WorldWideScience

Sample records for energy system development

  1. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  2. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  3. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  4. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  5. Prognostication of regional energy system development

    Directory of Open Access Journals (Sweden)

    Grigoriy Borisovich Korovin

    2011-06-01

    Full Text Available This paper analyzes practice and development of new methodological approaches to forecasting the development of regional energy systems. It is shown that the energy complex is involved in a variety of forward and backward linkages as an element of socio-economic systems, and the quality and availability of energy resources largely determines the structure and pace of economic, social and environmental development of the region. Analysis of existing current practice of territorial and sectoral forecasting implemented in Russia and abroad, suggests that such practice is inadequate in its theoretical and methodological elaboration. This is confirmed by the frequent discrepancy between actual results and plans, as well as their regular revision. The methods are mostly based on extrapolation of existing tendencies and not taking into account many factors and emerging trends related to the complexity and openness of the social and economic systems. Post-industrial level of civilization is characterized by fast development of technology; knowledge, information, technological and institutional innovation become the main resources. The greatest importance is attached to such development properties as instability, various orderliness, nonlinearity, interactions etc. Current approaches to forecasting the future are described by a number of theories that are generally called self-organization theory, taking into account these singularities. These concepts should be included in the theoretical basis for the development and implementation of regional development forecasts. Using the synergetic approach assumes that, along with organizational processes, processes of self-organization and self-development are very important in the system, they are characterized by spontaneous, unexpected formations and emerging structures. The development of such systems can generate stable and efficient new structure. The presence of crisis is an integral feature of complex

  6. Energy systems Diagnosis in developing countries

    International Nuclear Information System (INIS)

    Girod, J.

    1991-01-01

    Energy systems diagnosis is necessary to allow evaluation of energy balance by administration and political authorities of a country. First, the author describes the principle stages of energetic diagnosis. Then this work is divided into three parts: First part: Energy consumption diagnosis in several districts (families, utilities, agriculture, transport, industry) Second part: Energy supplies diagnosis (energy markets). Third part: Interactions between energy consumption and energy supply. 28 figs.; 52 tabs.; 107 refs

  7. Development of the Medium Energy Linac Systems

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Park, Bum Sik; Seol, Kyung Tae; Song, Young Gi; Yun, Sang Pil; Cho, Yong Sub; Hong, In Seok

    2008-05-01

    The main purpose of this project is developing 100-MeV proton linear accelerator (linac) for proton engineering frontier project (PEFP). In the first phase of the PEFP, the development of the 20-MeV linac has successfully finished. Hence the work scope of this project is designing the linac to accelerate proton beams from 20-MeV up to 100-MeV, fabricating the linac up to 45 MeV, fabricating one set of the medium energy beam transport (MEBT) tank, and developing the low level radio frequency (LLRF) system and the control system. The basic role of the new proton accelerator is accelerating 20-mA proton beams from 20 MeV up to 100 MeV. The first step of the design procedure is optimizing and determining the accelerator parameters. The beam loss is also main concern in the design stage. The drift tube (DT) and the quadrupole magnets are designed to be optimized to the new linac design. The other purpose is confirming the new design by fabricating and tuning the drift tube linac (DTL). The 20MeV proton beam divided into two directions. One is supplying the beams to user group by turning on the 45-degree bending magnet. The other is guided into the 100-MeV DTL by tuning off the dipole magnet. That is why the PEFP MEBT located after 20-MeV DTL. The MEBT is realized as two small DTL tanks with three cells and a 45-degree bending magnet. The fabrication of one MEBT tank is another purpose of this project. The other purposes of this project is developing the LLRF system to control the RF signal and control system to monitor and control the vacuum system, magnet power supply, etc

  8. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  9. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  10. Optimization Models and Methods Developed at the Energy Systems Institute

    OpenAIRE

    N.I. Voropai; V.I. Zorkaltsev

    2013-01-01

    The paper presents shortly some optimization models of energy system operation and expansion that have been created at the Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences. Consideration is given to the optimization models of energy development in Russia, a software package intended for analysis of power system reliability, and model of flow distribution in hydraulic systems. A general idea of the optimization methods developed at the Energy Systems Institute...

  11. Development of the low energy linac systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, H. J.; Kim, Y. H.

    2005-08-01

    The project 'Development of the Low Energy Linac System' is aiming to develop the 20 MeV proton linac system. This consists of a 50 keV proton injector, a 3 MeV RFQ, and a 20 MeV DTL. We obtained the first beam signal after the 20 MeV linac. The high power switch installed in the ion source supplies the pulsed beam into the following LEBT. The pulse operation was successfully tested. The main role of the LEBT is to match the beam into the 3 MeV RFQ. The total length of the four-vane type RFQ is about 3.26m. For the field stabilization, we used the resonant coupling scheme and dipole stabilizer rods. An 1 MW klystron supplies the RF power into the RFQ. After tuning, the field deviation of the quadrupole mode is less than 2% of the design value and the dipole fraction is less than 5% of the operating mode. The following accelerating structure is DTL which accelerate 20 mA proton beams up to 20 MeV. It consists of 4 tanks and the length of each tank is less than 5 m. The lattice is FFDD type and the integrated fields of the quadrupole magnets are 1.75 T. The inner walls of the tanks are copper-plated by PR plating method. The thickness is 100m with the roughness of 0.3m. Each drift tube consists of 6 parts and assembled by e-beam welding. The tanks and drift tubes are aligned under the installation limit of 50m by using the laser-tracker. The tuning by the slug tuners and post couplers results in the field uniformity of 2% and field sensitivity of 100%/MHz. In order to detect the beam signal, we installed the Faraday cup after the RFQ or the DTL. For the RFQ, we observed the beam of 12 A under the forward RF power of 450 kW. The beam current after DTL is about 0.5 A when RF power of 150 kW was fed into each tank

  12. Development of Optimal Stressor Scenarios for New Operational Energy Systems

    Science.gov (United States)

    2017-12-01

    OPTIMAL STRESSOR SCENARIOS FOR NEW OPERATIONAL ENERGY SYSTEMS by Geoffrey E. Fastabend December 2017 Thesis Advisor: Alejandro S... ENERGY SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Geoffrey E. Fastabend 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...developed and tested simulation model for operational energy related systems in order to develop better stressor scenarios for acceptance testing

  13. Local energy developments based on spatial and systemic approaches

    NARCIS (Netherlands)

    Manickam, Anu

    Local energy developments from a spatial and systemic approach are highlighted using examples from a Dutch case study. Developments in energy systems included interconnectedness of contextual factors and systems responses. The need to explore both the contextual factors and systemic aspects are

  14. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  15. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  16. Model of sustainable development of energy system, case of Hamedan

    International Nuclear Information System (INIS)

    Sahabmanesh, Aref; Saboohi, Yadollah

    2017-01-01

    Sustainable economic growth and improvement of the social welfare depend upon the sufficient supply of energy resources, while the utilization of energy resources is one of the main factors of environmental degradation. This research is involved with development of a sustainable energy system model and a new method for sustainability assessment. This model represents the flow of energy from primary resources through processing, conversion, and end-use technologies in an optimization framework where the useful energy demand in various social and economic sectors is met. The impact of energy supply and consumption chain on the environment at each level of energy system is also embedded in the model structure. A multi-criteria analysis of changes is then applied and sustainable development indices of the whole system are concluded. Finally, effects of the energy subsidy policy and high economic growth rate on sustainability of the energy system in three scenarios are analyzed. Results demonstrate that energy subsidy decelerates the improvement rate of the total sustainability index. Also, when a high economic growth is accompanied with the energy subsidy this index reduces considerably. Results show that how penetration of renewable energy potentials changes the sustainability situation of energy systems. - Highlights: • Developing a new model for sustainable energy systems. • Presenting a new method for sustainability assessment of energy systems. • Optimizing the energy flow and capacity expansion of Hamedan energy system. • Utilizing an MCDA approach to obtain sustainability indices of the whole system. • Analysis of energy subsidy and high economic growth on energy sustainability.

  17. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  18. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  19. Sustainable development of energy, water and environment systems

    International Nuclear Information System (INIS)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav; Klemeš, Jiří Jaromír; Mathiessen, Brian vad; Yan, Jinyue

    2013-01-01

    Highlights: ► This special issue of contributions presented at the 6th SDEWES Conference. ► Buildings are becoming energy neutral. ► Process integration enables significant improvements of energy efficiency. ► The electrification of transport and measures to increase its efficiency are needed. ► Renewable energy is becoming more viable while being complicated to integrate. -- Abstract: The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations.

  20. Development of Data Acquisition System for Wind Energy Applications

    OpenAIRE

    西本,澄

    1992-01-01

    A Data acquisiton system developed for wind energy applications will be described in this paper. This system is composed of an anemometer with two blades downwind and a computer which processes wind data. Wind energy calculated from an average wind speed is inaccurate, since wind power increases with the cube of wind velocity. To decide the design and the site for a wind turbine system, it is very important to consider wind data on a long term basis, that is the total wind energy and distribu...

  1. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  2. Dispatch Strategy Development for Grid-tied Household Energy Systems

    Science.gov (United States)

    Cardwell, Joseph

    The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent "uncontrolled" nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves--namely, distributed controls. Building energy management systems are being employed to control localized energy generation, storage, and use to reduce disruption on the net utility load. One such example is VOLTTRONTM, an agent-based platform for building energy control in real time. In this thesis, algorithms developed in VOLTTRON simulate a home energy management system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch strategies are implemented to reduce energy charges from overall consumption (/kWh) and demand charges (/kW). Dispatch strategies for implementing storage devices are tuned on a month-to-month basis to provide a meaningful economic advantage under simulated scenarios to explore algorithm sensitivity to changing external factors. VOLTTRON agents provide automated real-time optimization of dispatch strategies to efficiently manage energy supply and demand, lower consumer costs associated with energy usage, and reduce load on the utility grid.

  3. Developing competence based qualification system in the nuclear energy sector

    International Nuclear Information System (INIS)

    Ceclan, Mihail

    2016-01-01

    The Institute for Energy and Transport of the Joint Research Centre, European Commission, developed a strategy and road map for ECVET implementation. The JRC road map for European Credit System for Vocational Education and Training (ECVET) implementation has reached the stage of Competence-Based Qualification System development. The Competence-Based Qualification System can help bridge the gap between Human Resources demand and supply in the nuclear market by structuring qualifications in small independent parts. This very specific ECVET feature of a qualification, facilitates the process of competences accumulation and the lifelong learning, mobility and flexible learning pathways. New developments are presented about the Competence-Based Qualification System development for the nuclear energy sector.

  4. Developing competence based qualification system in the nuclear energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail [European Commission, Petten (Netherlands). Inst. for Energy and Transport

    2016-04-15

    The Institute for Energy and Transport of the Joint Research Centre, European Commission, developed a strategy and road map for ECVET implementation. The JRC road map for European Credit System for Vocational Education and Training (ECVET) implementation has reached the stage of Competence-Based Qualification System development. The Competence-Based Qualification System can help bridge the gap between Human Resources demand and supply in the nuclear market by structuring qualifications in small independent parts. This very specific ECVET feature of a qualification, facilitates the process of competences accumulation and the lifelong learning, mobility and flexible learning pathways. New developments are presented about the Competence-Based Qualification System development for the nuclear energy sector.

  5. Development and characterization of a solar-hydrogen energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Vejar, S.; Gonzalez, E.; Perez, M.; Gamboa, S.A.

    2009-01-01

    'Full text': The details of the development of a PV-hydrogen hybrid energy system are presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operates as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW of power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1 kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet, and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations have been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  6. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  7. The role of green energy systems and sustainable development

    International Nuclear Information System (INIS)

    Mustafa Omer, Abdeen

    2017-01-01

    People are relying upon oil for primary energy and this will continue for a few more decades. Other conventional sources may be more enduring, but are not without serious disadvantages. The renewable energy resources are particularly suited for the provision of rural power supplies and a major advantage is that equipment such as flat plate solar driers, wind machines, etc., can be constructed using local resources. Without the advantage results from the feasibility of local maintenance and the general encouragement such local manufacture gives to the buildup of small-scale rural based industry. This communication comprises a comprehensive review of energy sources, the environment and sustainable development. It includes the renewable energy technologies, energy efficiency systems, energy conservation scenarios, energy savings in greenhouses environment and other mitigation measures necessary to reduce climate change. This study gives some examples of small-scale energy converters, nevertheless it should be noted that small conventional, i.e., engines are currently the major source of power in rural areas and will continue to be so for a long time to come. There is a need for some further development to suit local conditions, to minimise spares holdings, to maximise the interchangeability of the engine parts, and of the engine applications. Emphasis should be placed on full local manufacture. It is concluded that renewable environmentally friendly energy must be encouraged, promoted, implemented and demonstrated by a full-scale plant (device) especially for use in remote rural areas. (author)

  8. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  9. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...

  10. The position, role and development prospects of nuclear energy in China energy system

    International Nuclear Information System (INIS)

    Zheng Yuhui; Yan Jimin

    1996-12-01

    The fundamental features of the present energy system of China are discussed and analyzed. and it is pointed out that since the founding of the People's Republic of China, although the energy construction, including the development and use of nuclear energy, has achieved great success, the average energy resource per capita is still low. The following major issues, such as the transportation pressure raised from the energy structure of taking coal as the main, the increasing seriousness of environmental pollution, large amount of greenhouse gases emission and low 'energy efficiency', etc., have constrained the sustainable development of national economy and society. In accordance with the position of nuclear energy in the strategy of the energy development in south-east coastal areas of China, and the analysis of 'value criteria' and 'decision goal' system for the development and use of nuclear energy, it is thought the development of nuclear energy is an important way and the optimum selection to optimize China's energy system. In accordance with the fundamental policy and technical line, and the technical ability and foundation conditions, the strategic target, scale and overall arrangement for the development of China's nuclear power are proposed and the bright future for the development of China's nuclear power industry is comprehensively discussed and analyzed. (14 refs., 7 figs., 20 tabs.)

  11. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I.

    2011-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings...... of the dominating neoclassical economy and the short time horizon of the present market system. On the supply side fossil fuels are becoming a central problem being the dominating global energy source while at the same time presenting serious problems in relation to global warming and limited resources (“peak oil......”). Consequently, there is an urgent need to develop alternative strategies and policy means in order to promote sustainable development. THE FULL TEXT IS IN RUSSIAN IN THE JOURNAL....

  12. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2010-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings...... of the dominating neoclassical economy and the short time horizon of the present market system. On the supply side fossil fuels are becoming a central problem being the dominating global energy source while at the same time presenting serious problems in relation to global warming and limited resources (“peak oil......”). Consequently, there is an urgent need to develop alternative strategies and policy means in order to promote sustainable development....

  13. Optimum strategies for nuclear energy system development (method of synthesis)

    International Nuclear Information System (INIS)

    Belenky, V.Z.

    1983-01-01

    The problem of optimum long-term development of the nuclear energy system is considered. The optimum strategies (i.e. minimum total uranium consumption) for the transition phase leading to a stationary regime of development are found. For this purpose the author has elaborated a new method of solving linear problems of optimal control which can include jumps in trajectories. The method gives a possibility to fulfil a total synthesis of optimum strategies. A key characteristic of the problem is the productivity function of the nuclear energy system which connects technological system parameters with its growth rate. There are only two types of optimum strategies, according to an increasing or decreasing productivity function. Both cases are illustrated with numerical examples. (orig.) [de

  14. Progress in integrated energy-economy-environment model system development

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao

    1987-11-01

    The Integrated Energy-Economy-Environment Model System has been developed for providing analytical tools for the system analysis and technology assessments in the field of nuclear research and development. This model system consists of the following four model groups. The first model block installs 5 models and can serve to analyze and generate long-term scenarios on economy-energy-environment evolution. The second model block installs 2 models and can serve to analyze the structural transition phenomena in energy-economy-environment interactions. The third model block installs 2 models and can handle power reactor installation strategy problem and long-term fuel cycle analysis. The fourth model block installs 5 models and codes and can treats cost-benefit-risk analysis and assessments. This report describes mainly the progress and the outlines of application of the model system in these years after the first report on the research and development of the model system (JAERI-M 84 - 139). (author)

  15. Plan for developing a comprehensive energy manpower information system

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Lawrence G.

    1979-09-01

    The report is designed to make a beginning in broadening the scope of the comprehensive manpower information system for energy research, development, and demonstration, so that it could cover all manpower related to energy. It develops a plan for this extension, including determining which taxonomies require change, specifying the subsequent stages involved in expanding CEMIS to all energy manpower, and providing the basis for cost estimates for this work. The report is organized as follows: The analytical rationale is described in Chapter II. Chapter III reviews the status of manpower data in a number of energy sectors, notes limitations and gaps in the data, and discusses improvements and additions that should be made. The scope and structure of CEMIS are laid out in Chapter IV, with particular reference to the development of analytical processes, and of analytical linking functions between bodies of data, and a description of their application in anticipating the employment impact of energy changes. The appropriate steps recommended for the further development of CEMIS are described in Chapter V.

  16. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  17. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  18. Developing a Model of the Irish Energy-System

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    to create the model as it accounts for all sectors that need to be considered for integrating large penetrations of renewable energy: the electricity, heat and transport sectors. Before various alternative energy-systems could be investigated for Ireland, a reference model of the existing system needed...... is a vital step due to the scale of the change required for large-scale renewable penetrations. In this paper, a model of the Irish energy system is created to identify how Ireland can transform from a fossil-fuel to a renewable energy-system. The energy-systems-analysis tool, EnergyPLAN, was chosen...... to be created. This paper focuses on the construction of this reference model, in terms of the data gathered, the assumptions made and the accuracy achieved. In future work, this model will be used to investigate alternative energy-systems for Ireland, with the aim to determine the most effective energy system...

  19. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Li Xianguo

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers

  20. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Xianguo Li

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers. (Author)

  1. Developing a district energy system in a competitive urban market

    Energy Technology Data Exchange (ETDEWEB)

    Mitola, J.P. [Unicom Thermal Technologies, Chicago, IL (United States)

    1995-09-01

    In two year`s time, Unicorn Thermal Technologies has grown into one of the largest district cooling systems of 25,000 tons with a 1996 plan to grow to 40,000 tons. This growth is attributed to the development and implementation of a marketing and sales plan based on thorough market research and innovative marketing and sales strategies, and the consistent implementation of those strategies. The beginning of the sales effort was focused around the company`s first district cooling facility, However, it quickly grew into a much broader vision as market acceptance increased. Although the district energy industry has often based its message on being a low cost energy provider, market research and early sales experience indicated that customers choose district cooling as a value added service. As customers began to reserve capacity in the first plant, the idea that district cooling is a value added service and not a commodity energy product was continually reinforced through marketing communications. Although this analysis is a review of developing a district energy system in a competitive urban market, it purposely avoids a long winded discussion of head to head competition.

  2. Adaptive control for solar energy based DC microgrid system development

    Science.gov (United States)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  3. Databases in Cloud - Solutions for Developing Renewable Energy Informatics Systems

    Directory of Open Access Journals (Sweden)

    Adela BARA

    2017-08-01

    Full Text Available The paper presents the data model of a decision support prototype developed for generation monitoring, forecasting and advanced analysis in the renewable energy filed. The solutions considered for developing this system include databases in cloud, XML integration, spatial data representation and multidimensional modeling. This material shows the advantages of Cloud databases and spatial data representation and their implementation in Oracle Database 12 c. Also, it contains a data integration part and a multidimensional analysis. The presentation of output data is made using dashboards.

  4. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    Science.gov (United States)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

  5. Development of solar energy for efficient PV application systems

    International Nuclear Information System (INIS)

    Said, Aziz

    2006-01-01

    It is essential to increase research, development, awareness for the application of solar energy as an important source of life. The cost of PV systems has decreased due to the improvement in techniques of manufacturing and performance. In reality, photovoltaic is one technology that allows the production of electricity with only two components: technological, which is the PV module and environmental, which is the sun. The knowledge of the components market represents a critical parameters in establishing sustainable industrial applications on different activity sectors. This paper illustrates the advantages of using photovoltaic in rural area and their economic and environmental impact. In regions where petroleum or other fossil fuels are not available, and where these remote area are not connected to the electrical grid, there is a strong and increasing demand for the technologies related to photovoltaic application systems. Water extracting and pumping, telecommunication and lighting, irrigation systems, electrical driven cars and trucks represent some of these important applications. The paper also develops critical skills for the most useful PV application in Egypt and provide to the industry a development forecast for the new technology. Then an initiation contacts and cooperation on PV application between industries specially in North Africa Middle East in order to improve the reliability and to get cheaper systems.(Author)

  6. Efficient integration of renewable energy into future energy systems. Development of European energy infrastructures in the period 2030 to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Carolin; Uhlig, Jeanette; Zoch, Immo (eds.)

    2011-10-15

    In consideration of strategic climate mitigation, energy security and economic competitiveness goals, the EU passed the Directive 2009/28/EC, including a binding target of 20 per cent renewable energy consumption in the EU by 2020. This target is comprehensive and includes energy generation, transport, heating and cooling sectors. In 2008, renewable energy consumption in the EU was about 10 per cent. So meeting the 20 per cent renewable energy objective will require massive changes in energy production, transmission and consumption in the EU. Furthermore, it is obvious that the development of the energy system will not stop in 2020, but that it will continue towards 2050 and beyond. Over the past century, the European electricity system was developed in line with a national utilit y perspective which heavily emphasised large, centralised conventional power production. Investment decisions for new energy infrastructure and technology were typically made at the national level. In the future, much more energy production will be based on local or regional renewable energy sources (RES). Many consumers may also become energy producers feeding into the infrastructures. Transnational energy transfers will gain in importance. These changes will require very different electricity and gas infrastructures and decision-making processes from today. Lack of infrastructure capacity is already a barrier for the further deployment of RES-based energy production in some regions in Europe. (orig.)

  7. The Agri-Territorial Energy System: Energy from Biomass as a Tool in Local Development

    International Nuclear Information System (INIS)

    Tritz, Yvan

    2012-01-01

    Biomass is a high-potential energy source whose development has been one of the primary objectives of the debate over the environment in France. Among the projects emerging today, we highlight two types of logics: large-scale projects such as electrical power or biofuel production plants, and smaller, local initiatives launched in rural areas. This paper lays down and illustrates the bases for the Agri-Territorial Energy System (ATES). This was inspired by Local Productive Systems and Localized Agri-food Systems, and the concept was set up on the basis of analyses of local projects involving biomass energy production. The ATES option offers strong local rooting and an organizational innovation process linking multi-stake holders. The concept is illustrated by two case studies: the Miscanthus project in Ammerzwiller (Alsace), and the Bois Bocage energy project in Orne (Basse-Normandie). These examples bring up an important point, namely the multifunctional dimension of the ATES concept

  8. Development for a multi-purpose nuclear energy supply system

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Shimazu, Yoichiro; Sato, Kotaro; Imamura, Mitsuru; Tsuji, Masashi

    2009-01-01

    Hokkaido is one of the four largest island of Japan located in the northern, most of the area, where the atmospheric temperature goes lower than the other area in winter. Thus, an average energy consumption per capita is larger in amount during cold seasons. Nowadays this energy is supplied by fossil fuels. On the other hand, problem of the green house gas emission should be controlled as much as possible in order to avoid global warming. From this point of view, the authors have discussed with local people on the possibility to utilize nuclear clean energy in the daily life in Hokkaido district. Recently some leaders in local towns become interested to such activities and they want information about nuclear energy and related systems. It is a very good chance for us to exchange information on nuclear energy with regards to public acceptance, fears of nuclear power or radiation, the extent of satisfaction to be sure for construction of urban nuclear plants and requirements for such plants. We prepared technical presentation materials and visited a selected towns and continued discussion in various aspects. For example, proposal of a proto type design concept of a small reactor, safety, heat energy supply system. The audience was mainly representatives of the towns firstly and gradually ordinal people also attended the meetings. Based on the information, it could be expected to establish a concept for such district energy supply system. In this paper, some examples and results through these activities are presented. (author)

  9. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  10. Development of large scale wind energy conservation system. Development of large scale wind energy conversion system; Ogata furyoku hatsuden system no kaihatsu. Ogata furyoku hatsuden system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for development of large scale wind energy conversion system. The study on technological development of key components evaluates performance of, and confirms reliability and applicability of, hydraulic systems centered by those equipped with variable pitch mechanisms and electrohydraulic servo valves that control them. The study on blade conducts fatigue and crack-propagation tests, which show that the blades developed have high strength. The study on speed-increasing gear conducts load tests, confirming the effects of reducing vibration and noise by modification of the gear teeth. The study on NACELLE cover conducts vibration tests to confirm its vibration characteristics, and analyzes three-dimensional vibration by the finite element method. Some components for a 500kW commercial wind mill are fabricated, including rotor heads, variable pitch mechanisms, speed-increasing gears, YAW systems, and hydraulic control systems. The others fabricated include a remote supervisory control system for maintenance, system to integrate the wind mill into a power system, and electrical control devices in which site conditions, such as atmospheric temperature and lightening, are taken into consideration.

  11. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  12. Toward developing a Distributed Autonomous Energy Management System (DAEMS)

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2015-09-01

    Full Text Available The design of innovative technological instruments and frameworks for smart energy management is a challenge for countries across the world, and the creation of a 'Smart Grid' still has unresolved research and development (R&D) problems. The design...

  13. A review of multi-energy system planning and optimization tools for sustainable urban development

    NARCIS (Netherlands)

    Beuzekom, van I.; Gibescu, M.; Slootweg, J.G.

    2015-01-01

    Implementing renewable energy resources to enable sustainable development of cities, requires a more flexible and re-silient energy system than currently present. Integrating multiple energy carriers and services allow more efficient implementation of these renewables. Although most research efforts

  14. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  15. Development and implementation of nuclear energy in energy system in Yugoslavia

    International Nuclear Information System (INIS)

    Ljubic, V.; Vukovic, D.; Vrhovac, S.

    1986-01-01

    All electrical demand analyses made in the last years show that besides hydro and thermal power plants in further development of electric power supply system in Yugoslavia, it will be necessary to approach successively with implementation of nuclear power plants. Quite a number of scientific and professional analyses have been done with the purpose to make the necessary conditions for the construction of nuclear power plants in the future. By reason of extra complexity and the necessity of the large amount of investment, it was concluded that the implementation, of nuclear energy in Yugoslavia has to be planned on uniform policy in development and uniform technological-technical concept. In the paper all till now finished activities in implementation of nuclear power plants in energy sector in Yugoslavia as well as planned future activities have been described. (author)

  16. Heat-pump-centered integrated community energy systems: system development summary

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  17. Development of evaluation techniques for electrochemical energy storage systems

    Science.gov (United States)

    Gaines, L. H.; Nazimek, K.

    1980-03-01

    The development of standardized techniques for the comparative evaluation of electric vehicle battery technologies is summarized. The methodology considers both the traditional measures of battery performance (energy density, energy storage costs, and cycle life) and the equally important usage related battery characteristics (probability of technical success, operating and maintenance parameters, and safety/environmental impact). This comparative rationale is supplemented by the ability to generate battery test programs normalized to specific technologies and electric vehicle mission specifications. These test programs allow the evaluation of different battery technologies at comparable levels of electric vehicle performance. It was found that cost optimized electric passenger vehicles will have range specifications of 100 to 110 KM, depending on the specific performance of the battery. Longer range vehicles are penalized by higher first costs while shorter range vehicles suffer from reduced battery life and the need for more frequent alternative car rentals (presumably petroleum fueled) for trips which exceed the EV's range capability.

