supply of lignocellulosic biomass and with future demands for transportation services to provide insights on the extent to which biomass-based energy might be able to help meet mid-century U.S. transportation energy needs and carbon mitigation targets. Biomass conversion routes included in our evaluations are biochemical, biocatalytic, thermocatalytic hydropyrolysis, and thermochemical gasification/synthesis to produce liquid fuels fungible with petroleum-derived fuels, and thermochemical conversion to hydrogen (for fuel cell vehicles) or electricity (for battery electric vehicles). Lifecycle net negative emissions are achieved for each system via soil carbon buildup during biomass production and/or capture of CO2 at the conversion facility and underground storage. Co-processing of some fossil fuel is considered in some cases to improve economics. For self-consistency in the analysis across systems, a common set of technical, economic and carbon footprint input parameters are adopted. Capital cost estimates are harmonized by taking into account scale of facilities, level of engineering details available in generating a cost estimate, and the technology readiness level (TRL) of components and the process as a whole. Implications for economics of future commercial plants are investigated, considering alternative prospective reductions in capital and operating costs (via "learning by doing") and alternative carbon mitigation policies.

  11. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  12. Report on a survey in fiscal 1999. Survey on energy use evaluation systems; 1999 nendo energy shiyo hyoka system chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present survey and study relate to the medium to long term policies for technological development of energy and environment related technologies, and are intended to develop a system that can evaluate the importance, feasibility, expected realization time, and expected cost of the technologies, including their synergetic effects. The survey and study are intended to provide clear guidelines for planning the technological development policies on which of the technological development should be promoted in what ways, based on the evaluation given by the use of the system. The report describes in Section 1 to adopt two types of approaches of a 'technology map' and a 'network chart evaluation system' to achieve the goal. Section 2, after describing the results of surveys on the past study cases of technology evaluation, describes that the present approach has new features that are different from conventional ones. Section 3 states the results of surveys on the basic technologies to prevent global warming, and shows cases of preparing maps that notice on energy flows. Section 4 relates to network chart evaluating methods. Section 5 describes the results of surveys that have been made in relation with chronological progress of the technological development, in preparation for surveys to be made in the coming fiscal years. (NEDO)

  13. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Yang, Ke; Zhang, Yuan; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  14. Technical evaluation of vehicle ignition systems: conduct differences between a high energy capacitive system and a standard inductive system

    Directory of Open Access Journals (Sweden)

    Bruno Santos Goulart

    2014-09-01

    Full Text Available An efficient combustion depends on many factors, such as injection, turbulence and ignition characteristics. With the improvement of internal combustion engines the turbulence intensity and internal pressure have risen, demanding more efficient and powerful ignition systems. In direct injection engines, the stratified charge resultant from the wall/air-guided or spray-guided system requires even more energy. The Paschen’s law shows that spark plug gap and mixture density are proportional to the dielectric rupture voltage. It is known that larger spark gaps promote higher efficiency in the internal combustion engines, since the mixture reaction rate rises proportionally. However, the ignition system must be adequate to the imposed gap, not only on energy, but also on voltage and spark duration. For the reported study in this work two test benches were built: a standard inductive ignition system and a capacitive discharge high energy ignition system, with variable voltage and capacitance. The influence of the important parameters energy and ignition voltage on the spark duration, as well as the electrode gap and shape were analyzed. It was also investigated the utilization of a coil with lower resistance and inductance values, as well as spark plugs with and without internal resistances.

  15. Risk assessments for energy systems and role of preliminary degree-of-hazard evaluations

    International Nuclear Information System (INIS)

    Habegger, L.J.; Fingleton, D.J.

    1985-11-01

    The appropriate approach to risk or hazard assessment can vary considerably, depending on various factors, including the intended application of the results and the time other resources available to conduct the assessment. This paper illustrates three types of interrelated assessments. Although they can be mutually supportive, they have fundamentally different objectives, which require major differences in approach. The example of the overall risk assessment of alternative major energy technologies illustrates the compilation of a wide range of available risk data applicable to these systems. However, major uncertainties exist in the assessments, and public perception of their importance could play an important role in final system evaluations. A more narrowly defined risk assessment, often focusing on an individual component of a larger system, is the most commonly used approach in regulatory applications. The narrow scope allows in-depth analysis of risks and associated uncertainties, but it may also contribute to a loss of perspective on the magnitude of the assessed risk relative to that of the unassessed risks. In some applications, it is useful to conduct semiquantitative degree-of-hazard evaluations as a means of setting priorities for detailed risk assessment. The MAHAS procedure described in this paper provides a means of rapidly ranking relative hazards from various sources using easily accessible data. However, these rankings should not be used as definitive input for selecting technology alternatives or developing regulations. 25 refs., 6 tabs

  16. Solar energy system performance evaluation: Seasonal report for Elcam Tempe Arizona State University, Tempe, Arizona

    Science.gov (United States)

    1980-01-01

    The solar system, Elcam-Tempe, was designed by Elcam Incorporated, Santa Barbara, California, to supply commercial domestic hot water heating systems to the Agriculture Department residence at Arizona State University. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The energy system's four modes of operation are described. Electrical energy savings at the site was a net of 5.54 million Btu after the 0.17 million Btu of operating energy required to operate collector loop circulating pump were subtracted. The energy savings due to solar was less than the system's potential. On an average, twice as much hot water could have been used with significant solar energy contribution. The system corrosion and deposits caused by using dissimilar metals in the collector loop was the only problem noted with the Elcam-Tempe system.

  17. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    OpenAIRE

    Imal, Muharrem; Yılmaz, Koray; Pınarbaşı, Ahmet

    2015-01-01

    Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP) and a mechanical compression water chiller system (ACHP) to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in ...

  18. INPRO Methodology to evaluate the Mexico nuclear energy system; Metodologia INPRO para evaluar el sistema de energia nuclear de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz S, R. R.; Martin del C, C., E-mail: crzslns.ricardoruben@gmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2016-09-15

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  19. Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model

    Directory of Open Access Journals (Sweden)

    Shuai Su

    2016-02-01

    Full Text Available Increasing attention is being paid to the energy efficiency in metro systems to reduce the operational cost and to advocate the sustainability of railway systems. Classical research has studied the energy-efficient operational strategy and the energy-efficient system design separately to reduce the traction energy consumption. This paper aims to combine the operational strategies and the system design by analyzing how the infrastructure and vehicle parameters of metro systems influence the operational traction energy consumption. Firstly, a solution approach to the optimal train control model is introduced, which is used to design the Optimal Train Control Simulator(OTCS. Then, based on the OTCS, the performance of some important energy-efficient system design strategies is investigated to reduce the trains’ traction energy consumption, including reduction of the train mass, improvement of the kinematic resistance, the design of the energy-saving gradient, increasing the maximum traction and braking forces, introducing regenerative braking and timetable optimization. As for these energy-efficient strategies, the performances are finally evaluated using the OTCS with the practical operational data of the Beijing Yizhuang metro line. The proposed approach gives an example to quantitatively analyze the energy reduction of different strategies in the system design procedure, which may help the decision makers to have an overview of the energy-efficient performances and then to make decisions by balancing the costs and the benefits.

  20. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    Science.gov (United States)

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  1. Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Lee, J. P.; Kim, H. G.; Han, S. C.

    2012-01-01

    In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

  2. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    Science.gov (United States)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  3. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    Science.gov (United States)

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Economic Evaluation of Dual-Level-Residence Solar-Energy System

    Science.gov (United States)

    1982-01-01

    105-page report is one in a series of economic evaluations of different solar-energy installations. Using study results, an optimal collector area is chosen that minimizes life-cycle costs. From this optimal size thermal and economic performance is evaluated.

  5. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Eco-energy urban system (Research of systematization technology and evaluation technology out of energy system designing technology researches); Koiki energy riyo network system kaihatsu (eko energy toshi system) 1998 nendo seika hokokusho. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of urban society respecting enhanced energy efficiency and environmental protection, cities and surrounding industrial facilities are investigated for the development of element technologies involving energy recovery, conversion, transportation, storage, delivery, utilization, etc., and for the compounding of urban energy systems. In the study of the effect of introduction, assumption is made of delivery of heat to an urban heat accumulation district from a plant equivalent to a district air-conditioning system which is covered by the existing technologies. Also assumed are the delivery of exhaust heat to the said plant utilizing eco-energy element technologies and the replacement of existing technologies by eco-energy element technologies. Comparison is established in terms of energy efficiency, environmental protection, and economy, and then it is found that the eco-energy element technologies for the utilization of exhaust heat are in all cases superior to the conventional technologies as far as energy efficiency and environmental protection are concerned. It is found, however, that they are inferior from the economic viewpoint. The energy efficiency technology in heat transportation is superior to the existing technology in energy efficiency and environmental protection but roughly equal to the existing ones in economy. (NEDO)

  6. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  7. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  8. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs. The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  9. Modeling and evaluating proliferation resistance of nuclear energy systems for strategy switching proliferation

    International Nuclear Information System (INIS)

    Yue, M.; Cheng, L.-Y.; Bari, R.A.

    2013-01-01

    Highlights: ► Sensitivity analysis is carried out for the model and physical input parameters. ► Interphase drag has minor effect on the dryout heat flux (DHF) in 1D configuration. ► Model calibration on pressure drop experiments fails to improve prediction of DHF. ► Calibrated classical model provides the best agreement with DHF data from 1D tests. ► Further validation of drag models requires data from 2D and 3D experiments on DHF. - Abstract: This paper reports a Markov model based approach to systematically evaluating the proliferation resistance (PR) of nuclear energy systems (NESs). The focus of the study is on the development of the Markov models for a class of complex PR scenarios, i.e., mixed covert/overt strategy switching proliferation, for NESs with two modes of material flow, batch and continuous. In particular, a set of diversion and/or breakout scenarios and covert/overt misuse scenarios are studied in detail for an Example Sodium Fast Reactor (ESFR) system. Both probabilistic and deterministic PR measures are calculated using a software tool that implements the proposed approach and can be used to quantitatively compare proliferation resistant characteristics of different scenarios for a given NES, according to the computed PR measures

  10. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  11. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  12. Reliability Assessment and Energy Loss Evaluation for Modern Wind Turbine Systems

    DEFF Research Database (Denmark)

    Zhou, Dao

    . The cost of energy in wind turbine system is then addressed in Chapter 5, where different wind classes and operation modes of the reactive power injection are taken into account. Finally, the internal and external challenges for power converters in the DFIG systems to ride through balanced grid faults......With a steady increase of the wind power penetration, the demands to the wind power technology are becoming the same as those to the conventional energy sources. In order to fulfill the requirements, power electronics technology is the key for the modern wind turbine systems – both the Doubly...... to explore the reliability and cost of energy in the modern wind turbine systems. Moreover, advanced control strategies have been proposed and developed for an efficient and reliable operation during the normal condition as well as under grid faults. The documented thesis starts with the descriptions...

  13. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  14. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  15. Evaluating interaction energies of weakly bonded systems using the Buckingham-Hirshfeld method

    Science.gov (United States)

    Krishtal, A.; Van Alsenoy, C.; Geerlings, P.

    2014-05-01

    We present the finalized Buckingham-Hirshfeld method (BHD-DFT) for the evaluation of interaction energies of non-bonded dimers with Density Functional Theory (DFT). In the method, dispersion energies are evaluated from static multipole polarizabilities, obtained on-the-fly from Coupled Perturbed Kohn-Sham calculations and partitioned into diatomic contributions using the iterative Hirshfeld partitioning method. The dispersion energy expression is distributed over four atoms and has therefore a higher delocalized character compared to the standard pairwise expressions. Additionally, full multipolar polarizability tensors are used as opposed to effective polarizabilities, allowing to retain the anisotropic character at no additional computational cost. A density dependent damping function for the BLYP, PBE, BP86, B3LYP, and PBE0 functionals has been implemented, containing two global parameters which were fitted to interaction energies and geometries of a selected number of dimers using a bi-variate RMS fit. The method is benchmarked against the S22 and S66 data sets for equilibrium geometries and the S22x5 and S66x8 data sets for interaction energies around the equilibrium geometry. Best results are achieved using the B3LYP functional with mean average deviation values of 0.30 and 0.24 kcal/mol for the S22 and S66 data sets, respectively. This situates the BHD-DFT method among the best performing dispersion inclusive DFT methods. Effect of counterpoise correction on DFT energies is discussed.

  16. Modelling tools to evaluate China's future energy system - a review of the Chinese perspective

    DEFF Research Database (Denmark)

    Mischke, Peggy; Karlsson, Kenneth Bernard

    2014-01-01

    finds that there are considerable ranges in the reference scenarios: (i) GDP is projected to grow by 630e840% from 2010 to 2050, (ii) energy demand could increase by 200e300% from 2010 to 2050, and (iii) CO2 emissions could rise by 160e250% from 2010 to 2050. Although the access to the modelling tools...... compares 18 energy modelling tools from ten Chinese institutions. These models have been described in English language publications between 2005 and 2013, although not all are published in peer-reviewed journals. When comparing the results for three main energy system indicators across models, this paper...

  17. Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin

    2014-01-01

    Highlights: • The metabolism of complex biogas system increased from 2000 to 2008. • System renewability has been increased due to biogas utilization. • Electricity, diesels and infrastructure were the most efficient supplies. • All processes were challenged by high transformity and low sustainability. - Abstract: Biogas engineering and the biogas-linked agricultural industries as a whole has been used as both a developmental strategy for rural new emergy and an important part of renewable agriculture revolution in China. In this paper, we proposed a 3-level emergetic evaluation framework to investigate the energy efficiency and sustainability of a complex biogas system (CBS) in South China, comprising agro-industries such as planting, aquaculture, breeding and biogas. The framework is capable of tracking dynamical behaviors of the whole complex system (Level I), transformation processes (Level II) and resource components (Level III) simultaneously. Two new indicators, emergy contribution rate (ECR) and emergy supply efficiency (ESE) were developed to address the contribution and efficiency of resource components within each agro-industrial process. Our findings suggested the metabolism of the CBS were increased from 2000 to 2008, in which planting production was the biggest process in terms of total emergy input, while breeding was the most productive one with its highest total emergy yield. The CBS was under an industry transaction process stimulated by biogas construction, while the traditional agricultural activities still play an important role. For economic input, a trend towards a more renewable regime was found behind the total increase over time. With different preferences for renewable or non-renewable resources, planting and aquaculture production were proved natural donation-reliant, while breeding and biogas were economic input-dependent. Among all the economic inputs, electricity, diesels and infrastructure were the most efficient components

  18. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  19. Karasek Home, Blackstone, Massachusetts solar-energy-system performance evaluation, Nov. 1981 - Mar. 1982

    Science.gov (United States)

    Raymond, M.

    1982-06-01

    The Karasek Home is a single family Massachusetts residence whose active-solar-energy system is equipped with 640 square feet of trickle-down liquid flat-plate collectors, storage in a 300-gallon tank and a 2000-gallon tank embedded in a rock bin in the basement, and an oil-fired glass-lined 40-gallon domestic hot water tank for auxiliary water and space heating. Monthly performance data are tabulated for the overall system and for the collector, storage, space heating, and domestic hot water subsystems. For each month a graph is presented of collector array efficiency versus the difference between the inlet water temperature and ambient temperature divided by insolation. Typical system operation is illustrated by graphs of insolation and temperatures at different parts of the system versus time for a typical day. The typical system operating sequence for a day is also graphed as well as solar energy utilization and heat losses.

  20. Evaluation of alternatives for a second-generation transportation system for Department of Energy transuranic waste

    International Nuclear Information System (INIS)

    1984-01-01

    Department of Energy (DOE) waste storage sites will ship their contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) beginning FY 1989. The CH-TRU waste will be shipped in the Transuranic Package Transported (TRUPACT-I), a new packaging being developed by Sandia National Laboratories, Albuquerque/Transportation Technology Center. Some of the DOE TRU waste, however, might be unsuitable for shipment in TRUPACT-I, and is designated special-shipped (SS) TRU waste. The purposes of this study were to: (1) identify the quantity and characteristics of SS-TRU waste stored and generated at DOE facilities; (2) identify alternatives for managing the SS-TRU waste; and (3) make overall recommendations for managing the SS-TRU waste. Data on quantity and characteristics were gathered through coordinating visits to the sites and extracting information from each site's records. Representatives of DOE organizations and contractors set objectives for managing the SS-TRU waste. Alternative shipping systems were then identified for CH SS-TRU waste and RH SS-TRU waste. Evaluations of these alternatives considered how well they would satisfy each objective, and associated potential problems. The study recommends delaying the decision on how best to transport the CH SS-TRU waste to WIPP until the amount of SS-TRU processed waste in heavy drums is known. These conditions and choices are presented: a relatively small number of processed, heavy drums could be shipped most economically via TRUPACT-I, mixed with lighter drums of unprocessed waste. If a large number of heavy drums is to be shipped, a shorter and narrower version of TRUPACT-I would be preferred alternative. The Defense High-Level Waste cask is the recommended alternative system for shipping RH SS-TRU waste. 12 references, 15 figures, 22 tables

  1. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  2. Solar energy system performance evaluation: Honeywell OTS 41, Shenandoah (Newman), Georgia

    Science.gov (United States)

    Mathur, A. K.; Pederson, S.

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of the data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-are heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics.

  3. Evaluating Uncertainty in GHG Emission Scenarios: Mapping IAM Outlooks With an Energy System Phase Space

    Science.gov (United States)

    Ritchie, W. J.; Dowlatabadi, H.

    2017-12-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing (RF). Pathways for long-run fossil energy use that map to total forcing outcomes are commonly depicted with integrated assessment models (IAMs). IAMs structure outlooks for 21st-century emissions with various theories for developments in demographics, economics, land-use, energy markets and energy service demands. These concepts are applied to understand global changes in two key factors relevant for scenarios of carbon emissions: total energy use (E) this century and the carbon intensity of that energy (F/E). A simple analytical and graphical approach can also illustrate the full range of outcomes for these variables to determine if IAMs provide sufficient coverage of the uncertainty space for future energy use. In this talk, we present a method for understanding uncertainties relevant to RF scenario components in a phase space. The phase space of a dynamic system represents significant factors as axes to capture the full range of physically possible states. A two-dimensional phase space of E and F/E presents the possible system states that can lead to various levels of total 21st-century carbon emissions. Once defined in this way, a phase space of these energy system coordinates allows for rapid characterization of large IAM scenario sets with machine learning techniques. This phase space method is applied to the levels of RF described by the Representative Concentration Pathways (RCPs). The resulting RCP phase space identifies characteristics of the baseline energy system outlooks provided by IAMs for IPCC Working Group III. We conduct a k-means cluster analysis to distinguish the major features of IAM scenarios for each RCP range. Cluster analysis finds the IAM scenarios in AR5 illustrate RCPs with consistent combinations of energy resources. This suggests IAM scenarios understate uncertainty ranges for future

  4. Solar energy system performance evaluation: Scattergood School, West Branch, Iowa, June 1979-April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Schatzberg, E.M.

    1980-01-01

    The Scattergood School solar energy system completed its third year. This site was turned off in the beginning of May 1980 to prevent overheating in the gymnasium. During the reporting period, the Scattergood School solar energy system supplied 93% of the space heating and 50% of the domestic hot water required for the school. The system operated from June 1979 to April 1980 with no mechanical failures. The grain drying subsystem was used during the last two weeks of October. Operation of the grain drying subsystem considerably improved overall system performance. Had the October data been available, it probably would have reflected this improved performance, particularly with respect to fossil fuel savings, collector array efficiency, and ECSS conversion efficiency.

  5. Primary Frequency Regulation with Li-Ion Battery Energy Storage System - Evaluation and Comparison of Different Control Strategies

    DEFF Research Database (Denmark)

    Thorbergsson, Egill; Knap, Vaclav; Swierczynski, Maciej Jozef

    2013-01-01

    devices is becoming more attractive, the aim of this paper is to analyse the viability of providing primary frequency regulation with Lithium-ion based energy storage systems. Three control strategies of the energy storage system are analysed and compared in terms of economic benefits on the Danish energy...... market. The revenues and degradation of the Lithium-ion batteries are obtained by simulations. Furthermore, an energy management strategy based on variable state-of-charge (SOC) set-point is evaluated. Preliminary, the influence of different state-of-charge levels on the cycle lifetime is estimated......The increased grid penetration levels of renewable sources are at the expense of the conventional power plants. This means that the grid support functions, traditionally achieved by the conventional power plants, need to be provided by new technologies. Since grid support with energy storage...

  6. Solar energy system performance evaluation: Seasonal report for Colt Yosemite, Yosemite National Park, California

    Science.gov (United States)

    1980-01-01

    The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.

  7. Solar energy system performance evaluation: Seasonal report for Colt Yosemite, Yosemite National Park, California

    Science.gov (United States)

    1980-08-01

    The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.

  8. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Podorson, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  9. After the boom : Evaluation of Dutch ates-systems for energy efficiency

    NARCIS (Netherlands)

    Bloemendal, J.M.; Hartog, N

    2016-01-01

    Aquifer thermal energy storage (ATES) is a technology to sustainably provide space heating and cooling. Particularly in The Netherlands the number of ATES systems has grown rapidly in the past decade, often with the (re)development of urban areas. To meet objectives for greenhouse gas emission

  10. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  11. Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems.