  18. Development of Power System for Medium Energy Accelerator

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Seol, Kyung Tae; Jang, Ji Ho; Cho, Yong Sub; Hong, In Seok; Kim, Kyung Ryul

    2008-05-01

    The main goal of the studies are to develop a power supply system used for 100MeV proton accelerator and to operate 20MeV accelerator which has been installed in KAERI site. The 100MeV proton accelerator uses RF cavity to accelerate beams and need RF amplifier, klystron. To operate the klystron, a high power pulse power supply is required and the power supply system should have high quality because the reliability of the power supply has critical impact on the overall reliability of accelerator system. Therefore, high power pulse power system and related technology development are inevitable for 100MeV accelerator system development. 20MeV accelerator system has been developed and installed in KAERI site, which will be used as an injector for 100MeV accelerator and supply 20MeV beam to users. A study on the 20MeV accelerator characteristics should be performed to operate the machine efficiently. In addition, this machine can be used as a test bench for developing the 100MeV accelerator components. Therefore, not only the hardware so called 'high voltage power supply', but the related technology of the high quality high voltage power system and man power can be obtained from the results of this studies. The test results of the 20MeV accelerator can be utilized as a basis for efficient operation of 100MeV accelerator and these are the ultimate objective and necessities of the study

  19. Progress in developing repetitive pulse systems utilizing inductive energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1983-01-01

    High-power, fast-recovery vacuum switches were used in a new repetitive counterpulse and transfer circuit to deliver a 5-kHz pulse train with a peak power of 75 MW (at 8.6 kA) to a 1-..cap omega.. load, resulting in the first demonstration of fully controlled, high-power, high-repetition-rate operation of an inductive energy-storage and transfer system with nondestructive switches. New circuits, analytical and experimental results, and feasibility of 100-kV repetitive pulse generation are discussed. A new switching concept for railgun loads is presented.

  20. Development of energy management system - Case study of Serbian car manufacturer

    International Nuclear Information System (INIS)

    Gordic, Dusan; Babic, Milun; Jovicic, Nebojsa; Sustersic, Vanja; Koncalovic, Davor; Jelic, Dubravka

    2010-01-01

    The procedure of development of energy management system applied to an existing company (Serbian car producer 'Zastava') is shown in the paper. The aim of the paper is to provide a guideline for entrepreneurs in metal-working industry in implementing energy management system. First of all, paper includes: critical analysis of existing energy management system (energy matrix), principles of effective energy management organization (with energy manager and energy team in its structure) and energy management politics. Based on the results of energy auditing and performed technological and economical feasibility studies several energy saving measures related to different energy sources (steam, hot water, compressed air, electricity and water) were proposed, implemented and valuated. The proposed measures are not exclusively related to car assembly industry; they can be easily applied to other metal-working facilities with minor modifications. Such energy management system reduces energy costs and increase profitability of a factory.

  1. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    OpenAIRE

    C. Shashidhar; K. Bhanupriya; P. Alluvada; Bandana; J. B. V. Subrahmanyam

    2012-01-01

    Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, le...

  2. New directions in development of city energy systems

    Directory of Open Access Journals (Sweden)

    Crnčević Branko N.

    2012-01-01

    Full Text Available At the world level, the 20th century saw an increase from 220 million urbanites in 1900 to 2.84 billion in year 2000. The present century will match this absolute increase in about four decades. Developing regions, as a whole, will account for 93% of this growth [1]. Until now humankind has lived and worked primarily in rural areas. But the world is about to leave its rural past behind. Today we are witness, for the first time, that more than half of the globe’s population is living in towns and cities. The number and proportion of urban dwellers will continue to rise quickly. Urban population will grow to 4.9 billion by 2030. At the global level, all of future population growth will be in towns and cities [1]. Two centuries ago there was only one city on the planet that could say it had a million inhabitants - that was London. Today more than 400 cities can boast that - 408 to be precise, according to the Earth Policy Institute. But today a population of 1 million people means nothing; we are moving into the era of megacities of 10 million (and more people. Today, there are 20 so-called megacities, whose population, and therefore energy needs, easily exceed some countries population, according to Earth Policy Institute. More people now live in Tokyo than Canada, for example [2]. Despite only occupying 2% of the world's surface area, they are responsible for 75% of the world's energy consumption.

  3. Renewable and nuclear energy contribution to the electric systems of developed and developing countries

    International Nuclear Information System (INIS)

    Percebois, J.

    1994-01-01

    Economically, the nuclear energy is favourable. The investments to realize in the energy field are substantial. The environmental quality implements the renewable energies which must be more efficient. Energy control frames the largest managing margin for the future energy and for the relations between energy and environment. Few countries can control their nuclear surety. Nowadays, in the developing countries, electrical energy needs are very weak, so the interconnection to the network is not necessary and the access price to electricity is very high

  4. Workshop on IAEA Tools for Nuclear Energy System Assessment for Long-Term Planning and Development

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the workshop is to present to Member States tools and methods that are available from the IAEA in support of long-term energy planning and nuclear energy system assessments, both focusing on the sustainable development of nuclear energy. This includes tools devoted to energy system planning, indicators for sustainable energy development, the INPRO methodology for Nuclear Energy System Assessment (NESA) and tools for analysing nuclear fuel cycle material balance. The workshop also intends to obtain feedback from Member States on applying the tools, share experiences and lessons learned, and identify needs for IAEA support

  5. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  6. Current status of development on superconducting magnetic energy storage systems and magnetic refrigeration

    International Nuclear Information System (INIS)

    Hirano, Naoki

    2010-01-01

    Superconducting magnetic energy storage (SMES) systems have excellent characteristics as energy-storage equipment in power systems such as high efficiency, quick response, and no deterioration in repetitive operations. There are many projects to develop SMES throughout the world. Since 1991, a national project by the Agency for Natural Resources and Energy Japan has been working to develop an SMES system to control power in power systems. Moreover, SMES has been developed to compensate for momentary voltage dips since 2003. To reduce energy consumption due to prolonged operating times, we developed energy-conserving electrical equipment incorporating refrigerating aggregates such as air conditioners. We conduced R and D to convert magnetic refrigeration and highly-efficient, energy-conserving/environmentally friendly technologies, to practical applications. The current status in the development of SMES to control power systems, bridging to deal with instantaneous voltage dips, and magnetic refrigeration technology will be explained in this paper. (author)

  7. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  8. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  9. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  10. Electricity and heat system development scenarios integrated in the energy system sustainable development in Romania in the period 2005 - 2025

    International Nuclear Information System (INIS)

    Marin, Otilia; Leca, Aureliu

    2004-01-01

    After 50 years of centralized economy, since 1989, Romania faces many challenges related to the internal conditions and to the new trends in energy markets over the world as: the existing low efficiency and availability, fast structural changes; the decentralization and privatization of the energy sector with new structures and entities; integration in EU and NATO structures. At present, with transition from the national vertical integrated monopolies to an open market, the determination of the global optimum development scenario of the power and heat sector becomes more important in order to find the policy which can lead the own strategies of different companies involved on market to a sustainable development of the society. The paper presents four long term development scenarios of the electricity and heat sector quantified from different points of view: technical, economical, environmental, social criteria, security of supply, risk diminishing etc and it continues by determining the long term global optimum development scenario integrated in the sustainable energy system. (authors)

  11. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  12. Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  13. Impact of innovation programs on development of energy system: Case of Iranian electricity-supply system

    International Nuclear Information System (INIS)

    Shafiei, Ehsan; Saboohi, Yadollah; Ghofrani, Mohammad B.

    2009-01-01

    The paper presents further experiments with an extended version of a comprehensive model for assessment of energy technologies and research and development (R and D) planning to evaluate the impact of innovation programs on development of Iranian electricity-supply system. This analytical instrument is a model of energy R and D resource allocation with an explicit perspective of developing countries which has been linked to a bottom-up energy-systems model. Three emerging electricity generation technologies of solar PV, wind turbine and gas fuel cell are considered in the model and the impact of innovation programs on cost-reducing innovation for them is examined. The main results provided by the modeling approach include optimal allocation of R and D resources, induced capacity expansion policies to guarantee the effectiveness of R and D activities, competitive cost of emerging technologies, impact of innovation programs on optimal structure of electricity-supply system and benefits of innovation programs in the long-run.

  14. Functionally graded biomimetic energy absorption concept development for transportation systems.

    Science.gov (United States)

    2014-02-01

    Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...

  15. Developing a municipality typology for modelling decentralised energy systems

    OpenAIRE

    Weinand, Jann; McKenna, Russell; Fichtner, Wolf

    2018-01-01

    The recent rapid expansion of renewable energy capacities in Germany has been dominated by decentralised wind, photovoltaic (PV) and bioenergy plants. The spatially disperse and partly unpredictable nature of these resources necessitates an increasing exploitation of integration measures such as curtailment, supply and demand side flexibilities, network strengthening and storage capacities. Indeed, one solution to the large-scale integration of renewable energies could be decentralised autono...

  16. Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    understanding, improvement of long-term scientific assessments, strengthening of scientific capacities around the world and at ensuring that the sciences are responsive to the emerging international, European, regional and national challenges. The dedicated Energy special issue includes 24 papers, which...

  17. Energy policies and politics for sustainable world-system development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    politics, put into perspective by (b) R.C.-Dupont 1993 as the movement of the US in a field of tension between eco- and geopolitics; and (c) a 2006 declaration of ten former environmental ministers to end the nuclear age and to reform the UN mandate of the International Atomic Energy Agency....

  18. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  19. Technical characteristic analysis of wind energy conversion systems for sustainable development

    International Nuclear Information System (INIS)

    BoroumandJazi, G.; Rismanchi, B.; Saidur, R.

    2013-01-01

    Highlights: ► Identifying the required technical characteristics of sustainable wind power system. ► Observing Weibull probability function and artificial neural networks for reliability. ► Daily/monthly generation data are used to investigate the system’s availability. - Abstract: Wind energy as a clean, environmentally friendly and cost effective renewable energy resource, is taken into consideration by many developed and developing countries as a promising means to provide electrical energy. In feasibility study stage of the wind energy systems, the sustainability analysis is one of the main issues that can assure the investors and stockholders to invest in this renewable energy. Since a system can be truly sustainable by achieving the energetic, ecological and economic sustainability, the present study will focus on the technical characteristics and performance analysis of the wind energy systems. The relations between reliability, availability, energy and exergy efficiency, risk management and the environmental impact of the wind energy systems are investigated in the context of this study. It is concluded that the wind characteristics data and the wind speed are the main effective parameters on its reliability and availability. It is also revealed that considering the system loss, exergy efficiency results of the wind energy systems are more reliable than the energy efficiencies. Due to avoid future failure of the systems, the causes of the failure are investigated and it was concluded that the structural failures caused by storms and strong winds are known as the most prevalent failures

  20. Development of materials for the fusion nuclear energy system

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, S. H.; Jang, J. S.; Kim, W. J.; Jung, C. H.; Jun, B. H.; Maeng, W. Y.; Kwon, J. H.; Kim, H. P.; Hong, J. H.

    2005-01-01

    A state of the art on the nuclear material development has been reviewed based on the each component of the Tokamak typed fusion reactor. The current status of the development of structural materials such as FM steels, ODS steels, vanadium alloys and SiCf/SiC composites are introduced. The application of Li-based ceramics as a ceramic breeder and W-based alloys and C/C composites as plasma facing components for the divertor were also investigated, respectively. Some evaluation methods and results of the computational material simulation for irradiation damages and the compatibility between materials and coolant are described. Additionally, the material related research activities of ITER and ITER TBM and the collaboration activities on fusion materials between Japan and USA are briefly summarized

  1. The Impact of Greening Tax Systems on Sustainable Energy Development in the Baltic States

    Directory of Open Access Journals (Sweden)

    Dalia Streimikiene

    2018-05-01

    Full Text Available The paper deals with the greening of tax systems in the European Union (EU, and reviews the achievements of the Baltic States in relation to greening their tax systems and implementing the sustainable energy development goals set by the EU’s energy policies. Environmental taxes promote sustainable energy development, as they allow internalizing the external costs of atmospheric pollution in the energy sector. Energy production and consumption are a major source classical pollutants and greenhouse gas (GHG emissions. Almost of the all EU member states (MS apply pollution taxes as the most important economic tool for mitigating the environmental impacts of various economic activities. Considering the importance of the energy sector in terms of its contributions to total atmospheric emissions in the EU, it is supposed that environmental taxes are important drivers of sustainable energy development. Environmental taxes, as the main tool for the integration of negative externalities that are related to atmospheric pollution, are imposed to create incentives for reducing fossil fuel consumption and switching to renewable energy sources or fuels that have a lower carbon content and thus cause less pollution. The paper presents a comparative assessment of the impact of environmental taxes on sustainable energy development indicators in three selected countries from the Baltic region (Lithuania, Latvia, and Estonia during the period 2005–2015, and reveals the role that the greening of tax systems has had on implementing sustainable energy development targets in the Baltic States.

  2. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  3. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  4. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  5. Role of the national energy system modelling in the process of the policy development

    Directory of Open Access Journals (Sweden)

    Merse Stane

    2012-01-01

    Full Text Available Strategic planning and decision making, nonetheless making energy policies and strategies, is very extensive process and has to follow multiple and often contradictory objectives. During the preparation of the new Slovenian Energy Programme proposal, complete update of the technology and sector oriented bottom up model of Reference Energy and Environmental System of Slovenia (REES-SLO has been done. During the redevelopment of the REES-SLO model trade-off between the simulation and optimisation approach has been done, favouring presentation of relations between controls and their effects rather than the elusive optimality of results which can be misleading for small energy systems. Scenario-based planning was integrated into the MESAP (Modular Energy System Analysis and Planning environment, allowing integration of past, present and planned (calculated data in a comprehensive overall system. Within the paper, the main technical, economic and environmental characteristics of the Slovenian energy system model REES-SLO are described. This paper presents a new approach in modelling relatively small energy systems which goes beyond investment in particular technologies or categories of technology and allows smooth transition to low carbon economy. Presented research work confirms that transition from environment unfriendly fossil fuelled economy to sustainable and climate friendly development requires a new approach, which must be based on excellent knowledge of alternative possibilities of development and especially awareness about new opportunities in exploitation of energy efficiency and renewable energy sources.

  6. Development and analysis of sustainable energy systems for building HVAC applications

    International Nuclear Information System (INIS)

    Khalid, F.; Dincer, I.; Rosen, M.A.

    2015-01-01

    The main HVAC applications considered in this paper are heating and cooling. Three newly developed systems for heating and cooling applications in buildings are proposed and assessed. Energy and exergy analyses are performed to assess the performance of heating, cooling and overall systems for each case, and the effects of various parameters on the energy and exergy efficiencies are examined. Also, the effect of changing the energy input for each system is also found in terms of overall efficiency. The overall system energy efficiency is found to be highest for the natural gas operated system with a vapour absorption chiller (system 1) at 27.5% and lowest for the photovoltaic (PV) and solar thermal operated system with vapour compression chiller (system 3) at 19.9%. The overall system exergy efficiency is found to be highest for the PV and solar thermal operated system with vapour compression chiller (system 3) at 3.9% and lowest for the PV and solar thermal operated system with heat pump (system 2) at 1.2%, respectively. - Highlights: • Three HVAC systems for buildings using renewable energy sources are proposed and assessed. • A performance improvement study is undertaken. • Parametric studies are carried out to determine the effects of various parameters on energy and exergy efficiencies

  7. Scenario-based analyses of energy system development and its environmental implications in Thailand

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Malla, Sunil; Liyanage, Migara H.

    2007-01-01

    Thailand is one of the fastest growing energy-intensive economies in Southeast Asia. To formulate sound energy policies in the country, it is important to understand the impact of energy use on the environment over the long-period. This study examines energy system development and its associated greenhouse gas and local air pollutant emissions under four scenarios in Thailand through the year 2050. The four scenarios involve different growth paths for economy, population, energy efficiency and penetration of renewable energy technologies. The paper assesses the changes in primary energy supply mix, sector-wise final energy demand, energy import dependency and CO 2 , SO 2 and NO x emissions under four scenarios using end-use based Asia-Pacific Integrated Assessment Model (AIM/Enduse) of Thailand. (author)

  8. The Effects of Domestic Energy Consumption on Urban Development Using System Dynamics

    Science.gov (United States)

    Saryazdi, M. D.; Homaei, N.; Arjmand, A.

    2018-05-01

    In developed countries, people have learned to follow efficient consumption patterns, while in developing countries, such as Iran, these patterns are not well executed. A large amount of energy is almost consumed in buildings and houses and though the consumption patterns varies in different societies, various energy policies are required to meet the consumption challenges. So far, several papers and more than ten case studies have worked on the relationship between domestic energy consumption and urban development, however these researches did not analyzed the impact of energy consumption on urban development. Therefore, this paper attempts to examine the interactions between the energy consumption and urban development by using system dynamics as the most widely used methods for complex problems. The proposed approach demonstrates the interactions using causal loop and flow diagrams and finally, suitable strategies will be proposed for urban development through simulations of different scenarios.

  9. Development of a new energy efficiency rating system for existing residential buildings

    International Nuclear Information System (INIS)

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Seon Park, Hyo

    2014-01-01

    Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO 2 emission density (i.e., CO 2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign. - Highlights: • A new energy efficiency rating system for the residential building was developed. • The incentive and penalty programs were established using an advanced CBR model. • The new system was established using reasonable and fair standards. • It allows all residents to voluntarily participate in the energy saving campaign. • It can be applied to any country or sector in the global environment

  10. Progress of SOFC/SOEC Development at DTU Energy: From Materials to Systems

    DEFF Research Database (Denmark)

    Hagen, Anke; Hendriksen, Peter Vang

    2017-01-01

    DTU Energy has over the past 20 years had a very substantial effort on SOFC/SOEC development. The current project volume corresponds to ~40 man years per year. Activities span over a broad range in the value chain, from materials to cells, stacks and analyses at energy system level. In addition...

  11. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  12. Development and commercialization of renewable energy technologies in Canada: An innovation system perspective

    International Nuclear Information System (INIS)

    Jagoda, Kalinga; Lonseth, Robert; Lonseth, Adam; Jackman, Tom

    2011-01-01

    The increased environmental awareness coupled with the recent changes in the oil prices triggered the necessity of focusing on effective management of energy systems. Global climate change has caused many people to consider ways of reducing greenhouse gases Renewable energy has become an essential feature in curtailing emission of Green House Gases, while meeting the demand for energy. This paper presents an innovation system framework for development and diffusion of renewable energy technologies. The framework is used to identify opportunities for small and medium enterprises in the renewable energy sector. A case study on a successful development, installation and implementation of solar thermal systems households in Calgary, Alberta, by an entrepreneurial firm, is also presented. (author)

  13. Development and commercialization of renewable energy technologies in Canada: An innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Jagoda, Kalinga; Lonseth, Robert; Lonseth, Adam [Bissett School of Business, Mount Royal University, 4825 Mount Royal Gate SW, Calgary AB T3E 6K6 (Canada); Jackman, Tom [Simple Solar Heating Limited, P.O. Box 988, Okotoks AB T1S 1B1 (Canada)

    2011-04-15

    The increased environmental awareness coupled with the recent changes in the oil prices triggered the necessity of focusing on effective management of energy systems. Global climate change has caused many people to consider ways of reducing greenhouse gases Renewable energy has become an essential feature in curtailing emission of Green House Gases, while meeting the demand for energy. This paper presents an innovation system framework for development and diffusion of renewable energy technologies. The framework is used to identify opportunities for small and medium enterprises in the renewable energy sector. A case study on a successful development, installation and implementation of solar thermal systems households in Calgary, Alberta, by an entrepreneurial firm, is also presented. (author)

  14. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Eco-energy urban system (Research of systematization technology and evaluation technology out of energy system designing technology researches); Koiki energy riyo network system kaihatsu (eko energy toshi system) 1998 nendo seika hokokusho. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of urban society respecting enhanced energy efficiency and environmental protection, cities and surrounding industrial facilities are investigated for the development of element technologies involving energy recovery, conversion, transportation, storage, delivery, utilization, etc., and for the compounding of urban energy systems. In the study of the effect of introduction, assumption is made of delivery of heat to an urban heat accumulation district from a plant equivalent to a district air-conditioning system which is covered by the existing technologies. Also assumed are the delivery of exhaust heat to the said plant utilizing eco-energy element technologies and the replacement of existing technologies by eco-energy element technologies. Comparison is established in terms of energy efficiency, environmental protection, and economy, and then it is found that the eco-energy element technologies for the utilization of exhaust heat are in all cases superior to the conventional technologies as far as energy efficiency and environmental protection are concerned. It is found, however, that they are inferior from the economic viewpoint. The energy efficiency technology in heat transportation is superior to the existing technology in energy efficiency and environmental protection but roughly equal to the existing ones in economy. (NEDO)

  15. Development of integrated systems dynamics models for the sustainability assessment of nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2005-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions allowing full stakeholder involvement in deciding on the role of nuclear energy as part of a sustainable energy generation mix in the future. Integrated system dynamics models of nuclear energy systems are interesting tools for such assessment studies allowing performing material flow accounting, environmental impact, economic competitiveness and socio-political analysis and this for time-evolving nuclear energy systems. No single tool today is capable of covering all the dimensions for such integrated assessment while various developments are ongoing in different places around the world to make such tools available in the nearby future. Argonne National Laboratory has embarked on such tool development since the year 2000 and has developed various tools among which the DANESS-code shall be described in some more detail in this paper. (author)

  16. Development of concepts for low-cost energy storage assemblies for annual cycle energy system applications

    Science.gov (United States)

    Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.

    1981-10-01

    Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.

  17. Nuclear Hybrid Energy Systems Initial Integrated Case Study Development and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System (NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial customer. Ideally, the optimized integration of these systems will provide economic and operational benefits to the overall system compared to independent operation, and it will enhance the stability and responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of grid power.

  18. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian; Suk Kim, Jong; McKellar, Michael; Sabharwall, Piyush; Chen, Jun; Cetiner, M. Sacit; Harrison, T. Jay; Qualls, A. Lou

    2016-01-01

    The United States is in the midst of an energy revolution, spurred by advancement of technology to produce unprecedented supplies of oil and natural gas. Simultaneously, there is an increasing concern for climate change attributed to greenhouse gas (GHG) emissions that, in large part, result from burning fossil fuels. An international consensus has concluded that the U.S. and other developed nations have an imperative to reduce GHG emissions to address these climate change concerns. The global desire to reduce GHG emissions has led to the development and deployment of clean energy resources and technologies, particularly renewable energy technologies, at a rapid rate. At the same time, each of the major energy sectors-the electric grid, industrial manufacturing, transportation, and the residential/commercial consumers- is increasingly becoming linked through information and communications technologies, advanced modeling and simulation, and controls. Coordination of clean energy generation technologies through integrated hybrid energy systems, as defined below, has the potential to further revolutionize energy services at the system level by coordinating the exchange of energy currency among the energy sectors in a manner that optimizes financial efficiency (including capital investments), maximizes thermodynamic efficiency (through best use of exergy, which is the potential to use the available energy in producing energy services), reduces environmental impacts when clean energy inputs are maximized, and provides resources for grid management. Rapid buildout of renewable technologies has been largely driven by local, state, and federal policies, such as renewable portfolio standards and production tax credits that incentivize investment in these generation sources. A foundational assumption within this program plan is that renewable technologies will continue to be major contributors to the future U.S. energy infrastructure. While increased use of clean renewable

  19. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cetiner, M. Sacit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, T. Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. Lou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The United States is in the midst of an energy revolution, spurred by advancement of technology to produce unprecedented supplies of oil and natural gas. Simultaneously, there is an increasing concern for climate change attributed to greenhouse gas (GHG) emissions that, in large part, result from burning fossil fuels. An international consensus has concluded that the U.S. and other developed nations have an imperative to reduce GHG emissions to address these climate change concerns. The global desire to reduce GHG emissions has led to the development and deployment of clean energy resources and technologies, particularly renewable energy technologies, at a rapid rate. At the same time, each of the major energy sectors—the electric grid, industrial manufacturing, transportation, and the residential/commercial consumers— is increasingly becoming linked through information and communications technologies, advanced modeling and simulation, and controls. Coordination of clean energy generation technologies through integrated hybrid energy systems, as defined below, has the potential to further revolutionize energy services at the system level by coordinating the exchange of energy currency among the energy sectors in a manner that optimizes financial efficiency (including capital investments), maximizes thermodynamic efficiency (through best use of exergy, which is the potential to use the available energy in producing energy services), reduces environmental impacts when clean energy inputs are maximized, and provides resources for grid management. Rapid buildout of renewable technologies has been largely driven by local, state, and federal policies, such as renewable portfolio standards and production tax credits that incentivize investment in these generation sources. A foundational assumption within this program plan is that renewable technologies will continue to be major contributors to the future U.S. energy infrastructure. While increased use of clean

  20. Development of Energy Management System Based on Internet of Things Technique

    OpenAIRE

    Wen-Jye Shyr; Chia-Ming Lin and Hung-Yun Feng

    2017-01-01

    The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

  1. Journal of Sustainable Development of Energy, Water and Environment Systems - Volume II

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2014-12-01

    Full Text Available The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations. In total 32 manuscripts were published in Volume II, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  2. Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires

    International Nuclear Information System (INIS)

    Lee, Jaeyun; Choi, Bumkyoo

    2014-01-01

    Highlights: • This study is focused on a stable energy source independent of vehicle speed. • It is ascertained that the use of a strain field is suitable for this purpose. • A piezo patch generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. • A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. • The system is applicable to intelligent tire sensor systems. - Abstract: The need for energy harvesting technology is steadily growing in the field of self-powered wireless sensor systems for intelligent tires. The purpose of this study is to mount an energy harvester inside the tire. In order to achieve this, we focus on a stable energy source almost independent of vehicle speed. It is ascertained that the use of a strain field is suitable for this purpose. In order to develop the energy harvester for the tire, modeling of tire behavior has been performed and verified through comparing with experimental results. From the results, a piezoelectric energy harvester generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. The result of this study presents 1.37 μW/mm 3 of power generation from the performance of the energy harvester. This study concludes that the system is applicable to wireless tire sensor systems after making minor improvements

  3. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  4. Analysis to develop a program for energy-integrated farm systems

    Energy Technology Data Exchange (ETDEWEB)

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.; Johnson, K.I.

    1981-09-01

    A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The purpose of the research presented is to establish the objective of the program and identify guidelines for program development. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of: (1) market need, (2) conversion potential, (3) technological opportunities, and (4) acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy. Each of these factors is analyzed in Chapters 2 to 4. Chapter 5 draws on the analysis of these factors to establish the objective of the program and identify guidelines for the distribution of program funds. Chapter 6 then discusses the acceptability of integrated farm systems, which can not be quantified like the other factors.

  5. Development and Application of a ZigBee-Based Building Energy Monitoring and Control System

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2014-01-01

    Full Text Available Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS, which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus’s main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications.

  6. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2011-01-01

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  7. Development of integrated models for energy-economy systems analysis at JAERI

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Yonese, Hiromi

    1984-08-01

    This report, being a revision of the preprint for distribution to participants at IEA/ETSAP Workshop held, at JAERI, Tokyo, March 1984, describes the concept of the integrated models for energy-economy systems analysis now being carried out at JAERI. In this model system, there contains four different categories of computer codes. The first one is a series of computer codes named as E 3 -SD representatively, which are utilized to develop a dynamic scenario generation in a long-term energy economy evolution. The second one, of which the main constituents are the MARKAL, i.e. an optimal energy flow analizer, and the TRANS-I/O, i.e. a multi-sectoral economy analyzer, has been developed for the analysis of structural characteristics embodied in our energy-economy system. The third one is for a strategy analysis on nuclear power reactor installation and fuel cycle development, and its main constituent is the JALTES. The fourth one is for a cost-benefit-risk analysis including various kinds of data bases. As the model system being still under development, but the idea of application of it to such a problem as '' the role of the HTGR in the prospects of future energy supply'' is also explained in the report. (author)

  8. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    Science.gov (United States)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  9. System-level energy efficiency is the greatest barrier to development of the hydrogen economy

    International Nuclear Information System (INIS)

    Page, Shannon; Krumdieck, Susan

    2009-01-01

    Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier.

  10. Development and Analysis of New Integrated Energy Systems for Sustainable Buildings

    Science.gov (United States)

    Khalid, Farrukh

    Excessive consumption of fossil fuels in the residential sector and their associated negative environmental impacts bring a significant challenge to engineers within research and industrial communities throughout the world to develop more environmentally benign methods of meeting energy needs of residential sector in particular. This thesis addresses potential solutions for the issue of fossils fuel consumption in residential buildings. Three novel renewable energy based multigeneration systems are proposed for different types of residential buildings, and a comprehensive assessment of energetic and exergetic performances is given on the basis of total occupancy, energy load, and climate conditions. System 1 is a multigeneration system based on two renewable energy sources. It uses biomass and solar resources. The outputs of System 1 are electricity, space heating, cooling, and hot water. The energy and exergy efficiencies of System 1 are 91.0% and 34.9%, respectively. The results of the optimisation analysis show that the net present cost of System 1 is 2,700,496 and that the levelised cost of electricity is 0.117/kWh. System 2 is a multigeneration system, integrating three renewable energy based subsystems; wind turbine, concentrated solar collector, and Organic Rankine Cycle supplied by a ground source heat exchanger. The outputs of the System 2 are electricity, hot water, heating and cooling. The optimisation analysis shows that net present cost is 35,502 and levelised cost of electricity is 0.186/kWh. The energy and exergy efficiencies of System 2 are found to be 34.6% and 16.2%, respectively. System 3 is a multigeneration system, comprising two renewable energy subsystems-- geothermal and solar to supply power, cooling, heating, and hot water. The optimisation analysis shows that the net present cost of System 3 is 598,474, and levelised cost of electricity of 0.111/kWh. The energy and exergy efficiencies of System 3 are 20.2% and 19.2%, respectively, with

  11. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  12. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    Science.gov (United States)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  13. Development of a test facility for PV-Wind hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Mustafa [Ege Univ., Izmir (Turkey). Ege Tech., Electronics Technolgy; Ege Univ., Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    To quantify the potential for performance improvements of photovoltaic-wind hybrid energy systems, a test facility has been installed at the Solar Energy Institute, Ege University. Hybrid system consist of a wind turbine, PV array, battery, AC and DC loads, inverters, charge regulators and a data logging and control unit. The collected data are first conditioned using precision electronic circuits and then interfaced to a PC using a data logging unit. The LABVIEW program is used to further process, display and store the collected data in the PC disk. The proposed data logging and control unit permits the rapid system development and has the advantage of flexibility in the case of changes, while it can be easily extended for controlling the of photovoltaic-wind hybrid energy system operation. (orig.)

  14. Modelling of hybrid energy system - Part I: Problem formulation and model development

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ajai; Saini, R.P.; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2011-02-15

    A well designed hybrid energy system can be cost effective, has a high reliability and can improve the quality of life in remote rural areas. The economic constraints can be met, if these systems are fundamentally well designed, use appropriate technology and make use effective dispatch control techniques. The first paper of this tri-series paper, presents the analysis and design of a mixed integer linear mathematical programming model (time series) to determine the optimal operation and cost optimization for a hybrid energy generation system consisting of a photovoltaic array, biomass (fuelwood), biogas, small/micro-hydro, a battery bank and a fossil fuel generator. The optimization is aimed at minimizing the cost function based on demand and potential constraints. Further, mathematical models of all other components of hybrid energy system are also developed. This is the generation mix of the remote rural of India; it may be applied to other rural areas also. (author)

  15. Energy for sustainable development

    International Nuclear Information System (INIS)

    Toepfer, Klaus

    2003-01-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new sustainable energy enterprises

  16. Energy for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Klaus [United Nations Environment Programme (Kenya)

    2003-09-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new

  17. Journal of Sustainable Development of Energy, Water and Environment Systems – Volume IV

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2016-12-01

    In total 32 manuscripts were published in Volume IV, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  18. Development of sustainable energy systems: a new challenge for process systems engineering education

    OpenAIRE

    Astier, Stéphan; Ayache, Antoine; Azzaro-Pantel, Catherine; David, Maria; Fontes, Guillaume; Gourdon, Christophe; Joulia, Xavier; Le Lann, Jean-Marc

    2008-01-01

    This paper presents the main features of the master-level programme in “EcoEnergy” offered as a full-time one year course at “Institut National Polytechnique of Toulouse” in order to provide engineers with a state-of-the-art education in the area of advanced energy technologies and systems. It is based on an original and equilibrated combination of process systems engineering and electrical engineering disciplines, with an interdisciplinary problem-solving approach necessary for identifying s...

  19. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  20. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  1. The trend of the research and development for the upgrade of the high current energy system

    International Nuclear Information System (INIS)

    2010-01-01

    The high current energy technology ranges from a basic technology of the electric power field to a state-of-the-art technology and has been used extremely variously. In addition, as the energy technology advances, the expansion of applied field, such as the nuclear fusion and the exhaust thing processing, etc., requires a further upgrade of the large current technology. In this report, the trend of the research and development for the upgrade of the high current energy technology are summarized. In the following, the elemental technology including arc/plasma phenomena and the pulse power system is described in Chapter 2. In Chapter 3, the trend of the research and development for the upgrade of various equipments and devices such as the nuclear fusion development, the superconducting applications of SMES and the maglev transportation system, and the arc application of the exhaust processing for a medical waste, the radio active waste and a detrimental gas and the next generation lithography system. In Chapter 4, the analysis and the measurement technology of the arc phenomenon and the standardization of current shunt, etc are described. We hope this research report can contribute to the promotion of technical exchanges in different fields, and offer guidelines for future development in this high current energy technology. (author)

  2. Research and development of utilization technology of solar thermal energy system for industrial and other use. International joint technology development for solar energy utilization systems; Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Taiyo energy riyo system kokusai kyodo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for international joint technology development for solar energy utilization systems. The joint study with an Indonesian research institute takes a model of lumber drying plant for the design and feasibility study. All the parts it needs are technically available in Indonesia, except carbon fiber sheets and electronic devices for controlling purposes. The drying cost is higher than that of a plant which procures charge-free wood fuel, but lower than that of a plant which procures fuel at 30$/t. A cacao drying plant model is also studied. The feasibility study shows that the initial investment for the blowing-up model is much higher by 60% to 100% than that for the conventional plant. Its fuel cost is lower by 11% than that of residual oil but 27% higher than that of wood. 4 figs.

  3. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Addas, Mohammad F.

    2016-01-01

    Highlights: • Productivity increases with increasing geothermal water flow rate up to 0.15 kg/s. • Geothermal energy increases productivity by 187–465% when used with solar energy. • Daytime experimental productivity (8AM-5PM) up to 104 L/m"2 was achieved. • Daily experimental productivity (24 h) up to 192 L/m"2 was achieved. • Fresh potable water can be produced at 0.003 USD/L using this desalination setup. - Abstract: This paper investigates the technical and economic feasibility of using a hybrid solar-geothermal energy source in a humidification-dehumidification (HDH) desalination system. The newly developed HDH system is a modified solar still with air blower and condenser used at its inlet and outlet respectively. A geothermal water tank in a temperature range 60–80 °C which imitates a low-grade geothermal energy source was used to supply heat to water inside the humidification chamber. The experiments were conducted in January 2015 under the climatological conditions of Madinah (latitude: 24°33′N, longitude: 39°36′0″E), Saudi Arabia to study the effect of geothermal water temperature and flow rate on the performance and productivity of proposed desalination system. Analytical model was also developed to compare the effect of solar energy and combined solar-geothermal energy on accumulated productivity. Daytime experimental accumulated productivity up to 104 L/m"2 and daily average gained output ratio (GOR) in the range 1.2–1.58 was achieved using the proposed desalination system. Cost of fresh water produced using the presented desalination system is 0.003 USD/L.

  4. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    Science.gov (United States)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  5. Development of distributed measurement and control systems for application in electrical energy systems

    Directory of Open Access Journals (Sweden)

    Gajić Tomislav

    2013-01-01

    Full Text Available In this paper LPC1766 microcontroller based network capable application processor (NCAP system, is described. This system is intended to be used in modern distributed control and monitoring systems for application in power plants and industry, as well as in modern electricity distribution networks. In order to do that it is necessary to analyze different aspects of the system, like signal processing part or communication requirements. The chosen microcontroller has enough resources to satisfy requirements of an transducer interface module (TIM. Beside the realization of NCAp and TIM controllers it is necessary to develop the necessary measurement modules, in order to realize measurement-control systems. The developed layout could be connected to actuators to the local area network (LAN, as well. If the local LAN is connected to the internet it is possible to monitor and configure measurement modules form the remote site. Having in mind the growing complexity in control systems, it has been a real challenge to detect a diagnose problems in today's large scale distributed systems. Implementation of the proposed module could potentially reduce the time necessary to extract necessary information from the abundant quantity of information that are usually provided by the complex distributed systems.

  6. Major activities of the association ''Arbeitsgemeinschaft Solar NRW''. Decentralized energy systems development, trial and qualification

    International Nuclear Information System (INIS)

    Meliss, M.

    1996-01-01

    In North-Rhine Westphalia, the Ministry for Science and Research and the Ministry for Economic Affairs, Medium-Sized Companies and Technology (MWF) in 1991 decided to jointly establish a research and technology association called AG Solar NRW, intended to function as a central body for promotion and coordination of existing but dispersed projects and activities in North-Rhine Westphalia for research into and development of solar technology and energy systems, and for promotion of demonstration projects and training programmes supporting enhanced use of solar energy. The total budget made available for activities of the AG Solar in phase 1 (1991 - 1995) was approx. DM 60 million. The article in hand summarizes the main activities and results achieved in this first phase which was committed to decentralized energy systems, performance testing and qualification. (orig.) [de

  7. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  8. Development of mechanical ventilation system with low energy consumption for renovation of buildings

    DEFF Research Database (Denmark)

    Terkildsen, Søren

    in reducing CO2-emmissions. Over the last decade, initiatives have been taken to reduce its energy consumption e.g. by the European Union, national governments or NGOs. The initiatives have mostly focused on improving the thermal properties of the building envelope to reduce heat losses. Building services......A general reduction in total energy consumption is needed, due to the increasing concerns about climate change caused by CO2-emmissions from fossil fuels. In 2004, the building sector accounted for 40% of the total energy consumption in the EU and the US and therefore must play a crucial role....... The goal was to develop a mechanical system with an SFP-value of 0.5 kJ/m3 and a heat recovery efficiency of 85% that can meet current indoor environment requirements without discomfort in terms of thermal, acoustic and draught issues. The concept was developed for a temperate climate, such as Denmark...

  9. Development of an exergy-electrical analogy for visualizing and modeling building integrated energy systems

    International Nuclear Information System (INIS)

    Saloux, E.; Teyssedou, A.; Sorin, M.

    2015-01-01

    Highlights: • The exergy-electrical analogy is developed for energy systems used in buildings. • This analogy has been developed for a complete set of system arrangement options. • Different possibilities of inter-connections are illustrated using analog switches. • Adaptability and utility of the diagram over traditional ones are emphasized. - Abstract: An exergy-electrical analogy, similar to the heat transfer electrical one, is developed and applied to the case of integrated energy systems operating in buildings. Its construction is presented for the case of space heating with electric heaters, heat pumps and solar collectors. The proposed analogy has been applied to a set of system arrangement options proposed for satisfying the building heating demand (space heating, domestic hot water); different alternatives to connect the units have been presented with switches in a visualization scheme. The analogy for such situation has been performed and the study of a solar assisted heat pump using ice storage has been investigated. This diagram directly permits energy paths and their associated exergy destruction to be visualized; hence, sources of irreversibility are identifiable. It can be helpful for the comprehension of the global process and its operation as well as for identifying exergy losses. The method used to construct the diagram makes it easily adaptable to others units or structures or to others models depending on the complexity of the process. The use of switches could be very useful for optimization purposes

  10. Design and system developments of pulping and paper making equipment for reduction of energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Panda, A.

    1980-03-15

    Due to unprecedented price rise of energy, acute shortages and uncertainties in securing new and reliable energy sources, continuous technological developments have been taking place in equipment and system design in the field of pulp and paper industry. The possibility of energy reduction in areas of pulping, bleaching and cleaning of pulp, black liquor evaporation, approach flow system and drying of paper are analyzed. Specific energy consumption in terms of both heat and electricity can be considerably reduced by adopting continuous pulping methods, incorporating new concepts of counter-current impregnation, cooking high heat diffusion washing and displacement bleaching. Use of cleaners based on improved design can reduce electric energy use considerably by cleaning pulp at higher consistency and at reduced reject rates without impairing cleaning efficiency. Pre-evaporation of spent liquor in vapor recompression evaporators and use of falling film evaporation for scale forming black liquors can reduce steam demand in evaporation. Specific steam demand in paper drying can be reduced by 6 to 10% using thermo-rings or by modifications of dryer inner surface. Effects of energy consumption by integration of pulp and paper mills and by implementation of effluent treatment program are indicated.

  11. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  12. Development of Mixed Autonomous Power System on the Basis of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    D. P. Laoshvili

    2010-01-01

    Full Text Available A principal circuit diagram has been developed for an autonomous power system on the basis of renewable energy sources – solar and accumulator batteries.Due to the usage of a dc pulse converter, a dc converter (interrupter, an IGBT module inverter and a single-phase matching power transformer it is possible to achieve an effective sectioning of constant voltage and their inversion with minimal energy losses.Efficiency factor of the proposed converter installation exceeds 90 % and power factor is close to unity.

  13. Heat-pump-centered integrated community energy systems. System development, Consolidated Natural Gas Service Company, interim report

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Yudow, B.D.; Sala, D.L.; Donakowski, T.D.; Swenson, P.F.

    1979-08-01

    Heat-pump-centered integrated community energy systems are energy systems for communities that provide heating, cooling, and/or other thermal energy services through the use of heat pumps. Since heat pumps primarily transfer energy from existing and otherwise probably unused sources, rather than convert it from electrical or chemical to thermal form, HP-ICES offer a significant potential for energy savings. Results of the System Development Phase of the HP-ICES Project are given. The heat-actuated (gas) heat-pump incorporated into this HP-ICES concept is under current development and demonstration. The concurrent program was redirected in September 1977 toward large-tonnage applications; it is currently focusing on 60- to 400-ton built-up systems for multi-zone applications. This study evaluates the performance of a HAHP-ICES as applied to a community of residential and commercial buildings. To permit a general assessment of the concept in non-site-specific terms, the sensitivity of the system's performance and economics to climate, community size, utility rate structures, and economic assumptions is explored. (MCW)

  14. Development of an energy selector system for laser-driven proton beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, V., E-mail: scuderiv@lns.infn.it [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Carpinelli, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cirrone, G.A.P. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Korn, G. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Licciardello, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell' Universit 2, Legnaro (Pd) (Italy); Margarone, D. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Pisciotta, P.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); and others

    2014-03-11

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 10{sup 11} particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  15. Harnessing the sun: Developing capacity to sustain local solar energy systems

    Science.gov (United States)

    Olarewaju, Olufemi

    2011-12-01

    Use of solar photovoltaic (PV) and other renewable sources to meet rising electricity demand by a growing world population has gained traction in many countries in recent years. In rural Sub-Saharan Africa, where 86 percent of the populace has no access to electricity, solar energy systems represent partial solutions to demand, especially in support of rural development initiatives to supply potable water, health care services and education. Unfortunately, development of human and organizational capacity to maintain solar technology has not kept pace with the rate of installation, causing many to fall into disrepair and disuse. This has stimulated interest in capacity development processes required to make solar systems sustainable. To cast light on the practical meanings and challenges of capacity development for solar energy, this study compares the experiences of two rural projects, one in Lagos State (Nigeria) that disregarded the importance of capacity development, and the other in Texas (United States) that, in contrast, made such development the centerpiece of its operations. Based largely on interviews with 60 key actors, findings underscore the crucial importance of sustained investment in capacity development to assurance of durable power supply from renewable sources.

  16. Cuban energy development perspectives

    International Nuclear Information System (INIS)

    Berdellans Escobar, Ilse; Perez Martin, David; Lopez Lopez, Ileana; Ricardo Mora, Henry; Gomez De la Torre, Yoandys

    2005-01-01

    In this paper from energy demand scenario calculated for the country until 2025, energy supply options were assessed. Three energy development scenarios considering economic and social development projections and different energy options were evaluated: a reference scenario which includes the nowadays energy development projections; a second scenario basing the development on intensive use of domestic fossil fuels; and a third scenario, where the development is based on the maximum use of domestic renewable energy potential. The results are analyzed and recommendations are formulated

  17. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  18. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  19. Towards Design of Sustainable Energy Systems in Developing Countries: Centralized and Localized Options

    Science.gov (United States)

    Kursun, Berrin

    Energy use in developing countries is projected to equal and exceed the demand in developed countries in the next five years. Growing concern about environmental problems, depletion and price fluctuation of fossil fuels pushes the efforts for meeting energy demand in an environmentally friendly and sustainable way. Hence, it is essential to design energy systems consisting of centralized and localized options that generate the optimum energy mix to meet this increasing energy demand in a sustainable manner. In this study, we try to answer the question, "How can the energy demand in Rampura village be met sustainably?" via two centralized clean coal (CCC) technology and three localized energy technology options analyzed. We perform the analysis of these energy technologies through joint use of donor-side analysis technique emergy analysis (EA) and user-side analysis technique life cycle assessment (LCA). Sustainability of such an energy combination depends on its reliance on renewable inputs rather than nonrenewable or purchased inputs. CCC technologies are unsustainable energy systems dependent on purchased external inputs almost 100%. However, increased efficiency and significantly lower environmental impacts of CCC technologies can lead to more environmentally benign utilization of coal as an energy source. CCC technologies supply electricity at a lower price compared to the localized energy options investigated. Localized energy options analyzed include multi-crystalline solar PV, floating drum biogas digester and downdraft biomass gasifier. Solar PV has the lowest water and land use, however, solar electricity has the highest price with a high global warming potential (GWP). Contrary to general opinion, solar electricity is highly non-renewable. Although solar energy is a 100% renewable natural resource, materials utilized in the production of solar panels are mostly non-renewable purchased inputs causing the low renewability of solar electricity. Best

  20. Design, development and characterization of tetrode type electron gun system for generation of low energy electrons

    International Nuclear Information System (INIS)

    Deore, A.V.; Bhoraskar, V.N.; Dhole, S.D.

    2011-01-01

    A tetrode type electron gun system for the generation of low energy electrons was designed, developed and characterized. An electron gun having four electrodes namely cathode, focusing electrode, control electrode and anode has been designed for the irradiation experiments. This electron gun is capable to provide electrons of energy over the range of 1 keV to 20 keV, with current maximum upto 100 μA. The electron gun and a faraday cup are mounted in the evacuated cylindrical chamber. The samples are fixed on the faraday cup and irradiated with low energy electrons at a pressure around 10 -6 mbar. In this electron gun system, at any electron energy over the entire range, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. Also, the circular shape of the beam spot was maintained, even though the beam current and beam diameter are varied. The uniformity of the electron beam over the entire beam area was measured with a multi electrode assembly and found to be well within 15%. This system is being used for the synthesis and diffusion of metal and semiconductor nanoparticles in polymeric materials. (author)

  1. DEVELOPING AN INTEGRATED MANAGEMENT SYSTEM FOR URBAN AND ENERGY PLANNING TOWARDS A LOW-CARBON CITY

    Science.gov (United States)

    Maeda, Hideto; Nakakubo, Toyohiko; Tokai, Akihiro

    In this study, we developed an integrated management model that supports local government to make a promising energy saving measure on a block-scale combined with urban planning. We applied the model to Osaka city and estimated CO2 emissions from the residential and commercial buildings to 2050. The urban renewal cases selected in this study included advanced multipole accumulation case, normal multipole accumulation case, and actual trend continuation case. The energy saving options introduced in each case included all-electric HP system, micro grid system, and we also set the option where the greater CO2 reduction one is selected in each block. The results showed that CO2 emission in 2050 would be reduced by 54.8-57.6% relative to the actual condition by introducing the new energy system in all cases. In addition, the amount of CO2 reduction in actual trend continuation case was highest. The major factor was that the effect of CO2 emission reductions by installing the solar power generation panel was higher than the effect by utilizing heated water mutually on the high-density blocks in terms of total urban buildings' energy consumption.

  2. Exergy, Energy, and Dynamic Parameter Analysis of Indigenously Developed Low-Concentration Photovoltaic System

    OpenAIRE

    Pankaj Yadav; Brijesh Tripathi; Manoj Kumar

    2013-01-01

    Piecewise linear parabolic trough collector (PLPTC) is designed and developed to concentrate solar radiation on monocrystalline silicon based photovoltaic module. A theoretical model is used to perform electrical energy and exergy analysis of low-concentration photovoltaic (LCPV) system working under actual test conditions (ATC). The exergy efficiency of LCPV system is in the range from 5.1% to 4.82% with increasing rate of input exergy rate from 30.81 W to 96.12 W, when conce...

  3. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  4. A Study on planning of promotion for international collaborative development of Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Hee, Chang Moon; Yang, M. S.; Ha, J. J.

    2006-06-01

    Korea has participated in the international collaboration programs for the development of future nuclear energy systems driven by the countries holding advanced nuclear technology and Korea and U. S. have cooperated in the INERI. This study is mainly at developing the plan for participation in the collaborative development of the Gen IV, searching the participation strategy for INERI and the INPRO, and the international cooperation in these programs. Contents and scope of the study for successful achievement are as follows; - Investigation and analysis of international and domestic trends related to advanced nuclear technologies - Development of the plan for collaborative development of the Gen IV and conducting the international cooperation activities - Support for the activities related to I-NERI between Korea and U. S. and conducting the international cooperation - International cooperation activities for the INPRO This study can be useful for planning the research plan and setting up of the strategy of integrating the results of the international collaboration and the domestic R and D results by combining the Gen IV and the domestic R and D in the field of future nuclear technology. Furthermore, this study can contribute to establishing the effective foundation and broadening the cooperation activities not only with the advanced countries for acquisition of the advanced technologies but also with the developing countries for the export of the domestic nuclear energy systems

  5. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    Science.gov (United States)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  6. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  7. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  8. Recent Developments of the Modelica"Buildings" Library for Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

    2011-04-01

    At the Modelica 2009 conference, we introduced the Buildings library, a freely available Modelica library for building energy and control systems. This paper reports the updates of the library and presents example applications for a range of heating, ventilation and air conditioning (HVAC) systems. Over the past two years, the library has been further developed. The number of HVAC components models has been doubled and various components have been revised to increase numerical robustness.The paper starts with an overview of the library architecture and a description of the main packages. To demonstrate the features of the Buildings library, applications that include multizone airflow simulation as well as supervisory and local loop control of a variable air volume (VAV) system are briefly described. The paper closes with a discussion of the current development.

  9. Nuclear renaissance in Asia. Energy security and development of nuclear power generation system

    International Nuclear Information System (INIS)

    Nakasugi, Hideo

    2009-01-01

    The energy policy and strategy of development of nuclear power generation system of China, India and Korea are stated on the basis of use of light water reactors (LWRs). The conditions of power generation and introduction plans of nuclear energy of other Asian countries such as Vietnam, Thailand, Indonesia, Malaysia and Philippines are described. The power plant capacity of China increased from 50,500 MW in 2004, to 65,000 MW in 2005, and the target value is 40,000 MW of operating nuclear plants and 18,000 MW in building in 2020. China is lagging behind in peaceful use of nuclear energy technologies. A plan for the reform of nuclear industry and nuclear power generation projects of China are summarized. Total power plant capacity of India is 145,000 MW, but the nuclear plant capacity is 4,120 MW in 2008 and 63,000 MW of the target in 2032. Development of nuclear power, circumstance, and cooperation with other countries' industries are explained. 17,716 MW of nuclear power is in operation, 6,800 MW in building and 2,800 MW in the planning stage in Korea. History of development of national reactors and the subjects of development of the fourth generation reactor of Korea are stated. Management system of nuclear power plants in China, technical bases of nuclear power plants in China, development system of nuclear power generation in India, the conditions of power production of Korea in 2008, the capacity factor of Korea, Japan and world from 1998 to 2008, and comparison of nuclear industries in China, India and Korea are illustrated. (S.Y.)

  10. Development of a Hydrogen Energy System as a Grid Frequency Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Mitch [Univ. of Hawaii, Honolulu, HI (United States); Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Swider-Lyons, Karen [U.S. Naval Research Lab., Washington, DC (United States); Virji, Meheboob [GRandalytics, Honolulu, HI (United States); Randolph, Guenter [Hydrogen Renewable Energy System Analysis, Pickering, ON (Canada)

    2016-07-15

    The Hawai‘i Natural Energy Institute (HNEI) is conducting research to assess the technical potential of using an electrolyzer-based hydrogen (H2) production and storage system as a grid demand response tool using battery data from a 200 MW grid to show the kind of response required. The hydrogen produced by the electrolyzer is used for transportation. A 65 kg/day hydrogen energy system (HES) consisting of a PEM electrolyzer, 35 bar buffer tank, 450 bar compressor, and associated chiller systems was purchased and installed at the Hawaii Natural Energy Laboratory Hawaii Authority (NELHA) to demonstrate long-term durability of the electrolyzer under cyclic operation required for frequency regulation on an island grid system. The excess hydrogen was stored for use by three fuel-cell buses to be operated at Hawai‘i Volcanoes National Park (HAVO) and by the County of Hawai‘i Mass Transit Agency (MTA). This paper describes the site selection and equipment commissioning, plus a comprehensive test plan that was developed to characterize the performance and durability of the electrolyzer under dynamic load conditions. The controls were modified for the operating envelope and dynamic limits of the electrolyzer. While the data showed these modifications significantly improved the system response time, it is not fast enough to match a BESS response time for grid frequency management. The electrolyzer can only be used for slower acting changes (1 to 0.5 Hz). A potential solution is to design an electrolyzer/BESS hybrid system and develop a modeling program to find the optimum mix of battery and electrolyzer to provide the maximum grid regulation services at minimum cost.

  11. Smart Integrated Renewable Energy Systems (SIRES: A Novel Approach for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Zeel Maheshwari

    2017-08-01

    Full Text Available Technical and economic aspects of the viability of SIRES (Smart Integrated Renewable Energy Systems for sustainable development of remote and rural areas of the world are discussed. The hallmark of the proposed SIRES is the smart utilization of several renewable resources in an integrated fashion and matching of resources and needs a priori with the ultimate goal of “energization”, not just “electrification”. Historical background leading to this approach is succinctly presented along with a comprehensive schematic diagram. Modeling of various components and their collective use in optimizing SIRES with the aid of genetic algorithm are presented using a typical hypothetical example. SIRES is also compared with various approaches for rural development based on Annualized Cost of System (ACS and installation costs. Implementation of SIRES will lead to overall sustainable development of rural communities.