    Science.gov (United States)

    Cecconet, Daniele; Zou, Shiqiang; Capodaglio, Andrea G; He, Zhen

    2018-09-15

    Nitrate contamination of groundwater is a mounting concern for drinking water production due to its healthy and ecological effects. Bioelectrochemical systems (BES) are a promising method for energy efficient nitrate removal, but its energy consumption has not been well understood. Herein, we conducted a preliminary analysis of energy consumption based on both literature information and multiple assumptions. Four scenarios were created for the purpose of analysis based on two treatment approaches, microbial fuel cells (MFCs) and controlled biocathodic denitrification (CBD), under either in situ or ex situ deployment. The results show a specific energy consumption based on the mass of NO 3 - -N removed (SEC N ) of 0.341 and 1.602 kWh kg NO 3 - -N -1 obtained from in situ and ex situ treatments with MFCs, respectively; the main contributor was the extraction of the anolyte (100%) in the former and pumping the groundwater (74.8%) for the latter. In the case of CBD treatment, the energy consumption by power supply outcompeted all the other energy items (over 85% in all cases), and a total SEC N of 19.028 and 10.003 kWh kg NO 3 - -N -1 were obtained for in situ and ex situ treatments, respectively. The increase in the water table depth (from 10 to 30 m) and the decrease of the nitrate concentration (from 25 to 15 mg NO 3 - -N) would lead to a rise in energy consumption in the ex situ treatment. Although some data might be premature due to the lack of sufficient information in available literature, the results could provide an initial picture of energy consumption by BES-based groundwater treatment and encourage further thinking and analysis of energy consumption (and production). Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Evaluating the impact of adding energy storage on the performance of a hybrid power system

    International Nuclear Information System (INIS)

    Jacobus, Headley; Lin, Baochuan; Jimmy, David Henry; Ansumana, Rashid; Malanoski, Anthony P.; Stenger, David

    2011-01-01

    Research highlights: → A photovoltaic-diesel hybrid power system is compared to a diesel-only system. → The efficiency, cost, generator runtime, and fuel consumption are calculated. → Overall efficiency of two systems is very similar. → Reduced operation and maintenance costs for hybrid system gave bigger cost savings. → The hybrid system is more advantageous in serving the same load. -- Abstract: Hybrid power systems have the capability to incorporate significant renewable energy penetration for a small autonomous system while still maintaining reliable grid stability. While there are many papers covering the optimization of component size and dispatch strategy, far fewer papers contain experimental performance data from hybrid systems. Mercy Hospital in Bo, Sierra Leone is converting their power system into a photovoltaic (PV)-diesel hybrid system, thus providing an opportunity to examine the change in system performance before, during, and after the conversion. Due to the seasonal availability of electric power in Sierra Leone, two datasets representing two distinct load profiles are analyzed: Wet Season and Dry Season. The difference in generation efficiency, cost per kW h, generator runtime, and fuel consumption are calculated between a diesel-only generation baseline and the recorded hybrid system performance. The results indicated that the hybrid system significantly reduces operation costs; approximately 37% less during Dry Season and 64% reduction in the Wet Season than a diesel-only generator serving the same load.

  13. Solar-energy-system performance evaluation. San Anselmo School, San Jose, California, April 1981-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Pakkala, P.A.

    1982-01-01

    The San Anselmo School is a one-story brick elementary school building in San Jose, California. The active solar energy system is designed to supply 70% of the space heating and 72% of the cooling load. It is equipped with 3740 square feet of evacuated tube collectors, a 2175-gallon tank for heat storage, a solar-supplied absorption chiller, and four auxiliary gas-fired absorption chillers/heaters. The measured solar fraction of 19% is far below the expected values and is attributed to severe system control and HVAC problems. Other performance data given for the year include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Also tabulated are monthly performance data for the overall solar energy system, collector subsystem, space heating and cooling subsystems. Typical hourly operation data for a day are tabulated, including hourly isolation, collector array temperatures (inlet and outlet), and storage fluid temperatures. The solar energy use and percentage of losses are also graphed. (LEW)

  14. Telluride School, Telluride, Colorado solar-energy-system performance evaluation, February 1982-April 1982

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.M.

    1982-01-01

    The Telluride School solar site is an elementary/junior-senior high school in Colorado with a passive/active hybrid solar energy system designed to supply 40% of the heating load. It is equipped with a 1428 square foot, double glazed Trombe wall, a 1392 square foot greenhouse with collection tube, and an auxiliary oil-fired boiler. Monthly performance data are tabulated for the overall system and for the Trombe wall, greenhouse, and greenhouse storage. System operation is illustrated by graphs of typical Trombe wall insolation and temperatures and typical greenhouse insolation and temperatures. (LEW)

  15. Energetic evaluation of high pressure PEM electrolyzer systems for intermediate storage of renewable energies

    International Nuclear Information System (INIS)

    Bensmann, B.; Hanke-Rauschenbach, R.; Peña Arias, I.K.; Sundmacher, K.

    2013-01-01

    Three pathways for high pressure hydrogen production by means of water electrolysis are energetically compared. Besides the two classic paths, comprising either the pressurization of the product gas (path I) or the mechanical pressurization of the feed water (path II), a third path is discussed. It involves the electrochemical co-compression during the electrolysis. The energetic evaluation is based on a uniform model description of the different hydrogen production pathways. It consists of integral, steady-state balances for energy, entropy and mass as well as a modern equation of state. From this the reversible energy demand is used to identify the inherent thermodynamic drawbacks of the pathways. The additional consideration of irreversibilities allows for the determination of efficiency losses due to device specific characteristics. For hydrogen delivery pressures of up to 40 bar the classical pathways are out-performed by path III. Since the hydrogen is already produced at elevated pressure this eliminates the need for an energy consuming mechanical hydrogen compression and spares the additional energy demand due to the oxygen pressurization. However, with increasing pressure differences the hydrogen back-diffusion strongly decreases the Faradaic efficiency of the asymmetric electrolyzer that has to be compensated by an additional energy supply

  16. Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy: the case of odd-systems

    Energy Technology Data Exchange (ETDEWEB)

    Benhamouda, N [Laboratoire de Physique Theoique, Faculte des Sciences, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Algers (Algeria); Oudih, M R [CRNA, 2. Bd Frantz Fanon, BP 399 Alger-Gare, Algers (Algeria)

    2002-09-15

    A method of simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy, recently proposed for the even-even nuclei, is generalized to the case of odd systems. {sup *} By means of the blocked-level technique, a level density with explicit dependence on pairing correlations is defined. The microscopic corrections to the deformation energy are then determined by a procedure which is analogous to that of Strutinsky. The method is applied to the ground state of Europium isotopes using the single-particle energies of a deformed Woods-Saxon mean-field. The obtained results are in good agreement with the experimental values.

  17. Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy: the case of odd-systems

    International Nuclear Information System (INIS)

    Benhamouda, N.; Oudih, M.R.

    2002-01-01

    A method of simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy, recently proposed for the even-even nuclei, is generalized to the case of odd systems. * By means of the blocked-level technique, a level density with explicit dependence on pairing correlations is defined. The microscopic corrections to the deformation energy are then determined by a procedure which is analogous to that of Strutinsky. The method is applied to the ground state of Europium isotopes using the single-particle energies of a deformed Woods-Saxon mean-field. The obtained results are in good agreement with the experimental values

  18. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    Science.gov (United States)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  19. Evaluating an emergent behaviour algorithm in JCSP for energy conservation in lighting systems

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Syed, Aly; Kerridge, J.

    2011-01-01

    Since the invention of the light bulb, artificial light is accompanying people all around the world every day and night. As the light bulb itself evolved a lot through years, light control systems are still switch-based and require users to make most of the decisions about its behaviour. This pap...... presents an algorithm for emergent behaviour in a lighting system to achieve stable, user defined light level, while saving energy. The algorithm employs a parallel design and was tested using JCSP. © 2011 The authors and IOS Press. All rights reserved....

  20. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  1. ENergy and Power Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  2. Evaluation of Digital Compressed Sensing for Real-Time Wireless ECG System with Bluetooth low Energy.

    Science.gov (United States)

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2016-07-01

    In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization.

  3. Establishment of Passive Energy Conservation Measure and Economic Evaluation of Fenestration System in Nonresidential Building of Korea

    Directory of Open Access Journals (Sweden)

    Bo-Eun Choi

    2017-01-01

    Full Text Available ECO2 (building energy efficiency rating program and passive energy conservation measures (ECMs were established as a basic study for targeted methodologies and decision support systems development in Korea to meet national regulations. The primary energy consumption and economic evaluation of nonresidential buildings was performed. Passive ECMs were classified as planning and performance elements. The planning elements are the window-to-wall ratio (WWR and horizontal shading angle. The performance elements are the thermal transmittance (U-value of the walls, roof, and floor and the U-value and solar heat gain coefficient (SHGC of windows. This study focused on the window-to-wall ratio and the U-value and solar heat gain coefficient of windows. An economic efficiency database for the constructed alternatives was built; the target building was set and the Passive ECM List for the target building was derived. The energy consumption evaluation and economic evaluation were performed for each of the constructed alternatives, and a methodology for guiding energy efficiency decisions was proposed based on the performance evaluation results, and the optimal Passive ECM List for the target building was derived.

  4. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  5. Energy performance evaluation of AAC

    Science.gov (United States)

    Aybek, Hulya

    The U.S. building industry constitutes the largest consumer of energy (i.e., electricity, natural gas, petroleum) in the world. The building sector uses almost 41 percent of the primary energy and approximately 72 percent of the available electricity in the United States. As global energy-generating resources are being depleted at exponential rates, the amount of energy consumed and wasted cannot be ignored. Professionals concerned about the environment have placed a high priority on finding solutions that reduce energy consumption while maintaining occupant comfort. Sustainable design and the judicious combination of building materials comprise one solution to this problem. A future including sustainable energy may result from using energy simulation software to accurately estimate energy consumption and from applying building materials that achieve the potential results derived through simulation analysis. Energy-modeling tools assist professionals with making informed decisions about energy performance during the early planning phases of a design project, such as determining the most advantageous combination of building materials, choosing mechanical systems, and determining building orientation on the site. By implementing energy simulation software to estimate the effect of these factors on the energy consumption of a building, designers can make adjustments to their designs during the design phase when the effect on cost is minimal. The primary objective of this research consisted of identifying a method with which to properly select energy-efficient building materials and involved evaluating the potential of these materials to earn LEED credits when properly applied to a structure. In addition, this objective included establishing a framework that provides suggestions for improvements to currently available simulation software that enhance the viability of the estimates concerning energy efficiency and the achievements of LEED credits. The primary objective

  6. Methodological considerations in evaluating a proliferation resistance of innovative nuclear energy systems

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Takaki, Naoyuki; Murajiri, Masahiro; Nakagome, Yoshihiro; Tokiwai, Moriyasu

    2004-01-01

    Over 25 years ago, INFCE studied the evaluation methodology of proliferation resistance. Recently, INPRO and GEN-IV coordinated by the IAEA and the USDOE respectively seek an appropriate innovative fuel cycle system for next generation that is furnished safer, sustainable, economical and reliable features. The evaluation methodology of the proliferation resistance is also assigned as an essential part of both studies. The IAEA established and has been strictly implementing the verification measures with accurate material accountancy system from the early of the 1970s in order to detect diversion of plutonium that is individually separated from irradiated nuclear material and recycled as MOX fuel. This paper firstly identifies the impedibility of intrinsic features of innovative fuel cycles and the safeguardability of selected nonproliferation measures as two individual essential parameters for evaluation of a proliferation resistance capability. As a next step, this paper also shows methodological considerations in evaluating the proliferation resistance levels as a multiple model of several clusters that are identified the ability of each parameter. (author)

  7. Technical evaluation of two 6-kW mono-Si photovoltaic systems at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, E.E. van; Strand, T.; Hansen, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper presents an analysis of performance data on the two 6-kW{sub ac} grid-connected photovoltaic systems at the National Renewable Energy Laboratory (NREL). The performance parameters analyzed include dc and ac power, aperture efficiency, energy, capacity factor and performance index which are compared to plane-of-array irradiance, ambient temperature, and back-of-module temperature as a function of time, either daily or monthly. Power ratings of the systems were also obtained for data corresponding to different test conditions. This study has shown, in addition to expected seasonal trends, that system monitoring is a valuable tool in assessing performance and detecting faulty equipment. In addition, methods applied for this study may be used to evaluate and compare systems employing different cell technologies.

  8. Innovative Nuclear Energy Systems: State-of-the Art Survey on Evaluation and Aggregation Judgment Measures Applied to Performance Comparison

    Directory of Open Access Journals (Sweden)

    Vladimir Kuznetsov

    2015-04-01

    Full Text Available This paper summarizes the experience gained in the application of multi-criteria decision making and uncertainty treatment methods to a comparative assessment of nuclear energy systems and related nuclear fuel cycles. These judgment measures provide a means for comprehensive evaluation according to different conflicting criteria, such as costs, benefits and risks, which are inevitably associated with the deployment of advanced technologies. Major findings and recommendations elaborated in international and national projects and studies are reviewed and discussed. A careful analysis is performed for multi-criteria comparative assessment of nuclear energy systems and nuclear fuel cycles on the basis of various evaluation and screening results. The purpose of this paper is to discuss the lessons learned, to share the identified solutions, and indicate promising future directions.

  9. Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed Bilal Awan

    2018-04-01

    Full Text Available According to Vision 2030, the Kingdom of Saudi Arabia (K.S.A plans to harness 9.5 GW of energy from renewable energy sources, which includes a major part of solar PV generation. This massive implementation of solar projects requires an accurate assessment and analysis of solar resource data and PV site selection. This paper presents a detailed analysis of one-year solar radiation data and energy output of 100 kW PV systems at 44 different locations across the K.S.A. Coastal areas have a lower amount of global horizontal irradiance (GHI as compared to inland areas. Najran University station gives the highest annual electrical output of 172,083 kWh, yield factor of 1721, and capacity utilization factor of 19.6%. Sharurah and Timma TVTC are second and third best with respect to annual PV performance. Similarly, during high load summer season (April–October, Tabuk station is the best location for a PV power plant with an electrical output of 110,250 kWh, yield factor of 1102, and capacity utilization factor of 21.46%. Overall, the northern province of Tabuk is the most feasible region for a solar PV plant. The basic approach presented in this research study compares solar resource pattern and solar PV system output pattern with the load profile of the country. The site selected based on this criterion is recommended to be economically most feasible which can reduce the stress on electricity companies during high load seasons by clipping the peak load during daytime in the hot summer period.

  10. Croatian Energy System Defossilization

    International Nuclear Information System (INIS)

    Potocnik, V.

    2013-01-01

    Defossilization of an energy system, as primary cause of the actual climate change, means exchange of predominantly imported fossil fuels with climate more convenient energy carriers, facilitating thus the way out of crisis.Overview of the world and Croatian energy system situation is presented as well as the overview of climate change. The most important Croatian energy system defossilization measures-energy efficiency increase, renewable energy inclusion and others - are described.(author)

  11. Energy systems security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Energy Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to electricity transmission grids and their protection, risk assessment of energy systems, analysis of interdependent energy networks. Methods to manage electricity transmission disturbances so as to avoid blackouts are discussed, and self-healing energy system and a nano-enabled power source are presented.

  12. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  13. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Abdelgaied, Mohamed; Zakaria, Yehya

    2017-01-01

    Highlights: • The performance of a solar hybrid air conditioner integrated with HDH desalination system is numerically investigated. • For increase the regeneration air from 70 to 130 m 3 /h, the distillate water productivity increases from 2.988 to 4.78 L/h. • For increase the regeneration air from 70 to 130 m 3 /h, COP overall daily decreases from 4.66 to 3.386. • For increases the regeneration air temperature from 75 to 95 °C, the distillate water increases from 3.1752 to 5.011 L/h. • For increases the regeneration air temperature from 75 to 95 °C, COP overall daily decreases from 4.392 to 3.636. - Abstract: In this study, the performances of a solar energy assisted hybrid desiccant air conditioning system integrated with humidification–dehumidification (HDH) desalination system are numerically investigated. The aim of this study is to benefit from the temperature rise of the regeneration air outside of the desiccant conditioning system as well as the water vapor content in this regeneration air by feeding it to the humidification-dehumidification water desalination unit to produce distillate water. The distillate water productivity, human thermal comfort issues, and energy saving represent the main objective of the present numerical study. The simulated results developed for subsystems are validated with the published experimental results. The effects of regeneration air temperature and flow rate on supply cooled air temperature, distillate water productivity, the cooling coefficient of performance and overall daily coefficient of performance of the proposed system are investigated. The results show that (i) the distillate water productivity increases from 3.175 to 5.011 L/h and overall daily coefficient of performance decreases from 4.392 to 3.636 with increasing the regeneration air temperature from 75 to 95 as (ii) the increase in the regeneration air flow rate from 70 to 130 m 3 /h, increases the distillate water productivity from 2.988 to 4

  14. Experiments in high energy elementary particle physics and processing of photographically filed data with the aid of a measuring and evaluating system

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, H [Akademie der Wissenschaften der DDR, Berlin-Zeuthen. Inst. fuer Hochenergiephysik

    1977-01-01

    The measuring and evaluating system includes pattern recognition and measuring instruments as well as a processor for data evaluation and checking procedures. The program chart and the application to evaluating photographs of particle tracks from high energy physics experiments are mentioned. The time-sharing effect of such systems in data evaluation is emphasized.

  15. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-09-01

    Full Text Available Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP and a mechanical compression water chiller system (ACHP to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in experimental working areas of the office buildings in a cigarette factory in Mersin, Turkey. The heating and cooling loads of the cigarette factory building were calculated, and actual thermal data were collected and analyzed. To calculate these loads, the cooling load temperature difference method was used. It was concluded that the geothermal heating and cooling system was more useful and productive and provides substantial economic benefits.

  16. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    Science.gov (United States)

    1980-07-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  17. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  18. Developing Computational Fluid Dynamics (CFD Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Fernández-Yáñez

    2017-06-01

    Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.

  19. Systematic Evaluation of Stochastic Methods in Power System Scheduling and Dispatch with Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yishen [Univ. of Washington, Seattle, WA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Zhi [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Cong [Argonne National Lab. (ANL), Argonne, IL (United States); Electric Reliability Council of Texas (ERCOT), Austin, TX (United States); Botterud, Audun [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides a reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.

  20. Study of an integrated multi-criteria evaluation methodology on energy and environmental system based on MFM

    International Nuclear Information System (INIS)

    Liu, Jingquan; Yoshikawa, Hidekazu; Zhou, Yangping; Ouyang, Jun

    2005-01-01

    This paper presents a multi-criteria evaluation methodology based on Multilevel Flow Model (MFM), a graphical modeling language and embedding the perspective of sustainable development for energy and environmental system. A set of indicators reflecting resource utility efficiency, environmental effect, social and economic criteria according to the different concerns of stakeholder are defined. The graphical assessment process and outcome can provide help for general people to understand the evaluated object and its variables and to get better decision-making. Extension Evaluation Method is the first applied in the graphical assessment. The once-through option and reprocessing option of nuclear fuel cycle system will be examined by using the proposed approach. (author)

  1. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  2. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  3. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    Science.gov (United States)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  4. A numerically research on energy loss evaluation in a centrifugal pump system based on local entropy production method

    Directory of Open Access Journals (Sweden)

    Hou Hucan

    2017-01-01

    Full Text Available Inspired by wide application of the second law of thermodynamics to flow and heat transfer devices, local entropy production analysis method was creatively introduced into energy assessment system of centrifugal water pump. Based on Reynolds stress turbulent model and energy equation model, the steady numerical simulation of the whole flow passage of one IS centrifugal pump was carried out. The local entropy production terms were calculated by user defined functions, mainly including wall entropy production, turbulent entropy production, and viscous entropy production. The numerical results indicated that the irreversible energy loss calculated by the local entropy production method agreed well with that calculated by the traditional method but with some deviations which were probably caused by high rotatability and high curvature of impeller and volute. The wall entropy production and turbulent entropy production took up large part of the whole entropy production about 48.61% and 47.91%, respectively, which indicated that wall friction and turbulent fluctuation were the major factors in affecting irreversible energy loss. Meanwhile, the entropy production rate distribution was discussed and compared with turbulent kinetic energy dissipation rate distribution, it showed that turbulent entropy production rate increased sharply at the near wall regions and both distributed more uniformly. The blade region in leading edge near suction side, trailing edge and volute tongue were the main regions to generate irreversible exergy loss. This research broadens a completely new view in evaluating energy loss and further optimizes pump using entropy production minimization.

  5. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    International Nuclear Information System (INIS)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R.

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans

  6. Evaluation of local energy sources in milk production in a tropical silvopastoral system with Erythrina poeppigiana.

    Science.gov (United States)

    Jiménez-Ferrer, Guillermo; Mendoza-Martínez, Germán; Soto-Pinto, Lorena; Alayón-Gamboa, Armando

    2015-06-01

    An experiment was carried out to determine the effect of four local energy sources (sorghum grain, green banana, polished rice, and sugarcane molasses) fed to dairy cows on intake, milk production and composition, and economic viability in a silvopastoral system in Costa Rica (Turrialba). Twelve grazing cows (Jersey × Central American Milking Creole), with a mean live weight of 332 kg (SD 34), were supplemented with 0.5 kg of dry matter (DM)/100 kg/LW of Erythrina porppigiana fresh foliage daily. Experimental design was a replicated change-over 4 × 4 Latin Square. The pasture composition was 11 and 17 % of star grass (Cynodon niemfuensis), 32 and 28 % of ruzzi grass (Brachiaria rusisiensis), and 45 and 42 % of natural grasses (Axonopus compresus and Paspalum conjugatum) at initial and final times of the essay, respectively. The grass allowance was 30.14 DM/cow/day. Significant differences were found among treatments for variable milk fat content (P  0.05) resulted for total milk production (sorghum 9.0 kg/cow/day; green banana 8.9 kg/cow/day; polished rice 8.8 kg/cow/day; molasses 8.6 kg/cow/day) and fat-corrected milk (FCM). The financial analysis showed that all treatments were economically viable; however, supplementation with green bananas and molasses were the most favorable due to the low costs incurred.

  7. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  8. Evaluating energy efficiency policies with energy-economy models

    NARCIS (Netherlands)

    Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.

    2010-01-01

    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically

  9. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  10. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  11. A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs

    International Nuclear Information System (INIS)

    Nisan, S.; Benzarti, N.

    2008-01-01

    Seawater desalination is now widely accepted as an attractive alternative source of freshwater for domestic and industrial uses. Despite the considerable progress made in the relevant technologies desalination, however, remains an energy intensive process in which the energy cost is the paramount factor. This Study is a first of a kind in that we have integrated the environmental costs into the power and desalination costs. The study has focused on the seawater desalination cost evaluation of the following systems. It is supposed that they will be operating in the co-generation mode (Simultaneous production of electrical power and desalted water) in 2015: Fossil fuelled based systems such as the coal and oil fired plants and the gas turbine combined cycle plant, coupled to MED, and RO; Pressurised water reactors such as the PWR-900 and the AP-600, coupled to MED, and RO; High temperature reactors such as the GT-MHR, the PBMR, coupled to MED, with the utilisation of virtually free waste-heat provided by these reactors. The study is made in real site-specific conditions of a site In Southern Europe. Sensitivity studies for different parameters such as the fossil fuel prices, interest and discount rates, power costs etc., have also been undertaken. The results obtained are then used to evaluate the financial interest of selected integrated desalination systems in terms of a detailed cash flow analysis, providing the net present values, pay back periods and the internal rate of returns. Analysis of the results shows that among the fossil fuelled systems the power and desalination costs by circulating fluidized bed coal fired plant would be the lowest with current coal prices. Those by oil fired plants would be highest. In all cases, integrated nuclear energy systems would lead to considerably lower power and water costs than the corresponding coal based systems. When external costs for different energies are internalized in power and water costs, the relative cost

  12. A multi-criteria approach to evaluate the natural gas energy systems

    International Nuclear Information System (INIS)

    Dinca, Cristian; Badea, Adrian; Rousseaux, Patrick; Apostol, Tiberiu

    2007-01-01

    This paper aims to select the optimal energetic scenario applied to a consumer with 100 000 inhabitants from the residential-tertiary sector, from the ecological, energetical and economic points of view. A series of seven scenarios based on natural gas has been analyzed. The authors proposed six scenarios for the combined heat and power generation using existing technologies and one scenario for separate generation of the two energy forms. To compare the seven energetic scenarios, the amount of thermal and electrical energy produced by each one had to be the same for a defined time period. To select the optimal energy scenario a multi-criteria NAIADE-based method has been used. Consequently, the optimal energy scenario has been established with respect to criteria groups: ecologic, economic, energetic and global where all criteria groups have been considered. The study results prove that a combined gas and steam turbine cycle is optimal technically, economically and ecologically as it is for each criteria group. A sensitivity analysis has been performed to establish the influence of various parameters in the identification of the optimal energy scenario. For all analyzed scenarios, the optimal energetic scenario is the combined gas and steam turbine cycle

  13. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  14. A comparative evaluation of energy storage systems for a fuel cell vehicle. Paper no. IGEC-1-142

    International Nuclear Information System (INIS)

    Marshall, J.; Kazerani, M.