  12. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  13. Systems Engineering Applied to the Development of a Wave Energy Farm.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Bull, Diana L; Costello, Ronan Patrick; Aurelien Babarit; Kim Nielsen; Claudio Bittencourt Ferreira; Ben Kennedy; Malins, Robert Joseph; Kathryn Dykes; Jochem Weber

    2017-04-01

    A motivation for undertaking this stakeholder requirements analysis and Systems Engineering exercise is to document the requirements for successful wave energy farms to facilitate better design and better design assessments. A difficulty in wave energy technology development is the absence to date of a verifiable minimum viable product against which the merits of new products might be measured. A consequence of this absence is that technology development progress, technology value, and technology funding have largely been measured, associated with, and driven by technology readiness, measured in technology readiness levels (TRLs). Originating primarily from the space and defense industries, TRLs focus on procedural implementation of technology developments of large and complex engineering projects, where cost is neither mission critical nor a key design driver. The key deficiency with the TRL approach in the context of wave energy conversion is that WEC technology development has been too focused on commercial readiness and not enough on the stakeholder requirements and particularly economic viability required for market entry.

  14. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  15. Use of ENPEP for developing a strategy for the energy and electricity system in Romania

    International Nuclear Information System (INIS)

    Popovici, D.

    1997-01-01

    In Romania, the energy and electricity sector needs to be restructured and modernized to meet the requirements of both market economy and environmental protection. For these reasons, Romania has shown some interest in launching ENPEP studies. In the frame of a technical cooperation project between the Romanian Ministry of Industry, the International Atomic Energy Agency (IAEA) and the Argonne National Laboratory (ANL), MAED and ELECTRIC (WASP) models have been used since 1990 to determine optimal expansion plans of the electric power system. After the successful conclusion of the testing of BALANCE and IMPACTS models under Romania's conditions, these models are now being used for planning the development of the energy system. In order to adapt the models to the particular conditions of Romania, an attempt was made, in cooperation with the International Atomic Energy Agency (IAEA) and Argonne National Laboratory (ANL), to find proper solutions to allow the modelling of specific processes and to overcome some restrictions of the models. This paper presents some of these solutions and suggestions for further improvement of the models. (author). 3 figs, 5 tabs

  16. Use of ENPEP for developing a strategy for the energy and electricity system in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, D [Institute of Power Studies and Design, Bucharest (Romania)

    1997-09-01

    In Romania, the energy and electricity sector needs to be restructured and modernized to meet the requirements of both market economy and environmental protection. For these reasons, Romania has shown some interest in launching ENPEP studies. In the frame of a technical cooperation project between the Romanian Ministry of Industry, the International Atomic Energy Agency (IAEA) and the Argonne National Laboratory (ANL), MAED and ELECTRIC (WASP) models have been used since 1990 to determine optimal expansion plans of the electric power system. After the successful conclusion of the testing of BALANCE and IMPACTS models under Romania`s conditions, these models are now being used for planning the development of the energy system. In order to adapt the models to the particular conditions of Romania, an attempt was made, in cooperation with the International Atomic Energy Agency (IAEA) and Argonne National Laboratory (ANL), to find proper solutions to allow the modelling of specific processes and to overcome some restrictions of the models. This paper presents some of these solutions and suggestions for further improvement of the models. (author). 3 figs, 5 tabs.

  17. Computerized information system on the impacts of coal-fired energy development in the Southwest

    International Nuclear Information System (INIS)

    Layton, D.W.

    1975-01-01

    An important part of the process of assessing the environmental impacts of coal-fired energy development in the Southwest is the transfer of information between electric utilities, federal agencies, and the interested public. There are, however, several problems associated with the transfer of information among the different groups. The acquisition of factual material on power projects by the interested public, for example, is adversely affected by the sufficiency, convenience, and credibility of present sources. Efforts of electric utilities and federal agencies to effectively communicate impact information are hindered by the inability of existing sources to selectively transfer information and to rapidly transmit information on the cumulative impacts of many combinations of power plants. This research concerns the development and evaluation of a computerized information system designed to selectively transfer information on both the cumulative and individual impacts of several electric generating facilities located in the southwestern United States. The information system incorporates features of management information systems, environmental information systems, and an issue-oriented system developed at The University of Illinois, making it a hybrid system capable of communicating impact information derived from a variety of sources

  18. Development of a user-friendly, low-cost home energy monitoring and recording system

    International Nuclear Information System (INIS)

    Fletcher, James; Malalasekera, Weeratunge

    2016-01-01

    This paper reports research undertaken to develop a user-friendly home energy monitoring system which is capable of collecting, processing and displaying detailed usage data. The system allows users to monitor power usage and switch their electronic appliances remotely, using any web enabled device, including computers, phones and tablets. The system aims to raise awareness of consumer energy use by gathering data about usage habits, and displaying this information to support consumers when selecting energy tariffs or new appliances. To achieve these aims, bespoke electrical hardware, or ‘nodes’, have been designed and built to monitor power usage, switch devices on and off, and communicate via a Wi-Fi connection, with bespoke software, the ‘server’. The server hosts a webpage which allows users to see a real-time overview of how power is being used in the home as well as allowing scheduled tasks and triggered tasks (which respond to events) to be programmed. The system takes advantage of well standardised networking specifications, such as Wi-Fi and TCP, allowing access from within the home, or remotely through the internet. The server runs under Debian Linux on a Raspberry Pi computer and is written in Python, HTML and JavaScript. The server includes advanced functionality, such as device recognition which allows users to individually monitor several devices that share a single node. The openPicus Flyport is used to provide Wi-Fi connectivity and programmable logic control to nodes. The Flyport is programmed with code compiled from C. - Highlights: • The system is capable of collecting, processing and displaying detailed usage data. • The system is built using commonly available components and software. • Nodes in this system can communicate via a Wi-Fi connection with a server. • The data saved in the server can be used in smart grid applications.

  19. Research and development on super heat pump energy accumulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This is the final report on research and development of super heat pump energy accumulation system, which has been carried out from FY 1985 to 1992. It describes outline of the research and development program, R and D results, final evaluation methodology, evaluation of the R and D, proposals for the commercialization, and so on. The super high performance compression heat pumps are technically evaluated for highly efficient type (for heating, and cooling and heating), high temperature type (utilizing high temperature heat source, and low temperature heat source), working fluids (alcohol-based and nonalcohol-based), stainless steel plate fin type heat exchanger, EHD heat exchanger, and so on. The other techniques evaluated include those for chemical heat storage, combined systems, plant simulation, and systemization. The evaluation works are also directed to the economic and environmental aspects. Finally, the R and D themes are proposed to leap over various hurdles, e.g., reliability and economic viability, for the eventual commercialization of the energy accumulation system. (NEDO)

  20. Developing Intelligent System Dynamic Management Instruments on Water-Food-Energy Nexus in Response to Urbanization

    Science.gov (United States)

    Tsai, W. P.; Chang, F. J.; Lur, H. S.; Fan, C. H.; Hu, M. C.; Huang, T. L.

    2016-12-01

    Water, food and energy are the most essential natural resources needed to sustain life. Water-Food-Energy Nexus (WFE Nexus) has nowadays caught global attention upon natural resources scarcity and their interdependency. In the past decades, Taiwan's integrative development has undergone drastic changes due to population growth, urbanization and excessive utilization of natural resources. The research intends to carry out interdisciplinary studies on WFE Nexus based on data collection and analysis as well as technology innovation, with a mission to develop a comprehensive solution to configure the synergistic utilization of WFE resources in an equal and secure manner for building intelligent dynamic green cities. This study aims to establish the WFE Nexus through interdisciplinary research. This study will probe the appropriate and secure resources distribution and coopetition relationship by applying and developing techniques of artificial intelligence, system dynamics, life cycle assessment, and synergy management under data mining, system analysis and scenario analysis. The issues of synergy effects, economic benefits and sustainable social development will be evaluated as well. First, we will apply the system dynamics to identify the interdependency indicators of WFE Nexus in response to urbanization and build the dynamic relationship among food production, irrigation water resource and energy consumption. Then, we conduct comparative studies of WFE Nexus between the urbanization and the un-urbanization area (basin) to provide a referential guide for optimal resource-policy nexus management. We expect to the proposed solutions can help achieve the main goals of the research, which is the promotion of human well-being and moving toward sustainable green economy and prosperous society.

  1. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 3); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy (continued), energy supply and utilization, reducing environmental loads, and designing the optimum systems). The R and D on heat transfer system through the vacuum heat insulation pipes involves fabrication, on a trial basis, the vacuum insulation covers for the vacuum insulation tubes, joints, flanges and valves for the 80A pipes, and the heat loss evaluation test for each item. The R and D on the energy supply and utilization techniques involves the heat transfer systems for a variety of fuels by the highly functional heat pump, and compression/absorption hybrid type heat-utilization system. The hybrid type heat-utilization system simulation results suggest possibility of achieving exergy efficiency of 56% as the development target by use of the new medium. The R and D on the environmental load reduction involves the power-saving type heat pump systems which use a natural coolant. (NEDO)

  2. Development of a desalination system driven by solar energy and low grade waste heat

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Sultan, Gamal I.

    2015-01-01

    Highlights: • Productivity increases significantly up to critical waste gas flow rate. • Productivity decreases for waste gas flow rate higher than critical flow rate. • Increasing evaporator inlet waste gas temperature increases productivity. • The proposed system coupled with combined cycle has a fuel saving 1844 kg/h. • The cost of potable water produced is 0.014 USD/L. - Abstract: Various thermal power systems emit flue gases containing significant amount of waste energy. The aim of this research is to recover a valuable amount of this energy to develop an efficient desalination system coupled with solar energy. Experiments were performed in the month of June 2014 at Al-Qassim, Saudi Arabia (26°4′53″N, 43°58′32″E) for different hot air (waste gas) flow rates and evaporator inlet water temperature to study the effect on daily potable water productivity. The proposed setup comprised an evaporator, condenser, air blower, electric heaters, storage tank and evacuated tube solar collectors. It was found that increasing the hot air flow rate increases the water productivity up to the critical flow rate after which the productivity decreases. Analytical model was developed for this desalination setup and the results were compared to that obtained from experiments. The overall daily (9 AM–5 PM) potable water productivity of the proposed system is about 50 L for corresponding useful waste heat varying from 130 to 180 MJ/day and a global solar radiation on a horizontal surface ranging from 15 to 29 MJ/m 2 /day. Water is produced at the cost of 0.014 USD/L and the fuel saving equal to 1844 kg/h is achieved for the proposed desalination system

  3. Evaluating energy-system alternatives in the context of sustainable development

    International Nuclear Information System (INIS)

    Wilson, D.

    1993-01-01

    Growing awareness of the negative social, environmental and economic impacts caused by the production, distribution and end-use consumption of energy has led the search for alternatives to become increasingly urgent and complex. The need for analytical methods and tools for evaluating options and opportunities is particularly acute in rapidly developing countries. The aim of this article is to illustrate the broad range of issues and impacts that are important for evaluating and comparing energy-system alternatives in the context of sustainable development. The feasibility of producing and utilizing biomass-based ethanol as an alternative transportation fuel in Thailand is explored herein to provide examples and a forum for discussion of these issues. Scenarios describe the conditions under which a significant potential for fuel-switching to domestically-produced ethanol appears to exist. Harnessing this potential could lead to important improvements in the energy system's impacts on human health, Thailand's economy, and the environment. Achieving these improvements, however, would require comprehensive and long-term planning and support on the part of the Thai government

  4. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  5. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  6. Progress of fusion fuel processing system development at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; O'Hira, Shigeru; Hayashi, Takumi; Nakamura, Hirofumi; Kobayashi, Kazuhiro; Suzuki, Takumi; Yamada, Masayuki; Konishi, Satoshi

    2000-01-01

    The Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute has been working on the development of fuel processing technology for fusion reactors as a major activity. A fusion fuel processing loop was installed and is being tested with tritium under reactor relevant conditions. The loop at the TPL consists of ZrCo based tritium storage beds, a plasma exhaust processing system using a palladium diffuser and an electrolytic reactor, cryogenic distillation columns for isotope separation, and analytical systems based on newly developed micro gas chromatographs and Raman Spectroscopy. Several extended demonstration campaigns were performed under realistic reactor conditions to test tritiated impurity processing. A sophisticated control technique of distillation column was performed at the same time, and integrated fuel circulation was successfully demonstrated. Major recent design work on the International Thermonuclear Experimental Reactor (ITER) tritium plant at the TPL is devoted to water detritiation based on liquid phase catalytic exchange for improved tritium removal from waste water

  7. Energy and Development

    Directory of Open Access Journals (Sweden)

    Gilles Carbonnier

    2012-03-01

    Full Text Available Published by Palgrave MacmillanThis chapter introduces the thematic dossier of International Development Policy on the intimate relationship between energy and development. The authors discuss the centrality of fossil fuels in the economic growth of the Western world since the nineteenth century and the key role of oil in the twentieth century and question the future of this development model in the face of geological and climatic constraints. They examine the gaps and misunderstandings that separate social sciences and natural sciences as well as recent attempts to establish interdisciplinary dialogue around ecological economics and industrial ecology. The authors then analyse what is at stake for developing countries, inequalities in access to energy resources, the failure of the global governance system to deal with mounting tensions associated with the depletion of oil and the environmental consequences of an ever increasing consumption of non-renewable resources.

  8. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  9. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  10. Application and Development of Energy System Optimisation Models to Meet Challenges of the Future

    DEFF Research Database (Denmark)

    Balyk, Olexandr

    ) and the nature of the issues that are dealt with (i.e. high degree of uncertainly with regard to future technology characteristics, global policy development on climate mitigation, etc.). Additionally, geographic information systems are used in one of the papers to conduct a spatial analysis for estimating wind...... energy, and an increased climate change mitigation potential.Other results highlight among others, the possible future roles of individual technologies (i.e. wind power in Denmark and carbon capture and storage in China) in the climate constrained world, the difficulty to achieve the 2°C target agreed...

  11. Development of energy storage system for DC electric rolling stock applying electric double layer capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Sekijima, Y.; Kudo, Y.; Inui, M. [Central Japan Railway Co., Aichi (Japan); Monden, Y.; Toda, S.; Aoyama, I. [Toshiba Corp., Tokyo (Japan)

    2006-07-01

    This paper provided details of an energy storage system designed for use with DC electric rolling stock through the application of an electric double layer capacitor (EDLC). The EDLC was selected due to its long life-span and its low operational costs. Testing was conducted to assess the system's basic control function, acceleration using stored energy, and behaviour during regenerative brake failure. A control circuit chip was used in the DC electric rolling stock on an inverter of the energy storage system. Tests confirmed that the control method was effective for actual rolling stocks. A full-scale energy storage system for installation on series 313 locomotives was then constructed. Braking energy was generated only from a regenerative brake. In case of brake failure, braking energy was generated from an air brake was well as an electric brake. Data from a field test conducted at the Tokaido and Chuo railway lines showed a capacity of 0.6 kWh. The EDLC was used to reduce peak air brake energy. It was concluded that storing 0.28 kW of brake energy in the EDLC can reduce peaks of air brake energy in high speed ranges. Experimental equipment was used to confirm use of the system with 0.56 kWh of EDLC, the average energy of air brake used in regenerative energy failure. 1 tab., 10 figs.

  12. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yamaguchi, Yasuhiro

    2005-01-01

    A new inventive radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for monitoring doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. Scintillations from the detector induced by thermal and fast neutrons, photons and muons were discriminated by analyzing their waveforms, and their light outputs were directly converted into the corresponding doses by applying the G-function method. Characteristics of DARWIN were studied by both calculation and experiment. The calculated results indicate that DARWIN gives reasonable estimations of doses in most radiation fields. It was found from the experiment that DARWIN has an excellent property of measuring doses from all particles that significantly contribute to the doses in surrounding environments of accelerator facilities - neutron, photon and muon with wide energy ranges. The experimental results also suggested that DARWIN enables us to monitor small fluctuation of neutron dose rates near the background-level owing to its high sensitivity. (author)

  13. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  14. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  15. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  16. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    International Nuclear Information System (INIS)

    Ustinov, A; Khayrullina, A; Khmelik, M; Sveshnikova, A; Borzenko, V

    2016-01-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia. (paper)

  17. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  18. Development of a fragment detector system for the study of peripheral collisions at high beam energies

    International Nuclear Information System (INIS)

    Spies, H.

    1992-06-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR of the Society for Heavy-Ion research in Darmstadt one of the essential research aims of the LAND collaboration is the study of high-lying collective states after electromagnetic excitation in heavy-ion collisions at nearly relativistic beam energies. By the exchange of virtual photons with high energy giant resonances are excited with high probabilities. The main decay channel of giant resonances in heavy nuclei is the emission of neutrons as well as below the particle threshold the emission of γ radiation. For the study of these states a detector system was developed, which makes the kinematically complete measurement of all reaction partners possible. For the determination of the neutron energy serves the Large Area Neutron Detector LAND, a time-of-flight spectrometer for high-energetic neutrons. For the measurement of the γ radiation emitted by the excited projectile the target is surrounded by an array of 48 BaF 2 crystals. A radiation detector system consisting of 6 single detectors and further 5 help detectors allows together with the magnetic spectrometer ALADIN the identification of the heavy projectile fragments by charge, momentum, and mass. Four position-sensitive plastic scintillators serve for the measurement of the trajectory of the projectile respectively the projectile fragments in front and behind the deviating magnet. Additionally with these detectors the velocity is measured. For the determination of the nuclear charge of the projectile fragments serve a multiple-ionization chamber and a Cherenkov detector. In this thesis the development and taking into operation of the LAND radiation detector system is described. (orig./HSI) [de

  19. UP-report. Energy systems studies. Basis of the Development platform. System to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Energisystemstudier. Underlag fraan Utvecklingsplattformen. System till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    Ingelstam, Lars; Alm, Maria

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation in the thematic area Energy systems studies for the period 2011 - 2016. The report has been compiled by members of the the Development platform System. This report provides background and circumstances for the energy system studies theme, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge that enabled the Swedish Energy Agency to then develop a strategy that meets the needs of society and business.

  20. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  1. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  2. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  3. ENERGY SYSTEM DEVELOPMENT AND LOAD MANAGEMENT THROUGH THE REHABILITATION AND RETURN TO PLAY PROCESS.

    Science.gov (United States)

    Morrison, Scot; Ward, Patrick; duManoir, Gregory R

    2017-08-01

    Return-to-play from injury is a complex process involving many factors including the balancing of tissue healing rates with the development of biomotor abilities. This process requires interprofessional cooperation to ensure success. An often-overlooked aspect of return-to-play is the development and maintenance of sports specific conditioning while monitoring training load to ensure that the athlete's training stimulus over the rehabilitation period is appropriate to facilitate a successful return to play. The purpose of this clinical commentary is to address the role of energy systems training as part of the return-to-play process. Additionally the aim is to provide practitioners with an overview of practical sports conditioning training methods and monitoring strategies to allow them to direct and quantify the return-to-play process. 5.

  4. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  5. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  6. Steps towards the development of a certification system for sustainable Bio-energy trade

    International Nuclear Information System (INIS)

    Faaij, A.; Lewandoski, I.

    2004-07-01

    It is expected that international biomass trade will significantly increase in the coming years because of the possibly lower costs of imported biomass, the better supply security through diversification and the support by energy and climate policies of various countries. Concerns about potential negative effects of large scale biomass production and export, like deforestation or the competition between food and biomass production, have led to the demand for sustainability criteria and certification systems that can control biomass trade. Because neither such criteria and indicator sets nor certification systems for sustainable biomass trade are yet available the objective of this study is to generate information that can help to develop them. For this purposes existing certification systems, sets of sustainability criteria or guidelines on environmental or social sound management of resources are analyzed with the purpose to learn about the requirements, contents and organizational set ups of a certification system for sustainable biomass trade. First an inventory of existing systems was made; next, their structures were analyzed. Key finding from the analysis of internationally applied certification systems was that they are generally led by an international panel that represents all countries and stakeholder involved in the biomass production and trade activities. In a third and fourth step different approaches to formulate standards were described and a list of more than 100 social, economic, ecological and general criteria for sustainable biomass trade was extracted from the reviewed systems. In step five, methods to formulate indicators, that make sustainability criteria measurable, and verification tools that are used to control the performance of indicators are described. It is recommended to further develop the criteria and indicator (C and I) sets for sustainable biomass trade by involvement of the relevant stakeholder (e.g. biomass producer and consumer

  7. Steps towards the development of a certification system for sustainable bio-energy trade

    International Nuclear Information System (INIS)

    Lewandowski, I.; Faaij, A.P.C.

    2006-01-01

    It is expected that international biomass trade will significantly increase in the coming years because of the possibly lower costs of imported biomass, the better supply security through diversification and the support by energy and climate policies of various countries. Concerns about potential negative effects of large-scale biomass production and export, like deforestation or the competition between food and biomass production, have led to the demand for sustainability criteria and certification systems that can control biomass trade. Because neither such criteria and indicator sets nor certification systems for sustainable biomass trade are yet available, the objective of this study is to generate information that can help to develop them. For these purposes, existing certification systems, sets of sustainability criteria or guidelines on environmental or social sound management of resources are analyzed with the purpose to learn about the requirements, contents and organizational set ups of a certification system for sustainable biomass trade. First, an inventory of existing systems was made; second, their structures were analyzed. Key finding from the analysis of internationally applied certification systems was that they are generally led by an international panel that represents all countries and stakeholders involved in the biomass production and trade activities. In third and fourth steps different approaches to formulate standards were described and a list of more than 100 social, economic, ecological and general criteria for sustainable biomass trade was extracted from the reviewed systems. Fifth, methods to formulate indicators, that make sustainability criteria measurable, and verifiers that are used to control the performance of indicators are described. It is recommended to further develop the criteria and indicator (C and I) sets for sustainable biomass trade by involvement of the relevant stakeholders (e.g. biomass producer and consumer) and the

  8. Development of a thermal–hydraulic system code, TAPINS, for 10 MW regional energy reactor

    International Nuclear Information System (INIS)

    Lee, Yeon-Gun; Kim, Jong-Won; Park, Goon-Cherl

    2012-01-01

    Highlights: ► A thermal–hydraulic system code named TAPINS is developed for simulations of an integral reactor. ► The TAPINS is based on the one-dimensional momentum integral model. ► A dynamic model for the steam–gas pressurizer with non-condensable gas present is proposed. ► A series of pressurizer insurge test and natural circulation test are simulated by the TAPINS. ► It is proved that the TAPINS can provide reliable prediction of an integral reactor system on natural circulation. - Abstract: Small modular reactors (SMRs) with integral system layout have been drawing a great deal of attention as alternative options to branch out the utilization of nuclear energy as well as to offer the inherent safety features. Serving to confirm the design basis and analyze the transient behavior of an integral reactor such as REX-10, a thermal–hydraulic system code named TAPINS (Thermal–hydraulic Analysis Program for INtegral reactor System) is developed in this study. The TAPINS supports the simple pre-processing to build up the frameworks of node diagram for the typical integral reactor configuration. The TAPINS basically consists of mathematical models for the reactor coolant system, the core, the once-through helical-coil steam generator, and the built-in steam–gas pressurizer. The hydrodynamic model of the TAPINS is formulated using the one-dimensional momentum integral model, which is based on the analytical integration of the momentum equation around the closed loop in the system. As a key contribution of the study, a dynamic model for the steam–gas pressurizer with non-condensable gas present is newly proposed and incorporated into the code. The TAPINS is validated by comparing against the experimental data from the pressurizer insurge tests conducted at MIT (Massachusetts Institute of Technology) and natural circulation tests in the RTF (REX-10 Test Facility) at RERI (Regional Energy Reactor Institute). From the comparison results, it is

  9. Socio-cultural barriers to the development of a sustainable energy system - the case of hydrogen

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Andersen, Anne Holst

    Any transition to a more sustainable energy system, radically reducing greenhouse gas emissions, is bound to run in to a host of different barriers - technological and economic, but also socio-cultural. This will also be the case for any large-scale application of hydrogen as energy carrier......, especially if the system is going to be based on renewable energy sources. The aim of these research notes is to review and discuss major socio-cultural barriers to new forms of energy supply in general and to hydrogen specifically. Reaching sufficient reductions in greenhouse gas emissions may require more...

  10. Developing Energy Technology Course for Undergraduate Engineering Management Study Program in Lake Toba Area with Particular Focus to Sustainable Energy Systems in Development Context

    Science.gov (United States)

    Manik, Yosef; Sinaga, Rizal; Saragi, Hadi

    2018-02-01

    Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.

  11. Organizational, interface, and financial barriers to the commercial development of community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schladale, R.; Ritschard, R.

    1979-12-01

    The scope of this analysis was limited to systems producing electricity - the output of a community energy system typically falling in the range 10 kW to 150 MW. The purpose of this study was to identify the barriers that groups and individuals will face when attempting to commercialize community energy systems. Three particular classes of barriers were investigated: those within the organization attempting the commercialization, those that arise from attempts to link the community system with an electric utility, and those that impede the flow of investment capital into community energy systems. In summary, three general observations regarding community energy systems may be distilled from this study. First, although many barriers exist to the commercialization of the systems, few if any appear unresolvable. Perhaps most challenginng will be the problem of expanding the use of cogeneration and municipal sold waste while at the same time maintaining or improving ambient air quality. Second, the financial subsidies required to make community systems competitive are not extraordinary. Indeed, with the exception of photovoltaics they should not amount to more than about 10% of capital cost of the new systems, and mass production may eliminate the need for subsidies altogether at some point in the future. Third, the administrative and regulatory procedures required to make community energy systems viable appear to be taking shape in a positive and timely fashion.

  12. Role of the national energy system modelling in the process of the policy development

    OpenAIRE

    Merse Stane; Urbancic Andreja; Sucic Boris; Pusnik Matevz

    2012-01-01

    Strategic planning and decision making, nonetheless making energy policies and strategies, is very extensive process and has to follow multiple and often contradictory objectives. During the preparation of the new Slovenian Energy Programme proposal, complete update of the technology and sector oriented bottom up model of Reference Energy and Environmental System of Slovenia (REES-SLO) has been done. During the redevelopment of the REES-SLO model trade-off between the simulation and opt...

  13. Development of road hydronic snow-ice melting system with solar energy and seasonal underground thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q.; Liu, Y.; Ma, C.Q.; Li, M.; Huang, Y.; Yu, M. [Jilin Univ., Changchun (China). Dept. of Thermal Energy Engineering; Liu, X.B. [Climate Master Inc., OK (United States)

    2008-07-01

    Snow and ice melting technologies that used thermal energy storage were explored. The study included analyses of solar heat slab, seasonal underground thermal energy storage, and embedded pipe technologies. Different road materials, roadbed construction methods, and underground rock and soil conditions were also discussed. New processes combining all 3 of the main technologies were also reviewed. Other thermal ice melting technologies included conductive concrete and asphalt; heating cables, and hydronic melting systems. Geothermal energy is increasingly being considered as a means of melting snow and ice from roads and other infrastructure. Researchers have also been focusing on simulating heat transfer in solar collectors and road-embedded pipes. Demonstration projects in Japan, Switzerland, and Poland are exploring the use of combined geothermal and solar energy processes to remove snow and ice from roads. Research on hydronic melting technologies is also being conducted in the United States. The study demonstrated that snow-ice melting energy storage systems will become an important and sustainable method of snow and ice removal in the future. The technology efficiently uses renewable energy sources, and provides a cost-effective means of replacing or reducing chemical melting agents. 33 refs., 1 fig.

  14. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    2003-04-01

    This report describes RealEnergy's evolving distributed generation command and control system, called the"Distributed Energy Information System" (DEIS). This system uses algorithms to determine how to operate distributed generation systems efficiently and profitably. The report describes the system and RealEnergy's experiences in installing and applying the system to manage distributed generators for commercial building applications.The report is divided into six tasks. The first five describe the DEIS; the sixth describes RE's regulatory and contractual obligations: Task 1: Define Information and Communications Requirements; Task 2: Develop Command and Control Algorithms for Optimal Dispatch; Task 3: Develop Codes and Modules for Optimal Dispatch Algorithms; Task 4: Test Codes Using Simulated Data; Task 5: Install and Test Energy Management Software; Task 6: Contractual and Regulatory Issues.

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  16. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  17. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  18. Development of an intelligent indoor environment and energy management system for greenhouses

    International Nuclear Information System (INIS)

    Kolokotsa, D.; Saridakis, G.; Dalamagkidis, K.; Dolianitis, S.; Kaliakatsos, I.

    2010-01-01

    The microclimate control in a greenhouse is a complicated procedure since the variables that influence it are several and dependant on each other. This work is an effort of integrating these variables in a common control methodology through the development of an intelligent environment and energy management system for greenhouses. Two fuzzy logic controllers are developed, embodying the expert knowledge of agriculturists and indoor environment experts. These controllers consist of fuzzy P (Proportional) and PD (Proportional-Derivative) control using desired indoor climatic set-points. The factors being monitored are the greenhouse's indoor illuminance, temperature, relative humidity, CO 2 concentration and the outside temperature. Output actuations include: heating units, motor-controlled windows, motor-controlled shading curtains, artificial lighting, CO 2 enrichment bottles and water fogging valves. These controllers are prototyped in a Matlab environment and simulated using a greenhouse model, which is implemented as a module within the TRNSYS software. The system is tested in a greenhouse located in MAICh (Mediterranean Agronomic Institute of Chania). The overall installation is based on Local Operating Network (LonWorks) protocol.

  19. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  20. Socio-cultural barriers to the development of a sustainable energy system - the case of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kjerulf Petersen, L.; Holst Andersen, A.

    2009-02-15

    Any transition to a more sustainable energy system, radically reducing greenhouse gas emissions, is bound to run in to a host of different barriers - technological and economic, but also socio-cultural. This will also be the case for any large-scale application of hydrogen as energy carrier, especially if the system is going to be based on renewable energy sources. The aim of these research notes is to review and discuss major socio-cultural barriers to new forms of energy supply in general and to hydrogen specifically. Reaching sufficient reductions in greenhouse gas emissions may require more than large-scale dissemination of renewable energy sources. Also reductions or moderations in energy demand may be necessary. Hence, a central point in the research note is to consider not only socio-cultural obstacles for changing technologies in energy production, distribution and consumption but also obstacles for changing the scale of energy consumption, i.e. moderating the growth in how much energy is consumed or even reducing consumption volumes. (au)

  1. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  2. Energy from the west: energy resource development systems report. Volume IV: uranium. Final report, 1975-1978

    International Nuclear Information System (INIS)

    White, I.L.; Chartock, M.A.; Leonard, R.L.; Ballard, S.C.; Gilliland, M.

    1979-01-01

    This report describes the technologies likely to be used for development of uranium resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, outputs, residuals, energy requirements, economic costs, and resource specific state and federal laws and regulations

  3. Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems

    International Nuclear Information System (INIS)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad; Guzović, Zvonimir; Piacentino, Antonio; Schlör, Holger; Lund, Henrik

    2016-01-01

    Climate change and fossil fuel reserve depletion both pose challenges for energy security and for wellbeing in general. The top ten among them include: Decarbonising the world economy; Enhancing the energy efficiency and energy savings in buildings; Advancing the energy technologies; Moving towards energy systems based on variable renewables; Electrifying the transport and some industrial processes; Liberalizing and extending the energy markets; Integrating energy sectors to Smart Energy Systems; Making the cities and communities smart; Diversifying the energy sources; and Building more biorefineries. Presenting the contributions of selected conference papers published in the special issues of leading scientific journals (including all the papers from the current Energy special issue), this review demonstrates the capacity of the Conferences on Sustainable Development of Energy, Water and Environment Systems for generation of knowledge which could serve as the centrepiece of a pertinent response to those challenges. - Highlights: • Top ten challenges of energy security in the twenty-first century identified. • Selected SDEWES contributions analysed against the identified challenges. • The role of SDEWES as knowledge generator towards addressing the identified challenges credibly demonstrated.

  4. Requirements and potential development pathways for fission energy supply infrastructures of the 21st century - a systems viewpoint

    International Nuclear Information System (INIS)

    Wade, D. C.

    1999-01-01

    Using an energy supply systems approach, we envision attributes and characteristic needs of a future global fission-based energy supply infrastructure, enumerate potential pathways for meeting those needs, and identify the underlying enabling science and technology developments for R and D efforts to meet the needs

  5. Energy and Sustainable Development

    International Nuclear Information System (INIS)

    2013-01-01

    None of the eight Millennium Development Goals (MDGs) adopted by the United Nations in 2000 directly addressed energy, although for nearly all of them - from eradicating poverty and hunger to improving education and health - progress has depended on greater access to modern energy. Thirteen years later, energy is being given more attention. The target date for the MDGs is 2015, and in 2012 the UN began deliberations to develop sustainable development goals to guide support for sustainable development beyond 2015. The Future We Want, the outcome document of the 2012 United Nations Conference on Sustainable Development (also known as Rio+20) gives energy a central role: ''We recognize the critical role that energy plays in the development process, as access to sustainable modern energy services contributes to poverty eradication, saves lives, improves health and helps provide for basic human needs''

  6. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 1); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 1 Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the 'techniques for recovery and conversion of unutilized energy'. The R and D on waste heat recovery and conversion for chemical plants designs an internal structure of the 'wetted wall column for shell side as the stripping section' for increasing quantity of heat exchanged inside, and stably operates the bench plant for 100 hours or more. The R and D on thermoelectric power generating systems using low calorie exhaust gases involves development of materials, production of fine particle materials and sinters, and evaluation of their functions, among others. The program for application of the techniques to commercial plants confirms applicability of a 3kg thermoelectric power generating system to automobile coating process. The R and D on systems for thermoelectric recovery of low-temperature waste heat finds cracks on the ceramic plate for the power generating system WATT100, disassembled for repair. (NEDO)

  7. Energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Gururaja, J.

    1980-03-15

    The developing countries will require higher per capita energy for improving the quality of life. This paper examines the goals and strategies for development vis-a-vis those of the developed countries. Crucial issues in India are listed. The role of technology in the utilization of energy is discussed. Difficulties in choosing the technology are pointed out. The problem of integrating several alternative energy sources in villages is mentioned. Environmental issues are considered. (DLC)

  8. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 2); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy). The R and D on methanol energy systems involves the R and D on decomposition and synthesis catalyst of methanol and methyl formate for the waste heat sources of relatively low temperature. The R and D on high-efficiency techniques using hydrogen-occluding alloys involves development of heat exchangers of low sensible heat ratio, fabrication of double-effect type MH heat pump cycle devices, and demonstration tests for the system operation. It is found that the heat output of the hydrogen-occluding alloy for high temperature use is 0.18kW/kg at 90 degrees C, and that the alloy can be massively produced. A thermal utilization efficiency COP of 0.68 is obtained for the double-effect type MH heat pump cycles. The R and D on the heat-hydrogen recovery, transportation and utilization techniques involves designs and fabrication on a trial basis of a sensible heat recovery unit. (NEDO)

  9. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  10. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  11. The Smart Energy System

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Dyrelund, Anders; Hummelmose, Lars

    Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses on...... production, large scale solar heat, fuel cells, heat storage, waste incineration, among others, the report draws a picture of Denmark as a research and development hub for smart energy system solutions.......Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses...... on the synergies which are obtained through integration of the district heating and district cooling, gas, and electricity grid into a single smart energy system. Besides documenting the technology and innovation strengths that Danish companies possess particularly relating to wind, district heating, CHP...

  12. Optimal development of the future Danish energy system – insights from TIMES-DTU model

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard; Balyk, Olexandr

    2015-01-01

    After a long period of transition, Danish energy system is half-way towards completely renewable in 2050. Drastic changes happened in the last forty years – the imported oil has been replaced by a mix of coal and natural gas, energy efficiency and conservation have been improved by extensive use...... of CHP-based district heating and heat saving measures. In the same period Denmark became well-known by integration and export of wind turbines. In line with the changes in the past, Denmark currently has very ambitious renewable energy targets, most ambitious being the 100 % renewable energy system......) WLP with the constraint that 50 % of electricity production should come from wind starting from 2020, and (iii) WLP-NFE scenario with the constraint that power and heat sector should be fossil fuel-free starting from 2035 and Denmark should be 100 % renewable starting from 2050. In all scenarios...

  13. Energy indicators for sustainable development

    International Nuclear Information System (INIS)

    Vera, Ivan; Langlois, Lucille

    2007-01-01

    Energy is an essential factor in overall efforts to achieve sustainable development. Countries striving to this end are seeking to reassess their energy systems with a view toward planning energy programmes and strategies in line with sustainable development goals and objectives. This paper summarizes the outcome of an international partnership initiative on indicators for sustainable energy development that aims to provide an analytical tool for assessing current energy production and use patterns at a national level. The proposed set of energy indicators represents a first step of a consensus reached on this subject by five international agencies-two from the United Nations system (the Department of Economic and Social Affairs and the International Atomic Energy Agency), two from the European Union (Eurostat and the European Environment Agency) and one from the Organization for Economic Cooperation and Development (the International Energy Agency). Energy and environmental experts including statisticians, analysts, policy makers and academics have started to implement general guidelines and methodologies in the development of national energy indicators for use in their efforts to monitor the effects of energy policies on the social, economic and environmental dimensions of sustainable development

  14. Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development

    DEFF Research Database (Denmark)

    This book presents the energy system roadmaps necessary to limit global temperature increase to below 2°C, in order to avoid the catastrophic impacts of climate change. It provides a unique perspective on and critical understanding of the feasibility of a well-below-2°C world by exploring energy...... and at a global scale to offer scientific evidence to underpin complex policy decisions relating to climate change mitigation and interrelated issues like energy security and the energy–water nexus. It includes several chapters directly related to the Nationally Determined Contributions proposed in the context...

  15. Renewable energies and regional development. Photovoltaic energy, micro-grid systems in the Brazilian semi-arid

    Energy Technology Data Exchange (ETDEWEB)

    Arrais de Miranda Mousinho, Maria Candida

    2012-07-01

    This article tackles the issue of the development related to the insertion of new renewable energy technologies. It also presents the experience of the region of the Sao Francisco River Valley - named after the largest river genuinely Brazilian located in the semi-arid region -, focusing mainly on two municipalities: Xique-Xique and Barra. Its focus is the use of solar energy for rural communities. To present the results of that experience, the support of the Rio Sao Francisco Project: culture, identity and development, of the Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) and of Eurosolar was essential. The research on which this article is based was fruit of a volunteer research project linked to the Partners of the Americas Bahia-Pennsylvania Committee.

  16. Croatian Energy System Defossilization

    International Nuclear Information System (INIS)

    Potocnik, V.

    2013-01-01

    Defossilization of an energy system, as primary cause of the actual climate change, means exchange of predominantly imported fossil fuels with climate more convenient energy carriers, facilitating thus the way out of crisis.Overview of the world and Croatian energy system situation is presented as well as the overview of climate change. The most important Croatian energy system defossilization measures-energy efficiency increase, renewable energy inclusion and others - are described.(author)

  17. Clean Energy for Development

    OpenAIRE

    Wolfowitz, Paul

    2006-01-01

    Paul Wolfowitz, President of the World Bank, in the development community, the interaction of energy, environment, and poverty have emerged as a central challenge. Lack of consistent electricity in developing countries is a severe obstacle to doing business. It is also affecting school attendance, particularly among girls. Inefficient energy sources can also pose health problems—as many as 1.6 million deaths per year due to indoor smoke. Rich and poor countries alike need to apply energy-effi...

  18. Energy systems security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Energy Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to electricity transmission grids and their protection, risk assessment of energy systems, analysis of interdependent energy networks. Methods to manage electricity transmission disturbances so as to avoid blackouts are discussed, and self-healing energy system and a nano-enabled power source are presented.

  19. Energy, environment and development

    Energy Technology Data Exchange (ETDEWEB)

    El-Hinnawi, E

    1977-01-01

    Energy is one of the most important prerequisites of life. The growing socio-economic activities and the rising standard of living have led to a rapid increase in energy consumption. The limited resources of fossil fuels and the recent geopolitical developments activated the exploration of ways and means for energy conservation and exploitation of unconventional renewable sources of energy. Of the renewable energy sources (geothermal, solar, tidal, hydropower, etc), hydro-power production has some potential environmental effects. Man-made lakes have several physical, biological, geochemical and biogeochemical impacts on the environment both in the area of the lake and downstream. From the socio-economic point of view, the harnessing of renewable sources of energy will not only lead to the enhancement of the human environment, particularly in remote rural areas in developing countries, but will also lead to substantial savings in the use of non-renewable sources of energy.

  20. Developing energy in Africa

    International Nuclear Information System (INIS)

    Favennec, J.P.

    2004-01-01

    Energy and economic growth are connected and the wealth of Western countries is based on a high availability of energy. Africa is a continent vast by its size, well populated and well supplied with fossil energy (oil, gas, coal) and renewable energy (hydroelectric, biomass, solar). But consumption is limited, without distribution infrastructures and initially, without capitals for necessary investments. The situation is particularly critical in Sub-Sahara Africa since the African energy consumption is mainly concentrated in South Africa and North Africa. An annual conference, the Energy Summit in Africa, brings together all players in the sector, from all the continent's countries, from Europe and America, in an attempt to establish recommendations for more availability and a better use of energy in Africa. The next summit is scheduled for November 23 to 25, 2004 in Dakar. The program relies on the Association for the Development of Energy in Africa, which will be created shortly. (author)

  1. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard E.

    2008-09-30

    Hydrogen power park experiments in Hawai‘i produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawai‘i Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of ‘traditional’ photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust “three-stage” fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel ‘four-terminal’ devices integrating high

  2. City-regions and the development of sustainable energy-supply systems

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, D.; Gibbs, D.C. [Hull Univ., Dept. of Geography, Hull (United Kingdom); Longhurst, J.W.S. [University of the West of England, Environmental Health and Science Dept., Bristol (United Kingdom)

    2000-07-01

    To achieve the CO{sub 2} reductions deemed necessary to limit the impact of adverse climate change will require real changes in the way we both use and supply energy. Although explicit international and national frameworks are necessary to facilitate reduction strategies, regional implementation and local initiatives are increasingly seen as having an important role to play, both in meeting national CO{sub 2} reduction targets and improving the local environment. This paper deals with supply side of the energy equation for Greater Manchester in the U.K., examining the potential for 'regional' energy supply options to contribute to a reduction in carbon intensity. By assessing actual and latent regional opportunities, the potential for achieving a more sustainable energy supply system is evaluated. (Author)

  3. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  4. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  5. CCS Infrastructure Development Scenarios for the Integrated Iberian Peninsula and Morocco Energy System

    NARCIS (Netherlands)

    Kanudia, A.; Berghout, N.A.; Boavida, D.; van den Broek, M.A.

    2013-01-01

    This paper briefly illustrates a method to represent national energy systems and the geographical details of CCS infrastructures in the same technical-economic model. In the MARKAL-TIMES modeling framework a model of Morocco, Portugal and Spain with both spatial and temporal details has been

  6. Control System Development for Power Generation from Small-Scale Compressed Air Energy Storage

    Science.gov (United States)

    2017-06-01

    35  Figure 26  Control Program Flowchart ...Figure 26 Control Program Flowchart 1. Resetting Variables The Micro850 has internal memory that stores the last state of variables when power is...Research, Energy Systems Technology Evaluation Program (ESTEP), under the technical monitoring of Stacey Curtis, Marissa Brand and Richard Carlin 10

  7. DEVELOPMENT OF THE CHP-THERMAL SCHEMES IN CONTEXTS OF THE CONSOLIDATED ENERGY SYSTEM OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation

  8. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  9. Renewable generation and demand response integration in micro-grids. Development of a new energy management and control system

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Bel, C.; Escriva-Escriva, G.; Alcazar-Ortega, M. [Institute for Energy Engineering, Universitat Politecnica de Valencia, Valencia (Spain)

    2013-11-15

    The aim of this research resides in the development of an energy management and control system to control a micro-grid based on the use of renewable generation and demand resources to introduce the application of demand response concepts to the management of micro-grids in order to effectively integrate the demand side as an operation resource for the grid and improve energy efficiency of the elements. As an additional result, the evaluation of reductions in the total amount of CO2 emitted into the atmosphere due to the improvement of the energy efficiency of the system is assessed.

  10. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  11. Fiscal 1999 achievement report on development of wide-area energy utilization network system. Research on energy system design technology (Research on Eco-Energy City systematization); Eco ene toshi no system ka kenkyu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Efforts are being exerted to develop systems for effectively utilizing various kinds of waste heat in presence in cities and their neighborhood. In fiscal 1999, investigations were conducted into cases of low temperature waste heat utilization at 16 locations in Japan and into trends of heat utilization in five European countries, with a visit paid to European District Heating Association. There are 128 district heat supplying sites in service in Japan, of which 25 handles low temperature waste heat. As for their types of utilization, 12 are of the temperature difference energy utilization type while 13 are of the heat recovery type. When it comes to the system details, the importance of proper selection of structures and materials for heat accumulating systems and heat exchangers on the secondary side should be emphasized although it is the heat pump that assumes the key role. In Europe, indications are that district systems are developing into wide-area networks and that they are growing increasingly marketable. In the northern and eastern parts of Europe, 30-70% of demand for heat is met by district heating. Waste heat from power generation is the heat source, and this occupies 30-80% of the whole. Thanks to the introduction of the environmental tax, in addition, environments are now complete under which recoverable energy utilization will enjoy an advantageous position. (NEDO)

  12. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  13. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Fei Fei

    2014-05-01

    Full Text Available Wireless sensor networks (WSNs have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that converts the mechanical energy from the airflow in ventilation ducts into electrical energy. The system uses a flutter energy conversion device (FECD capable of working at low airflow speeds while installed on the ventilation ducts inside of buildings. A power management strategy implemented with a circuit system ensures sufficient power for driving commercial electronic devices. For instance, the power management circuit is capable of charging a 1 F super capacitor to 2 V under ventilation duct airflow speeds of less than 3 m/s.

  14. Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

  15. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  16. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  17. Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    Climate change and fossil fuel reserve depletion both pose challenges for energy security and for wellbeing in general. The top ten among them include: Decarbonising the world economy; Enhancing the energy efficiency and energy savings in buildings; Advancing the energy technologies; Moving towards...... energy systems based on variable renewables; Electrifying the transport and some industrial processes; Liberalizing and extending the energy markets; Integrating energy sectors to Smart Energy Systems; Making the cities and communities smart; Diversifying the energy sources; and Building more...

  18. Final report on the development of a 250-kW modular, factory-assembled battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D. [Omnion Power Engineering Corp., East Troy, WI (United States); Nerbun, W. [AC Battery Corp., East Troy, WI (United States); Corey, G. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1998-08-01

    A power management energy storage system was developed for stationary applications such as peak shaving, voltage regulation, and spinning reserve. Project activities included design, manufacture, factory testing, and field installation. The major features that characterize the development are the modularity of the production, its transportability, the power conversion method that aggregates power on the AC side of the converter, and the use of commonly employed technology for system components. 21 figs.

  19. The development of an integrated IT system at Albian Sands Energy

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, L. H. [Albian Sands Energy Inc., Fort McMurray, AB (Canada)

    2003-01-01

    Factors considered in the selection, implementation and integration of computer applications in an oil sands surface mining and extraction operation are discussed. The company's objective in choosing the system was to optimize the use of information and to meet technical, business and information technology requirements. In a departure from typical practice where the system is selected by the information technology team, with minimal input from the technical and business units, in the case of Albian Sands Energy the company's technical and business people were closely involved in the selection process. Integration of the system was a primary consideration, including linking all applications through a data warehouse and electronic data management system. Details of the applications architecture, construction of the applications inventory, selection of the applications, identification of integration requirements, project management issues, and benefits of an integrated system are described. 6 refs., 2 tabs., 1 fig.

  20. The development of control and monitoring system on marine current renewable energy Case study: strait of Toyapakeh - Nusa Penida, Bali

    Science.gov (United States)

    Arief, I. S.; Suherman, I. H.; Wardani, A. Y.; Baidowi, A.

    2017-05-01

    Control and monitoring system is a continuous process of securing the asset in the Marine Current Renewable Energy. A control and monitoring system is existed each critical components which is embedded in Failure Mode Effect Analysis (FMEA) method. As the result, the process in this paper developed through a matrix sensor. The matrix correlated to critical components and monitoring system which supported by sensors to conduct decision-making.

  1. Simulation models developed for voltage control in a distribution network using energy storage systems for PV penetration

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Bindner, Henrik W.

    2013-01-01

    This paper presents the development of simulation models for DER components in a distribution network, with focus on voltage controllers using energy storage systems for PV penetration. The Vanadium Redox Battery (VRB) system model, used as an energy storage system, was implemented in MATLAB....../Simulink and DIgSILENT PowerFactory, based on the efficiency of different components-such as: cell stacks, electrolytes, pumps and power converters, whilst power losses were also taken into account. The simulation results have been validated against measurements using experimental facility of a distributed power...

  2. Developing common information elements for renewable energy systems: summary and proceedings of the SERI/AID workshop

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report describes the activities, conclusions, and recommendations of the Workshop on Evaluation Systems for Renewable Energy Systems sponsored by the Agency for International Development and SERI, held 20-22 February 1980 in Golden, Colorado. The primary objectives of the workshop was to explore whether it was possible to establish common information elements that would describe the operation and impact of renewable energy projects in developing countries. The workshop provided a forum for development program managers to discuss the information they would like to receive about renewable energy projects and to determine whether common data could be agreed on to facilitate information exchange among development organizations. Such information could be shared among institutions and used to make informed judyments on the economic, technical, and social feasibility of the technologies. Because developing countries and foreign assistance agencies will be financing an increasing number of renewable energy projects, these organizations need information on the field experience of renewable energy technologies. The report describes the substance of the workshop discussions and includes the papers presented on information systems and technology evaluation and provides lists of important information elements generated by both the plenary sessions and the small working groups.

  3. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  4. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  5. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  6. Accelerator system of neutron spallation source for nuclear energy technology development

    International Nuclear Information System (INIS)

    Silakhuddin; Mulyaman, Maman

    2002-01-01

    High intensity proton accelerators are at present and developed for applications in neutron spallation sources. The advantages of this source are better safety factor, easy in controlling and spent fuel free. A study of conceptual design of required accelerator system has been carried out. Considering the required proton beam and feasibility in the development stages, a stepped linac system is an adequate choice for now

  7. Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing

    International Nuclear Information System (INIS)

    Nie, S.; Huang, Charley Z.; Huang, G.H.; Li, Y.P.; Chen, J.P.; Fan, Y.R.; Cheng, G.H.

    2016-01-01

    Highlights: • Interval type-2 fuzzy fractional programming is developed to optimize ratio problem. • It is advantageous in reflecting conflicting objectives and complex uncertainties. • Uncertainties existed as interval numbers and type-2 fuzzy intervals are quantified. • Results reveal that share of renewable power generation in gross supply increase. • Alternative to manage mixed energy system with sustainable development is suggested. - Abstract: An interval type-2 fuzzy fractional programming (IT2FFP) method is developed for planning the renewable energy in electric power system for supporting sustainable development under uncertainty. IT2FFP can tackle output/input ratio problems where complex uncertainties are expressed as type-2 fuzzy intervals (T2FI) with uncertain membership functions. The IT2FFP method is then applied to planning Beijing electric power system, where issues of renewable energy utilization, electricity supply security, and pollutant/greenhouse gas (GHG) emissions mitigation are incorporated within the modeling formulation. The obtained results suggest that the coal-fired power would continue to decrease and the share of renewable energy in gross electricity supply would maintain an increasing trend. Results also reveal that imported electricity plays a significant role in the city’s energy supply. A number of decision alternatives are also analyzed based on the interval solutions as well as the projected applicable conditions, which represent multiple options with sustainable and economic considerations. The optimal alternative that can give rise to the desirable sustainable option under the maximization of the share of renewable power generation has been suggested. The findings can help decision makers identify desired alternatives for managing such a mixed energy system in association with sustainable development. Compared with the conventional optimization methods that optimize single criterion, it is proved that IT2FFP is

  8. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  9. Distributed Resource Energy Analysis and Management System (DREAMS) Development for Real-time Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nakafuji, Dora [Hawaiian Electric Company, Honululu, HI (United States); Gouveia, Lauren [Hawaiian Electric Company, Honululu, HI (United States)

    2016-10-24

    This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timeliness metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities

  10. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  11. Integrating organic and organizational systems for sustainable forestry and biomass energy development

    International Nuclear Information System (INIS)

    Rappaport, M.D.

    1997-01-01

    The development of a cellulose-to-ethanol technology has been under research and development for a number of years. At the National Renewable Energy Laboratory (NREL) Labs, the Process Development Unit (PDU) has proven the technology. Commercialization of this technology to a larger scale is an important step towards solving alternative transportation fuels production, global warming problems, air quality issues, urban waste disposal, and rural economic development. This paper presents a structure for scientists, business interests, and communities to use for building commercial scale plants. The paper sets out the general functions of interested parties and how to meet their respective requirements for feedstock, financing, and risk management for a successful project. (author)

  12. Upgrade energy building standards and develop rating system for existing low-income housing

    International Nuclear Information System (INIS)

    Muller, D.; Norville, C.

    1993-07-01

    The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD's experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD's minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency open-quote in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock

  13. Upgrade energy building standards and develop rating system for existing low-income housing

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1993-07-01

    The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD`s experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD`s minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency{open_quote} in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock.

  14. Ocean Thermal Energy Conservation (OTEC) power system development (PDS) II. Preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-10

    This report documents the results and conclusions of the PDS II, Phase I, preliminary design of a 10 MWe OTEC power system, using enhanced plate type heat exchangers, and of representative 0.2 MWe test articles. It further provides the documentation (specifications, drawings, trade studies, etc.) resulting from the design activities. The data and discussions of the technical concepts are organized to respond to the PDS II, Phase II proposal evaluation criteria. This volume, which specifically addresses the three evaluation categories (heat exchangers, rotating machinery, and power system configuration and performance) is an integral part of the Phase II plans (proposal) which describe the technical approach to delivering test articles to OTEC-1. In addition, there is a section which addresses power system cost and net energy analysis and another which discusses the results of stainless steel feasibility studies. Supporting documentation is contained in two appendix volumes.

  15. The development of a volume element model for energy systems engineering and integrative thermodynamic optimization

    Science.gov (United States)

    Yang, Sam

    The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in

  16. Financing energy development

    International Nuclear Information System (INIS)

    Kariwara, Y.