    2005-01-01

    The widespread operation of internal combustion engine (ICE) vehicles has today become a great cause for concern due to the uncertainty of fossil fuel reserves, energy security issues, and numerous adverse environmental effects. Alternatives such as fuel cell vehicles, electric vehicles, hybrid vehicles, and biodiesel vehicles provide the possibility to ease some or all of these concerns. The fuel cell vehicle, however, offers an excellent combination of reducing ICE vehicle problems while maintaining the performance, driving range, and convenience that consumers require. This paper documents a comparative evaluation of an extremely important facet of the fuel cell vehicle: the energy storage system (ESS). Batteries and ultracapacitors, the two most common choices for an ESS, are compared qualitatively to illustrate the advantages and disadvantages of each. Also, a quantitative comparison is made to choose the best technology for a small fuel cell-powered SUV having the design objectives of high performance and high efficiency. Practical issues such as availability and cost are also considered. The results of the analysis indicate that a battery ESS provides the best combination of efficiency, performance, and cost for a present-day fuel cell vehicle design. Yet, if the anticipated cost reductions and improvements in the energy storage capabilities of ultracapacitors do occur, ultracapacitors will become a very strong contender for energy storage solutions of future fuel cell vehicles. (author)

  15. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  16. Availability evaluation of offshore wind energy networks within the Dutch power system

    NARCIS (Netherlands)

    Tuinema, B.W.; Gibescu, M.; Kling, W.L.

    2010-01-01

    In the future, a large-scale expansion of offshore wind energy is expected in the Netherlands. For this large-scale expansion, a well-designed offshore network is needed. Different network configurations will lead to other availability of the offshore network and therefore also the offshore wind

  17. Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems.

    Science.gov (United States)

    Sauvant, D; Nozière, P

    2016-05-01

    The evolution of feeding systems for ruminants towards evaluation of diets in terms of multiple responses requires the updating of the calculation of nutrient supply to the animals to make it more accurate on aggregated units (feed unit, or UF, for energy and protein digestible in the intestine, or PDI, for metabolizable protein) and to allow prediction of absorbed nutrients. The present update of the French system is based on the building and interpretation through meta-analysis of large databases on digestion and nutrition of ruminants. Equations involved in the calculation of UF and PDI have been updated, allowing: (1) prediction of the out flow rate of particles and liquid depending on the level of intake and the proportion of concentrate, and the use of this in the calculation of ruminal digestion of protein and starch from in situ data; (2) the system to take into account the effects of the main factors of digestive interactions (level of intake, proportion of concentrate, rumen protein balance) on organic matter digestibility, energy losses in methane and in urine; (3) more accurate calculation of the energy available in the rumen and the efficiency of its use for the microbial protein synthesis. In this renewed model UF and PDI values of feedstuffs vary depending on diet composition, and intake level. Consequently, standard feed table values can be considered as being only indicative. It is thus possible to predict the nutrient supply on a wider range of diets more accurately and in particular to better integrate energy×protein interactions occurring in the gut.

  18. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  19. Solar-energy-system performance-evaluation update: Wood Road School, Ballston Spa, New York, October 1982-April 1983

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, P

    1983-01-01

    The Wood Road School Solar Project is a 216,000 square foot combined elementary and middle school in Ballston Spa, New York. The solar energy system supplies energy to the space heating and domestic hot water subsystems. Heat is collected by flat plate collector panels and stored in two storage tanks. Performance data are given for the system overall and for each of the four subsystems - energy collection, storage, space heating, and domestic hot water. Data are also provided on operating energy, energy savings, and weather conditions. Design and actual system solar fraction are compared, and percentage of incident solar energy and collected solar energy utilized are given. Also given are building loads analysis, system thermal losses, and system coefficient of performance. (LEW)

  20. LCA of Energy Systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves; Hauschild, Michael Zwicky

    2018-01-01

    Energy systems are essential in the support of modern societies’ activities, and can span a wide spectrum of electricity and heat generation systems and cooling systems. Along with their central role and large diversity, these systems have been demonstrated to cause serious impacts on human health...... , ecosystems and natural resources. Over the past two decades, energy systems have thus been the focus of more than 1000 LCA studies, with the aim to identify and reduce these impacts. This chapter addresses LCA applications to energy systems for generation of electricity and heat . The chapter gives insight...

  1. Evaluation of power conditioning architectures for energy production enhancement in thermoelectric generator systems

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2014-01-01

    A large-scale thermoelectric generator (TEG) system has an unbalanced temperature distribution among the TEG modules, which leads to power mismatch among the modules and decreases the power output of the TEG system. To maximize the power output and minimize the power conversion loss, a centralize...

  2. Decision support tool to evaluate alternative policies regulating wind integration into autonomous energy systems

    International Nuclear Information System (INIS)

    Zouros, N.; Contaxis, G.C.; Kabouris, J.

    2005-01-01

    Integration of wind power into autonomous electricity systems strongly depends on the specific technical characteristics of these systems; the regulations applied should take into account physical system constraints. Introduction of market rules makes the issue even more complicated since the interests of the market participants often conflict each other. In this paper, an integrated tool for the comparative assessment of alternative regulatory policies is presented along with a methodology for decision-making, based on alternative scenarios analysis. The social welfare concept is followed instead of the traditional Least Cost Planning

  3. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  4. Analysis of cost estimation and wind energy evaluation using wind energy conversion systems (WECS) for electricity generation in six selected high altitude locations in Nigeria

    International Nuclear Information System (INIS)

    Ohunakin, S. Olayinka; Ojolo, S. Joshua; Ogunsina, S. Babatunde; Dinrifo, R. Rufus

    2012-01-01

    Two commercial wind turbines namely AN Bonus 300 kW/33 and AN Bonus 1 MW/54 were technically assessed for electricity generation in six selected high altitude sites spreading across the North-West and North-East geopolitical regions of Nigeria by computing their capacity factors, annual power and energy outputs. The economic evaluation of using the two wind energy conversion systems (medium and large) for electric power generation in the selected locations were also estimated using the present value cost method. The results showed that capacity factors of the two turbines in the selected sites ranged between 4.6 and 43%. Average minimum cost per kW h was obtained in Kano as $0.0222/kW h with AN Bonus 1 MW while the highest average cost is $0.2074/kW h with AN Bonus 300 kW in Kaduna. The highest cost in each of the location was obtained with the medium WECs (AN Bonus 300 kW). In addition, Kano and Katsina were also found to be very economical for any of the adopted wind turbine models. Gusau and Kaduna, at cost of unit energy of about $0.30/kW h were found to be more profitable for non-connected electrical and mechanical applications (water pumping, battery charging) than diesel generator. - Highlights: ► All the locations considered have mean wind speeds above 4.8 m/s. ► Economical wind applications are possible in Kano and Katsina. ► Highest capacity factor and energy output are obtained using AN Bonus 1 MW in Kano. ► Specific cost of unit energy per kW h is cheaper using AN Bonus 1 MW.

  5. New secondary energy systems

    International Nuclear Information System (INIS)

    Schulten, R.

    1977-01-01

    As an introduction, the FRG's energy industry situation is described, secondary energy systems to be taken into consideration are classified, and appropriate market requirements are analyzed. Dealt with is district heating, i.e. the direct transport of heat by means of circulating media, and long-distance energy, i.e. the long-distance energy transport by means of chemical conversion in closed- or open-cycle systems. In closed-cycle systems heat is transported in the form of chemical latent energy. In contrast to this, chemical energy is transported in open-cycle systems in the form of fuel gases produced by coal gasification or by thermochemical water splitting. (GG) [de

  6. Cost of energy from utility-owned solar electric systems. A required revenue method for ERDA/EPRI evaluations

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation and maintenance, and the financial structure and tax environment of the utility.

  7. Technology Evaluation of Army-Scale Waste-to-Energy Systems

    Science.gov (United States)

    1977-07-01

    ot by installing generally comparable: in series with package in- acoustic partitions, with low-resistance blast panel% cinerator-boiler systems...labyrinth seals and heat- Automatic temperature controls are used. A pri- resistant gaskets to inhibit air leakage. mary pyrometer monitors the

  8. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  9. Biohythane system using two steps of POME fermentation process for supplying electrical energi : economic evaluation

    Science.gov (United States)

    Zuldian, P.; Hastuti, Z. D.; Murti, S. D. S.; Adiarso

    2018-03-01

    Indonesia as the largest producer of palm oil in the world has the prospective to generate additional benefits such as electricity by utilizing Palm Oil Mill Effluent (POME). The high Chemical Oxygen Demand (COD) content of 35,000 ppm POME is a great potential for conversion to hydrogen and methane through a fermentation process. In this study, two stages of fermentation using a microbial consortium have been performed in the 1 m3 BioHythane reactor system to produce biohydrogen and biomethane. After two-stage fermentation process for 24 hours in this system, the microbial consortium succeeds in producing biohydrogen and biomethane of 32 and 60 vol. %, respectively. This gas product after the purification process could be converted to electricity to be 0.02 and 0.75 kWe, respectively. Furthermore, as result of economic calculation analysis, this biohythane system showed up the value of Capital Expenditures (CAPEX) of US 26,39540 and Operating Expenses (OPEX) of US 14,712 per year, and resulted total generated electricity cost of US 2.478 / kWh.

  10. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  11. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  12. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  13. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  14. Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS Occupational Health and Safety (OHS Risk

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2016-01-01

    Full Text Available Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the relative safety of various construction methods, including IBS. This study presents a comparative evaluation of the occupational health and safety (OHS risk presented by different construction approaches, namely IBS and traditional methods. The evaluation involved developing a model based on the concept of ‘argumentation theory’, which helps construction designers integrate the management of OHS risk into the design process. In addition, an ‘energy damage model’ was used as an underpinning framework. Development of the model was achieved through three phases, namely Phase I – knowledge acquisitaion, Phase II – argument trees mapping, and Phase III – validation of the model. The research revealed that different approaches/methods of construction projects carried a different level of energy damage, depending on how the activities were carried out. A study of the way in which the risks change from one construction process to another shows that there is a difference in the profile of OHS risk between IBS construction and traditional methods.Therefore, whether the option is an IBS or traditional approach, the fundamental idea of the model is to motivate construction designers or decision-makers to address safety in the design process and encourage them to examine carefully the probable OHS risk variables surrounding an action, thus preventing accidents in construction.

  15. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  16. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  17. An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method

    Science.gov (United States)

    Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.

    2012-01-01

    We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059

  18. Solar-energy-system performance evaluation update: San Anselmo School, San Jose, California, April 1982-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, P.W.

    1982-01-01

    The solar collector array at the San Anselmo School is located on the roof of the structure, and consists of 3740 square feet of General Electric evacuated tube solar collectors, Model TC-100. Performance of the array during the three-month period was very similar to the overall performance during the previous reporting periods. During the three-month period from April 1982 through June 1982, the solar system at the San Anselmo School performed below expectations despite continued attempts to alleviate several long-standing system problems. Space heating performance appears to be meeting design goals; however, this load was trivial during the three-month period. The retrofitted solar system was designed to provide 70% of the space heating load and 72% of the space cooling load at this 34,000-square-foot brick structure. In all of the previous months of evaluation, the design values of 70% and above have not been achieved for the system as a whole, although one subsystem did achieve high solar contributions during periods of lower building loads, specifically the space heating subsystem. Solar contribution during the three-month period of April 1982 through June 1982 averaged 19% of the total load of 117.4 million Btu, and was, at best, equal to previous performance. Space heating loads were small, and the space cooling load was relatively high over the test period. The solar savings ratio was 14%. The system performance factor is a measure of the equivalent fossil fuel consumption at the site (with operating energy multiplied by 3.33 times to simulate fossil fuel use at the power plant) relative to the actual load, and was 0.15. This value is 0.03 points less than the previous year's value of 0.18. Solar System Coefficient of Performance (COP) increased to 11.0 vs. the previous year's value of 7.6. Apparently, the efficiency of energy transfer in the system has improved, although performance was not really any better.

  19. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra for Applications in Solar Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jessen, Wilko [German Aerospace Center (DLR); Wilbert, Stefan [German Aerospace Center (DLR); Gueymard, Christian A. [Solar Consulting Services; Polo, Jesus [CIEMAT; Bian, Zeqiang [China Meteorological Administration; Driesse, Anton [Photovoltaic Performance Labs; Marzo, Aitor [University of Antofagasta; Armstrong, Peter [Masdar Institute of Science & Technology; Vignola, Frank [University of Oregon; Ramirez, Lourdes [CIEMAT

    2018-04-01

    Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of this ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches

  20. Energy Usage Analysis System

    Data.gov (United States)

    General Services Administration — The EUAS application is a web based system which serves Energy Center of Expertise, under the Office of Facilitates Management and Service Programs. EUAS is used for...

  1. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  2. Solar-energy-system performance evaluation: Irvine School (El Camino Real Elementary School) Irvine, California, October 1978-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.T.

    1979-01-01

    The Irvine School in California has a solar heating and cooling system consisting of evacuated tube collectors, two absorption chillers, a heat rejector, and heat exchanger. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

  3. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  4. A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Maheri, Alireza

    2014-01-01

    Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties affecting the amount of power produced by the system. In the design of systems subject to uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a deterministic design approach, the designer considers the presence of uncertainties and incorporates them indirectly into the design by applying safety factors. It is assumed that, by employing suitable safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the multi-objective optimisation problem with two objectives of reliability and cost is reduced to a single-objective optimisation problem with the objective of cost only. In this paper the competence of deterministic design methods in size optimisation of reliable standalone wind–PV–battery, wind–PV–diesel and wind–PV–battery–diesel configurations is examined. For each configuration, first, using different values of safety factors, the optimal size of the system components which minimises the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the effect of safety factors on the reliability and the cost are investigated. In performing reliability analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and average) and mean time between failures are considered. It is shown that the traditional methods of considering the effect of uncertainties in deterministic designs such as design for an autonomy period and employing safety factors have either little or unpredictable impact on the actual reliability of the designed wind–PV–battery configuration. In the case of wind–PV–diesel and wind–PV–battery–diesel configurations it is shown that, while using a high-enough margin of safety in sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading to a

  5. Economic Evaluation of Energy Storage Systems and their Impact on Electricity Markets in a Smart-grid Context

    Science.gov (United States)

    Metz, Dennis

    Generation from renewable energy sources has been rising worldwide and is set to grow further, as many countries are implementing and enforcing initiatives to reduce greenhouse gas emission to curb climate change. However, this change in the generation mix is increasingly challenging to handle for the grid operators, as the residual load becomes more volatile and difficult to predict. In order to ensure the continuous balance between supply and demand and minimize the amount of curtailed energy from renewable resources, a range of flexibility options exists. At the consumer end, the flexibility of the load can be increased by demand-side management. Alternatively, by increasing the interconnection capacity, surplus generation can be exchanged with neighboring grid zones. Furthermore, existing generation resources like cogeneration units can be refitted and operated in a more flexible way. Storage, as another flexibility option, has the advantage of being able to act on both demand and supply sides as well as providing a wide range of system services. Hence, during periods with surplus generation from renewable resources, excess supply can be absorbed by storage systems. Contrary, during times with low contribution from renewable generation, the deficit can be compensated by discharging the storage device. However, while storage is well suited from a technological point of view to fill the gap, it remains unclear how the application of a storage device can be monetized. Furthermore, investors are struggling to evaluate potential projects due to their complexity. As a result, current implementations of new storage installations remain behind expectations. In addition, high uncertainty about future developments causes many investors to delay investment decisions. In this context, this work identifies and defines several business cases regarding the integration of storage in power systems. Depending on the intended usage of the storage device, benefits might accrue

  6. Living Systems Energy Module

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  7. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  8. Alternative Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    West, M.; Duckers, L.; Lockett, P.; Loughridge, B.; Peatfield, T.; White, P.

    1984-01-01

    The Coventry (Lanchester) Polytechnic Wave Energy Group has been involved in the United Kingdom wave energy research programme since its inception in 1975. Whilst the work of the group is mainly concerned with wave energy, and currently is directed towards the design of a wave energy device tailored to the needs of isolated/island communities, it has some involvement with other aspects of the alternatives. This conference, dealing with alternative energy systems and their electrical integration and utilisation was engendered by the general interest which the Polytechnic group members have in the alternatives and their use. The scope for electrical integration and utilisation is very broad. Energy for family groups may be provided in a relatively unsophisticated way which is acceptable to them. Small population centres, for example island communities relying upon diesel equipment, can reap the benefits of the alternatives through their ability to accept novel integration schemes and a flexible approach to the use of the energy available. Consumers already enjoying the benefits of a 'firm' electricity grid supply can use energy from a variety of alternative systems, via the grid, without having to modify their energy consumption habits. In addition to the domestic and industrial applications and coastal possibilities, specialist applications in isolated environments have also emerged. The Proceedings detail practical, technical and economic aspects of the alternatives and their electrical integration and utilisation.

  9. Solar-energy-system performance evaluation: Page Jackson Elementary School, Charles Town, West Virginia, November 1978-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.T.

    1979-01-01

    The solar energy system reported is designed to provide space heating and cooling for a West Virginia elementary school. It has an array of water-based flat plate collectors freeze protected through a drain-down system, two 10,000-gallon storage tanks, and an absorption chiller. There are an oil-fired boiler and a centrifugal chiller for back-up. The system and its operation are briefly described, and its space heating performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

  10. Solar-energy-system performance evaluation: Scattergood School Recreation Center, West Branch, Iowa, June 1978-April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shenfish, K.L.

    1979-01-01

    The solar energy system at Scattergood School in Iowa is designed to supply space heating and hot water and is also used to dry grain. The system has an array of flat plate solar air heaters connected to a pebble bed and two 120-gallon tanks. Back-up heat is furnished by two gas heaters for space heating and a 52-gallon electric water heater. The system is briefly described, and its thermal performance is analyzed using a system energy balance technique. (LEW)

  11. Interim report on research and development of super heat pump energy accumulation system by the evaluation working group; Super heat pump energy shuseki system hyoka work group chukan hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The evaluation working group of the Large-scale Energy-saving Technology Research and Development Promotion Council has made an interim evaluation of the results obtained so far by the R and D project for the super heat pump energy accumulation systems. The working group evaluates the bench plant operation test results comprehensively, covering technical, economic and social aspects, and R and D promotion methodology. The working group has concluded that a significant technological break-through is made for the super high performance compression heat pumps, and the technological groundwork is now established for the future pilot system. For the chemical heat storage technologies, it is concluded that system feasibility is demonstrated, and the technological groundwork for the future development is established. The super heat pump is evaluated to potentially realize significant economic superiority over the conventional devices both in the domestic and industrial areas, and to be highly rated potentially in the areas of energy-saving, power load leveling and environmental preservation. (NEDO)

  12. Evaluation Use in Evaluation Systems

    DEFF Research Database (Denmark)

    Højlund, Steven

    2014-01-01

    This article investigates the European Union’s evaluation system and its conduciveness to evaluation use. Taking the European Commission’s LIFE programme as its case, the article makes an empirical contribution to an emerging focus in the literature on the importance of organization...... and institutions when analyzing evaluation use. By focusing on the European Union’s evaluation system the article finds that evaluation use mainly takes place in the European Commission and less so in the European Parliament and the European Council. The main explanatory factors enabling evaluation use relate...... to the system’s formalization of evaluation implementation and use; these factors ensure evaluation quality, timeliness and capacity in the Commission. At the same time, however, the system’s formalization also impedes evaluation use, reducing the direct influence of evaluations on policy-making and effectively...

  13. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  14. Investigational study of evaluation of the global energy system as a global environmental protection technology; Chikyu kankyo taisaku gijutsu toshite no global energy system no hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    With relation to some global energy systems of which viability is predicted in the future, an evaluation was conducted from the viewpoints of economical efficiency, energy balance, CO2 emission, etc. The fossil fuel CO2 capture system, the conventional thermal power plant added with CO2 recovery/treatment facilities, is expected to reduce approximately 70-75% of the CO2 emission. The fossil fuel decarbonated hydrogen system, which decarbonates fossil fuels, recovers/treats CO2 at the place of fuel supply and uses as hydrogen, is of poor practical application from an economical point of view. The fossil fuel methanol synthesis system, which synthesizes methanol from fossil fuels at the place of fuel supply, generates electric power and recovers/treats CO2 with the methanol, is large in energy loss and CO2 emission and low in overall efficiency and CO2 reduction effect at the time of methanol synthesis. The renewable energy hydrogen system is an ultimate system with no emission of CO2, though it costs much. 110 refs., 83 figs., 107 tabs.

  15. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  16. Solar energy program evaluation: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    deLeon, P.

    1979-09-01

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the role and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)

  17. The Smart Energy System

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Dyrelund, Anders; Hummelmose, Lars

    Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses on...... production, large scale solar heat, fuel cells, heat storage, waste incineration, among others, the report draws a picture of Denmark as a research and development hub for smart energy system solutions.......Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses...... on the synergies which are obtained through integration of the district heating and district cooling, gas, and electricity grid into a single smart energy system. Besides documenting the technology and innovation strengths that Danish companies possess particularly relating to wind, district heating, CHP...

  18. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  19. Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system

    International Nuclear Information System (INIS)

    Nishimura, A.; Hayashi, Y.; Tanaka, K.; Hirota, M.; Kato, S.; Ito, M.; Araki, K.; Hu, E.J.