    1990-01-01

    The 1990s is likely to be a decade of double growth: in energy demand and environmental protection. This leads the author of this paper to ask the pertinent questions of where the money will come from, and in what form, to finance the growth in capacity to produce this energy and the technology required to produce and burn it cleanly. With a focus on Asian energy markets, this paper first illustrates the problem by describing the rapid growth of energy demand in the region. It describes the growth in Japan as well as China and the fast-growing economies of Hong Kong, Indonesia, Malaysia, the Philippines, Singapore, South Korea, Taiwan, and Thailand. Energy demand growth rates of almost 5 percent in the 1980s are expected to continue to grow at that rate at least until 2005, doubling today's level of consumption and putting the energy supply system under great strain. Because of the large sums involved, this paper pints out the necessity of inventing new, innovative devices for future fund raising. This will require the participation of institutions such as insurance companies and regional banks that have little experience in the energy field. This paper suggests that these and the established players in energy finance will have recourse to two new approaches: Build-Operate-Transfer and Trustee Borrowing schemes

  17. Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

  18. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  19. Development of a Trip Energy Estimation Model Using Real-World Global Positioning System Driving Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tian, Ye [Metropia, Inc.

    2017-09-15

    A data-driven technique for estimation of energy requirements for a proposed vehicle trip has been developed. Based on over 700,000 miles of driving data, the technique has been applied to generate a model that estimates trip energy requirements. The model uses a novel binning approach to categorize driving by road type, traffic conditions, and driving profile. The trip-level energy estimations can easily be aggregated to any higher-level transportation system network desired. The model has been tested and validated on the Austin, Texas, data set used to build this model. Ground-truth energy consumption for the data set was obtained from Future Automotive Systems Technology Simulator (FASTSim) vehicle simulation results. The energy estimation model has demonstrated 12.1 percent normalized total absolute error. The energy estimation from the model can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations, to reduce energy consumption. The model can also be used to determine more accurate energy consumption of regional or national transportation networks if trip origin and destinations are known. Additionally, this method allows the estimation tool to be tuned to a specific driver or vehicle type.

  20. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  1. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  2. Design and development of a new-type terminal for smart electricity use in the energy USB system

    Science.gov (United States)

    Wang, Mian; Cheng, Lefeng; Liu, Bin; Jiang, Haorong; Tan, Zhukui; Yu, Tao

    2017-11-01

    With the in-depth development of energy Internet, the requirements for smart electricity use (SEU) in a comprehensive energy system is higher. Aiming at the current smart electricity controllers that can only realize the monitoring of voltage, current, power and electricity consumption, while neglecting the impact of environmental quality on electricity use behaviours, this paper designs and develops a new type of terminal for SEU in the energy universal service bus system (USB), based on the techniques of digital signal processing, wireless communication and intelligent sensing. A detailed modular hardware design is given for the terminal, as well as the software design, apart from the basic functions, the terminal can complete harmonic analysis, wireless communication, on-off controlling, data display, etc. in addition, take the user perception into account through collecting the ambient temperature and humidity, as well as detecting indoor environment comfort, so that promoting home electricity use optimization. The terminal developed can play an important role in the energy USB system under the background of energy Internet, and the paper ends by giving the testing results which verify the effectiveness, intelligence and practicability of the terminal.

  3. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  4. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  5. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter (ed.); Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  6. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    International Nuclear Information System (INIS)

    Helby, Peter; Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  7. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  8. Energy systems in transition

    International Nuclear Information System (INIS)

    Haefele, W.

    1989-01-01

    The principal point of the author was to discuss energy systems (ES) in transition, transition addresses the next 10-25 years, and strategy of the transition. He considers different scenarios of future development of ES. Further he presents considerations elaborated during the last years on the concept of novel horizontally integrated ES which gives promise to be at least an approximation to the desired object of no emissions. The main ideas of the concept are: to decompose and thereby clean all the primary inputs before they are brought to combustion; to develop a network combining all the primary inputs to an integrated supply structure of high absorption, buffer, and storage capacity that resembles in some way the supply and utility functions of the well established electric grid but completes it at best on the basis of mass flows; to achieve a high flexibility in supplying the final energy. The author considers the long run perspective of hydrogen, solar, and nuclear energy with respect to alternative energy sources. 6 refs, 24 figs

  9. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  10. Fiscal 2000 report on result of development project of marine resources utilization system for energy conservation. Development of marine resources utilization system for energy conservation (Model demonstrative research and basic study); 2000 nendo energy shiyo gorika kaiyo shigen katsuyo system kaihatsu jigyo seika hokokusho. Energy shiyo gorika kaiyo shigen katsuyo system kaihatsu (model jissho kenkyu oyobi kiban kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This paper explains the development of marine resources utilization system for energy conservation. The conceptual system is designed to take a large amount of deep sea water of 100 thousand to 1 million tons a day, to utilize it from the viewpoint of energy conservation using its coldness and purity characteristics, to then discharge it to the area of the sea in minimizing the environmental effect as well as obtaining effect such as absorption of carbon dioxide gas through cultivation of phyto-plankton. In pump-up technology, a piping system attaching on sea bed or floating with one or multiple constraints is applicable at present to all sites of geographical and oceanographic conditions. In utilization technology, use of deep-sea water as cooling water at a steam power plant, for example, improves generation efficiency by one point or more. In discharge and environment-related technologies, the research revealed that the deep-sea water from 300 m below releases carbon dioxide gas at surface, while photosynthesis can absorb the gas in the process of using nutrition contained in the deep-sea water; therefore, comprehensive examination is necessary taking energy utilization effect into account. Candidate sites were selected in areas of 200 m depth and within 5 km off-shore, with the optimum system examined at each site. (NEDO)

  11. A low-cost, low-energy tangible programming system for computer illiterates in developing regions

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2008-07-01

    Full Text Available approach is to first develop, in the illiterate population, the cognitive process of logical thinking required in the IT field. Having developed this ability, the illiterate person has a tool for potentially controlling a number of objects... functionality. Because of these tangible and visual properties, the cognitive burden on the user is reduced as compared with text-only input systems. We therefore hypothesise that our input devices are well suited for computer-illiterate people. 3...

  12. Development of domestic hot water systems in Costa Rica from solar energy

    International Nuclear Information System (INIS)

    Lizana-Moreno, Fernando

    2015-01-01

    A software tool is developed to implement the solar domestic hot water systems (DHW) in Costa Rica and to replace the electric water heating equipment. A database with information from the solar radiation is elaborated for different locations in Costa Rica. A manual of design DHW solar systems is realized for the country. An DHW solar system is designed for the type of average building the of country. A software is implemented to calculate the parameters and dimensions necessary for the solar installation of DHW, using the F-Chart method; in addition, the information of the mentioned database is included. A financial analysis is elaborated of the DHW solar systems in Costa Rica. The strategies are proposed for the implementation of DHW solar systems in Costa Rica [es

  13. Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.

    2014-08-22

    This report acquaints stakeholders and interested parties involved in the development and/or deployment of energy storage systems (ESS) with the subject of safety-related codes, standards and regulations (CSRs). It is hoped that users of this document gain a more in depth and uniform understanding of safety-related CSR development and deployment that can foster improved communications among all ESS stakeholders and the collaboration needed to realize more timely acceptance and approval of safe ESS technology through appropriate CSR.

  14. Development of an expert system in econometrics. Application to energy demand modelling

    International Nuclear Information System (INIS)

    Fauveau, A.

    1993-01-01

    The proper use of econometric softwares requires both statistical and economic skills. The main objective of this thesis is to provide the users of regression programs with assistance in the process of regression analysis by means of expert system technology. We first built an expert system providing general econometric strategy. The running principle of the program is based on a ''estimation - hypothesis check - specification improvement'' cycle. Its econometric expertise is a consistent set of statistical technics and analysis rules for estimating one equation. Then, we considered the inclusion of the economic knowledge required to produce a consistent analysis; we focused on energy demand modelling. The economic knowledge base is independent from the econometric rules, this allow us to update it easily. (author)

  15. System Architecture Development for Energy and Water Infrastructure Data Management and Geovisual Analytics

    Science.gov (United States)

    Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.

    2017-12-01

    Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).

  16. Supporting Development of Energy-Optimised Java Real-Time Systems using TetaSARTS

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Bøgholm, Thomas; Thomsen, Bent

    2013-01-01

    This paper presents how the tool TetaSARTS can be used to support the development of embedded hard real-time systems written in Java using the emerging Safety Critical Java (SCJ) profile. TetaSARTS facilitates control-flow sensitive schedulability analysis of a set of real-time tasks, and features...

  17. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  18. The Development of Dispatcher Training Simulator in a Thermal Energy Generation System

    Science.gov (United States)

    Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.

    2018-01-01

    A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.

  19. Nuclear energy and development

    International Nuclear Information System (INIS)

    1991-01-01

    Today, about 80 developing countries are using nuclear techniques in various sectors of their national economies. In the sector of industry, the radiation processing using gamma rays of high energy electrons has grown. While in the sector of health care, an estimated 10000 gamma cameras-imaging instruments are used in combination with radioisotopes in medical diagnosis. In the field of agriculture there is, nearly, 1000 crop varieties derived from radiaton-induced mutations which are grown worldwide. Furthermore and concerning the energy sector there is 417 nuclear power plants operating in 26 countries, accounting for just 16% of the world's total electricity production; the nuclear energy helped in developing and supporting a variety of sciences. 2 tabs

  20. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 1. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 1. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements of the researches during fiscal 1998 on researching a highly efficient and effective energy utilization technology. With regard to technologies to recover and convert unutilized energies, a process simulator was developed, basic internal structure was discussed by experiments and simulation, and substance migrating and heat exchanging characteristics were identified by using partial testing devices. These researches and developments were performed for the waste heat reforming and recovering systems used in chemical plants. In developing a thermoelectric generation system using low calorie exhaust gases, thermoelectric power generating materials were developed, a powder manufacturing technology was developed, a thermoelectric conversion element bulking technology was developed, a thermoelectric power generation system using porous structures was simulated, development and concept design were carried out on system element technologies. In the research and development of the thermoelectric generation system using low calorie exhaust gases, advanced materials and modules were manufactured, the modules were evaluated, and power generation systems were researched. In addition, researches were performed on energy transportation, supply and utilization technologies, and on environmental load reducing technologies. (NEDO)

  1. Developing a plasma focus research training system for the fusion energy age

    International Nuclear Information System (INIS)

    Lee, S.

    2014-01-01

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  2. FY 2000 report on the results of the development of the environmentally friendly type high efficiency energy utilization system. Part 2. Study of the effective utilization technology of high efficiency energy (Study of the optimum system design technology); 2000 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The paper conducted the development of the environmentally friendly type high efficiency energy utilization system and the R and D of the high efficiency energy effective utilization technology, and the FY 2000 results were summed up. As to the energy transportation/storage technology, the R and D were made on the following: methanol/energy system, non-equilibrium high efficiency methanol decomposition reaction technology, development of multiple functions of catalyst, high efficiency heat pump technology using hydrogen storage alloys, heat-hydrogen recovery/transportation/utilization technology, vacuum insulated heat transport piping system, surfactant used for high density heat transport, high density latent heat transportation technology, etc. Concerning the energy supply/utilization technology, the R and D were made of the heat supply system using high efficient heat pump corresponding to multiple fuels. Relating to the environmental load reduction technology, the energy conserved heat pump system using natural coolant. As to the optimum system design technology, the comprehensive preparation of element technology, etc. (NEDO)

  3. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  4. LCA of Energy Systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves; Hauschild, Michael Zwicky

    2018-01-01

    Energy systems are essential in the support of modern societies’ activities, and can span a wide spectrum of electricity and heat generation systems and cooling systems. Along with their central role and large diversity, these systems have been demonstrated to cause serious impacts on human health...... , ecosystems and natural resources. Over the past two decades, energy systems have thus been the focus of more than 1000 LCA studies, with the aim to identify and reduce these impacts. This chapter addresses LCA applications to energy systems for generation of electricity and heat . The chapter gives insight...

  5. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    Science.gov (United States)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  6. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production

    Institute of Scientific and Technical Information of China (English)

    Clark C K Liu

    2013-01-01

    Water and energy are closely linked natural resources-the transportation, treatment, and distribution of water depends on low-cost energy;while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-1 or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-1 or less. Results of the pilot experiments also indicated that the system can remove up to 97%of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56%of the freshwater supply for fish pond operation.

  7. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 3. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements during fiscal 1998 on researching part of the energy transportation and storage technologies, energy supply and utilization technologies, environmental load reducing technologies, and optimal system design in the 'research on highly efficient and effective energy utilization technology'. With regard to energy transportation and storage technologies, researches and developments were performed on a vacuum adiabatic transportation piping system, surfactants used for high-density heat transportation and high-density latent heat transportation technologies. In the field of energy supply and utilization technologies, researches and developments were carried out on a heat supply system using high-performance heat pumps capable of using multiple kinds of fuels, and a compression and absorption type hybrid heat utilization system. For the environmental load reducing technologies, research and development were performed on a power saving heat pump system utilizing natural coolant. In researching the optimal system design technologies, overall adjustment was made on the element technologies, whereas technological discussions and site surveys were executed by the committees at the same time. The latest achievements accomplished to date was published in a book. (NEDO)

  8. Developing a DSR-HNS policy making framework for electric energy systems

    International Nuclear Information System (INIS)

    Meyar-Naimi, H.; Vaez-Zadeh, S.

    2012-01-01

    Sustainable Development (SD) has played a major role as a foundation of several policy making frameworks developed mainly by international organizations. In this paper, some critical points regarding the origination and formulation of the SD concept are discussed. It is argued that the SD concerns with selected sectors and regions rather than the whole society and all regions of the world. To tackle these shortcomings, the conventional definition of SD is extended in this paper according to a broad philosophy of harmonizing key aspects of human, nature and systems performances over generations. Based on this extended definition, an improved Driving Force–State–Response (DSR-HNS) policy making framework is introduced. The main contribution is the modeling of the state block by human, nature and systems components to design overall and coherent policies. A procedure using the framework is also elaborated to monitor the current policies and design new ones, which provides a dynamic, nonlinear, feedback controlled policy making practice, not accommodated by existing policy making frameworks. Finally, a case study is presented to evaluate the effectiveness of the modified framework and the proposed model. The study assesses Iran's electric power generation system from sustainability point of view and develops new policies. - Highlights: ► Some critical points regarding the Sustainable Development (SD) concept are discussed. ► Based on this extended definition, a policy making framework is introduced. ► A policy making procedure based on the framework is elaborated. ► A case study is presented to evaluate the effectiveness of the modified framework. ► New policies are developed for Iran's power generation system.

  9. Recent developments at CNR-INSEAN on testing and modelling marine renewable energy systems for waves and currents

    International Nuclear Information System (INIS)

    Salvatore, Francesco; Di Felice, Fabio; Fabbri Luigi

    2015-01-01

    Hydrodynamic testing centers are nowadays challenged by a continuously increasing demand for studies aimed at the development, verification and assessment of marine renewable energy capturing systems. This paper describes the experience matured over the last years at CNR-INSEAN, the marine technology research Institute of the Italian National Research Council. Originally designed for hydrodynamics testing of marine vehicles, the Institute’s experimental facilities like wave and calm water tanks, circulating water channel, now host testing programs on wave energy converters, marine current turbines and hybrid systems, combining devices to extract energy from different marine sources like waves and winds. Selected case studies are described and main findings are discussed in the paper.

  10. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  11. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  12. Sustainable Development of Regional Power Systems and the Consumption of Electric Energy

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2018-04-01

    Full Text Available Nowadays, one of the most imminent problems facing power systems in post-industrial countries is the sustainable development of power systems under conditions of increasing power consumption irregularity due to the reduction of the industry’s share in consumers’ demand for electric power. In today’s Russia, this issue is becoming very acute due to the significant share of electric power and heat co-generation that is demonstrating low manoeuvrability and poor adaptation to operations in the daily variation of electric power demand. This paper considers the problem of improving the power system steady-state through the optimization of the production structure of thermal power plants. We propose a combinatorial algorithm that improves the planning of the structural and technological modernization of the power equipment configuration, with a glance at the forecast of the increasing irregularity of power consumption.

  13. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  14. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  15. New secondary energy systems

    International Nuclear Information System (INIS)

    Schulten, R.

    1977-01-01

    As an introduction, the FRG's energy industry situation is described, secondary energy systems to be taken into consideration are classified, and appropriate market requirements are analyzed. Dealt with is district heating, i.e. the direct transport of heat by means of circulating media, and long-distance energy, i.e. the long-distance energy transport by means of chemical conversion in closed- or open-cycle systems. In closed-cycle systems heat is transported in the form of chemical latent energy. In contrast to this, chemical energy is transported in open-cycle systems in the form of fuel gases produced by coal gasification or by thermochemical water splitting. (GG) [de

  16. FY 2000 report on the results of the development of the environmentally friendly type high efficiency energy utilization system. Part 1. Study of the effective utilization technology of high efficiency energy (Study of the optimum system design technology); 2000 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 1. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The paper conducted the development of element technology and comprehensive adjustment which are related to the development of the environmentally friendly type high efficiency energy utilization system and the study of the high efficiency energy utilization technology, and the results of FY 2000, the final fiscal year, were summed up. As to the R and D of the exhaust heat reforming/recovery system, the internal heat exchange type distillation tower was developed which has a good energy conservation effect and enables the heat supply outside. Concerning the R and D of the cogeneration system using low calorie exhaust gas, the following were conducted for further improvement of the performance of electrothermic elements: evaluation of the thermoelectric performance using bulk elements, development of new elements and evaluation of the energy balance at the time of combustion, etc. Relating to the R and D of the low temperature exhaust heat utilization cogeneration system, conducted were the development of thermoelectric materials and the fabrication/evaluation study of module. Moreover, WATT20A equipped with the original power generation module developed in this study was fabricated, and the data on the operation at the temperature of 150 degrees C were obtained by WATT-20HT. (NEDO)

  17. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  18. Development of an energy analyzer as diagnostic of beam-generated plasma in negative ion beam systems

    Science.gov (United States)

    Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.

    2017-08-01

    The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.

  19. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  20. Developing Computational Fluid Dynamics (CFD Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Fernández-Yáñez

    2017-06-01

    Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.

  1. Development of a piezoelectric based energy harvesting system for autonomous wireless sensor nodes

    NARCIS (Netherlands)

    Gomez Casseres Espinosa, A.F.; Sanchez Ramirez, Andrea; Combita Alfonso, L.F.; Loendersloot, Richard; Berkhoff, Arthur P.; Le Cam, V.; Mevel, L.; Schoefs, F.

    2014-01-01

    This paper describes the selection and operation of a Boost Integrated with Flyback Rectifier/Energy storage/DC-DC converter (BIFRED) for piezoelectric energy harvesting purposes. This topology presents features like low-harmonic rectification, energy storage and wide-bandwith voltage control in an

  2. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  3. The baltic states' energy system

    OpenAIRE

    Nikitaravičius, Martynas

    2006-01-01

    THE BALTIC STATES’ ENERGY SYSTEM SUMMARY The goal of paper – the comparative analysis of Baltic states‘ (i.e. of Lithuania, Latvia, Estonia) energy systems in 1990-2004. The main causes that affected the development of Baltic states’ energetics are indicated in this work. By the method of statistical analysis, the comparative advantages of Baltic states‘ energetics are detected. Moreover, the main trends of further development of integration of Baltic states ‘ energetics into the energetics o...

  4. Rural energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Stern, R.

    1997-12-01

    The author discusses the worldwide problem and need for rural electrification to support development. He points out that rural areas will pay high rates to receive such services, but cannot afford the capital cost for conventional services. The author looks at this problem from the point of energy choices, subsides, initial costs, financing, investors, local involvement, and governmental actions. In particular he is concerned with ways to make better use of biofuels, to promote sustainable harvesting, and to encourage development of more modern fuels.

  5. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  6. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  7. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  8. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  9. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  10. Energy transition and legal transition: renewable energies development in France

    International Nuclear Information System (INIS)

    Darson, Alice

    2015-01-01

    The way to an energy transition will be reached with an integration of renewable energies in our energy mix. This development includes a legal transition because the current legal context that applies to green energies is not efficient and does not contribute to this emergency. Changing the legal frame becomes a necessity and particularly the way these energies are governed, planned and supported. It's also important that administrative procedures that regulate the implantation of energies production system are set. At last, this legal transition will have to conciliate imperatives linked to the development of renewable energies with those governing the protection of surroundings, all aiming to a sustainable development. (author) [fr

  11. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    International Nuclear Information System (INIS)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R.

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans

  12. Development and testing of a digital RF control system and development of a modular data acquisition system for the energy stabilisation of the S-DALINAC

    International Nuclear Information System (INIS)

    Araz, Asim

    2009-01-01

    The subject of this thesis was to construct and test a digital radio-frequency control system for the superconducting Darmstadt electron accelerator S-DALINAC. The controller consists of two components, a low-frequency and a high-frequency module. The high-frequency module developed within this framework is constructed from modern integrated circuits that offer, besides enhanced high-frequency properties, a built-in temperature stabilization. Currently, three superconducting cavities are controlled by the new modules via level converters, thus proving the suitability, and reliability in operation. A new low-frequency module was also commissioned during the course of the present work. It is based, in contrast to the existing control loops, not on analogue but on digital signal processing provided by fast Field Programmable Gate Arrays (FPGA). The fast signal processing capabilities of the new low-frequency unit enabled the implementation of a new, compared to the existing circuit, more advanced control algorithm for the digital control. Within this algorithm integral controllers were added to the proportional controllers in the amplitude as well as in the phase control loops. The digital control can now correct smallest residual errors that could not be compensated by the existing proportional controllers. Additionally, the phase control range was increased to ±180 . by the implementation of a vector rotation. Spurious fix points of the control loop were prevented by a modified amplitude modulation. With these two components, namely, the high- and low-frequency module, the first digital radio-frequency control loop for the S-DALINAC was realized and successfully tested, operating on a superconducting cavity. Under typical operation conditions, an amplitude stability of 2.5.10 -4 and a phase stability of 0.28. were demonstrated. Compared to the current control loops this implies an improved amplitude stability by a factor of 8, while the phase stability remains

  13. Development of a dispatch model of the European power system for coupling with a long-term foresight energy model

    International Nuclear Information System (INIS)

    Despres, Jacques

    2015-12-01

    Renewable sources of electricity production are strongly increasing in many parts of the world. The production costs are going down quickly, thus accelerating the deployment of new solar and wind electricity generation. In the long-term, these variable sources of electricity could represent a high share of the power system. However, long-term foresight energy models have difficulties describing precisely the integration challenges of Variable Renewable Energy Sources (VRES) such as wind or solar. They just do not represent the short-term technical constraints of the power sector. The objective of this paper is to show a new approach of the representation of the challenges of variability in the long-term foresight energy model POLES (Prospective Outlook on Long-term Energy Systems). We develop a short-term optimization model for the power sector operation, EUCAD (European Unit Commitment and Dispatch) and we couple it to POLES year after year. The direct coupling, with bi-directional exchanges of information, brings technical precision to the long-term coherence of energy scenarios. (author)

  14. Development of advanced methods for planning electric energy distribution systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goenen, T.; Foote, B.L.; Thompson, J.C.; Fagan, J.E.

    1979-10-01

    An extensive search was made for the identification and collection of reports published in the open literature which describes distribution planning methods and techniques. In addition, a questionnaire has been prepared and sent to a large number of electric power utility companies. A large number of these companies were visited and/or their distribution planners interviewed for the identification and description of distribution system planning methods and techniques used by these electric power utility companies and other commercial entities. Distribution systems planning models were reviewed and a set of new mixed-integer programming models were developed for the optimal expansion of the distribution systems. The models help the planner to select: (1) optimum substation locations; (2) optimum substation expansions; (3) optimum substation transformer sizes; (4) optimum load transfers between substations; (5) optimum feeder routes and sizes subject to a set of specified constraints. The models permit following existing right-of-ways and avoid areas where feeders and substations cannot be constructed. The results of computer runs were analyzed for adequacy in serving projected loads within regulation limits for both normal and emergency operation.

  15. Trend of development of dispersion energy machine. Solar power generation system; Taiyoko hatsuden shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    2000-04-01

    Technology development of a solar power generation system is advanced in Japan taking the New Sunshine Subject (NSS) of the Agency of Industrial Science and Technology as the center. According to the initial stage plan (in fiscal 1993 to 2000) of the NSS, a general goal is to establish the technique which supplies electric power at the power generating cost (the production base cost) being equal to the electricity fees (20 to 30 yen/kWh) for normal families in the latest year. At present, introduction of the solar power generation system results in the reduction of about 1 million yen per kW. It is expected that 5 hundred thousand yen per kW is reduced by the present technology with a combination of cost reduction of solar battery modules, cost reduction of relevant equipment such as inverters, and rationalization of installation fees. It is necessary to realize 3 hundred thousand yen per kW for realizing the price having competition in the power supply market. In this paper, popularization prediction and popularization promotion countermeasures of the solar power generation system are concretely explained. (NEDO)

  16. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  17. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  18. Overview of current development in electrical energy storage technologies and the application potential in power system operation

    International Nuclear Information System (INIS)

    Luo, Xing; Wang, Jihong; Dooner, Mark; Clarke, Jonathan

    2015-01-01

    Highlights: • An overview of the state-of-the-art in Electrical Energy Storage (EES) is provided. • A comprehensive analysis of various EES technologies is carried out. • An application potential analysis of the reviewed EES technologies is presented. • The presented synthesis to EES technologies can be used to support future R and D and deployment. - Abstract: Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented

  19. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan; Kim, Taeil; France, David M.; Smith, Roger K.

    2018-01-01

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degrees C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.

  20. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  1. Decarbonization of Croatian Energy System

    International Nuclear Information System (INIS)

    Potocnik, V.

    2012-01-01

    Energy system decarbonization is reduction of greenhouse gases (CO 2 ) emission, chiefly from the fossil fuels (coal, oil, natural gas) combustion. The main objective of an energy system decarbonization is the climate change mitigation, and at the same time development of local industry and employment, better environment and health protection, as well as reduction of the fossil fuels import and foreign debt. Croatia has small fossil fuels reserves and large renewable energy sources (RES) reserves, energy efficiency (ENEF) is relatively low, and energy import, according to the actual Energy strategy 2009, should increase from 50% to 70% until 2020. Croatian energy system participates with about one third in the Croatian foreign trade deficit. The main measures of the Croatian energy system decarbonization should be: increasing ENEF (energy savings), switch from fossil fuels to RES, administrative measures (low carbon development strategy, environmental tax reform, and decoupling income from energy sales). By urgent application of these measures, Croatia could become fossil fuels free until the year 2050.(author)

  2. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Study of energy system designing technology (Research into factory area energy system); Koiki energy riyo network system kaihatsu, energy system sekkei gijutsu no kenkyu 1998 nendo seika hokokusho. Kojogun no energy system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Actualities of exhaust heat and demand for heat in the area are investigated on the result of which a wide-area energy utilization network system will be built. In fiscal 1998, further questionnaires are distributed in addition to last fiscal year's, and door-to-door visits are made on leading factories representing 10 types of industries. The result of data analysis places the nationwide total of exhaust heat at 320,000 Tcal/year including heat generated by electric power generation. When it is so defined that usable heat be above 150 degrees C for exhaust gas, above 40 degrees C for hot water, and above 200 degrees for solids, the total will be reduced to 230,000 Tcal/year. Cleaning plants (plants that treat refuse or sewage) as the sources of exhaust heat besides the factories are investigated for the amount of heat they discharge, and then it is found that the amount of heat they discharge is the fourth largest following electric power plants, iron and steel mills, and chemical plants. It is also found that most of their exhaust heat is of good quality because it is latent in steam or hot water. It is acknowledged, partly because many of such plants are situated relatively near to the urban district, that their role is important when studies are made on the utilization of exhaust heat. (NEDO)

  3. Bolivia renewable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  4. Distributed Photovoltaics in the Swedish Energy System. Model Development and Simulations

    International Nuclear Information System (INIS)

    Widen, Joakim

    2009-06-01

    Application of photovoltaics (PV) is increasing worldwide, mainly due to extensive subsidy schemes for introducing CO 2 -free power generation. A majority of newly installed systems are distributed small-scale systems located in distribution grids, often at residential customers. Recent developments suggest that such distributed PV generation (PV-DG) could gain more interest in Sweden in the near future. With prospects of decreasing module prices, an extensive integration could be possible. This licentiate thesis presents the first part of a PhD project with the aim to determine the potential for domestic PV-DG in Sweden. Two aspects are treated in detail in the thesis: (1) the ability of PV to match a local domestic power demand and (2) impacts of extensive integration of PV-DG on power flow in low-voltage (LV) distribution grids. To make realistic studies for high-latitude conditions, there is a need for representative demand and PV generation data. As there is a lack of detailed domestic load data in Sweden, a major part of the work has been devoted to development of a stochastic load model. Interdisciplinary studies of household activities were performed to get insight into how domestic electricity use is embedded in the structure of everyday life. It was found that time-use (TU) data, normally used in the social sciences, can be used to model domestic power demand. Both a conversion model for estimating power demand from empirical TU data and a stochastic Markov-chain model for generating synthetic activity patterns and power demand were developed and extensively validated against measurements. Importantly, a realistic model of domestic lighting demand from occupancy patterns and irradiation data was developed, that preserves the negative correlation between irradiation and lighting demand. The models provide a basis for load matching studies and power-flow simulations, but can be used for other purposes as well. Case studies of individual households showed

  5. Distributed Photovoltaics in the Swedish Energy System. Model Development and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Widen, Joakim

    2009-06-15

    Application of photovoltaics (PV) is increasing worldwide, mainly due to extensive subsidy schemes for introducing CO{sub 2}-free power generation. A majority of newly installed systems are distributed small-scale systems located in distribution grids, often at residential customers. Recent developments suggest that such distributed PV generation (PV-DG) could gain more interest in Sweden in the near future. With prospects of decreasing module prices, an extensive integration could be possible. This licentiate thesis presents the first part of a PhD project with the aim to determine the potential for domestic PV-DG in Sweden. Two aspects are treated in detail in the thesis: (1) the ability of PV to match a local domestic power demand and (2) impacts of extensive integration of PV-DG on power flow in low-voltage (LV) distribution grids. To make realistic studies for high-latitude conditions, there is a need for representative demand and PV generation data. As there is a lack of detailed domestic load data in Sweden, a major part of the work has been devoted to development of a stochastic load model. Interdisciplinary studies of household activities were performed to get insight into how domestic electricity use is embedded in the structure of everyday life. It was found that time-use (TU) data, normally used in the social sciences, can be used to model domestic power demand. Both a conversion model for estimating power demand from empirical TU data and a stochastic Markov-chain model for generating synthetic activity patterns and power demand were developed and extensively validated against measurements. Importantly, a realistic model of domestic lighting demand from occupancy patterns and irradiation data was developed, that preserves the negative correlation between irradiation and lighting demand. The models provide a basis for load matching studies and power-flow simulations, but can be used for other purposes as well. Case studies of individual households

  6. Energy, Sustainability and Development

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  7. Energy Usage Analysis System

    Data.gov (United States)

    General Services Administration — The EUAS application is a web based system which serves Energy Center of Expertise, under the Office of Facilitates Management and Service Programs. EUAS is used for...

  8. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  9. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    Science.gov (United States)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  10. Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    • To reduce the costs of energy towards 2050 This transition faces many challenges from a variety of different perspectives, including: • Technology: The development of new technologies and infrastructures, which will enable us to utilise renewable energy resources. • Business: The design of new markets...

  11. Living Systems Energy Module

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  12. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  13. Alternative Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    West, M.; Duckers, L.; Lockett, P.; Loughridge, B.; Peatfield, T.; White, P.

    1984-01-01

    The Coventry (Lanchester) Polytechnic Wave Energy Group has been involved in the United Kingdom wave energy research programme since its inception in 1975. Whilst the work of the group is mainly concerned with wave energy, and currently is directed towards the design of a wave energy device tailored to the needs of isolated/island communities, it has some involvement with other aspects of the alternatives. This conference, dealing with alternative energy systems and their electrical integration and utilisation was engendered by the general interest which the Polytechnic group members have in the alternatives and their use. The scope for electrical integration and utilisation is very broad. Energy for family groups may be provided in a relatively unsophisticated way which is acceptable to them. Small population centres, for example island communities relying upon diesel equipment, can reap the benefits of the alternatives through their ability to accept novel integration schemes and a flexible approach to the use of the energy available. Consumers already enjoying the benefits of a 'firm' electricity grid supply can use energy from a variety of alternative systems, via the grid, without having to modify their energy consumption habits. In addition to the domestic and industrial applications and coastal possibilities, specialist applications in isolated environments have also emerged. The Proceedings detail practical, technical and economic aspects of the alternatives and their electrical integration and utilisation.

  14. The Island Smart Energy System and Market

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    developing island smart energy systems with the integration of renewable energy resources can increase the energy supply and address the global island energy issues. The island smart energy system operates either in a single-island or in multi-islands. However the island characteristics and influ...

  15. Energy Systems Group. Annual Progress Report 1984

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Larsen, Hans Hvidtfeldt; Villadsen, B.

    The report describes the work of the Energy Systems Group at Risø National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff...

  16. Energy Systems Group annual progress report 1984

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Villadsen, B.

    1985-02-01

    The report describes the work of the Energy Systems Group at Risoe National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff members. (author)

  17. Smart Energy Systems and Energy Transition

    International Nuclear Information System (INIS)

    Duic, N.

    2016-01-01

    not only for huge increase of energy efficiency, but also, electric cars due to low daily use may be excellent for demand response and even for storage potential, through vehicle to grid technology. Self-driven cars will change way the transport works, decoupling the demand from supply, so that transport supply service may be used for demand response by the power system. Buildings and cities will become important with their high potential for demand response implemented through smart retail markets. That will allow reaching 80% renewable in energy system, but the remaining 20% may be more an uphill battle without technology breakthrough. Long haul freight road transport, aviation and ship transport, as well as some high temperature industrial processes, cannot yet be easily electrified. Biomass, if not used for producing electricity and heat, may cover half of those needs, but the rest will have to come from some other technology. Inductive highways, innovative high energy density batteries and power to synthetic fuels, or so called e-fuels, which may include hydrogen, are all very hot research issues. During the energy transition fossil fuels will continue to be used. Beneficial is to use waste heat from power plants, making cogeneration a rule, and to move from base load towards flexible power plants. That will mean replacing base load coal power plants with flexible gas power plants. That can only happen if the price of gas on European markets is brought into line with other liquid markets, bringing forward the fuel switch, which means diversifying the infrastructure, especially through more floating LNG terminals and South corridor. Croatia is on the right path to transition, starting up investment in nearly zero energy buildings, electrification of transport and having lively wind sector. The highest priorities in the next decade are solarisation, much more district heating and cooling based on renewable energy and waste heat, development of sustainable biomass

  18. Report on achievements in fiscal 1998. Surveys on development of an at-home welfare device system to rationalize energy use. (Sapporo City); 1998 nendo energy shiyo gorika zaitaku fukushi kiki system kaihatsu chosa (Sapporo) saiitaku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Daily, weekly and annual changes in energy use at care-taking sites were studied with the following six assignments enumerated: (1) studies on energy use amount in residential houses in the Hokkaido district, (2) discussions on improving energy conservation and efficiency in electric room heating systems and road heating, (3) evaluation on indoor air environment and discussions on effectiveness of air cleaning devices and ventilation systems, (4) surveys and studies on rational snow disposal methods for houses for physically handicapped and elderly persons and on housing patterns, and (6) surveys on effects of room warming environment in energy saving type houses on body feeling of elderly persons. Development of at-home welfare device systems utilizing energy more effectively was studied with the following five assignments enumerated: (1) surveys on energy consumption evaluation of at-home welfare devices, (2) surveys on developing a method to simulate energy consumption by analyzing utilization of the at-home welfare devices, (3) surveys on energy consumption and pleasantness associated with movement from a living section using the welfare devices to outdoor, (4) surveys on a garage utilizing a home elevator and around the garage, and (5) surveys on temperature setting and energy consumption when humidity in the garage is adjusted. (NEDO)

  19. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  20. A sustainable energy development

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to encourage electric power production through renewable energies (such as wind energy with the Eole 2000 plan, solar water heaters in overseas departments, wood energy for space heating in buildings, photovoltaic energy), demand side management and cogeneration, and to enhance its purchase conditions by the government-owned EDF utility. Laws have been also introduced concerning air quality and the rational use of energy

  1. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  2. Design and development of a MLS based compact active suspension system, featuring air spring and energy harvesting capabilities

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2016-01-01

    This paper describes the design and development of an novel Magnetic Lead Screw based active suspension system for passenger vehicles, using a new MLS topology. The design is based on performance specifications found from ISO road profiles, with a maximum harvested energy approach. By integrating...... the PMSM motor with the MLS, it possible to construct a very compact design with an integrated air spring. The prototype is build and frictional losses and efficiency for the MLS damper unit are measured. Additional the stall force and stall torque are measured for the build prototype to validate...

  3. Development of an imaging system for patient set-up monitoring during radiotherapeutic treatment with high energy photons

    International Nuclear Information System (INIS)

    Herk, M. van.

    1985-01-01

    A prototype image detector has been designed and built for patient moniorting during radiotherapy treatment with high energy photon beams. A matrix of DC operated ionisation chambers was used to detect the transmitted radiation through a patient. The detector was developed in order to replace the current method, in which film radiography is used. Various detector configurations have been tested, and some results will be presented. Image enhancement was achieved by computer processing of the data. Theoretical possibilities of the detector system have been studied. (Auth.)

  4. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  5. Probabilistic Approaches to Energy Systems

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning

    of renewable energy generation. Particularly we focus on producing forecasting models that can predict renewable energy generation, single user demand, and provide advanced forecast products that are needed for an efficient integration of renewable energy into the power generation mix. Such forecasts can...... integration of renewable energy.Thus forecast products should be developed in unison with the decision making tool as they are two sides of the same overall challenge.......Energy generation from wind and sun is increasing rapidly in many parts of the world. This presents new challenges on how to integrate this uncertain, intermittent and non-dispatchable energy source. This thesis deals with forecasting and decision making in energy systems with a large proportion...

  6. Renewable energy strategies for sustainable development

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    This paper discusses the perspective of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency improvements in the energy...... production, and replacement of fossil fuels by various sources of renewable energy. Consequently, large-scale renewable energy implementation plans must include strategies of how to integrate the renewable sources in coherent energy systems influenced by energy savings and efficiency measures. Based...... on the case of Denmark, this paper discusses the problems and perspectives of converting present energy systems into a 100 percent renewable energy system. The conclusion is that such development will be possible. The necessary renewable energy sources are present, if further technological improvements...

  7. Public policies for the development of solar photovoltaic energy and the impacts on dynamics of technology systems and markets

    International Nuclear Information System (INIS)

    Yu, Hyun Jin Julie

    2016-01-01

    Over the past decades, climate change has been a subject of serious international negotiations. Solar photovoltaic (PV) energy has caught the eyes of many governments as one of the front-runner technologies for the low carbon energy transition in the global community. Solar PV systems have experienced strong market growth over the last decade supported by favorable political reactions in the energy transition context. However, despite these favorable conditions, paradoxically, the global PV market recently went through a chaotic time encountering the overproduction issue, the industry crisis and the long-lasting trade disputes. Furthermore, as the level of PV penetration increases, many problematics started to appear with negative systemic impacts on the electricity sector. This thesis started from these problematics to understand the PV policy mechanisms and the context change. In order to define those issues, a systemic approach is taken to provide an accurate comprehension of the overall mechanisms of PV public policies. The concrete systemic vision of PV policy mechanisms is constructed based on theoretical and historical analysis by defining key variables and the context (Part I). A retrospective analysis using the proposed mapping tools is conducted to understand critical limits and challenges of PV development and to identify risks factors in the sector (Part II). This thesis also demonstrates how the nature of policy context changes in combined with the dynamic features of the PV sector. This helps anticipate possible risks of PV development in the future. The thesis highlights the nationwide PV policy dynamics was broken with the arrival of China in the PV sector. Taken the defined critical limits and challenges into account, this thesis eventually proposes strategic orientations of PV development at the two dimensions from both national and international perspectives (Part III). At the national level, this thesis discusses on PV self-consumption as the

  8. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    OpenAIRE

    Fei Fei; Shengli Zhou; John D. Mai; Wen Jung Li

    2014-01-01

    Wireless sensor networks (WSNs) have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that...

  9. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  10. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia; Castells, Escriva; Abanades

    2011-01-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  11. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    . It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production......In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...... of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view...

  12. Soft-linking energy systems and GIS models to investigate spatial hydrogen infrastructure development in a low-carbon UK energy system

    International Nuclear Information System (INIS)

    Strachan, Neil; Hughes, Nick; Balta-Ozkan, Nazmiye; McGeevor, Kate; Joffe, David

    2009-01-01

    This paper describes an innovative modelling approach focusing on linking spatial (GIS) modelling of hydrogen (H 2 ) supply, demands and infrastructures, anchored within a economy-wide energy systems model (MARKAL). The UK government is legislating a groundbreaking climate change mitigation target for a 60% CO 2 reduction by 2050, and has identified H 2 infrastructures and technologies as potentially playing a major role, notably in the transport sector. An exploratory set of linked GIS-MARKAL model scenarios generate a range of nuanced insights including spatial matching of supply and demand for optimal zero-carbon H 2 deployment, a crucial finding on successive clustering of demand centres to enable economies of scale in H 2 supply and distribution, the competitiveness of imported liquid H 2 and of liquid H 2 distribution, and sectoral competition for coal with carbon sequestration between electricity and H 2 production under economy-wide CO 2 constraints. (author)

  13. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  14. Energy Research & Development

    Science.gov (United States)

    Skip to Main Content CA.gov California Energy Commission CA.gov | Contact | Newsroom | Quick Links convenience of our website visitors and is for informational purposes only. The California Energy Commission Google Translate™. The California Energy Commission does not endorse the use of Google TranslateÂ

  15. Development of SPEEDI-MP. A simulation system for contaminant, water, and energy circulation in a multiple environment

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2010-01-01

    A numerical simulation system named SPEEDI-MP for environmental studies has been developed by the Japan Atomic Energy Agency. In this development, the national emergency response system SPEEDI, which predicts atmospheric dispersion and environmental impacts of radionuclides from nuclear facilities after an accident, is extended to be able to deal with various environments from atmospheric to terrestrial and oceanic environments. In SPEEDI-MP, this kind of complex simulation was realized by introducing a model coupler. Calculations of component models are carried out by different processors of parallel computers and the coupler controls these processes and handles data exchange among component models. Performance of the coupled model has been demonstrated in simulations of the storm surge caused by Hurricane Katrina in August 2005 and flash floods after heavy rainfall in Saudi Arabia. The development toward inclusion of substances of environmental concern into the model system is currently under way. As the first step of this development, the incorporation of tritium as a hazardous material worked well. (author)

  16. Domestic hot water use study, multi-family building energy monitoring and analysis for DHW system sizing criteria development

    International Nuclear Information System (INIS)

    Goldner, F.S.

    1993-01-01

    Thirty New York City multifamily building combined steam heating and domestic hot water (DHW) plants were instrumented for monitoring (mostly hourly) apartment, outdoor, boiler and DHW temperatures and burner on-off times. In nine of these buildings, which had been upgraded, additional data collected were: stack temperature, DHW flow in 15-minute increments, oil ampersand boiler make-up water flows, and DHW temperature before and after the mixing (tempering) valve and on the circulating return line. The project's objectives are to develop comprehensive operating data on combined DHW and heating systems to be used in system design and specifications and for improving operating procedures. DHW requirements in multi-family buildings are currently calculated on the basis of questionable standards. These new, more precise DHW flow data result in a better basis for sizing than existed heretofore. There is a critical need for improved specifications and performance in newly constructed and renovated buildings. Better system choices among various instantaneous generation and storage scenarios will result in savings derived from smaller initial equipment investments as well as more energy efficient operations. The data being generated define figures for DHW energy use so that more reliable and accurate predictions of savings can be calculated. This paper presents DHW demand patterns, seasonal variations, weekday vs. weekend consumption, consumption vs. occupancy levels, coincidence of 15- and 60-minute demand periods, and average vs. peak demand levels. This project is sponsored by New York State Energy Research and Development Authority (NYSERDA). The results of this research are being reviewed for inclusion in a revision of DHW guidelines for the next edition of the ASHRAE Handbook

  17. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  18. German support systems for onshore wind farms in the context of Polish acts limiting wind energy development

    Directory of Open Access Journals (Sweden)

    Dawid Leszek

    2017-09-01

    Full Text Available European energy system is undergoing a deep transition to low-emission energy sources, mainly wind farms. This transition is caused mostly by energy politics of European Union (EU and its goals in the topic of renewable energy. European wind energy is dominated by Germany that produces half of total wind energy in EU. The aim of this article is to present support systems for wind farms existing in Germany in the context of introducing in Poland the Act of 20 May 2016 on Wind Energy Investments limiting onshore wind farms localization and Act of 22 June 2016 introducing changes to the Act on Renewable Energy Sources (RES and some other acts. It is postulated to make amendments of acts regulating RES while considering German solutions.

  19. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  20. Energy and environmental evaluation of tri-generation energy systems

    International Nuclear Information System (INIS)

    Chicco, G.; Mancarella, P.

    2008-01-01

    Tri generation facilities manufactured with various technologies represent an important alternative solution for the development more efficient energy systems and low environmental impact. Are described the issues related to modelling and energy and environmental evaluation [it

  1. World energy data system (WENDS)

    International Nuclear Information System (INIS)

    Lareau, W.E.

    1979-01-01

    This paper presents a unique application of System 2000: the storage of preformatted textual information in a completely user oriented data base. The World Energy Data System is an information system which allows qualified users online access to non-classified management level data on worldwide energy technology and research and development activities. WENDS has been used to transmit up-to-date informaion on foreign energy technology and research and development programs to DOE program divisions, the Congress, and other U.S. government officials going abroad. The WENDS concept is first described. Then, the method of storage of the textual information is discussed followed by a discussion of the retrieval system which is thoroughly designed to serve the user

  2. An enterprise energy-information system

    Energy Technology Data Exchange (ETDEWEB)

    Swords, B.; Coyle, E. [School of Control Systems and Electrical Engineering, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); Norton, B. [President, Dublin Institute of Technology, Aungier St., Dublin 2 (Ireland)

    2008-01-15

    This paper outlines the background, development, and assessment of a prototype enterprise energy information system (EEIS) that supports strategic energy-management by providing comprehensive energy monitoring and targeting, integrating with energy modelling software and enterprise business databases, and supporting measurement and verification (M and V). The EEIS prototype system was developed and assessed in an industrial site and a third-level education institution with colleges throughout Dublin. The industrial site provided the opportunity for the EEIS to meet the requirements of a large energy intensive site, and to integrate with energy modelling software. The higher education establishment accommodated the development of a networked energy-information system. (author)

  3. Achievement report for fiscal 1998 on development of environmentally friendly high-efficiency energy utilization system. 2. Research of technology of effectively utilizing high-efficiency energy / research of optimum system designing technology; 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu, saiteki system sekkei gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This 2nd volume deals with the transportation and storage of energy in the above-named research. In search of technologies for transporting exhausted heat from the industrial area to the urban section for consumers to utilize the heat for driving their air-conditioners and hot water supply systems, the decomposition and composition reactions of methanol are utilized for a long-range transportation system. The subjects taken up in this connection include the research and development of a methanol energy system, non-equilibrium high-efficiency methanol decomposition technology, multifunctional catalysts, and highly active/selective catalysts capable of promoting reversible endoergic/exoergic reactions. Research and development is also conducted of a high-efficiency heat pump technology using hydrogen-absorbing alloys, and such a pump will realize an air-conditioning system not dependent on chlorofluorocarbon. In the research and development of a long-range heat transportation system using hydrogen-absorbing alloys, a study is made of technologies of heat/hydrogen recovery, transportation, and utilization. (NEDO)

  4. Development of energy-harvesting system using deformation of magnetic elastomer

    Science.gov (United States)

    Shinoda, Hayato; Tsumori, Fujio

    2018-06-01

    In this paper, we propose a power generation method using the deformation of a magnetic elastomer for vibration energy harvesting. The magnetic flux lines in the structure of the magnetic elastomer could be markedly changed if the properly designed structure was expanded and contracted in a static magnetic field. We set a coil on the magnetic elastomer to generate electricity by capturing this change in magnetic flux flow. We fabricated a centimeter-scale device and demonstrated that it generated 10.5 mV of maximum voltage by 10 Hz vibration. We also simulated the change in the magnetic flux flow using finite element analysis, and compared the result with the experimental data. Furthermore, we evaluated the power generation of a miniaturized device.

  5. Energy policies and renewable energy systems monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Di Nisio, Attilio; Savino, Mario; Spadavecchia, Maurizio [Electrical and Electronic Measurements Laboratory, Dept. of Electrical and Electronic Engineering - Politecnico di Bari, Bari (Italy)], e-mails: dinisio@misure.poliba.it, savino@misure.poliba.it, spadavecchia@misure.poliba.it

    2011-07-01

    Full text: The global energy crisis is forcing every country worldwide to review its policies on energy. The environmental disaster at Japan's Fukushima Daiichi nuclear power plant has accelerated this process. Many people around the world are citing the disaster as evidence that nuclear power would endanger the survival of mankind on earth and should be banned. Today we need to focus more substantially on energy saving, especially using smart devices with low power consumption. We have also to review the approach to the exploitation of energy and move from a philosophy 'from the ground to the subsurface' to another 'from the earth to the sun'. This paper highlights the increasing importance of solar power in meeting energy needs while achieving security of supply and minimising carbon dioxide (CO{sub 2}) emissions. It deals also with the development of solar power plants, which require a supervisory control system that improves their efficiency and reliability. (author)

  6. Research and development for solar thermal energy system. Research on advanced solar component; Taiyonetsu energy system no kenkyu kaihatsu. Kiki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Doi, T; Takashima, T; Ando, Y; Masuda, T; Fujii, T [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for research on advanced solar components as part of research and development of solar thermal energy. The catalyst for liquid-film reactions is prepared, and the flask tests are conducted as the preliminary experiments for development of the reactor in which 2-propanol is fallen in liquid film over the catalyst dispersed to accelerate its decomposition. It is decomposable when fallen in liquid film even in the presence of 35% of acetone. The catalyst of ruthenium carried by activated coal is used to produce 2-propanol under an exothermic condition from acetone and hydrogen. Diisopropyl ether and 4-methyl-2-pentanone are produced as by-products, when the reactor tube is kept at 140 to 200{degree}C at the external wall, diminishing as temperature is increased. There is a temperature differential of 20 to 30{degree}C in the reactor tube between the center axis and external wall. 3 figs.

  7. Oil-free bearing development for high-speed turbomachinery in distributed energy systems – dynamic and environmental evaluation

    Directory of Open Access Journals (Sweden)

    Tkacz Eliza

    2015-09-01

    Full Text Available Modern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

  8. Report on achievements in fiscal 1998. Surveys on development of an at-home welfare device system to rationalize energy use (Shizuoka City); 1998 nendo energy shiyo gorika zaitaku fukushi kiki system kaihatsu chosa (Shizuoka) saiitaku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to achieve rationalization in energy use, surveys and studies were performed on structuring new at-home welfare device systems of effective energy utilization type, based on structural characteristics of residential houses arranged with considerations for elderly people, and operation characteristics of at-home welfare device systems. For the 'evaluation of daily, weekly and annual changes in energy use at care-taking sites', measurements were performed on cumulative power during operation standby and momentary power under no load and load in eight care-taking devices such as a care-taking Gatch bed, a motor-driven lift-up cooking table and a home elevator installed in the WTH Shizuoka, by using a house energy measuring device. The measurements verified that large power is consumed during standby operation. In developing the 'at-home welfare device systems that utilize energy more effectively', a solar beam measuring device was used to measure over an extended period of time the power generation amount of a solar beam power generation system installed in the WTH Shizuoka. Evaluation was given on the system as an emergency power supply for an emergency event, and consideration was given on the effectiveness of the system in the Shizuoka district where daily sunlight irradiation lasts long. Development was made on an inexpensive walking training device, on which effectiveness as a waling training device was evaluated by using a position sensor and a force plate. (NEDO)

  9. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  10. Systems dynamics modelling to assess the sustainability of renewable energy technologies in developing countries

    CSIR Research Space (South Africa)

    Brent, AC

    2011-04-01

    Full Text Available review of methods and tools applied in technology assessment. Technological Forecasting and Social Change, 75, pp. 1396-1405, 2008. [13] Sterman, J.D., Business dynamics: systems thinking and modelling for a complex world. McGraw-Hill/Irwin, New York...

  11. Development of large scale and wind energy conservation system. Operational studies on a large-scale wind energy conservation system; Ogata furyoku hatsuden system no kaihatsu. Ogata furyoku hatsuden system no unten kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for operational studies on a large-scale wind energy conversion system. A total of 8 domestic and foreign cases are studied for wind energy conversion cost, to clarify the causes for higher cost of the Japanese system. The wind power systems studied include Japanese (5 units at Tappi Wind Park, the same type supplied by company M), US (California Wind Farm, 300 units) and UK (Wales Wind Farm, 103 units) systems. The investment costs are 639, 285 and 189 thousand yen/kW for the Japanese, US and UK systems, respectively. It is also revealed that the power plant itself and assembling costs account for a majority (70 to 88%) of the total investment cost. The higher cost of the Japanese system results from a smaller number of units installed, and the power plant cost can be drastically reduced by mass production. Increasing size also reduces cost greatly.

  12. Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

  13. Energy systems transformation.

    Science.gov (United States)

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  14. Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques

    International Nuclear Information System (INIS)

    Park, Hyo Seon; Lee, Minhyun; Kang, Hyuna; Hong, Taehoon; Jeong, Jaewook

    2016-01-01

    Highlights: • This study developed a new energy benchmark for office buildings. • Correlation analysis, decision tree, and analysis of variance were used. • The data from 1072 office buildings in South Korea were used. • As a result, six types of energy benchmarks for office buildings were developed. • The operational rating system can be improved by using the new energy benchmark. - Abstract: As improving energy efficiency in buildings has become a global issue today, many countries have adopted the operational rating system to evaluate the energy performance of a building based on the actual energy consumption. A rational and reasonable energy benchmark can be used in the operational rating system to evaluate the energy performance of a building accurately and effectively. This study aims to develop a new energy benchmark for improving the operational rating system of office buildings. Toward this end, this study used various data-mining techniques such as correlation analysis, decision tree (DT) analysis, and analysis of variance (ANOVA). Based on data from 1072 office buildings in South Korea, this study was conducted in three steps: (i) Step 1: establishment of the database; (ii) Step 2: development of the new energy benchmark; and (iii) Step 3: application of the new energy benchmark for improving the operational rating system. As a result, six types of energy benchmarks for office buildings were developed using DT analysis based on the gross floor area (GFA) and the building use ratio (BUR) of offices, and these new energy benchmarks were validated using ANOVA. To ensure the effectiveness of the new energy benchmark, it was applied to three operational rating systems for comparison: (i) the baseline system (the same energy benchmark is used for all office buildings); (ii) the conventional system (different energy benchmarks are used depending on the GFA, currently used in South Korea); and (iii) the proposed system (different energy benchmarks are

  15. Development of a practical photochemical energy storage system. Quarterly report. [Interconversion between norbornadiene and quadricyclene for thermochemical heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, R.R.; Kutal, C.R.