    2010-01-01

    In this study, the environmental load of photovoltaic power generation system (PV) during its life cycle and energy payback time (EPT) are evaluated by LCA scheme. Two hypothetical case studies in Toyohashi, Japan and Gobi dessert in China have been carried out to investigate the influence of installation location and PV type on environmental load and EPT. The environmental load and EPT of a high-concentration photovoltaic power generation system (hcpV) and a multi-crystalline silicon photovoltaic power generation system (mc-Si PV) are studied. The study shows for a PV of 100 MW size, the total impacts of the hcpV installed in Toyohashi is larger than that of the hcpV installed in Gobi desert by 5% without consideration of recycling stage. The EPT of the hcpV assumed to be installed in Gobi desert is shorter than EPT of the hcpV assumed to be installed in Toyohashi by 0.64 year. From these results, the superiority to install PV in Gobi desert is certificated. Comparing with hcpV and mc-Si PV, the ratio of the total impacts of mc-Si PV to that of hcpV is 0.34 without consideration of recycling stage. The EPT of hcpV is longer than EPT of mc-Si PV by 0.27 year. The amount of global solar radiation contributing to the amount of power generation of mc-Si PV is larger than the amount of direct solar radiation contributing to the amount of power generation of hcpV by about 188 kW h/(m 2 year) in Gobi desert. Consequently, it appears that using mc-Si PV in Gobi desert is the best option.

  20. Energy systems Diagnosis in developing countries

    International Nuclear Information System (INIS)

    Girod, J.

    1991-01-01

    Energy systems diagnosis is necessary to allow evaluation of energy balance by administration and political authorities of a country. First, the author describes the principle stages of energetic diagnosis. Then this work is divided into three parts: First part: Energy consumption diagnosis in several districts (families, utilities, agriculture, transport, industry) Second part: Energy supplies diagnosis (energy markets). Third part: Interactions between energy consumption and energy supply. 28 figs.; 52 tabs.; 107 refs

  1. Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Hanna, Luke A.

    2011-11-01

    Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energy devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.

  2. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    Science.gov (United States)

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  3. Wood Road School, Ballston Spa, New York solar-energy-system performance evaluation, November 1981-April 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, P.

    1982-01-01

    The Wood Road School Solar Project of the Ballston Spa Central School District is a 216,000 square foot (136,510 square feet of solar conditioned space) combined elementary and middle school located in New York. The solar energy system was designed to supply 64% of the space heating and 88% of the hot water. The system is equipped with 15,389 square feet of one type of flat-plate collector panels and 6650 square feet of another type. Storage is in two 15,000-gallon storage tanks, and auxiliary heating is by electric resistance strip heaters. Monthly performance data are tabulated for the overall system and for each type of collector, storage, domestic hot water, and space heating subsystems. Also tabulated monthly are weather conditions, energy savings, operating energy, and coefficients of performance. Also provided are graphs of collector array efficiency vs the difference between the fluid inlet temperature and ambient temperature divided by insolation. System operation is illustrated by graphs of collector array inlet/outlet temperatures and ambient temperature and typical building loop temperatures vs time for a typical day. Also graphed are the system operating sequence and the solar energy utilization and energy losses. (LEW)

  4. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  5. South Dakota School of Mines, Keystone, South Dakota: solar energy system performance evaluation, December 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, J.H.

    1980-01-01

    Performance of the South Dakota School of Mines solar energy system from December 1979 to May 1980 is described. The system is installed in the Mt. Rushmore National Memorial Visitors' Center near Keystone, South Dakota. The site is located at 44/sup 0/N latitude and 1600 m elevation. The building has 540 m/sup 2/ of conditioned space and a design overall thermal transfer coefficient (UA) of 0.22 GJ(/sup 0/C/sub <21/ d)/sup -1/. The solar energy system is of liquid-based active type, with 187 m/sup 2/ of flat-plate collector area and 11.4 m/sup 3/ of water thermal storage. The site experienced average irradiance of 155 WM/sup -2/ and average ambient temperature of 2/sup 0/C during the period described. Under these conditions, the solar energy system supplied 43% of the energy required for space heating, saving 3790 liters of fuel oil that would otherwise have been burned. Storage temperature set points for energy supply to space heating were investigated during the season, and results of the investigation are described. The regime of 38/sup 0/C threshold and 32/sup 0/C cutoff temperature was found to be optimal.

  6. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman

    2018-01-17

    The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were

  7. Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-30

    SEDS is an economy-wide energy model of the U.S. The model captures dynamics between supply, demand, and pricing of the major energy types consumed and produced within the U.S. These dynamics are captured by including: the effects of macroeconomics; the resources and costs of primary energy types such as oil, natural gas, coal, and biomass; the conversion of primary fuels into energy products like petroleum products, electricity, biofuels, and hydrogen; and lastly the end- use consumption attributable to residential and commercial buildings, light and heavy transportation, and industry. Projections from SEDS extend to the year 2050 by one-year time steps and are generally projected at the national level. SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in technology, markets, and policy. SEDS has been specifically developed to avoid the computational burden, and sometimes fruitless labor, that comes from modeling significantly low-level details. Instead, SEDS focuses on the major drivers within the energy economy and evaluates the impact of uncertainty around those drivers.

  8. Energy systems transformation.

    Science.gov (United States)

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  9. Balanced evaluation of energy systems: development of an integration model between use and energy generation; Avaliacao balanceada de sistemas energeticos: desenvolvimento de um modelo de integracao entre uso e geracao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Karin Regina de Castro [Universidade do Estado de Sao Paulo, SP (Brazil). Faculdade de Arquitetura e Urbanismo]. E-mail: kmarins@gmail.com

    2006-07-01

    The present theme treats of urban and environment planning through an integrated approach. Developed as master of science dissertation, the project included the development of a balanced evaluation of energy systems, having in mind the efficient, potentialize initiatives of both sides. In the system of 'Energy use' strategies for energy efficiency in residential and commercial buildings from urban, architecture solutions were included. In {sup e}nergy generation{sup ,} urban centralized systems and distributed generation systems were included. Electricity, environmental heating and refrigeration were considered, excepting peaks in the daily consumption. The model involve quantitative evaluation modules and graphical interfaces, giving support to development of project and decision making processes, demonstrating the advantages of the integrated approach.

  10. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  11. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  12. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  13. A strategic framework for proliferation resistance: a systematic approach for the identification and evaluation of technology opportunities to enhance the proliferation resistance of civilian nuclear energy systems

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Isaac, T.; Schock, R.N.

    2001-01-01

    The United State Department of Energy Nuclear Energy Research Advisory Committee recently completed a study ''Technological Opportunities To Increase The Proliferation Resistance Of Global Civilian Nuclear Power Systems (TOPS)''. That effort included the development of a set of both intrinsic and extrinsic barriers to proliferation that technologies can directly impact. In this paper we will review these barriers as and framework for assisting in the evaluation of the relative proliferation resistance of various nuclear fuel cycles, technologies and alternatives. (author)

  14. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse

    2010-01-01

    benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design......High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  15. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.

    Science.gov (United States)

    Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S

    1997-01-01

    We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.

  16. Creation and evaluation of a database of renewable production time series and other data for energy system modelling

    International Nuclear Information System (INIS)

    Janker, Karl Albert

    2015-01-01

    This thesis describes a model which generates renewable power generation time series as input data for energy system models. The focus is on photovoltaic systems and wind turbines. The basis is a high resolution global raster data set of weather data for many years. This data is validated, corrected and preprocessed. The composition of the hourly generation data is done via simulation of the respective technology. The generated time series are aggregated for different regions and are validated against historical production time series.

  17. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...

  18. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  19. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  20. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  1. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  2. Conceptual evaluation of hybrid energy system comprising wind-biomass-nuclear plants for load balancing and for production of renewable synthetic transport fuels

    International Nuclear Information System (INIS)

    Carlsson, Johan; Purvins, Arturs; Papaioannou, Ioulia T.; Shropshire, David; Cherry, Robert S.

    2014-01-01

    Future energy systems will increasingly need to integrate variable renewable energy in order to reduce greenhouse gas emissions from power production. Addressing this trend the present paper studies how a hybrid energy systems comprising aggregated wind farms, a biomass processing plant, and a nuclear cogeneration plant could support high renewable energy penetration. The hybrid energy system operates so that its electrical output tends to meet demand. This is achieved mainly through altering the heat-to-power ratio of the nuclear reactor and by using excess electricity for hydrogen production through electrolysis. Hybrid energy systems with biomass treatment processes, i.e. drying, torrefaction, pyrolysis and synthetic fuel production were evaluated. It was shown that the studied hybrid energy system comprising a 1 GWe wind farm and a 347 MWe nuclear reactor could closely follow the power demand profile with a standard deviation of 34 MWe. In addition, on average 600 m"3 of bio-gasoline and 750 m"3 bio-diesel are produced daily. The reduction of greenhouse gas emissions of up to 4.4 MtCO_2eq annually compared to power generation and transport using conventional fossil fuel sources. (author)

  3. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  4. MODULAR CONSTRUCTION SYSTEM EVALUATION

    International Nuclear Information System (INIS)

    Gillespie, S.

    2002-01-01

    The purpose of this study is to respond to U.S. Department of Energy (DOE) Technical Direction Letter (TDL) 02-003 (Waisley 2001), which directs Bechtel SAIC Company, LLC (BSC) to complete a design study to recommend repository design options to support receipt and/or emplacement of any or all of the following: commercial spent nuclear fuel (CSNF), high-level radioactive waste (HLW), DOE-managed spent nuclear fuel (DSNF) (including naval spent nuclear fuel [SNF]), and immobilized plutonium (if available), as soon as practicable, but no later than 2010. From the possible design options, a recommended approach will be determined for further evaluation to support the preliminary design of the repository. This study integrates the results of the repository Design Evolution Study (Rowe 2002) with supporting studies concerning national transportation options (BSC 2002b) and Nevada transportation options (Gehner 2002). The repository Design Evolution Study documents the processes used to reevaluate the design, construction, operation, and cost of the repository in response to TDL 02-003 (Waisley 2001), and to determine possible repository conceptual design options. The transportation studies evaluate the national and Nevada transportation options that support the repository conceptual design options. An evaluation methodology was established, based on Program-level requirements developed for the study in reference BSC 2001a, to allow the repository and system design options to be evaluated on a consistent basis. The transportation options and the design components were integrated into system design implementation options, which were evaluated using receipt and emplacement scenarios. The scenarios tested the ability of the design concept to adapt to changes in funding, waste receipt rate, and Nevada rail transportation availability. The results of the evaluation (in terms of system throughput, cost, and schedule) were then compared to the Program-level requirements, and

  5. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  6. Wellons Canada energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Wellons Canada is a British Columbia-based company that specializes in the manufacture and installation of lumber drying and energy conversion equipment. This brochure provided details of the Wellons energy system designed for oriented strand board (OSB) plants. The brochure outlined the system's scope of supply, and provided illustrations of system procedures from the initial wet fuel bin through to the electric precipitator used for air clean-up. During the process, fuel was conveyed from the bin to metering bins into combustors and through a cyclo-blast cell. Forced draft fan systems were then used to provide primary and secondary combustion air. Radiant heaters were then used. A drop-out chamber was supplied to allow for complete combustion of fuel particles and to provide a drop-out of ash. A fan was then used to deliver diluent air to maintain the set point temperature in the hot gas stream. Refractory lined hot gas ducts were used to deliver heat to the dryers. Hot gas was then drawn through a multi-cyclone collector for ash removal. Electrostatic precipitators were used to clean up emissions on a continuous operating basis. An automatic system was used to collect ash from the combustion system grates and other areas. Details of installation services provided by the company were also included. 42 figs.

  7. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  8. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  9. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  10. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  11. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  12. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  13. Energy systems in transition

    International Nuclear Information System (INIS)

    Haefele, W.

    1989-01-01

    The principal point of the author was to discuss energy systems (ES) in transition, transition addresses the next 10-25 years, and strategy of the transition. He considers different scenarios of future development of ES. Further he presents considerations elaborated during the last years on the concept of novel horizontally integrated ES which gives promise to be at least an approximation to the desired object of no emissions. The main ideas of the concept are: to decompose and thereby clean all the primary inputs before they are brought to combustion; to develop a network combining all the primary inputs to an integrated supply structure of high absorption, buffer, and storage capacity that resembles in some way the supply and utility functions of the well established electric grid but completes it at best on the basis of mass flows; to achieve a high flexibility in supplying the final energy. The author considers the long run perspective of hydrogen, solar, and nuclear energy with respect to alternative energy sources. 6 refs, 24 figs

  14. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  15. Energy analysis of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    From 1995 to 1998, an energy test method for supermarket refrigeration systems was developed in a project financed by the Danish Energy Agency. The purpose of the energy test method is to provide the means for evaluating the energy efficiency of these systems. The test method requires measurements...... of air temperatures and energy consumption to be carried out on the selected supermarket refrigeration system. In addition to the measurements required by the method, more measurements of individual energy consumptions have been carried in the case described in this paper. The purpose of the additional...

  16. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  17. Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process

    International Nuclear Information System (INIS)

    Liu Qingming; Huang Jinxiang; Shao Huige; Zhang Yunming

    2017-01-01

    Ignition energy is one of the important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%–14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. (paper)

  18. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  19. Check and evaluation system on heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of china based on multi-index comprehensive evaluation method

    International Nuclear Information System (INIS)

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    Heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China is organized and implemented in a large scale by local government in 15 provinces of North China with the unified guidance and control of central government. Firstly, this paper introduced the target of energy-saving reformation of existing residential buildings in North China and the importance of check and evaluation on this target, then pointed out the necessity of building up an evaluation system for energy-saving retrofit. According to the analytical hierarchy process (AHP), three-grade evaluation system was built up for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China. Also, based on multi-index comprehensive evaluation method combined with life cycle assessment (LCA) theory, post-evaluation thought and successful degree evaluation method, a mathematical model was established. Finally, a set of scientific method for evaluating heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China systematically, scientifically, comprehensively and objectively was created.

  20. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  1. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  2. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China.

    Science.gov (United States)

    Lu, Hongfang; Bai, Yu; Ren, Hai; Campbell, Daniel E

    2010-12-01

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation. Important questions that must be answered to determine what strategy is best for society are, "What is the reason behind this conversion?"; "Which system is more productive and which is more sustainable?"; and "How can economic policy be used to adjust the pattern of farmland use to attain sustainable development?" To answer these questions, a combined evaluation of these agricultural production systems was done using emergy, energy and economic methods. An economic analysis clearly showed that the reason for this conversion was simply that the economic output/input ratio and the benefit density of the vegetable production system were greater than that of rice. However, both energy and emergy evaluations showed that long-term rice was the best choice for sustainable development, followed by rotation systems. The current price of rice is lower than the em-value of rice produced from the long-term rice system, but higher than that of rice produced from the rotation system. Scenario analysis showed that if the government increases the price of rice to the em-value of rice produced from the long-term rice system, US$0.4/kg, and takes the value of soil organic matter into account, the economic output/input ratios of both the rice and rotation systems will be higher than that of the vegetable system. The three methods, energy, emergy and economics, are different but complementary, each revealing a different aspect of the same system. Their combined use shows not only the reasons behind a system's current state or condition, but also the way to adjust these systems to move toward more sustainable states. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  4. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  5. Oil-free bearing development for high-speed turbomachinery in distributed energy systems – dynamic and environmental evaluation

    Directory of Open Access Journals (Sweden)

    Tkacz Eliza

    2015-09-01

    Full Text Available Modern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

  6. Effect of process parameters on solvolysis liquefaction of Chlorella pyrenoidosa in ethanol–water system and energy evaluation

    International Nuclear Information System (INIS)

    Peng, Xiaowei; Ma, Xiaoqian; Lin, Yousheng; Wang, Xusheng; Zhang, Xiaoshen; Yang, Cheng

    2016-01-01

    Highlights: • Microalgae liquefaction in ethanol–water promoted bio-oil yield and property. • There existed synergistic effect between ethanol and water. • Ethanol contributed to deoxygenation and hydrogen-donating for bio-oil. • Net energy ratios of 20% and 40% ethanol were larger than pyrolysis technology. - Abstract: In this work, Chlorella pyrenoidosa was converted into bio-oil via solvolysis liquefaction in sub/supercritical ethanol–water system. The influence of reaction temperature (220–300 °C), retention time (0–120 min), solid/liquid ratio (6.3/75–50.0/75 g/mL) and ethanol content (0–100%) on bio-oil yield and property was investigated. The increase of reaction temperature and retention time both improved the bio-oil yield. The bio-oil yield increased firstly and then decreased when the solid/liquid ratio and ethanol content exceeded 18.8/75 g/mL and 80%, respectively. As the reaction temperature <260 °C and retention time <30 min, a soft and unsticky product was insoluble in dichloromethane (DCM) during the extraction process. The chemical composition of the DCM-insoluble product was analyzed by FTIR (Fourier Transform Infrared Spectrometry). The change tendency of O/C and H/C atomic ratio of bio-oil indicated that the addition of ethanol contributed to deoxygenation and hydrogen-donating for bio-oil, due to the dehydration and decarboxylation reaction. "1H NMR (hydrogen-1 nuclear magnetic resonance) analysis indicated that the main chemical compositions of bio-oil were aliphatic functional groups and heteroatomic functionalities (80.00–83.58%). The addition of ethanol enhanced the transesterification to form more ester. The NER (net energy ratio, the ratio of energy output to energy consumption) of solvolysis liquefaction in ethanol–water system (NER < 1) was less than that of hydrothermal liquefaction in sole water system (NER = 1.29), but the NERs of 20% and 40% ethanol content (NER = 0.91, 0.70 for 20% and 40% ethanol content

  7. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  8. Integrated energy systems and local energy markets

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable...... energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade...

  9. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  10. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    Shimazaki, Yoichi

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  11. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  12. A Framework for Evaluating Economic Impacts of Rooftop PV Systems with or without Energy Storage on Thai Distribution Utilities and Ratepayers

    Science.gov (United States)

    Chaianong, A.; Bangviwat, A.; Menke, C.

    2017-07-01

    Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.

  13. Development of a software application to evaluate the performance and energy losses of grid-connected photovoltaic systems

    International Nuclear Information System (INIS)

    Trillo-Montero, D.; Santiago, I.; Luna-Rodriguez, J.J.; Real-Calvo, R.

    2014-01-01

    Highlights: • Software application to perform an automated analysis of grid-connected PV systems. • It integrates data from all devices registering data on typical PV installations. • Flexible to analyze installations with different configurations and components. • An analysis of two grid-connected PV systems located in Andalusia, was performed. • Temperature losses in summer months varying between 15% and 25% of energy production. - Abstract: The aim of this paper was to design and develop a software application that enables users to perform an automated analysis of data from the monitoring of grid-connected photovoltaic (PV) systems. This application integrates data from all devices already in operation such as environmental sensors, inverters and meters, which record information on typical PV installations. This required the development of a Relational Database Management System (RDBMS), consisting of a series of linked databases, enabling all PV system information to be stored; and a software, called S·lar, which enables all information from the monitoring to be automatically migrated to the database as well as determining some standard magnitudes related to performances and losses of PV installation components at different time scales. A visualization tool, which is both graphical and numerical, makes access to all of the information be a simple task. Moreover, the application enables relationships between parameters and/or magnitudes to be easily established. Furthermore, it can perform a preliminary analysis of the influence of PV installations on the distribution grids where the produced electricity is injected. The operation of such a software application was implemented by performing the analysis of two grid-connected PV installations located in Andalusia, Spain, via data monitoring therein. The monitoring took place from January 2011 to May 2012

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  15. Renewable energy covernance systems

    International Nuclear Information System (INIS)

    Hvelplund, F.

    2001-01-01

    The 'political quota-/certificate price market' system introduces an inefficient competition between energy robots, and weakens the increasingly important competition between equipment producers. It hampers the competition between investors by making it difficult for neighbours and local investors to invest in wind turbines. Due to its mono price character, it gives too high profits to wind turbine owners at very good wind sites, and not high enough to wind turbine owners at poor wind sites. The 'political quota-/certificate price market' system is very far from being a market model, as the RE amount is politically decided and the certificate market price is also political influenced. The conclusion, therefore, is that it is time to find a RE governance model that considers the specific needs and characteristics of RE technologies. The present analysis strongly indicates that a 'political price-/amount market' model in this connection is far better than the 'political quota-/certificate price market' model. Furthermore, a common EU model, based on the principle of site efficiency, would be much more flexible, cheaper and easier to pursue than the 'political quota-/certificate price market', or mono price model, which is designed for uranium and fossil fuel technologies, and represents a governance model designed for the technologies of yesterday. (EHS)

  16. Evaluation of a wood chipping system for eucalyptus tops for energy; Avaliacao de um sistema de cavaqueamento de ponteiras de eucalipto para aproveitamento energetico

    Energy Technology Data Exchange (ETDEWEB)

    Canto, Juliana Lorensi do [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Machado, Carlos Cardoso; Souza, Amaury Paulo de; Sant' Anna, Cleverson de Mello [Departamento de Engenharia Florestal da Universidade Federal de Vicosa, UFV, MG (Brazil)], E-mails: machado@ufv.br, amaury@ufv.br, cleverson@ufv.br; Seixas, Fernando [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz, ESALQ], E-mail: fseixas@esalq.usp.br

    2011-11-15

    The objective of this study was to evaluate the performance and to estimate costs of a wood chipping system for tree tops, which are considered residuals from wood harvesting, to be used for energy. The study was developed in a forest industry in the Para State, located in the north region of Brazil. The system was comprised by one wood chipper, two forwarders and one front loader. Data collection was based on time study, fuel consumption and chips load weighting. System average productivity was 17.51 tonnes per effective hour. Machine utilization rate was 51.9% due to many delays, mainly for repair and maintenance of the chipper. Chips transportation was considered to be the critical point of the system, due to some lack of trucks available for blowing chips. The system can produce between 94 and 162 times more energy than the energy consumed. System cost per effective hour was R$ 376.56, which means R$ 21.51/tonne of chips or R$ 2.70/G J. (author)

  17. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    International Nuclear Information System (INIS)

    Kwon, Yong Il

    2016-01-01

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  18. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Il [Shinhan University, Euijungbu (Korea, Republic of)

    2016-05-15

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  19. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  20. Energy Signal Tool for Decision Support in Building Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  1. Smart Energy Systems and Energy Transition

    International Nuclear Information System (INIS)

    Duic, N.

    2016-01-01

    Transition to decarbonized energy systems is becoming more attractive with fall of investment costs of renewables and volatile prices and political insecurity of fossil fuels. Improving energy efficiency, especially of buildings and transport, is important, but due to long life of buildings, it will be a slow way of decarbonization. The renewable energy resources are bountiful, especially wind and solar, while integrating them into current energy systems is proving to be a challenge. Solar has reached grid parity making it cheapest electricity source for retail customers in most of the World, creating new prosumer markets. It has started to reach cost parity in sunny countries, and soon solar energy will be cheapest everywhere. The limit of cheap and easy integration for wind is around 20% of yearly electricity generation, while a combined wind and solar may reach 30%. Going any further asks for implementation of completely free energy markets (involving day ahead, intraday and various reserve and ancillary services markets), demand response, coupling of wholesale and retail energy prices, and it involves integration between electricity, heat, water and transport systems. The cheapest and simplest way of increasing further the penetration of renewables is integrating power and heating/cooling systems through the use of district heating and cooling (which may be centrally controlled and may have significant heat storage capacity), since power to heat technologies are excellent for demand response. District cooling is of particular importance to historic cities that want to remove split systems from their facades. In countries with low heat demand water supply system may be used to increase the penetration of renewables, by using water at higher potential energy as storage media, or in dry climates desalination and stored water may be used for those purposes, and reversible hydro may be used as balancing technology. Electrification of personal car transport allows

  2. Validation of the Continuous-Energy Monte Carlo Criticality-Safety Analysis System MVP and JENDL-3.2 Using the Internationally Evaluated Criticality Benchmarks

    International Nuclear Information System (INIS)

    Mitake, Susumu

    2003-01-01

    Validation of the continuous-energy Monte Carlo criticality-safety analysis system, comprising the MVP code and neutron cross sections based on JENDL-3.2, was examined using benchmarks evaluated in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. Eight experiments (116 configurations) for the plutonium solution and plutonium-uranium mixture systems performed at Valduc, Battelle Pacific Northwest Laboratories, and other facilities were selected and used in the studies. The averaged multiplication factors calculated with MVP and MCNP-4B using the same neutron cross-section libraries based on JENDL-3.2 were in good agreement. Based on methods provided in the Japanese nuclear criticality-safety handbook, the estimated criticality lower-limit multiplication factors to be used as a subcriticality criterion for the criticality-safety evaluation of nuclear facilities were obtained. The analysis proved the applicability of the MVP code to the criticality-safety analysis of nuclear fuel facilities, particularly to the analysis of systems fueled with plutonium and in homogeneous and thermal-energy conditions

  3. Polish energy-system modernisation

    International Nuclear Information System (INIS)

    Drozdz, M.

    2003-01-01

    The Polish energy-system needs intensive investments in new technologies, which are energy efficient, clean and cost effective. Since the early 1990s, the Polish economy has had practically full access to modern technological devices, equipment and technologies. Introducing new technologies is a difficult task for project teams, constructors and investors. The author presents a set of principles for project teams useful in planning and energy modernisation. Several essential features are discussed: Energy-efficient appliances and systems; Choice of energy carriers, media and fuels; Optimal tariffs, maximum power and installed power; Intelligent, integrated, steering systems; Waste-energy recovery; Renewable-energy recovery. In practice there are several difficulties connected with planning and realising good technological and economic solutions. The author presents his own experiences of energy-system modernisation of industrial processes and building new objects. (Author)

  4. Evaluation of scenarios for energy systems. Potentials, limits and acceptance; Bewertung von Szenarien fuer Energiesysteme. Potenziale, Grenzen und Akzeptanz

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Daniel Kurt Josef

    2016-05-15

    In contrast to previous approaches in connection with the energy transition, the dissertation leads to a change of perspective towards social consideration. Previous scenario studies focused on technical feasibility as well as individual cost and environmental aspects, as shown in the pre-analysis. Society plays a secondary role in this case. Instead of being taken into account in the prior decision-making process, time and effort are often invested in the downstream conviction of the population only after that. The approach pursued in the work consistently focuses on incorporating social preferences and barriers into the decision-making process in advance, so that decisions themselves have lasting validity. Representative telephone surveys are used to determine the preferences of the population on the one hand and the limits of acceptance in the form of willingness to pay on the other hand. Only then are scenario calculations carried out in order to be able to quantitatively evaluate energy policy options for action. In the subsequent comparison of social barriers and model results, however, the limits of this approach are also made clear: a desired action option from the perspective of the population (here the brown coal exit) can also fail because of political and legal barriers. [German] Die Dissertationsschrift fuehrt im Gegensatz zu bisherigen Ansaetzen im Zusammenhang mit der Energiewende einen Perspektivwechsel hin zur gesellschaftlichen Beruecksichtigung herbei. Bisherige Szenariostudien richteten ihren Fokus auf die technische Machbarkeit sowie einzelne Kosten- und Umweltaspekte, wie in der Voranalyse gezeigt wird. Die Gesellschaft spielt in diesem Fall eine sekundaere Rolle. Statt einer Beruecksichtigung im vorab geschalteten Entscheidungsprozess werden so haeufig erst im Anschluss Zeit und Aufwand in die nachgelagerte Ueberzeugung der Bevoelkerung investiert. Der in der Arbeit verfolgte Ansatz setzt konsequent darauf, gesellschaftliche Praeferenzen und

  5. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  6. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  7. Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    • To reduce the costs of energy towards 2050 This transition faces many challenges from a variety of different perspectives, including: • Technology: The development of new technologies and infrastructures, which will enable us to utilise renewable energy resources. • Business: The design of new markets...

  8. Covariance evaluation system

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Shibata, Keiichi.

    1997-09-01

    A covariance evaluation system for the evaluated nuclear data library was established. The parameter estimation method and the least squares method with a spline function are used to generate the covariance data. Uncertainties of nuclear reaction model parameters are estimated from experimental data uncertainties, then the covariance of the evaluated cross sections is calculated by means of error propagation. Computer programs ELIESE-3, EGNASH4, ECIS, and CASTHY are used. Covariances of 238 U reaction cross sections were calculated with this system. (author)

  9. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  10. Diagnostic information system dynamics in the evaluation of machine learning algorithms for the supervision of energy efficiency of district heating-supplied buildings

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2017-01-01

    Highlights: • Energy efficiency classification sustainability benefits from knowledge prediction. • Diagnostic classification can be validated with its dynamics and current data. • Diagnostic classification dynamics provides novelty extraction for knowledge update. • Data mining comparison can be performed with knowledge dynamics and uncertainty. • Diagnostic information refinement benefits form comparing classifiers dynamics. - Abstract: Modern ways of exploring the diagnostic knowledge provided by data mining and machine learning raise some concern about the ways of evaluating the quality of output knowledge, usually represented by information systems. Especially in district heating, the stationarity of efficiency models, and thus the relevance of diagnostic classification system, cannot be ensured due to the impact of social, economic or technological changes, which are hard to identify or predict. Therefore, data mining and machine learning have become an attractive strategy for automatically and continuously absorbing such dynamics. This paper presents a new method of evaluation and comparison of diagnostic information systems gathered algorithmically in district heating efficiency supervision based on exploring the evolution of information system and analyzing its dynamic features. The process of data mining and knowledge discovery was applied to the data acquired from district heating substations’ energy meters to provide the automated discovery of diagnostic knowledge base necessary for the efficiency supervision of district heating-supplied buildings. The implemented algorithm consists of several steps of processing the billing data, including preparation, segmentation, aggregation and knowledge discovery stage, where classes of abstract models representing energy efficiency constitute an information system representing diagnostic knowledge about the energy efficiency of buildings favorably operating under similar climate conditions and

  11. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  12. Efficiency of metabolizable energy utilization for maintenance and gain and evaluation of Small Ruminant Nutrition System model in Santa Ines sheep

    Directory of Open Access Journals (Sweden)

    José Gilson Louzada Regadas Filho

    2011-11-01

    Full Text Available This study was carried out to estimate efficiencies of the utilization of metabolizable energy for maintenance (k m and weight gain (k g and to evaluate the Small Ruminant Nutrition System (SRNS model in predicting dry matter intake and average daily gain of growing Santa Ines sheep. Twenty-four non-castrated Santa Ines sheep, at 50 days of age and with average body weight of 13.00 ± 0.56 kg, respectively, were used. After a 10-day adaptation period, four animals were slaughtered to be used as reference for estimating initial empty body weight and body composition of the other animals. The remaining animals were distributed in a random block design, with the treatments consisting of diets containing different levels of metabolizable energy (2.08, 2.28, 2.47 and 2.69 Mcal/kg of DM, with five replicates. The metabolizable energy use efficiencies for maintenance and for weight gain were calculated from the relationship between the dietary net energy for maintenance and gain and ME concentration in the diets. Evaluation of the SRNS model was performed by adjustment of simple linear regression model between the predicted (independent variable and observed (dependent variable values. The estimated energy use efficiency for maintenance (k m was 0.70; and for gain weight (kg it showed to be inversely proportional to the increase of metabolizable energy concentration in the diet. The dry matter intake predicted by the SRNS model did not statistically differ from that observed, but the model overestimated the average daily gain by 5.18%. Those results can contribute to the construction of a database, which could be condensed into several others in a predictive model of performance and feed planning for sheep reared in Brazil.

  13. Energy accounting and optimization for mobile systems

    Science.gov (United States)

    Dong, Mian

    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets. In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms. We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can

  14. A Method of Evaluating Operation of Electric Energy Meter

    Science.gov (United States)

    Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin

    2018-05-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  15. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  16. Comparative risk assessment of total energy systems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1982-01-01

    The paper discusses a methodology for total impact assessment of energy systems, ideally evaluating all the impacts that a given energy system has on the society in which it is imbedded or into which its introduction is being considered. Impacts from the entire energy conversion chain ('fuel cycle' if the system is fuel-based), including energy storage, transport and transmission, as well as the institutions formed in order to manage the system, should be compared on the basis of the energy service provided. A number of impacts are considered, broadly classified as impacts on satisfaction of biological needs, on health, on environment, on social relations and on the structure of society. Further considerations include impacts related to cost and resilience, and, last but not least, impacts on global relations. The paper discusses a number of published energy studies in the light of the comparative impact assessment methodology outlined above. (author)

  17. The Evaluation of Science Learning Program, Technology and Society Application of Audio Bio Harmonic System with Solar Energy to Improve Crop Productivity

    Directory of Open Access Journals (Sweden)

    D. Rosana

    2017-04-01

    Full Text Available One of the greatest challenges in science learning is how to integrate a wide range of basic scientific concepts of physics, chemistry, and biology into an integrated learning material. Research-based teaching material in this area is still very poor and does not much involve students of science education in its implementation as part of the learning program science technology and society (STS. The purpose of this study is to get the result of evaluation of the teaching and learning of STS in the form of public service in Kulon Progo, Yogyakarta. The program to improve crop productivity through the application of Audio Bio Harmonic System (ABHS with solar energy have been selected for utilizing the natural animal sounds to open stomata of the leaves conducted during foliar fertilization, making it suitable for integrated science lessons. Component of evaluation model used is Stufflebeam model evaluation (CIPP. CIPP evaluation in these activities resulted in two aspects: The first aspect was improving the skills of students and farmers in using ABHS, and these two aspects, namely food crop productivity; (1 cayenne increased 76.4%, (2 increased red onions (56.3% and (3 of maize increased by 67.8%. Besides, it was also the effect of the application of ABHS on the rate of plant growth. The outcome of this study is the STS teaching materials and appropriate technology of ABHS with solar energy.

  18. Power management for energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.

    2013-02-15

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms, e.g., in supermarkets. For control of the commercial refrigeration application as well as the wind turbine application, we propose an economic optimizing model predictive controller, economic MPC. Our investigations are primarily concerned with: 1) modeling of the applications to suit the chosen control framework; 2) formulating the MPC controller laws to overcome challenges introduced by the industrial applications, and defining economic objectives that reect the real physics of the systems as well as our control objectives; 3) solving the involved, non-trivial optimization problems eciently in real-time; 4) demonstrating the feasibility and potential of the proposed methods by extensive simulation and comparison with existing control methods and evaluation of data from systems in actual operation. We demonstrate, i.a., substantial cost savings, on the order of 30 %, compared to a standard thermostat-based supermarket refrigeration system and show how our methods exhibit sophisticated demand response to real-time variations in electricity prices. Violations of the temperature ranges can be kept at a very low frequency of occurrence inspite of the presence of uncertainty. For the power output from wind turbines, ramp rates, as low a 3 % of the rated power per minute, can be effectively ensured with the use of energy storage and we show how the active use of rotor inertia as an additional energy storage can reduce the needed storage capacity by up to 30 % without reducing the power output. (Author)

  19. Energy policies and renewable energy systems monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Di Nisio, Attilio; Savino, Mario; Spadavecchia, Maurizio [Electrical and Electronic Measurements Laboratory, Dept. of Electrical and Electronic Engineering - Politecnico di Bari, Bari (Italy)], e-mails: dinisio@misure.poliba.it, savino@misure.poliba.it, spadavecchia@misure.poliba.it

    2011-07-01

    Full text: The global energy crisis is forcing every country worldwide to review its policies on energy. The environmental disaster at Japan's Fukushima Daiichi nuclear power plant has accelerated this process. Many people around the world are citing the disaster as evidence that nuclear power would endanger the survival of mankind on earth and should be banned. Today we need to focus more substantially on energy saving, especially using smart devices with low power consumption. We have also to review the approach to the exploitation of energy and move from a philosophy 'from the ground to the subsurface' to another 'from the earth to the sun'. This paper highlights the increasing importance of solar power in meeting energy needs while achieving security of supply and minimising carbon dioxide (CO{sub 2}) emissions. It deals also with the development of solar power plants, which require a supervisory control system that improves their efficiency and reliability. (author)

  20. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  1. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  2. WE-NET substask 3. Conceptual design of total system (Safety measures and evaluation techniques); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 3. Zentai system gainen sekkei anzen taisaku hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work) in fiscal 1998, researches and studies were conducted to clearly define safety designs and to improve on accident-and-safety analyses. In relation with system safety design, investigations continued into Japanese and foreign manuals and regulations about the handling of hydrogen and its peripherals, and safe design guidelines (draft) were compiled. Anomalies and accidents supposed to be typical of each of the systems concerned were investigated. As for accident-and-safety analyses, incorporation of a turbulence model was studied in relation to models representing the leak, evaporation, and diffusion of liquid hydrogen, and improvement was achieved when the scope of evaluation was enlarged concerning the hydrogen detonation model. The integration of the two models was discussed for the due evaluation of a series of processes of liquid hydrogen leak, evaporation, diffusion, and detonation. Calculation was performed for two assumed accidents, and the results were found to justify the integration of the two models. (NEDO)

  3. Evaluation report on the development of energy conservation/environment purification system using cleaning effect of optical irradiation; Hikari clean gijutsu wo mochiita sho energy kankyo joka system no kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The results achieved in fiscal 1992-1995 under the above-named project are stated. In the development of photocatalytic materials, a photocatalytic fluorocarbon polymer sheet suitable for use in a denitration apparatus is developed. A high density fluorocarbon polymer sheet composed of TiO{sub 2} modified with 0.3% of Pd/absorbent zeolite/fluorocarbon polymer PTFE (polytetrafluoroethylene) =48-63/24-36/10-20 is fabricated, which achieves a level higher than the denitration goal of 70%. Although the sheet in a 500-hour accelerated exposure test undergoes a hardening phenomenon in which elasticity decreases and tensile strength increases, yet degradation is hardly detected. Although a slight reduction is detected in denitration efficiency, yet it does not affect its practical application, and thus the durability goal is achieved. In the development of an energy conservation type air cleaning apparatus usable in underground parking areas or motorway tunnels, an apparatus capable of treating air at a rate of 2,000m{sup 3}/hour is fabricated, and this achieves a denitration level of not less than 80% in a field test (in the absence of rainfall). For denitration in the presence of rainfall, the apparatus is combined with an equimolar adsorption system, and a system capable of 80% denitration is proposed on the basis of data actually measured for each of the two. A conceptual design for a service model comprising a photodenitration and equimolar adsorption systems is evaluated, and it is found that it occupies less space than the existing models. (NEDO)

  4. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  5. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  6. Energy consumption and conservation, evaluation

    International Nuclear Information System (INIS)

    Acket, C.

    2006-04-01

    The energy consumption is increasing of more than 1% each year. It is necessary to slow down this growth and much better to inverse it. Observing the main consumption posts, energy saving is possible at short dated for the residential sector and medium and long dated for the transports and the industry. Anyway the individual behaviors are essential. The author presents the situation for each posts, providing data on the energy consumption and saving and recommendations. (A.L.B.)

  7. Evaluation of renewable energy policies

    International Nuclear Information System (INIS)

    Kancs, D.

    2006-01-01

    Energy efficiency in Poland is driven primarily by price signals. Due to Poland's recent international obligations towards addressing climate change, various sustainable energy policies have been established to foster energy efficiency as well as to define the conditions of conducting economic activities in the energy sector. This paper presented the results of an empirical ex-ante analysis which examined the effects of various potential energy policies in the Polish bioenergy sector. An applied general equilibrium model was used in which producers responded to changes in market prices of different energy products by adjusting their output and input levels. The model consisted of 3 major sections, namely production, consumption, and equilibrium conditions. The model used a set of simultaneous linear and non-linear equations to define the behaviour of economic agents. Each solution provided a full set of economic indicators, including household incomes, prices, supply and demand quantities for factors and commodities, and welfare indicators. Consumers in the model responded to changes in energy product prices with a reduced demand of certain goods and services, as well as by increasing demand for other services. Results of the simulation showed that a uniform subsidy led to the same increase of renewable energy supply as an equivalent uniform fossil energy tax. Results also indicated that reductions in the output of fossil fuel energy sectors below the reference case did not impact all fossil energy sectors equally. A subsidy was found to lower the average cost of production, while taxation was found to increase the average cost of production. It was concluded that the bioenergy sector will benefit more from an indirect tax reduction than from a removal of fossil energy sector subsidies. 25 refs., 3 tabs., 3 figs

  8. Risk management and energy systems

    International Nuclear Information System (INIS)

    Carlevaro, F.; Romerio, F.

    1992-01-01

    In five sessions the following topics were dealt with: risk problems, risk analysis and evaluation tools, risks in industrial societies, risks of energy production, technological risks, ethics and political-social consensus. figs., tabs., refs

  9. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    Science.gov (United States)

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  10. Decarbonization of Croatian Energy System

    International Nuclear Information System (INIS)

    Potocnik, V.

    2012-01-01

    Energy system decarbonization is reduction of greenhouse gases (CO 2 ) emission, chiefly from the fossil fuels (coal, oil, natural gas) combustion. The main objective of an energy system decarbonization is the climate change mitigation, and at the same time development of local industry and employment, better environment and health protection, as well as reduction of the fossil fuels import and foreign debt. Croatia has small fossil fuels reserves and large renewable energy sources (RES) reserves, energy efficiency (ENEF) is relatively low, and energy import, according to the actual Energy strategy 2009, should increase from 50% to 70% until 2020. Croatian energy system participates with about one third in the Croatian foreign trade deficit. The main measures of the Croatian energy system decarbonization should be: increasing ENEF (energy savings), switch from fossil fuels to RES, administrative measures (low carbon development strategy, environmental tax reform, and decoupling income from energy sales). By urgent application of these measures, Croatia could become fossil fuels free until the year 2050.(author)

  11. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of

  12. Integrated energy systems and local energy markets

    International Nuclear Information System (INIS)

    Lund, Henrik; Muenster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade on the international market. The conclusion is that it is feasible for the Danish society to include the CHP plants in the balancing of fluctuating wind power. There are major advantages in equipping small CHP plants as well as the large CHP plants with heat pumps. By doing so, it will be possible to increase the share of wind power from the present 20 to 40% without causing significant problems of imbalance between electricity consumption and production. Investment in increased flexibility is in itself profitable. Furthermore, the feasibility of wind power is improved

  13. Self-consistent nuclear energy systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujiie, Y.

    1995-01-01

    A concept of self-consistent energy systems (SCNES) has been proposed as an ultimate goal of the nuclear energy system in the coming centuries. SCNES should realize a stable and unlimited energy supply without endangering the human race and the global environment. It is defined as a system that realizes at least the following four objectives simultaneously: (a) energy generation -attain high efficiency in the utilization of fission energy; (b) fuel production - secure inexhaustible energy source: breeding of fissile material with the breeding ratio greater than one and complete burning of transuranium through recycling; (c) burning of radionuclides - zero release of radionuclides from the system: complete burning of transuranium and elimination of radioactive fission products by neutron capture reactions through recycling; (d) system safety - achieve system safety both for the public and experts: eliminate criticality-related safety issues by using natural laws and simple logic. This paper describes the concept of SCNES and discusses the feasibility of the system. Both ''neutron balance'' and ''energbalance'' of the system are introduced as the necessary conditions to be satisfied at least by SCNES. Evaluations made so far indicate that both the neutron balance and the energy balance can be realized by fast reactors but not by thermal reactors. Concerning the system safety, two safety concepts: ''self controllability'' and ''self-terminability'' are introduced to eliminate the criticality-related safety issues in fast reactors. (author)

  14. Field Evaluation/Demonstration of a Multisegmented Dewatering System for Accreting Beach Sand in a High-Wave-Energy Environment

    National Research Council Canada - National Science Library

    Curtis, William

    1998-01-01

    This study documents the use of beach dewatering systems to accrete beach sand and minimize erosion, and to develop quantitative guidance for constructing and operating beach dewatering installations...

  15. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  16. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    Science.gov (United States)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  17. Italian energy scenarios comparative evaluations

    International Nuclear Information System (INIS)

    Contaldi, Mario

    2005-01-01

    This paper reviews some representative scenarios of the evolution of the Italian primary energy consumption, updated recently. After an overview of the main macroeconomics assumptions the scenario results are cross checked at sectorial level, with a brief discussion of the underlining data and energy intensity trends. The emissions of CO 2 , SO 2 and NO x resulting from the considered scenarios are also reported and discussed [it

  18. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  19. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  20. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  1. Solar energy system performance evaluation: Page Jackson Elementary School, Charles Town, West Virginia, October 1979-April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R.G.

    1980-01-01

    This school in Charles Town, West Virginia is equipped with 11,215 ft/sup 2/ of PPG flat-plate collectors of which 69% operate. Two insulated tanks of 10,000 gal capacity provide heat storage. A natural gas fired boiler and a chiller augment the solar heating and cooling system. Collector failure was primarily responsible for the system supplying 23% rather than the projected 85% of the heating requirement. (MHR)

  2. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  3. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  4. Energy Management of Smart Distribution Systems

    Science.gov (United States)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  5. Photovoltaic Energy Conversion Systems

    DEFF Research Database (Denmark)

    Kouro, Samir; Wu, Bin; Abu-Rub, Haitham

    2014-01-01

    This chapter presents a comprehensive overview of grid-connected PV systems, including power curves, grid-connected configurations, different converter topologies (both single- and three-phase), control schemes, MPPT, and anti-islanding detection methods. The focus of the chapter has been on the ...

  6. Probabilistic Approaches to Energy Systems

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning

    of renewable energy generation. Particularly we focus on producing forecasting models that can predict renewable energy generation, single user demand, and provide advanced forecast products that are needed for an efficient integration of renewable energy into the power generation mix. Such forecasts can...... integration of renewable energy.Thus forecast products should be developed in unison with the decision making tool as they are two sides of the same overall challenge.......Energy generation from wind and sun is increasing rapidly in many parts of the world. This presents new challenges on how to integrate this uncertain, intermittent and non-dispatchable energy source. This thesis deals with forecasting and decision making in energy systems with a large proportion...

  7. Secure Automated Microgrid Energy System

    Science.gov (United States)

    2016-12-01

    O&M Operations and Maintenance PSO Power System Optimization PV Photovoltaic RAID Redundant Array of Independent Disks RBAC Role...elements of the initial study and operational power system model (feeder size , protective devices, generation sources, controllable loads, transformers...EW-201340) Secure Automated Microgrid Energy System December 2016 This document has been cleared for public release; Distribution Statement A

  8. Community energy systems

    International Nuclear Information System (INIS)

    1995-01-01

    A broad range of issues relating to the implementation of cogeneration in low-rise residential applications were examined. A comprehensive summary of site evaluation was included. Many criteria such as fuel pricing, electricity price, capital cost and operating cost were common to the evaluation of all projects. A simplified economic model was presented to allow a developer to quickly assess the economic viability of a potential project. A background description on the current status of cogeneration in Canada was included, as well as recommendations to ease the implementation of cogeneration in today's environment. Implementation of cogeneration in multi- unit low rise housing development offered substantial environmental and operating cost savings but also posed some challenges, such as the cost of infrastructure, the regulatory problems of routing electrical power from the cogeneration plant to the housing units, the absence of cogeneration package, the mismatch of thermal and electrical loads, as well as the price of natural gas for small loads. Five sites were studied for potential application of cogeneration, but none of these sites offered opportunities that would have qualified it to serve as a potential champion based on conventional investment criteria. tabs., figs

  9. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  10. Improved methods to evaluate realised energy savings

    NARCIS (Netherlands)

    Boonekamp, P.G.M.

    2005-01-01

    This thesis regards the calculation of realised energy savings at national and sectoral level, and the policy contribution to total savings. It is observed that the results of monitoring and evaluation studies on realised energy savings are hardly applied in energy saving policy. Causes are the lack

  11. Economic evaluation and conceptual design of optimal agricultural systems for production of food and energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    The major technical and economic considerations which determined the scope of the study and the structure of the linear programming (LP) models are discussed. Four models, each representing a typical crop, beef, dairy, or swine farm in conjunction with ethanol facilities are characterized by the same general behavioral and mathematical model structure. Specific activities, constraints, and data for each of the four models are presented. An overview of the model structure is provided in the context of the general scope and background assumptions, and of its LP implementation. Simulated initial conditions and outcomes are reported for typical Illinois farms. Policy implications are discussed as related to agriculture, energy, and inter-industry coordination. (MHR)

  12. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  13. The baltic states' energy system

    OpenAIRE

    Nikitaravičius, Martynas

    2006-01-01

    THE BALTIC STATES’ ENERGY SYSTEM SUMMARY The goal of paper – the comparative analysis of Baltic states‘ (i.e. of Lithuania, Latvia, Estonia) energy systems in 1990-2004. The main causes that affected the development of Baltic states’ energetics are indicated in this work. By the method of statistical analysis, the comparative advantages of Baltic states‘ energetics are detected. Moreover, the main trends of further development of integration of Baltic states ‘ energetics into the energetics o...

  14. TEXT Energy Storage System

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    The Texas Experimental Tokamak (TEXT) Enery Storage System, designed by the Center for Electromechanics (CEM), consists of four 50 MJ, 125 V homopolar generators and their auxiliaries and is designed to power the toroidal and poloidal field coils of TEXT on a two-minute duty cycle. The four 50 MJ generators connected in series were chosen because they represent the minimum cost configuration and also represent a minimal scale up from the successful 5.0 MJ homopolar generator designed, built, and operated by the CEM

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    determine how well a solar photovoltaic (PV) system with battery energy storage can provide backup power to . These analyses will result in a design guide for climate-specific sizing of the system. NREL's Erfan , feasibility, and operational analyses for photovoltaic and concentrating solar power generation projects

  16. Smart Cities and National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    Energy system analysis follows two tracks, either through plans for future transitions of national energy systems, or local development of smart cities and regions. These two tracks seldom overlap. National plans neglect the local implementation of intermittent renewable technology and use of local...... resources, and smart cities and local development do not relate to national targets and fail to evaluate sub-optimization. Thus, there is a need for approaches that help researchers creating links between country analyses and local energy system transitions. This paper investigates the effects...... of such an approach, by investigating Western Denmark. By splitting Western Denmark into regions, it is possible to create individual energy systems for each region. Through interconnection, these regions can exchange electricity with each other. This enables analyses of interaction between smart cities and national...

  17. Energy Monitoring System Berbasis Web

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-12-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMSconsists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  18. Energy-Aware Cognitive Radio Systems

    KAUST Repository

    Bedeer, Ebrahim

    2016-01-15

    The concept of energy-aware communications has spurred the interest of the research community in the most recent years due to various environmental and economical reasons. It becomes indispensable for wireless communication systems to shift their resource allocation problems from optimizing traditional metrics, such as throughput and latency, to an environmental-friendly energy metric. Although cognitive radio systems introduce spectrum efficient usage techniques, they employ new complex technologies for spectrum sensing and sharing that consume extra energy to compensate for overhead and feedback costs. Considering an adequate energy efficiency metric—that takes into account the transmit power consumption, circuitry power, and signaling overhead—is of momentous importance such that optimal resource allocations in cognitive radio systems reduce the energy consumption. A literature survey of recent energy-efficient based resource allocations schemes is presented for cognitive radio systems. The energy efficiency performances of these schemes are analyzed and evaluated under power budget, co-channel and adjacent-channel interferences, channel estimation errors, quality-of-service, and/or fairness constraints. Finally, the opportunities and challenges of energy-aware design for cognitive radio systems are discussed.

  19. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  20. Window Energy Rating System and Calculation of Energy Performance of Windows

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    The goal of reducing the energy consumption in buildings is the background for the introduction of an energy rating system of fenestration products in Denmark. The energy rating system requires that producers declare, among other things, the heat loss coefficient, U, and the total solar energy...... development, e.g. when the resulting effects of a reduced frame area are evaluated....

  1. Nuclear data evaluation method and evaluation system

    International Nuclear Information System (INIS)

    Liu Tingjin

    1995-01-01

    The evaluation methods and Nuclear Data Evaluation System have been developed in China. A new version of the system has been established on Micro-VAX2 computer, which is supported by IAEA under the technology assistance program. The flow chart of Chinese Nuclear Data Evaluation System is shown out. For last ten years, the main efforts have been put on the double differential cross section, covariance data and evaluated data library validation. The developed evaluation method and Chinese Nuclear Data Evaluation System have been widely used at CNDC and in Chinese Nuclear Data Network for CENDL. (1 tab., 15 figs.)

  2. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  3. Process evaluation distributed system

    Science.gov (United States)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  4. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  5. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  6. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  7. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  8. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  9. World energy data system (WENDS)

    International Nuclear Information System (INIS)

    Lareau, W.E.

    1979-01-01

    This paper presents a unique application of System 2000: the storage of preformatted textual information in a completely user oriented data base. The World Energy Data System is an information system which allows qualified users online access to non-classified management level data on worldwide energy technology and research and development activities. WENDS has been used to transmit up-to-date informaion on foreign energy technology and research and development programs to DOE program divisions, the Congress, and other U.S. government officials going abroad. The WENDS concept is first described. Then, the method of storage of the textual information is discussed followed by a discussion of the retrieval system which is thoroughly designed to serve the user

  10. Fiscal 1997 report on the investigational research on the evaluation of a global energy system as global environmental protection technology. 2; 1997 nendo chosa hokokusho (chikyu kankyo taisaku gijutsu to shite no global energy system no hyoka ni kansuru chosa kenkyu). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    An energy supply system which is globally formed for global environmental protection is called a global energy system (GES), in which to achieve substantial CO2 reduction, various measures against CO2 are introduced to energy systems extending from places of fuel supply to places of fuel consumption. For the study of a scenario for introduction such a GES, it is necessary to investigate the GES presently proposed and make a traverse evaluation of it under uniform preconditions and evaluation criteria. Concretely, following a case study of evaluating performance of the GES with a power system as the final form from viewpoints of economy, energy balance, CO2 emissions, etc., the paper arranged characteristics of liquid fuel supply systems including methanol from a traverse aspect, made evaluation of performance and possibilities of the introduction in the areas concretely named, and studied positioning of this energy system, scenario for the future introduction and possibilities of the introduction from global and long-term aspects. 79 refs., 102 figs., 77 tabs.

  11. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    . It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production......In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...... of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view...

  12. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  13. Human Performance Evaluation System

    International Nuclear Information System (INIS)

    Hardwick, R.J. Jr.

    1985-01-01

    Operating nuclear power plants requires high standards of performance, extensive training and responsive management. Despite our best efforts inappropriate human actions do occur, but they can be managed. An extensive review of License Event Reports (LERs) was conducted which indicated continual inadequacy in human performance and in evaluation of root causes. Of some 31,000 LERs, about 5,000 or 16% were directly attributable to inappropriate actions. A recent analysis of 87 Significant Event Reports (issued by INPO in 1983) identified inappropriate actions as being the most frequent root cause (44% of the total). A more recent analysis of SERs issued in 1983 and 1984 indicate that 52% of the root causes were attributed to human performance. The Human Performance Evaluation System (HPES) is a comprehensive, coordinated utility/industry system for evaluating and reporting human performance situtations. HPES is a result of the realization that current reporting system provide limited treatment of human performance and rarely provide adequate information about root causes of inappropriate actions by individuals. The HPES was implemented to identify and eliminate root causes of inappropriate actions

  14. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  15. Energy Systems Integration Newsletter - December 2016 | Energy Systems

    Science.gov (United States)

    system makes renewable energy integration easier. ESIF Research Shows That Connected Residential Devices and business intelligence. Baggu also noted the opportunity to harness next-generation graphical -through, ramp rate control, soft-start reconnection, and voltage-watt control. NREL then conducted power

  16. Health evaluation of energy-generating sources

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The American Medical Association's House of Delegates, at its December 1976 Clinical Convention, requested that an evaluation be made of the health hazards of nuclear, fossil, and alternative energy-generating sources, for employees of energy-producing facilities as well as for the general population. This report is a summary evaluation of such hazards prepared in response to that request. This report, which was adopted by the House of Delegates on June 21, 1978, appears here in a revised and corrected version

  17. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 1. Survey/study concerning system evaluation); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With the aim of formulating a strategy for introducing hydrogen, assessment was carried out on the energy consumption, environmental impacts and cost effiectiveness concerning various hydrogen utilization systems. In regard to soda-electrolysis by-product hydrogen and coke-oven by-product hydrogen, hydrogen supply capacity and cost effectiveness were evaluated. As a result, the two systems were found to have an annual hydrogen supply capacity of 11.52 GNm{sup 3} in total. As to the cost effectiveness, transportation by pipeline was 34 yen/Nm{sup 3}-H{sub 2} in the case of soda-electrolysis by-product hydrogen, and 40 yen/Nm{sup 3}-H{sub 2} in the case of coke-oven by-product hydrogen. An estimated cost of power generation showed 56 yen to 67 yen/kWh in such a system on remote islands as replacing diesel power generation by wind power generation, storing part of the electric energy produced in the form of hydrogen through water electrolysis, and using it as fuel for power generation by the fuel cell unit if wind conditions are unfavorable. Power generation cost on remote islands at present is sometimes in excess of 50 yen/kWh; therefore, this combined system showed promising results. The cost of using wooden biomass was estimated to be 51,000 yen/TOE , whose competitiveness is uncertain. (NEDO)

  18. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  19. Enhanced distributed energy resource system

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  20. Report on the FY 1999 results of the development of the wide area energy utilization network system - Eco/energy urban system. 2/2. Study of the systematization technology/evaluation technology out of the study of the energy system design technology (Study of the application method of element technology/system and trial calculation of the introduction effect); Koiki energy riyo network system kaihatsu (eco energy toshi system). 2/2. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu 1999 nendo seika hokokusho (zenkoku no netsu juyo no bunpu jokyo chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of smoothly introducing the equipment technology and system technology being studied in the development of element technology in the eco/energy urban project, the paper conducted the study of conditions/application method in applying the technology to the actual energy supply system, analysis of the introduction effect, arrangement of the subjects on technical development, etc. In the study, for the methanol/hydrogen base technology, heat pump technology, heat recovery technology, heat transport technology and heat power generation technology, the quantitative analysis was made in terms of the lifecycle energy consumption amount, lifecycle CO2 emission amount and lifecycle expenses. As to the methanol base system, the subject is the reduction in auxiliary power. Concerning the heat pump technology, the subject is the enlargement of simple equipment. As regards the heat recovery technology, the subject is the development of system with long useful year. Relating to the heat transport technology, subjects are the completion of the menu of large-diameter piping in the vacuum thermal insulation heat transport piping system, and reduction in conveyance power of heat medium. About the heat power generation technology, subjects are the stability/durability of the system. (NEDO).

  1. Energy-, environmental and economic evaluation of energy crops utilization

    International Nuclear Information System (INIS)

    1994-06-01

    This preliminary project is prepared in order to clarify the economic possibilities and rentability of energy crops. Examples of energy crop resource potential, environmental and economic consequences are calculated on the basis of existing data. Utilization of annual and perennial crops is evaluated with regard to the usual following of agricultural areas, and to the traditional power generation in a coal-fueled plant. Two technological options are discussed: one based on energy crop fuels supplementing the conventional coal fuel, and the other based on a separate biomass-fueled boiler, connected to the conventional coal-fueled unit. Implementation of the main project,following the preliminary one will permit to estimate the future prospects and strategies of energy crop utilization as a profitable energy resource. (EG)

  2. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  3. The role of nuclear energy system for Korean long-term energy supply strategy

    International Nuclear Information System (INIS)

    Chae, K.N.; Lee, D.G.; Lim, C.Y.; Lee, B.W.

    1995-01-01

    The energy supply optimization model MESSAGE-III is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Emphasis is placed on the potential contribution of nuclear energy in case of environmental constraints and energy resource limitation. The time horizon is 1993-2040. A program to forecast useful energy demand is developed, and optimization is performed from the overall energy system to the nuclear energy system. Reactor and fuel cycle strategy and the expanded utilization options for nuclear energy system are suggested. FBRs, HTGRs and thorium fuel cycle would play key roles in the long run. The most important factors for nuclear energy in Korean energy supply strategy would be the availability of fossil fuels, CO 2 reduction regulation, and the supply capability of nuclear energy. (author)

  4. Energy-efficient buildings program evaluations. Volume 2: Evaluation summaries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Mayi, D.; Edgemon, S.D.

    1997-04-01

    This document presents summaries of code and utility building program evaluations reviewed as the basis for the information presented in Energy-Efficient Buildings Program Evaluations, Volume 1: Findings and Recommendations, DOE/EE/OBT-11569, Vol. 1. The main purpose of this volume is to summarize information from prior evaluations of similar programs that may be useful background for designing and conducting an evaluation of the BSGP. Another purpose is to summarize an extensive set of relevant evaluations and provide a resource for program designers, mangers, and evaluators.

  5. Safety significance evaluation system

    International Nuclear Information System (INIS)

    Lew, B.S.; Yee, D.; Brewer, W.K.; Quattro, P.J.; Kirby, K.D.

    1991-01-01

    This paper reports that the Pacific Gas and Electric Company (PG and E), in cooperation with ABZ, Incorporated and Science Applications International Corporation (SAIC), investigated the use of artificial intelligence-based programming techniques to assist utility personnel in regulatory compliance problems. The result of this investigation is that artificial intelligence-based programming techniques can successfully be applied to this problem. To demonstrate this, a general methodology was developed and several prototype systems based on this methodology were developed. The prototypes address U.S. Nuclear Regulatory Commission (NRC) event reportability requirements, technical specification compliance based on plant equipment status, and quality assurance assistance. This collection of prototype modules is named the safety significance evaluation system

  6. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  7. Performance of deep geothermal energy systems

    Science.gov (United States)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  8. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  9. Energy efficiency evaluation of hospital building office

    International Nuclear Information System (INIS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S.A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings. (paper)

  10. Kinetic energy factors in evaluation of athletes.

    Science.gov (United States)

    Jones, Jason N; Priest, Joe W; Marble, Daniel K

    2008-11-01

    It is established that speed and agility are critical attributes of sports performance. Performance timing of runs during agility course testing can be used to estimate acceleration, speed, or quickness. The authors of this research effort also report the energy of motion, or kinetic energy of the athlete, which considers not only the speed but also the mass of the athlete. An electronic timer was used to determine total run times as well as split performance times during a new 60-yd "run-shuttle" test. This newly designed agility test takes advantage of the technological capabilities of a laser timing device. Separate times for each of four run segments were recorded and converted to average speeds (m x s(-1)) as well as a quantitative factor of merit defined as the "K-factor." The purpose of this study was to describe the effects of training and to compare athletes and teams using measures of time, speed, and kinetic energy. Results of the analysis of total time on the 60-yd run-shuttle provided evidence of the effectiveness of the training programs. Split times of segments within the 60-yd run-shuttle provided information not available from conventional agility tests. Average speeds and K-factors identified discriminating characteristics of otherwise similar athletes. Our findings support the conclusion that training programs and athletic performance may be evaluated using the 60-yd run-shuttle with laser timer system. Coaches and trainers may find practical application of this technology for American football, soccer, basketball, baseball/softball, track and field, and field hockey.

  11. Research and development of system to utilize photovoltaic energy. Survey on the evaluation of photovoltaic power generation; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyoko hatsuden hyoka no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on evaluation of PV power generation in fiscal 1994. (1) On the evaluation technique of energy pay-back time, foreign trial calculation examples by integration method were surveyed. However, there were not many study examples, and the calculation basis of input energy was also ambiguous. The calculation result by input-output analysis in Japan gave the value more than that by integration method, pointing out that indirect input energy is essential. (2) On the evaluation technique of the degree of environmental contribution, CO2 emission of the PV generation system installed on ordinary housing roofs was calculated to estimate reduction of CO2 emission and cost. As a result, PV power generation as reduction measures against CO2 brought a little cost increase. (3) On the latent scale of PV power generation, it was estimated to be nearly 191GW although under no restriction. It was a considerably large value as compared with the current power generation capacity in Japan. 4 tabs.

  12. Evaluating the role of large jellyfish and forage fishes as energy pathways, and their interplay with fisheries, in the Northern Humboldt Current System

    Science.gov (United States)

    Chiaverano, Luciano M.; Robinson, Kelly L.; Tam, Jorge; Ruzicka, James J.; Quiñones, Javier; Aleksa, Katrina T.; Hernandez, Frank J.; Brodeur, Richard D.; Leaf, Robert; Uye, Shin-ichi; Decker, Mary Beth; Acha, Marcelo; Mianzan, Hermes W.; Graham, William M.

    2018-05-01

    Large jellyfish are important consumers of plankton, fish eggs and fish larvae in heavily fished ecosystems worldwide; yet they are seldom included in fisheries production models. Here we developed a trophic network model with 41 functional groups using ECOPATH re-expressed in a donor-driven, end-to-end format to directly evaluate the efficiency of large jellyfish and forage fish at transferring energy to higher trophic levels, as well as the ecosystem-wide effects of varying jellyfish and forage fish consumption rates and fishing rates, in the Northern Humboldt Current system (NHCS) off of Peru. Large jellyfish were an energy-loss pathway for high trophic-level consumers, while forage fish channelized the production of lower trophic levels directly into production of top-level consumers. A simulated jellyfish bloom resulted in a decline in productivity of all functional groups, including forage fish (12%), with the exception of sea turtles. A modeled increase in forage fish consumption rate by 50% resulted in a decrease in large jellyfish productivity (29%). A simulated increase of 40% in forage fish harvest enhanced jellyfish productivity (24%), while closure of all fisheries caused a decline in large jellyfish productivity (26%) and productivity increases in upper level consumers. These outcomes not only suggest that jellyfish blooms and fisheries have important effects on the structure of the NHCS, but they also support the hypothesis that forage fishing provides a competitive release for large jellyfish. We recommend including jellyfish as a functional group in future ecosystem modeling efforts, including ecosystem-based approaches to fishery management of coastal ecosystems worldwide.

  13. Energy Systems and Population Health

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy

  14. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  15. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  16. Evaluation of European energy behavioural change programmes

    Energy Technology Data Exchange (ETDEWEB)

    Gynther, L.; Mikkonen, I. [Motiva Oy, Urho Kekkosenkatu 4-6 A, 00100 Helsinki (Finland); Smits, A. [NL Agency, Swentiboldstraat 21, 6137 AE Sittard (Netherlands)

    2012-01-15

    This article is based on the findings of the BEHAVE Project (Evaluation of Energy Behavioural Change Programmes) which was supported by the European Commission under the EU Intelligent Energy-Europe (IEE) Programme. The project started with a review of behavioural theories and their applicability in the development and evaluation of energy-related behavioural change programmes, progressed to a case study analysis and finished with a publication of guidelines for programme developers and policy makers. This paper concentrates on the results of the case study analysis and the recommendations arising from it. In the case study analysis, information was collected on almost 100 cases aiming at behavioural change in energy use from 11 European countries. More detailed information was collected on 41 cases which were subject to meta-analysis to identify success factors and weak points and to gather information on the current evaluation practices in such programmes. The meta-analysis was carried out in five phases: context (pre-planning), planning, implementation, monitoring and evaluation. Planning and evaluation were recognised as two of the most critical phases. Many of the programmes operated with quite formal plans but were typically not based on scientific theories or evidence. In many cases, there was lack of market segmentation; the goals were not targeted and the programmes tried to offer 'everything to everybody'. A multitude of ex-post evaluation methods for programme impacts were reported ranging from participant surveys, testing and comparison with control groups to top-down method evaluating the impact of several programmes focusing on the same target group. Process evaluation (25 cases) was slightly less common than impact evaluation (29 cases). Evaluation of the cost-effectiveness of the programmes was a rarity, most likely due to difficulties in quantitative impact evaluation.

  17. Agent based energy management systems

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, Martin

    2012-07-01

    In liberalized, regulated energy markets, the different participants - namely producers and consumers of energy, transmission and distribution system operators as well as regulatory authorities - have partly divergent and partly convergent interests. Loads, power plants and grid operators try to maximize their own benefit in this highly complex environment accepting to act detrimentally to others. Although the relationship between the participants is mostly competitive, there are some fundamental shared interests, e.g. voltage stability, a constant system frequency or efficient energy production, transmission and distribution, which are endangered e.g. by increased injection of volatile sources in low and medium voltage grids, displacement of stabilizing bulk generation and the slowly progressing extension of the electric grid. There is a global consensus, that the resulting challenges can efficiently be faced using information and communication technologies to coordinate grid utilization and operation. The basic idea is to benefit from unused reserves by participating in deployment of system services e.g. reactive power supply to keep the voltage within certain bounds. The coordination can best be done by the grid operator. All activities of that kind are summarized under the umbrella term ''Smart Grid''. To simultaneously model the behavior and interests of different types of market participants and their convergent and divergent interests, multi-agent systems are used. They offer a perfectly fitting framework for this sort of game theory and can easily be adapted to all kinds of new challenges of electricity markets. In this work, multi-agent systems are used to either cooperatively or competitively solve problems in distribution and transmission systems. Therefore, conventional algorithms have to be modified to converge into multiple local optima using only small pieces of the entire system information. It is clearly stated, that personal

  18. Environmental performance evaluation of Beijing's energy use planning

    International Nuclear Information System (INIS)

    Wang Lei; Xu Linyu; Song Huimin

    2011-01-01

    In line with rapid economic development, urban energy consumption is increasing rapidly, resulting in environmental problems. After considering several methods to evaluate the environmental performance of energy use, including: energy ecological footprint, input-output analysis, emergy-exergy analysis, and multi-criteria decision-making, an environmental performance evaluation model is proposed, which combines the analytical hierarchy process, fuzzy extent analysis, and membership degree analysis. In the model, 18 sub-indicators of environmental performance from energy use planning are classified into four categories: structure of energy use and industry, technology and efficiency of energy use, environmental impacts caused by energy use, and the socio-economic benefits of energy use. Membership degree analysis is applied to each indicator. Three energy use scenarios which are, respectively, environment-friendly, technology-led, and economic policy-led are evaluated. The results show that the technology-led energy use planning is best. The sustainable energy use policies are proposed from three aspects, including optimizing the energy use and industrial structure, encouraging development of energy-saving and air pollution control technologies, and enhancing legislation on energy use management. The policies are helpful to optimize the trade-offs between economic growth and environmental protection in Beijing. - Highlights: → Our paper establishes a system of indicators according to the structure of urban energy use planning. → We have created a comprehensive environmental performance evaluation model in the research. → The model and results can serve as an important basis for decision-making to guide local government.

  19. Solar-energy-system performance evaluation: Northview Elementary School (Howard's Grove) Howard's Grove, Wisconsin, September 1978-April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shenfish, K.L.

    1979-01-01

    The Northview Elementary School in Howard's Grove, Wisconsin is provided space heating by a system consisting of an array of flat plate air collectors and a rock bed. Auxiliary heat is supplied by a fuel oil boiler. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

  20. Analysis and evaluation of the applicability of green energy technology

    Science.gov (United States)

    Xu, Z. J.; Song, Y. K.

    2017-11-01

    With the seriousness of environmental issues and the shortage of resources, the applicability of green energy technology has been paid more and more attention by scholars in different fields. However, the current researches are often single in perspective and simple in method. According to the Theory of Applicable Technology, this paper analyzes and defines the green energy technology and its applicability from the all-around perspectives of symbiosis of economy, society, environment and science & technology etc., and correspondingly constructs the evaluation index system. The paper further applies the Fuzzy Comprehensive Evaluation to the evaluation of its applicability, discusses in depth the evaluation models and methods, and explains in detail with an example. The author holds that the applicability of green energy technology involves many aspects of economy, society, environment and science & technology and can be evaluated comprehensively by an index system composed of a number of independent indexes. The evaluation is multi-object, multi-factor, multi-level and fuzzy comprehensive, which is undoubtedly correct, effective and feasible by the Fuzzy Comprehensive Evaluation. It is of vital theoretical and practical significance to understand and evaluate comprehensively the applicability of green energy technology for the rational development and utilization of green energy technology and for the better promotion of sustainable development of human and nature.

  1. Energy retrofit of an office building by substitution of the generation system: performance evaluation via dynamic simulation versus current technical standards

    International Nuclear Information System (INIS)

    Testi, D; Schito, E; Grassi, W; Menchetti, E

    2014-01-01

    Constructions built in Italy before 1945 (about 30% of the total built stock) feature low energy efficiency. Retrofit actions in this field can lead to valuable energetic and economic savings. In this work, we ran a dynamic simulation of a historical building of the University of Pisa during the heating season. We firstly evaluated the energy requirements of the building and the performance of the existing natural gas boiler, validated with past billings of natural gas. We also verified the energetic savings obtainable by the substitution of the boiler with an air-to-water electrically-driven modulating heat pump, simulated through a cycle-based model, evaluating the main economic metrics. The cycle-based model of the heat pump, validated with manufacturers' data available only at specified temperature and load conditions, can provide more accurate results than the simplified models adopted by current technical standards, thus increasing the effectiveness of energy audits

  2. Economic evaluation of innovative storage technologies in energy systems with a high share of renewable energies; Oekonomische Bewertung von innovativen Speichertechnologien in Energiesystemen mit einem hohen Anteil erneuerbarer Energien

    Energy Technology Data Exchange (ETDEWEB)

    Kondziella, Hendrik

    2017-04-13

    This work addresses the question of whether the ongoing transformation to a low-carbon energy system in Germany will also create market opportunities for innovative market participants, in particular for storage operators. The economic effects that occur in energy systems with high levels of variable renewable energy (vEE) can be measured by their integration costs. Scientific research into the additional storage and flexibility needs of such an energy system often addresses imbalances in the system balance sheet. The respective methods are, however, based on different assumptions and framework conditions, so that the results can only be compared with one another to a limited extent. The hourly fluctuating wholesale price on the electricity exchange is an important indicator to signal the need for flexibility. Many analyzes use historical or predicted pricing time series to evaluate storage options. However, while the feedback of the operation of an energy storage on the market prices is left out. Therefore, a method is developed in this work to estimate the impact of an increasing market volume of storage and other flexibility options on spot market prices. The influence of storage use on electricity demand and spot market prices in 2020 and 2030 is examined. The scenarios to be defined for the electricity market are model-based and evaluated. To answer the question, techno-economic models, e.g. The MICOES power market model for power plant deployment planning, the DeSiflex model for smoothing residual load through integrated flexibility options and the Arturflex model for estimating arbitrage gains through the use of flexibility options on the spot market. [German] Diese Arbeit geht der Frage nach, ob sich durch die stattfindende Transformation zu einem kohlenstoffarmen Energiesystem in Deutschland auch Marktchancen fuer innovative Marktteilnehmer, insbesondere fuer Speicherbetreiber, herausbilden. Die oekonomischen Effekte, die in Energiesystemen mit hohen

  3. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  4. A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece

    Directory of Open Access Journals (Sweden)

    Konstantinos Ioannou

    2018-02-01

    Full Text Available Renewable Energy Sources are expected to play a very important role in energy production in the following years. They constitute an energy production methodology which, if properly enabled, can ensure energy sufficiency as well as the protection of the environment. Energy production from biomass in particular is a very common method, which exploits a variety of resources (wood and wood waste, agricultural crops and their by-products after cultivation, animal wastes, Municipal Solid Waste (MSW and food processing wastes for the production of energy. This paper presents a Spatial Decision Support System, which enables managers to locate the most suitable areas for biomass power plant installation. For doing this, fuzzy logic and fuzzy membership functions are used for the creation of criteria layers and suitability maps. In this paper, we use a Multicriteria Decision Analysis methodology (Analytical Hierarchy Process combined with fuzzy system elements for the determination of the weight coefficients of the participating criteria. Then, based on the combination of fuzzy logic and theAnalytic Hierarchy Process (AHP, a final proposal is created thatdivides the area into four categories regarding their suitability forsupporting a biomass energy production power plant. For the two optimal locations, the biomass is also calculated.The framework is applied to theRegional Unit of Drama, which is situated in Northern Greece and is very well known for the area’s forest and agricultural production.

  5. Design and simulation of a fuel cell hybrid emergency power system for a more electric aircraft: Evaluation of energy management schemes

    Science.gov (United States)

    Njoya Motapon, Souleman

    As the aircraft industries are moving toward more electric aircraft (MEA), the electrical peak load seen by the main and emergency generators becomes higher than in conventional aircraft. Consequently, there is a major concern regarding the aircraft emergency system, which consists of a ram air turbine (RAT) or air driven generator (ADG), to fulfill the load demand during critical situations; particularly at low aircraft speed where the output power is very low. A potential solution under study by most aircraft manufacturers is to replace the air turbine by a fuel cell hybrid system, consisting of fuel cell combined with other high power density sources such as supercapacitors or lithium-ion batteries. To ensure the fuel cell hybrid system will be able to meet the load demand, it must be properly designed and an effective energy management strategy must be tested with real situations load profile. This work aims at designing a fuel cell emergency power system of a more electric aircraft and comparing different energy management schemes (EMS); with the goal to ensure the load demand is fully satisfied within the constraints of each energy source. The fuel cell hybrid system considered in this study consists of fuel cell, lithium-ion batteries and supercapacitors, along with associated DC-DC and DC-AC converters. The energy management schemes addressed are state-of-the-art, most commonly used energy management techniques in fuel cell vehicle applications and include: the state machine control strategy, the rule based fuzzy logic strategy, the classical PI control strategy, the frequency decoupling/fuzzy logic control strategy and the equivalent consumption minimization strategy (ECMS). Moreover, a new optimal scheme based on maximizing the instantaneous energy of batteries/supercapacitors, to improve the fuel economy is proposed. An off-line optimization based scheme is also developed to ascertain the validity of the proposed strategy in terms of fuel consumption

  6. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  7. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  8. Total energy system in the future

    International Nuclear Information System (INIS)

    Hijikata, K.

    1994-01-01

    The possibility of improving the thermal efficiency of energy systems from an exergy point of view is discussed. In total energy systems, we should employ multi-pass recycling consisting of thermal and chemical energies. The recycling system is supported by electrical energy, which is provided by a renewable energy source or by excess commercial electric power. This total energy system should be considered not only in one country, but all around the globe. (author). 6 figs., 4 tabs., 8 refs

  9. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya, E-mail: suyama.kenya@jaea.go.jp [Office of International Relations, Nuclear Safety Division, Ministry of Education, Culture, Sports, Science and Technology - Japan, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); Murazaki, Minoru; Ohkubo, Kiyoshi [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nakahara, Yoshinori [Research Group for Analytical Science, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Uchiyama, Gunzo [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan)

    2011-05-15

    Highlights: > The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. > These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. > These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  10. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  11. Evaluation of electrical energy production patterns

    International Nuclear Information System (INIS)

    Conti, F.; Graziani, G.; Zanantoni, C.

    1975-06-01

    The main features and typical applications of the code TOTEM, developed by the CCR under request of DG XVII are described. The code is used to evaluate the physical and economical consequences of electrical power station installation policies. The input data are: the time-dependent electrical energy demand and its load duration curve, the physical and economical characteristics of the power stations, and the splitting of the energy between the various types of stations, apart from the energy produced by a plutonium burner and plutonium producer, which is calculated by the code. The output includes; costs, fuel consumption, separative work requirements

  12. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  13. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  14. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    This chapter introduces Energy System Analysis methodologies and tools, which can be used for identifying the best application of different Fuel Cell (FC) technologies to different regional or national energy systems. The main point is that the benefits of using FC technologies indeed depend...... on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... technologies are very often connected to the use of hydrogen, which has to be provided e.g. from electrolysers. Decentralised and distributed generation has the possibility of improving the overall energy efficiency and flexibility of energy systems. Therefore, energy system analysis tools and methodologies...

  15. The Island Smart Energy System and Market

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    developing island smart energy systems with the integration of renewable energy resources can increase the energy supply and address the global island energy issues. The island smart energy system operates either in a single-island or in multi-islands. However the island characteristics and influ...

  16. Energy Systems Group. Annual Progress Report 1984

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Larsen, Hans Hvidtfeldt; Villadsen, B.

    The report describes the work of the Energy Systems Group at Risø National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff...

  17. Energy Systems Group annual progress report 1984

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Villadsen, B.

    1985-02-01

    The report describes the work of the Energy Systems Group at Risoe National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff members. (author)

  18. Integrating renewables into energy systems

    International Nuclear Information System (INIS)

    1999-03-01

    An analysis of renewable energy schemes was undertaken via case studies in China, India, Indonesia, Kenya, South Africa, Thailand and Zimbabwe, that provided an insight into the application of best practice for overcoming market, technical and financial barriers to the establishment of the sustainable markets required for the large-scale deployment of renewable energy technologies. The project showed clearly the need to select and target interventions according to the context. Lessons were extracted against a number of themes, as well as against the various technologies analysed and simple guides to the principles of best practice were derived under the following headings:- experience of gaining access to (micro) finance; the technical and non-technical issues raised when small, typically independent, generators seek access to central electricity grid systems; how to best undertake awareness raising and dissemination activities; promoting, building and operating biogas systems; promoting, building and operating solar (photovoltaic) home systems; promoting, building and operating grid connected wind power; promoting, building and operating solar hot water systems; promoting agricultural cogeneration using crop residues. (author)

  19. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    Science.gov (United States)

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Program evaluation and review system for the Division of Energy Storage Systems. Progress report, January 1, 1978--March 31, 1978. [SPERS

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, B L

    1978-04-01

    The detail design for SPERS has been completed with the exception of STORS user inputs to that design. Programming activities for the system have been started but the project is now some three weeks behind schedule in this respect. Details of the in-process review held in February are included in an appendix. The first report on this program is COO/4454-1 and appears in ERA Vol. 3 Abstract No. 29976.

  1. Integrated energy optimization with smart home energy management systems

    NARCIS (Netherlands)

    Asare-Bediako, B.; Ribeiro, P.F.; Kling, W.L.

    2012-01-01

    Optimization of energy use is a vital concept in providing solutions to many of the energy challenges in our world today. Large chemical, mechanical, pneumatic, hydraulic, and electrical systems require energy efficiency as one of the important aspects of operating systems. At the micro-scale, the

  2. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive...... penetration of renewable, fossil-free energy sources such as solar and wind power. To facilitate such intermittent power producers, we must not only control the production of electricity, but also the consumption, in an ecient and exible manner. By enabling the use of thermal energy storage in supermarkets...... of temperature dependent efficiencies in the refrigeration cycle. -Nonlinear economic MPC with uncertain predictions and the implementation of very simple predictors that use entirely historical data of, e.g., electricity prices and outdoor temperatures. Economic MPC for wind turbines, including -Optimal steady...

  3. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  4. A comparative study on the modeling of a latent heat energy storage system and evaluating its thermal performance in a greenhouse

    Science.gov (United States)

    Mirahmad, A.; Sadrameli, S. M.

    2018-03-01

    Thermal Energy Storage (TES) systems can be compared with batteries. As batteries can be charged when electricity is available for using during the power failure, TES systems can do the same for the thermal energy, i.e., they can absorb the available heat in one cycle, called charge cycle, and release it in a consecutive cycle, called discharge cycle. Among different kinds of TES systems, Phase Change Materials (PCM) have drawn considerable attention, since by changing from one phase to another, they can exchange a significant amount of energy in a small temperature difference. In this quest, a one dimensional mathematical model is solved using two different techniques and the results are compared together; one method is based on the enthalpy and the other is based on the effective heat capacity as well. Secondly, through eight experiments designed by using factorial approach, effects of inlet air velocity and temperature on the outlet stream has been investigated. The results proved that having a determined temperature difference between the inlet air and the PCM in both hot and cold cycles can enhance the efficiency. Finally, the feasible applications of a LHTES system for reducing the temperature swing in a greenhouse is studied numerically and the results are compared with experimental values. As a result, by using this passive coolant system diurnal internal temperature can be reduced for 10 °C.

  5. Evaluation of AECB-1119, risk of energy production

    International Nuclear Information System (INIS)

    1978-01-01

    The Inhaber report, 'Risk of Energy Production', is evaluated based on how the conclusions of the report match its objectives, the methodology used to reach the report's conclusions, and the presentation of the report. The authors recommend that a second volume containing the pertinent data used in the report should be published; and that total risks should be calculated ignoring material acquisition, construction and transportation risks, using the actual energy output of the various systems without imposing a backup energy supply, and comparing systems in such a way that death, injury and disease risks may be considered separately. They propose that the Atomic Energy Control Board should show how the report results relate to nuclear safety, and that the AECB should clarify the criteria for evaluating the small probability of a catastrophic nuclear accident. The response of the author of AECB--1119 is given in a separate section

  6. Energy Storage System for a Pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Maisonnier, D.; Hayward, J.

    2006-01-01

    Several designs have been proposed for DEMO, some of which will operate in pulsed mode. Since a fusion power plant will be required to deliver continuous output, this challenge must be solved. For the reference DEMO, energy storage is required at a level of 250 MWhe with a capability of delivering a power of 1 GWe. Although DEMO is scheduled to be built in about 30 years, the design of the energy storage system must be based on current technology, focusing on commercially available products and on their expected future trends. From a thorough review of the different technologies available, thermal energy storage, compressed air energy storage, water pumping, fuel cells, batteries, flywheels and ultracapacitors are the most promising solutions to energy storage for a pulsed DEMO. An outline of each of these technologies is described in the paper, showing its basis, features, advantages and disadvantages for this application. Following this review, the most suitable methods capable of storing the required energy are examined. Fuel cells are not suitable due to the power requirement. Compressed air energy storage has a lower efficiency than the required one. Thermal energy storage, based on molten salts, so more energy can be stored with a better efficiency, and water pumping are shown as the main solutions, based on existing technology. However, those are not the only solutions capable of solving our challenge. Hydrogen production, using water electrolysis, hydrogen storage and combustion in a combined cycle can achieve our energy and power requirements with an acceptable efficiency. All these solutions are studied in detail and described, evaluating their current cost and efficiency in order to compare them all. (author)

  7. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    by-products, especially drinking water, aquaculture and mariculture, can easily translate into billions of dollars in business opportunities. The current status of the OTEC system definitely deserves to be carefully revisited. This paper will examine recent major advancements in technology, evaluate costs and effectiveness, and assess the overall market environment of the OTEC system and describe its great renewable energy potential and overall benefits to the nations of the world

  8. Evaluation of energy efficiency opportunities of a typical Moroccan cement plant: Part I. Energy analysis

    International Nuclear Information System (INIS)

    Fellaou, S.; Bounahmidi, T.

    2017-01-01

    Highlights: • We have analyzed the degree of freedom of the overall system. • We validated the redundant measurements by the Lagrange multipliers technique. • We have analyzed the mass and the energy balances by two approaches. • We identified the factors that penalize the energetic performance of the whole plant. • We assessed options to improve energy efficiency of the entire cement plant. - Abstract: The cement industry is one of Morocco’s most highly energy intensive economic sectors. It suffers from abnormally high cost of energy supplies, representing more than two thirds of the cost of cement; the first item of expenditure is electricity and fuel with 40% and 30% respectively. Herefor, much more effort is needed to make the cement sector reach energy saving targets set by the Moroccan energy efficiency strategy. The present work aims to evaluate energy performance of an existing Moroccan cement plant based on a detailed mass and energy balances analysis. Redundant measurements were validated by the Lagrange multipliers technique before being used for the calculation of unmeasured variables. The values for energy consumption and related losses through the whole production line are reported, and the results obtained have been used to assess the energy performance of the process. The evaluation was completed by both an analysis of possible energy loss sources and important solutions described in the international literature to improve the energy efficiency of the entire cement plant.

  9. Renewable energy in energy efficient, low-pollution systems

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1997-03-01

    Energy use accounts for the dominating fraction of total sulphur dioxide (SO{sub 2}), nitrogen oxide (NO{sub x}), volatile organic compounds (VOCs) and carbon dioxide (CO{sub 2}) emissions. In this thesis, different strategies for reducing these emissions are evaluated, using a bottom-up approach. CO{sub 2} emissions from electricity and heat production in western Scania, Sweden, can be reduced by 25% and the emissions of acidifying gases (SO{sub 2} and NO{sub x}) by 50% by the year 2010, compared with 1988 levels, using energy systems based on efficient end-use technologies, cogeneration of heat and electricity, renewable energy sources and low-pollution energy conversion technologies. Exhaust-pipe NO{sub x} emissions from the Swedish transportation sector can be reduced by 50 percent by the year 2015, compared with 1991, by implementing the best available vehicle technologies. Exhaust-pipe emissions of CO{sub 2} can be stabilized at the 1991 level. With further technical development and the use of fuels from renewable sources of energy, NO{sub x} emissions can be reduced by 75 percent and CO{sub 2} emissions by 80 percent compared with 1991 levels. Swedish biomass resources are large, and, assuming production conditions around 2015, about 200 TWh/year could be utilised for energy. Major reductions in CO{sub 2} emissions could be achieved by substituting biomass for fossil fuels in heat, electricity and transportation fuel production. Transportation fuels produced from cellulosic biomass are likely to be less expensive than transportation fuels from conventional biomass feedstocks such as oil plants, sugar-beet and cereals. 90 refs, 3 figs, 5 tabs

  10. Loss energy states of nonstationary quantum systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1978-01-01

    The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed

  11. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  12. THE EVALUATION OF THE SOLAR ORIENTED ENERGY EFFECTIVE BUILDING DESIGN UNDER THE MEDITERRANEAN CLIMATE CONDITIONS IN TERMS OF WATER HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Gizem TETİK

    2014-01-01

    Full Text Available Within the acknowledging of the fact that the half of the resources of the earth is being utilized for construction purposes; in this dissertation, which aims to lower this rate for our country by raising the awareness of the society, it is asserted that the utilization of the solar energy, unlike the common belief, should be considered as a passive manner during the design phase, before utilizing it in an active manner and the types of utilization, in which the solar energy can be benefitted at its full, is further demonstrated. Within this context, the analyses of the solar energy systems were conducted, the variables according to the climate and building types were discussed and the current suggestions for the improvement were presented along with the relevant literature reviews and case studies.

  13. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee

    2016-03-01

    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  14. Engineered Geothermal Systems Energy Return On Energy Investment

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A J

    2012-12-10

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use efficiency when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the minimum EROI an energy production system should have to be an asset rather than a liability.

  15. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  16. Stochastic Modelling of Energy Systems

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae

    2001-01-01

    is that the model structure has to be adequate for practical applications, such as system simulation, fault detection and diagnosis, and design of control strategies. This also reflects on the methods used for identification of the component models. The main result from this research is the identification......In this thesis dynamic models of typical components in Danish heating systems are considered. Emphasis is made on describing and evaluating mathematical methods for identification of such models, and on presentation of component models for practical applications. The thesis consists of seven...... research papers (case studies) together with a summary report. Each case study takes it's starting point in typical heating system components and both, the applied mathematical modelling methods and the application aspects, are considered. The summary report gives an introduction to the scope...

  17. Blockchain-Assisted Crowdsourced Energy Systems

    OpenAIRE

    Wang, Shen; Taha, Ahmad; Wang, Jianhui

    2018-01-01

    Crowdsourcing relies on people's contributions to meet product- or system-level objectives. Crowdsourcing-based methods have been implemented in various cyber-physical systems and realtime markets. This paper explores a framework for Crowdsourced Energy Systems (CES), where small-scale energy generation or energy trading is crowdsourced from distributed energy resources, electric vehicles, and shapable loads. The merits/pillars of energy crowdsourcing are discussed. Then, an operational model...

  18. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  19. A Sustainable Energy System in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2002-01-01

    This paper presents some of the problems in the Latvian energy system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems....

  20. Systems approach in energy management

    International Nuclear Information System (INIS)

    Dutta-Choudhury, K.

    1993-01-01

    Several years ago when the author was working in the chemicals division of a paper company in Instrumentation and Controls, one experience had a lasting impact on his work approach which is systems approach. The maintenance manager told the author that a very important piece of boiler instrument of the power plant had broken down and delivery of the replacement needed to be expedited. The instrument was ordered over the phone in another city. The purchase order was personally delivered at the supplier's office and arrangements were made so the instrument was put on the next flight. A week later the maintenance manager indicated that the particular instrument still had not arrived in the plant and he could not run the power plant. Thus the company incurred substantial losses. Further inquiries showed that the instrument did indeed arrive at the plant stores on time. But, in the absence of any instructions thereon, the instrument was not delivered to the power plant. The sense of urgency was lost in the existing delivery process. In other words, the process or system failed. The whole process from requisitioning to delivery of ordered items was analyzed and corrective procedures were incorporated to prevent future repetitions. This brings up the subject of systems approach in engineering management in general and energy management in particular. This involves defining an objective and designing a system for an effective way of getting there

  1. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    simulation results the utility of SMES in voltage sag mitigation for momentary interruptions. The 1MJ SMES mitigates voltage sags for a useful duration ~50 seconds. In conclusion (Chapter 7), we believe that in this dissertation, we have documented the design of SMES for both momentary and sustained interruptions in wind turbines. We have put forth some novel and relevant hypotheses, developed and performed suitable simulation studies to validate these hypotheses. By doing so, we have been able to expand our knowledge in our quest to grasp the underlying mechanisms of storage systems in wind energy integration. Although the resulting analysis has allowed us to gain valuable insight, we feel that it is only the tip of the iceberg, and that many yet unknown discoveries are to be made. We remain hopeful that the future of SMES for wind energy will only look brighter from here onward. (Abstract shortened by UMI.).

  2. Renewable energy systems in Mexico: Installation of a hybrid system

    Science.gov (United States)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  3. Fuzzy comprehensive evaluation of district heating systems

    International Nuclear Information System (INIS)

    Wei Bing; Wang Songling; Li Li

    2010-01-01

    Selecting the optimal type of district heating (DH) system is of great importance because different heating systems have different levels of efficiency, which will impact the system economics, environment and energy use. In this study, seven DH systems were analysed and evaluated by the fuzzy comprehensive evaluation method. The dimensionless number-goodness was introduced into the calculation, the economics, environment and energy technology factors were considered synthetically, and the final goodness values were obtained. The results show that if only one of the economics, environment or energy technology factors are considered, different heating systems have different goodness values. When all three factors were taken into account, the final ranking of goodness values was: combined heating and power>gas-fired boiler>water-source heat pump>coal-fired boiler>ground-source heat pump>solar-energy heat pump>oil-fired boiler. The combined heating and power system is the best choice from all seven systems; the gas-fired boiler system is the best of the three boiler systems for heating purpose; and the water-source heat pump is the best of the three heat pump systems for heating and cooling.

  4. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  5. Evaluating photovoltaic/energy storage/diesel hybrid power systems for remote area power supplies in the Amazon region of Peru

    International Nuclear Information System (INIS)

    Hurwitch, J.W.; Danley, D.R.

    1998-01-01

    In June 1997, an international memorandum of understanding was signed between the Ministry of Energy and Mines (MEM) in Peru, the Solar Energy Industries Association (SEIA) and the International Lead Zinc Research Organization (ILZRO). This agreement seeks to evaluate the potential for remote area power supplies (RAPS) for electrification of rural villages in the Amazon region. This study, funded by ILZRO, was the first major activity conducted under the aegis of this agreement. The objective of this study was to conduct a preliminary engineering design and feasibility study to assess the potential for Remote Area Power Supplies (RAPS) in the Amazon Region of Peru. This paper presents the results of this preliminary engineering study. (author)

  6. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  7. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy...... system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...

  8. Reliability planning in distributed electric energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.

    1978-10-01

    The goal of this paper is to develop tools for technology evaluation that address questions involving the economics of large-scale systems. The kind of cost discussed usually involves some dynamic aspect of the energy system. In particular, such properties as flexibility, stability, and resilience are features of entire systems. Special attention must be paid to the question of reliability, i.e., availability on demand. The storage problem and the planning for reliability in utility systems are the subjects of this paper. The introductory chapter addresses preliminary definitions--reliability planning, uncertainty, resilience, and other sensitivities. The study focuses on the contrast between conventional power generation technologies with controllable output and intermittent resources such as wind and solar electric conversion devices. The system studied is a stylized representation of California conditions. Significant differences were found in reliability planning requirements (and therefore costs) for systems dominated by central station plants as opposed to those dominated by intermittent resource technologies. It is argued that existing hydroelectric facilities need re-optimization. These plants provide the only currently existing bulk power storage in electric energy systems. 38 references. (MCW)

  9. Energy Education Incentives: Evaluating the Impact of Consumer Energy Kits

    Science.gov (United States)

    Kirby, Sarah D.; Guin, Autumn; Langham, Laura

    2015-01-01

    Measuring the energy and environmental impact of residential energy education efforts is difficult. The E-Conservation residential energy management program uses consumer energy kits to document the impact of energy-efficient improvements. The consumer energy kit provides an incentive for individuals attending energy education workshop, helps…

  10. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  11. Pervious Pavement System Evaluation

    Science.gov (United States)

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, grade...

  12. Federal Tax Incentives for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Settle, Donald E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-16

    Investments in renewable energy are more attractive due to the contribution of two key federal tax incentives. The investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction may apply to energy storage systems such as batteries depending on who owns the battery and how the battery is used. The guidelines in this fact sheet apply to energy storage systems installed at the same time as the renewable energy system.

  13. Career Directions--Renewable Energy Systems Integrator

    Science.gov (United States)

    Fleeman, Stephen R.

    2012-01-01

    Renewable energy systems are beginning to appear everywhere. Solar modules are creating "blue roofs" that convert the energy from the sun into household electricity. Solar thermal systems on roofs can generate hot water. Wind turbines catch breezes to provide even more electricity. Recommendations for saving energy, specifying systems for…

  14. An enterprise energy-information system

    Energy Technology Data Exchange (ETDEWEB)

    Swords, B.; Coyle, E. [School of Control Systems and Electrical Engineering, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); Norton, B. [President, Dublin Institute of Technology, Aungier St., Dublin 2 (Ireland)

    2008-01-15

    This paper outlines the background, development, and assessment of a prototype enterprise energy information system (EEIS) that supports strategic energy-management by providing comprehensive energy monitoring and targeting, integrating with energy modelling software and enterprise business databases, and supporting measurement and verification (M and V). The EEIS prototype system was developed and assessed in an industrial site and a third-level education institution with colleges throughout Dublin. The industrial site provided the opportunity for the EEIS to meet the requirements of a large energy intensive site, and to integrate with energy modelling software. The higher education establishment accommodated the development of a networked energy-information system. (author)

  15. Renewable energy delivery systems and methods

    Science.gov (United States)

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  16. Measuring and evaluating the soft energy efficiency measures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suvilehto, H.-M.; Solid, D. [AaF-Industry Ltd, Solna (Sweden); Rouhiainen, V. [Adato Energia Ltd, Helsinki (Finland); Honkasalo, N.; Sarvaranta, A. [AaF-Consult Ltd, Solna (Sweden)

    2012-07-15

    ;soft' measures that aim to achieve behavioural change have not so far been covered by these methods. The recent year's research from Great Britain and Ireland has managed to identify statistically significant results from measures very similar for those carried out by the Finnish energy utilities. In this study, a number of domestic and international empirical studies and evaluations have been assessed, reviewed and used as a basis for suggesting a way to quantify the energy savings that are obtained with the 'soft' measures in Finland. The chosen method to evaluate the impacts of 'soft' measures is based on the available national data, the literature study and the general information available today on the proposed EU Directive on Energy Efficiency. According to our findings, reliable numeric data of the energy saving effects of the 'soft' measures on energy demand in Finland does not exist. Therefore, the evaluation based on saving percentages established in international studies is suggested to be regarded as a first step towards when developing system.

  17. Evaluating Maximum Wind Energy Exploitation in Active Distribution Networks

    DEFF Research Database (Denmark)

    Siano, Pierluigi; Chen, Peiyuan; Chen, Zhe

    2010-01-01

    The increased spreading of distributed and renewable generation requires moving towards active management of distribution networks. In this paper, in order to evaluate maximum wind energy exploitation in active distribution networks, a method based on a multi-period optimal power flow (OPF......) analysis is proposed. Active network management schemes such as coordinated voltage control, energy curtailment and power factor control are integrated in the method in order to investigate their impacts on the maximization of wind energy exploitation. Some case studies, using real data from a Danish...... distribution system, confirmed the effectiveness of the proposed method in evaluating the optimal applications of active management schemes to increase wind energy harvesting without costly network reinforcement for the connection of wind generation....

  18. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  19. Potential of renewable energy systems in China

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad; Zhang, Xiliang

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO 2 emitting country in the world. In this case, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously. In this process, assessment of domestic renewable energy sources is the first step. Then appropriate methodologies are needed to perform energy system analyses involving the integration of more sustainable strategies. Denmark may serve as an example of how sustainable strategies can be implemented. The Danish system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy system. The conclusion is that China's domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system in China is not unreasonable. (author)

  20. Evaluation Systems, Ethics, and Development Evaluation

    Science.gov (United States)

    Thomas, Vinod

    2010-01-01

    After some 65 years of international development assistance, it is still difficult to show the effectiveness of aid in ways that are fully convincing. In part, this reflects inadequacies in the evaluation systems of the bilateral, multilateral, and global organizations that provide official development aid. Underlying these weaknesses often are a…

  1. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.

    Science.gov (United States)

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2017-08-10

    Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  3. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  4. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J. M.

    1979-01-01

    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  5. Trends in Energy Management Technology - Part 3: State of Practiceof Energy Management, Control, and Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2004-02-01

    In this report, the third in a series, we provide an evaluation of several products that exemplify the current state of practice of Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the federal sector. The first report [1] covered enabling technologies for emerging energy management systems. The second report [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. Part 4 of this series will discuss applications software from a user's perspective. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of reports provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  6. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  7. TOP-Energy - toolkit for optimization of industrial energy systems; TOP-Energy - Softwaregestuetzte Analyse und Optimierung industrieller Energieversorgungssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Augenstein, E.; Kuperjans, I. [RWTH Aachen (Germany); Wrobel, G. [Gesellschaft zur Foerderung angewandter Informatik e.V. (GFal), Berlin (Germany); Gruezenich, D.

    2004-07-01

    The contribution presents the software package 'TOP-Energy' which supports energy consultants in their analysis and optimisation of industrial energy systems and is a tool for development and assessment of measures for reducing the energy cost and the consumption of energy resources. In particular, it supports data acquisition, evaluation, and presentation of results of routine work; it offers simulations of complel processes and systems as well as tools like integrated project management. TOP-Energy consists of several modules linked by a common framework. The framework is for data management, module integration and control, and offers a user interface in the form of adaptable editors, dialogues and menus. Power supply systems of industrial works can be modelled with all their components. The key module of Top-energy is a simulator for systems designed, with variable temporal load curves and other boundary conditions. (orig.)

  8. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  9. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  10. Studies on energy system for an energy-saving society; Sho energy gata shakai ni okeru energy system kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The system to which new energy technology and energy saving technology were introduced was constructed for case studies of urban areas including core cities and the peripheral areas, and the quantitative analysis was conducted on environmental effects, etc. In the energy supply system model, the following element technologies were all considered: cogeneration system, sewage water heat, river water heat, the photovoltaic power generation, energy storage/heat storage/cold heat storage, adsorption type refrigerator, etc. Also considered were power interchange between clusters, system power buying/power selling, heat interchange or no heat interchange, etc. As a result, it was found that when constructing the energy system which synthetically takes into account thermoelectric ratios, rates of simultaneous loads, ratios of daytime/nighttime in the energy supply and demand in the urban area, the energy saving effect multiplicatively increases, and the energy system using cogeneration and unused energy such as refuse and sewage in the urban area and river water brings an energy saving effect of 32% especially in the concentrated cluster. 83 figs., 45 tabs.

  11. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  12. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    dissertation presents a bottom-up highly resolved model of a generic residential energy eco-system in the United States. The model is able to capture the entire energy footprint of an individual household, to include all appliances, space conditioning systems, in-home charging of plug-in electric vehicles, and any other energy needs, viewing residential and transportation energy needs as an integrated continuum. The residential energy eco-system model is based on a novel bottom-up approach that quantifies consumer energy use behavior. The incorporation of stochastic consumer behaviors allows capturing the electricity consumption of each residential specific end-use, providing an accurate estimation of the actual amount of available controllable resources, and for a better understanding of the potential of residential demand response programs. A dynamic energy management framework is then proposed to manage electricity consumption inside each residential energy eco-system. Objective of the dynamic energy management framework is to optimize the scheduling of all the controllable appliances and in-home charging of plug-in electric vehicles to minimize cost. Such an automated energy management framework is used to simulate residential demand response programs, and evaluate their impact on the electric power infrastructure. For instance, time-varying electricity pricing might lead to synchronization of the individual residential demands, creating pronounced rebound peaks in the aggregate demand that are higher and steeper than the original demand peaks that the time-varying electricity pricing structure intended to eliminate. The modeling tools developed in this study can serve as a virtual laboratory for investigating fundamental economic and policy-related questions regarding the interplay of individual consumers with energy use. The models developed allow for evaluating the impact of different energy policies, technology adoption, and electricity price structures on the total

  13. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    only. The need for including also the economic policy in the energy planning is illustrated with what is termed the efficiency pittfall. This points towards difficulties in imaging an integrated resource planning combined with a liberalized market. The three variable parameters, population, energy...... service level and technology are demonstrated as the main determinants of future energy consumption. In the concluding remarks, the main flaws of present energy policy and some visions of the future are discussed....

  14. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  15. Identification of wind energy systems

    NARCIS (Netherlands)

    Van der Veen, G.J.

    2013-01-01

    In the next decades wind energy is expected to secure a firm share of the total energy production capacity in many countries. To increase competitiveness of wind power with other power sources it is essential to lower the cost of wind energy. Given the design of a turbine, this objective can be

  16. Energy Use in Food System

    NARCIS (Netherlands)

    Dutilh, C.; Blonk, H.; Linnemann, A.R.

    2014-01-01

    Nature generates the raw materials for food, fuelled by energy from the sun. However, before food can be consumed, (mineral) energy is required for cultivation, transportation, preparation and conservation purposes. This paper presents and discusses the energy requirements for various categories of

  17. Integrated electrofuels and renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva

    energy into chemical energy by means of electrolysers, thus connecting fluctuating renewable energy to the vast amount of fuel storage already available in today’s energy systems. The conducted research indicates that electrofuels for heavy-duty transportation are technically and economically viable...... in energy systems and could play an important role in future energy systems. The cross-sector approach in the fuel production, by redirecting the excess electricity to the transport sector, is creating the flexibility and storage buffer for fluctuating electricity. The key concern in the short term should...

  18. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  19. Role of renewable energy policies in energy dependency in Finland: System dynamics approach

    International Nuclear Information System (INIS)

    Aslani, Alireza; Helo, Petri; Naaranoja, Marja

    2014-01-01

    Highlights: • A system dynamics model for evaluating renewable energy policies on dependency is proposed. • The model considers the role of diversification on dependency and security of energy supply in Finland. • Dependency on imported sources will decrease depends on the defined scenarios in Finland. - Abstract: Objective: We discuss the role of diversification on dependency and security of energy supply. A system dynamics model with especial focus on the role of renewable energy resources (as a portfolio) on Finland’s energy dependency is developed. The purpose is also to cover a part of research gap exists in the system dynamics modeling of energy security investigations. Methods: A causal loops diagram and a system dynamics model evaluate Finnish scenarios of renewable energy policies. The analysis describes the relationship between dynamic factors such as RE encouragement packages, dependency, and energy demand. Results: A causal loops diagram and a system dynamics model evaluate three different Finnish scenarios of renewable energy policies by 2020. Conclusion: Analysis shows that despite 7% electricity/heat consumption growth by 2020 in Finland, dependency on imported sources will decrease between 1% and 7% depend on the defined scenarios. Practice Implications: The proposed model not only helps decision makers to test their scenarios related to renewable energy polices, it can be implemented by other countries

  20. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  1. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  2. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  3. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  4. Energy and Environmental Systems Division 1981 research review

    International Nuclear Information System (INIS)

    1982-04-01

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems

  5. Energy Efficiency of Distributed Environmental Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant

  6. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL January 2018 Blockchain concept demonstrated Blockchain to Enable Energy Market in BlockCypher Partnership NREL is partnering with BlockCypher, a blockchain Web services provider, to demonstrate how blockchain technology can support distributed energy markets. For some, the language and

  7. Rethinking Participation in Smart Energy System Planning

    NARCIS (Netherlands)

    Lammers, Imke; Arentsen, Maarten J.

    2017-01-01

    While the technical layout of smart energy systems is well advanced, the implementation of these systems is slowed down by the current decision-making practice regarding such energy infrastructures. We call for a reorganisation of the decision-making process on local energy planning and address the

  8. Energy efficiency analysis of reconfigured distribution system for practical loads

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2016-09-01

    Full Text Available In deregulated rate structure, the performance evaluation of distribution system for energy efficiency includes; loss minimization, improved power quality, loadability limit, reliability and availability of supply. Energy efficiency changes with the variation in loading pattern and the load behaviour. Further, the nature of load at each node is not explicitly of any one type rather their characteristics depend upon the node voltages. In most cases, load is assumed to be constant power (real and reactive. In this paper voltage dependent practical loads are represented with composite load model and the energy efficiency performance of distribution system for practical loads is evaluated in different configurations of 33-node system.

  9. The intelligent energy system for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Morthorst, Poul Erik; Bindslev, Henrik; Sonderberg Petersen, Leif

    2010-09-15

    In a future energy system non-fossil fuels have taken the lead, end-use technologies are highly efficient and closely interlinked to supply through intelligent energy systems. Climate change issues, security of supply and economic development need to be pursued concurrently. This calls for flexible and intelligent energy system infrastructures that effectively accommodate large amounts of fluctuating renewable energy and let the end-user interact with the supply through advanced ICT. The second important characteristic is intelligent integration of the entire transport sector. The third key area is advanced energy storage facilities in the system and the introduction of super-grids.

  10. Energy Systems Integration: A Convergence of Ideas

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O' Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  11. Energy Management Control Systems: Tools for Energy Savings and Environmental Protection

    Science.gov (United States)

    Zsebik, Albin; Zala, Laszlo F.

    2002-01-01

    The change in the price of energy has encouraged the increase of energy efficiency. This report will discuss a tool to promote energy efficiency in intelligent buildings, energy management control systems (EMCS). In addition to the online control of energy production, supply, and consumption, the function of the EMCS is to support short- and long-term planning of the system operation as well as to collect, store, and regularly evaluate operation data. The strategies behind planning and implementing the EMCS as well as the manipulating the resulting data are discussed in this report.

  12. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  13. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  14. Environmentally-adapted local energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Moe, N; Oefverholm, E [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  15. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  16. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  17. Social values and political realities in the energy system

    International Nuclear Information System (INIS)

    Reuter, A.L.

    2001-01-01

    Social values, which represent our visions, determine the decisions made in the energy sector more than their technical feasibility. The present energy system is based on 80 % fossil fuels. This situation will continue at least for the coming 20 years, since there are no innovations and no radical change of lifestyle to be expected within this time frame. The absolute level of energy consumption will raise. The rural - urban migration will continue. Scenarios of feasible energy developments may be characterized by fossil-, renewable and nuclear driven energy technologies. The worldwide energy resources are plentiful available and are sufficient even for a growing population. The conflicting objectives of the decision makers in the energy sector drive the energy dichotomies, the sustainability, and the effects of energy competition to an even more severe situation. System Engineering is an approach, which combines systems analysis and technology know-how and by which realistic and optimal energy solutions may be developed. Verbundplan uses System Engineering to plan and erect complex power systems, especially hydro power plants, to evaluate decisions in the energy and environmental field and to optimize investments and the operation of energy systems. (author)

  18. Introduction to wind energy systems

    Science.gov (United States)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  19. Evaluation of energy efficiency of climatization system in dairy cattle free-stall; Avaliacao da eficiencia energetica de sistemas de climatizacao em galpoes tipo 'free-stall' para confinamento de bovinos leiteiros

    Energy Technology Data Exchange (ETDEWEB)

    Perissinoto, Mauricio [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Engenharia Rural. Setor de Construcoes Rurais], Email: mperissi@esalqusp.br; Moura, Daniella Jorge de; Lima, Karla Andrea Oliveira de; Mendes, Angelica Signor [Un