    1977-09-15

    It was previously found that the triphenylcyclopropenyl-nickel compound ((C/sub 6/H/sub 5/)/sub 3/C/sub 3/Ni(CO)Br)/sub 2/ (I, X = Br) was an active catalyst for the conversion of quadricyclene to norbornadiene. This result was of considerable interest in connection with the development of the solar energy storage system since it indicated a new type of complex of a relatively abundant metal with potentially useful catalytic properties. For this reason, during this quarter a variety of triphenylcyclopropenyl-nickel derivatives were synthesized in order to determine their structure-activity relationships with respect to catalysis of the conversion of quadricyclene to norbornadiene. Also, a new approach to the development of a polymer-bound catalyst for the conversion of quadricyclene to norbornadiene based on an ion-exchange resin was also explored. Procedures and results are reported. (WHK)

  16. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  17. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  18. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  19. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  20. Achievement report on research and development in the Sunshine Project in fiscal 1978. Studies on a hydrogen energy total system; 1978 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Analysis was made on timing, patterns and scales of introducing hydrogen energy into the Japan's total energy system, and case studies were made on transfer of the comprehensive systems that can be realized in the years of 1985, 2000 and 2025. The basic conception for the analytic method employed a method to analyze and present theoretically the conditions in which prerequisites or results of the estimation can be established, rather than intending elucidation of the estimation itself. An energy model was used for the theoretical means thereof. The objective function to be optimized was assumed to maximize (estimate over the planned period of time) the total effectiveness of the hydrogen energy system converted into the present value being given appropriate discount. The economic performance measures for different secondary energies working as the comparison measures are the limiting production cost of each energy. A consideration was given to the point that the electrolytic hydrogen cannot compete with that made by using the thermo-chemical method (if developed successfully) using heat from high-temperature gas reactor if the fossil fuel price rises sharply. Considerations are also required in replaceability of hydrogen energy with other energies, and hydrogen utilization in petroleum refining. (NEDO)

  1. Development and implementation of a compound converter in solar energy systems

    Directory of Open Access Journals (Sweden)

    S. J. B. Hartman

    1992-07-01

    Full Text Available The converter proposed here is a compound photovoltaic converter system that has been implemented with a power rating of 1,5 kVA at an array voltage of 96 V, using a 24 V battery bank. The converter system combines the functions of inversion, battery regulation and maximum power point tracking of the solar array into a single cost-effective converter. Maximum power point tracking is performed by controlling the voltage and frequency of the AC output. A description of this converter, and an explanation of the control strategy employed, are provided together with practical results measured on the prototype converter. This compound topology has a high conversion efficiency from solar array to load.

  2. Development of new heat transfer media for improving efficiency in energy systems : conventional fluids and nanofluids

    OpenAIRE

    Cabaleiro Alvarez, David

    2016-01-01

    This PhD Thesis aims to characterize different conventional thermal fluids and propose new nanofluids based on their thermophysical, rheological, (solid-liquid) phase equilibria and their capability to heat transfer or heat storage. The selected conventional fluids are commonly used in the majority of heat transfer systems such as ethylene glycol (EG), propylene glycol (PG), a (ethylene glycol + water) mixture at 50 vol.% (EG+W), or the (diphenyl ether + biphenyl) mixtures. The nanofluids wer...

  3. Energy, environment and sustainable development

    International Nuclear Information System (INIS)

    Omer, Abdeen Mustafa

    2008-01-01

    level of building performance (BP), which can be defined as indoor environmental quality (IEQ), energy efficiency (EE) and cost efficiency (CE). circle Indoor environmental quality is the perceived condition of comfort that building occupants experience due to the physical and psychological conditions to which they are exposed by their surroundings. The main physical parameters affecting IEQ are air speed, temperature, relative humidity and quality. circle Energy efficiency is related to the provision of the desired environmental conditions while consuming the minimal quantity of energy. circle Cost efficiency is the financial expenditure on energy relative to the level of environmental comfort and productivity that the building occupants attained. The overall cost efficiency can be improved by improving the indoor environmental quality and the energy efficiency of a building. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this paper. Throughout the theme several issues relating to renewable energies, environment and sustainable development are examined from both current and future perspectives. (author)

  4. Biomass energy development

    International Nuclear Information System (INIS)

    Ng'eny-Mengech, A.

    1990-01-01

    This paper deals more specifically with biomethanation process and non conventional sources of biomass energy such as water hyacinths and vegetable oil hydrocarbon fuels. It highlights socioeconomic issues in biomass energy production and use. The paper also contains greater details on chemical conversion methods and processes of commercial ethanol and methanol production. (author). 291 refs., 6 tabs

  5. Socio-technical systems analysis of waste to energy from municipal solid waste in developing economies: a case for Nigeria

    Directory of Open Access Journals (Sweden)

    Iyamu Hope O.

    2017-01-01

    Full Text Available Waste generation is an inevitable by-product of human activity, and it is on the rise due to rapid urbanisation, industrialisation, increased wealth and population. The composition of municipal solid waste (MSW in developed and developing economies differ, especially with the organic fraction. Research shows that the food waste stream of MSW in developing countries is over 50%. The case study for this investigation, Nigeria, has minimal formal recycling or resource recovery programs. The average composition of waste from previous research in the country is between 50–70% putrescible and 30–50% non-putrescible, presenting significant resource recovery potential in composting and biogas production. Waste-to-energy (WtE is an important waste management solution that has been successfully implemented and operated in most developed economies. This contribution reports the conditions that would be of interest before WtE potentials of MSW is harnessed, in an efficient waste management process in a developing economy like Nigeria. The investigation presents a set of socio-technical parameters and transition strategy model that would inform a productive MSW management and resource recovery, in which WtE can be part of the solution. This model will find application in the understanding of the interactions between the socio-economic, technical and environmental system, to promote sustainable resource recovery programs in developing economies, among which is WtE.

  6. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  7. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  8. Sustainable development and energy indicators

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan

    2002-01-01

    Starting from the basic definition of sustainable development and its four dimensions, the role of indicators for sustainable energy development is analysed. In particular, it is shown that important energy efficiency indicators belong in fact to energy supply efficiency, while the end-use energy efficiency could be more pertinently represented by energy intensity indicators. Furthermore, the negentropic effects of science and technology related sustainable energy scenarios are pointed out. Finally, the sustainable development is related to wisdom, interpreted as a sum of knowledge, morality and timing. (Author)

  9. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  10. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  11. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  12. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  13. Research Reactors for the Development of Materials and Fuels for Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2017-01-01

    This publication presents an overview of research reactor capabilities and capacities in the development of fuels and materials for innovative nuclear reactors, such as GenIV reactors. The compendium provides comprehensive information on the potential for materials and fuel testing research of 30 research reactors, both operational and in development. This information includes their power levels, mode of operation, current status, availability and historical overview of their utilization. A summary of these capabilities and capacities is presented in the overview tables of section 6. Papers providing a technical description of the research reactors, including their specific features for utilization are collected as profiles on a CD-ROM and represent an integral part of this publication. The publication is intended to foster wider access to information on existing research reactors with capacity for advanced material testing research and thus ensure their increased utilization in this particular domain. It is expected that it can also serve as a supporting tool for the establishment of regional and international networking through research reactor coalitions and IAEA designated international centres based on research reactors.

  14. Energy for sustainable rural development

    NARCIS (Netherlands)

    Hulscher, W.S.; Hulscher, W.S.; Hommes, E.W.; Hommes, E.W.

    1992-01-01

    Rural energy in developing countries is discussed with a view to sustainable development. The project-oriented approach in rural energy which has often dominated in the past, is contrasted with an overall strategy for sustainable rural energy demand and supply. An outline for a demand-oriented

  15. Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-30

    SEDS is an economy-wide energy model of the U.S. The model captures dynamics between supply, demand, and pricing of the major energy types consumed and produced within the U.S. These dynamics are captured by including: the effects of macroeconomics; the resources and costs of primary energy types such as oil, natural gas, coal, and biomass; the conversion of primary fuels into energy products like petroleum products, electricity, biofuels, and hydrogen; and lastly the end- use consumption attributable to residential and commercial buildings, light and heavy transportation, and industry. Projections from SEDS extend to the year 2050 by one-year time steps and are generally projected at the national level. SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in technology, markets, and policy. SEDS has been specifically developed to avoid the computational burden, and sometimes fruitless labor, that comes from modeling significantly low-level details. Instead, SEDS focuses on the major drivers within the energy economy and evaluates the impact of uncertainty around those drivers.

  16. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  17. Development of superconductor application technology - Flywheel energy storage system using superconducting magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Oh, Hueng Kuk; Yun, Keyng Reyl; Lee, Jeung Kun [Ahju University, Suwon (Korea, Republic of)

    1996-06-01

    Electricity must be used simultaneously with its generation. Existing storage methods either are dependent on special geography, are too expensive,= or are too inefficient. Electricity demand changes by as much as 30% over a 12-hour period and result in significant costs for utilities as power output get adjusted to meet these changes. The purpose of HTS FES is to store unused nighttime electricity until it is needed during the daytime. If every element of a rotating flywheel is stressed to a prescribed allowable value, the flywheel material will clearly be used in most efficient manner. The uniformlt stressed flywheel is about 25% stronger than a flat disk. The gap between superconductor and permanent magnet was 1.85 mm, and using bearing connector with the values, joining superconductor to permanent magnet Using bolt connector, joining permanent magnet to flywheel. Joined system is excited by exciting function that magnitude is 1, range is 0 up to 4000 HZ. 3 rd and 4 th natural frequency, 1857 HZ and 2340 HZ, in X direction and 2 nd natural frequency, 28.57 HZ, are avoided to prevent resonance. 15 refs., 11 tabs., 53 figs. (author)

  18. Report on achievements in fiscal 1998. Surveys on development of an at-home welfare device system to rationalize energy use; 1998 nendo energy shiyo gorika zaitaku fukushi kiki system kaihatsu chosa itaku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper analyzes and puts into order the data surveyed and discussed on thirteen Welfare Techno-Houses (WTH) from a comprehensive viewpoint. It summarizes findings contributing to development and structuring of new at-home welfare device systems of effective energy utilization type. The paper first puts into order and discusses the survey and study items available for comparison and discussion, and the survey items with originality found in the surveys of the WTH, with which relatively large number of items were surveyed and studied among the thirteen locations nationwide. Next, the paper attempts comprehensive evaluation on the achievements thereof by the following items: (1) measurement and evaluation on energy consumption of different at-home welfare devices, (2) surveys and studies on energy demand evaluation inside and outside the residential houses arranged with considerations for elderly people according to the district characteristics, (3) evaluation on daily, weekly and annual changes in energy consumption in these houses, and (4) design and development of welfare systems of effective energy utilization type for these houses. Furthermore, the paper summarizes the general attributes of the WTHs in different districts, power consumption in these at-home welfare device systems in the WTH and energy consumption of the houses, in the forms available for comparison and discussion. Then, the paper summarizes the achievements of the present surveys and studies on the thirteen WTHs all over the country. (NEDO)

  19. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  20. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  1. Developement of a large proton accelerator for innovative researches; development of low energy high current beam transport system

    Energy Technology Data Exchange (ETDEWEB)

    Ko, In Soo; Namkung, Won; Cho, M. H.; Kim, K. N.; Kim, J. H.; Bae, Y. S.; Kim, Y.; Kim, K. H.; Shim, K. Y. [Pohang University of Science and Technology, Pohang (Korea)

    2001-04-01

    We have designed the beam transport system to connect the ion source and the RFQ. In this design, we have finalized the positions of solenoids and various beam diagnostic device. We have finalize the physical and mechanical designs of solenoids, and these designs are already adopted to produce the actual solenoids. We have also studied about EPICS, Experimental Physics and Industrial Control System, to control a stepper motor as a tuner of the RFQ designed for KOMACEPICS is a real time control system for a large scale system such as accelerators and tokamaks. The purpose of this thesis is to establish a test system based on the EPICS. A Sun UtraSPARC 5 workstation is used as the Operator Interface(OPI) console, and a VME chassis contained a Motorola MVME162 single board computer is used as the Input/Output Controller(IOC). A stepper motor controller is connected to the IOC via an RS-232C as a field bus. The EPICS base, extensions, and the real time OS vxWorks are installed on the workstation. The real time OS image can be downloaded to the IOC via the FTP when the test station is started. We have installed an IOC application as a device and driver support layer for the serial communication with an RS-232C on the workstation. We have designed the IOC database configuration files and a graphic user interface style OPI panel which was programmed by the MEDM. With this OPI, we can control the stepper motor using EPICS. 17 refs., 33 figs., 9 tabs. (Author)

  2. The Development of Smart Home System for Controlling and Monitoring Energy Consumption using WebSocket Protocol

    Science.gov (United States)

    Witthayawiroj, Niti; Nilaphruek, Pongpon

    2017-03-01

    Energy consumption especially electricity is considered one of the most serious problems in households these days. It is because the amount of electricity consumed is more than the amount that people actually need. This means that there is an overusing which resulted from the inconvenience of moving to the switch to turn off the light or any appliances and it is often that closing the light is forgettable, for instance; in addition, there are no tools for monitoring how much energy that is consumed in residents. From this, it can be easily seen that people are having a problem in energy usage monitor and control. There are two main objectives of this study including 1) creating the communication framework among server, clients and devices, and 2) developing the prototype system that try to solve the mentioned problems which gives the user an opportunity to know the amount of electricity they have used in their houses and also the ability to turn appliances on and off through the Internet on smart devices such as smart phones and tablets that support Android platform or any web browser. Raspberry Pi is used as a microcontroller and the data is transferred to the smart device by WebSocket protocol which is strongly recommended for real-time communication. The example features on the device’s screen are user management, controlling and monitoring of appliances. The result expresses that the system is very effective and not difficult to use from users’ satisfaction. However, current sensors may be used for a more accurate electricity measurement and Wi-Fi module for more appliances to calculate its power in the future.

  3. UP-report. Buildings in the energy system. Basis of the Development platform. Build to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Byggnader i energisystemet. Underlag fraan Utvecklingsplattformen. Bygg till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation in the thematic area buildings in the energy system for the period 2011 - 2016. The report has been compiled by members of the development platform Build. This report provides background and the conditions of the area buildings in the energy system, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge which enabled the Swedish Energy Agency to then develop a strategy that meets the needs of the society and business.

  4. UP-report. Fuel-based energy systems. Basis of the Development platform. Fuel to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Braenslebaserade energisystem. Underlag fraan Utvecklingsplattformen. Braensle till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation in the fuel-based energy system for the period 2011 - 2016. The report has been compiled by members of the development platform Fuel. This report provides background and conditions for the fuel based energy system, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge which enabled the Swedish Energy Agency to then develop a strategy that meets the needs of the society and business.

  5. Wellons Canada energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Wellons Canada is a British Columbia-based company that specializes in the manufacture and installation of lumber drying and energy conversion equipment. This brochure provided details of the Wellons energy system designed for oriented strand board (OSB) plants. The brochure outlined the system's scope of supply, and provided illustrations of system procedures from the initial wet fuel bin through to the electric precipitator used for air clean-up. During the process, fuel was conveyed from the bin to metering bins into combustors and through a cyclo-blast cell. Forced draft fan systems were then used to provide primary and secondary combustion air. Radiant heaters were then used. A drop-out chamber was supplied to allow for complete combustion of fuel particles and to provide a drop-out of ash. A fan was then used to deliver diluent air to maintain the set point temperature in the hot gas stream. Refractory lined hot gas ducts were used to deliver heat to the dryers. Hot gas was then drawn through a multi-cyclone collector for ash removal. Electrostatic precipitators were used to clean up emissions on a continuous operating basis. An automatic system was used to collect ash from the combustion system grates and other areas. Details of installation services provided by the company were also included. 42 figs.

  6. Development of a software application to evaluate the performance and energy losses of grid-connected photovoltaic systems

    International Nuclear Information System (INIS)

    Trillo-Montero, D.; Santiago, I.; Luna-Rodriguez, J.J.; Real-Calvo, R.

    2014-01-01

    Highlights: • Software application to perform an automated analysis of grid-connected PV systems. • It integrates data from all devices registering data on typical PV installations. • Flexible to analyze installations with different configurations and components. • An analysis of two grid-connected PV systems located in Andalusia, was performed. • Temperature losses in summer months varying between 15% and 25% of energy production. - Abstract: The aim of this paper was to design and develop a software application that enables users to perform an automated analysis of data from the monitoring of grid-connected photovoltaic (PV) systems. This application integrates data from all devices already in operation such as environmental sensors, inverters and meters, which record information on typical PV installations. This required the development of a Relational Database Management System (RDBMS), consisting of a series of linked databases, enabling all PV system information to be stored; and a software, called S·lar, which enables all information from the monitoring to be automatically migrated to the database as well as determining some standard magnitudes related to performances and losses of PV installation components at different time scales. A visualization tool, which is both graphical and numerical, makes access to all of the information be a simple task. Moreover, the application enables relationships between parameters and/or magnitudes to be easily established. Furthermore, it can perform a preliminary analysis of the influence of PV installations on the distribution grids where the produced electricity is injected. The operation of such a software application was implemented by performing the analysis of two grid-connected PV installations located in Andalusia, Spain, via data monitoring therein. The monitoring took place from January 2011 to May 2012

  7. Wind Energy Workforce Development & Jobs

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-11-08

    The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.

  8. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  9. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  10. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  11. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  12. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  13. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  14. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard Doin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    An effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year 2015 (FY15). The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status on its progress. Several tasks have been accomplished. First, starting from a simulation strategy, a rigorous mathematical formulation has been achieved in which the economic optimization of a Nuclear Hybrid Energy System is presented as a constrained robust (under uncertainty) optimization problem. Some possible algorithms for the solution of the optimization problem are presented. A variation of the Simultaneous Perturbation Stochastic Approximation algorithm has been implemented in RAVEN and preliminary tests have been performed. The development of the software infrastructure to support the simulation of the whole NHES has also moved forward. The coupling between RAVEN and an implementation of the Modelica language (OpenModelica) has been implemented, migrated under several operating systems and tested using an adapted model of a desalination plant. In particular, this exercise was focused on testing the coupling of the different code systems; testing parallel, computationally expensive simulations on the INL cluster; and providing a proof of concept for the possibility of using surrogate models to represent the different NHES subsystems. Another important step was the porting of the RAVEN code under the Windows™ operating system. This accomplishment makes RAVEN compatible with the development environment that is being used for dynamic simulation of NHES components. A very simplified model of a NHES on the electric market has been built in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces even for stochastic constraints. This

  15. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  16. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten

    2012-01-01

    An important challenge for energy systems today is reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. The efficient consumption of energy is a vital mater for a sustainable energy system. A significant part...... of energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating......, and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps but still have a majority in usage. As result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...

  17. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  18. Energy problems in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Tasugi, Hirosaburo [Japan Industrial Tech. Association, Tokyo, Japan

    1989-06-20

    In order to rid the people's living of poverty in developing countries, first, the production of food has been planned to increase. And then, resource development and industrialization have been tried to improve with efforts. Because of such development and an increase in population, energy consumption has been increasing. Advanced countries have supported these countries in many ways, however, there is much difference in their assistance depend on various situations such as racial, religious, and political ones. Moreover, a gap between cities and farm villages has widen since infrastructure has not been fully equipped in developing countries. The electrification ratio is used as an index to show the degree of development in developing countries. It is low in the countries where development is lagging, particularly in farm villages. This gap is an urgent problem that faces developing countries. In order to cope with the actual conditions, advanced countries including Japan should be plan to reinforce their technological and economic assistance more suitable for farm villages. Furthermore, they should also improve the assistance system which includes a measure for environmental pollution control, considering the spot directly. 3 figs., 14 tabs.

  19. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  20. Promoting sustainable energy systems through networks. A framework for network design developed using the case of BASE (Basel Agency for Sustainable Energy)

    Energy Technology Data Exchange (ETDEWEB)

    Schlup, M.

    2001-09-01

    implementing such projects to increase efficiency of the processing and thus effectiveness of promotional efforts. The demands and needs of a number of potential BASE network partners were evaluated through interviews. The statements were analysed to define a suitable objective for the BASE network, that states as network purpose the facilitation of investments in sustainable energy projects that provide additional benefits, e.g. through contributing to Sustainable Development and generating social capital for investors. Furthermore, it was evaluated to what extent the networking approach for potential participants is attractive. Knowledge exchange and potential synergies were among the reasons stated for making such a network attractive, although motivation differed significantly among the interviewed organisations. Competitive barriers, dependencies of various kinds and high coordination and consensus costs were mentioned as potential drawbacks. Services offered involved access to existing networks and provision of financial knowledge and in general matched with services expected from the network. A multilevel network was suggested as most appropriate structure, with BASE coordinating a decentralised network dedicated in facilitating investments in sustainable energies and at the same time being part of a network of 'Centres of Excellence' of international agencies promoting the transition towards Sustainable Energy Systems. Access to affiliated networks of participating organisations thus would maximise the outreach. A number of potential performance indicators were also suggested. Confidentiality and neutrality were identified as crucial for the formation of trust in such a network. Personal contacts were mentioned as being decisive for the building of trust. Also, trust was seen as only emerging if the network could present a successful track record of pilot projects. Such a record would thus greatly increase the likeliness of network institutionalisation and

  1. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 1. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the super high performance heat pumps and elementary equipment and working fluids, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to development of new working fluids, high-performance heat exchangers, closed motors and so on for the highly efficient type (for heating only); to researches on mixed coolants, high-efficiency screw compressors and so on for the highly efficient type (for cooling and heating); to development of tooth shape of the screw compression section, surveys on thermal stability of the working fluids for heating and so on for the high temperature type (utilizing low temperature heat source); and to R and D of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, researches are conducted on evaporators for mixed working fluids, condensers utilizing the EHD effect, stainless steel plate fin type heat exchangers, heat exchangers for the chemical heat accumulation unit, and so on. The R and D efforts are also directed to the working fluids (alcohol-based and nonalcohol-based). (NEDO)

  2. Business development in renewable energy

    NARCIS (Netherlands)

    Krozer, Yoram; Visa, Ion

    2014-01-01

    This paper discusses how to foster development of renewable energy business. Factors that impede or enhance renewable energy in the EU 27 member states in the period 1998–2008 are analyzed. Nine factors are considered: population density, production output and energy sector output to indicate market

  3. Development of a Geographical Information System (GIS for the Integration of Solar Energy in the Energy Planning of a Wide Area

    Directory of Open Access Journals (Sweden)

    Angelamaria Massimo

    2014-08-01

    Full Text Available Energy planning has become one of the most powerful tools for urban planning even if several constraints, (i.e., aesthetic, archaeological, landscape and technological (low diffusion of Renewable Energy Sources, RES reduce its spreading. An efficient and sustainable urban planning process should be based on detailed energy issues, such as: (i the effective energetic characteristics and needs of the area like urban density and energy consumption, (ii the integration of different RES and (iii the diffusion of high efficiency technologies for energy production like cogeneration and district heating. The above-mentioned energetic issues and constraints must be constantly updated, in order to evaluate the consequences on environment and landscape due to new distributed generation technologies. Moreover, energy strategies and policies must be adapted to the actual evolution of the area. In this paper the authors present a Geographical Information Database System (GIS DB based on: (i the availability of land use (Land Capability Classification, LCC to evaluate the productive potential; (ii the estimation of residential energy consumptions (e.g., electricity, (iii the integration of RES. The GIS DB model has been experimented in a wide area of Central Italy, considering exclusively the solar energy source for energy generation.

  4. Inertial fusion energy development strategy

    International Nuclear Information System (INIS)

    Coutant, J.; Hogan, W.J.; Nakai, S.; Rozanov, V.B.; Velarde, G.

    1995-01-01

    The research and development strategy for inertial fusion energy (IFE) is delineated. The development strategy must indicate how commercial IFE power can be made available in the first part of the next century, by which is meant that a Demonstration Power Plant (DPP) will have shown that in commercial operation IFE power plants can satisfy the requirements of public and employee safety, acceptably low impact on the environment, technical performance, reliability, maintainability and economic competitiveness. The technical issues associated with the various required demonstrations for each of the subsystems of the power plant (target, driver, reaction chamber, and remainder of plant (ROP) where the tritium for future targets is extracted and thermal energy is converted into electricity) are listed. The many developments required to make IFE commercially available can be oriented towards a few major demonstrations. These demonstrations do not necessarily each need separate facilities. The goals of these demonstrations are: (i) ignition demonstration, to show ignition and thermonuclear burn in an ICF target and determine the minimum required driver conditions; (ii) high gain demonstration, to show adequate driver efficiency-gain product; (iii) engineering demonstrations, to show high pulse rate operations in an integrated system and to choose the best designs of the various reactor systems; (iv) commercial demonstrations, to prove safe, environmentally benign, reliable, economic, near-commercial operation. In this document the present status of major inertial confinement research activities is summarized including a table of the major operating or planned facilities. The aspects involved in each of the required demonstrations are discussed. Also, for each of the subsystems mentioned above the technical developments that are needed are discussed. The document ends with a discussion of the two existing detailed IFE development plans, by the United States and Japan. 9

  5. Development of a wide-area energy utilization network system (research on a technology to design an energy system). FY 1998 report on achievements of research on systematizing ECO and ENERGY cities; Koiki energy riyo network system kaihatsu (energy system sekkei gijutsu no kenkyu). 1998 nendo eko ene toshi no system ka kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    As a research on systematizing ECO and ENERGY cities, surveys and analyses were performed on the actual state of introducing district heat supply systems utilizing difference waste heats including factory waste heat. Waste heat from electric power generation is utilized for district heat supply in Japan at 122 points or about 20% of the district heat supply points in operation as of March 1998. The number is in the increasing trend in recent years, and the future potential of its introduction can be said high as the history thereof is still short. Its introduction form is accounted mostly for by building cogeneration or plant cogeneration. Back-up facilities for the case when waste heat supply stops because of regular facility checks are provided by the heat supply business operators, which impede the economy of the system. In the U.S., the Public Utility Regulatory Policy act motivated installation of cogeneration and off-peak power generation systems for district heat supply. Technical maps (for waste heat sources and different waste heat utilization systems) were prepared based on the surveys to discuss the future measures. (NEDO)

  6. Sustainable development and nuclear energy

    International Nuclear Information System (INIS)

    2000-05-01

    This report has four chapters .In the first chapter world energy statute and future plans;in the second chapter Turkey's energy statute and future plans; in the third chapter world energy outlook and in the last chapter sustainable development and nuclear energy has discussed in respect of environmental effects, harmony between generations, harmony in demand, harmony in sociapolitic and in geopolitic. Additional multimedia CD-ROM has included

  7. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.

    Science.gov (United States)

    Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S

    1997-01-01

    We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.

  8. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy...... system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...

  9. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  10. The NRNU MEPhI activities in the development and applications of advanced tools for innovative nuclear energy systems sustainability assessments - 5020

    International Nuclear Information System (INIS)

    Andrianov, A.; Dogov, A.; Kuptsov, I.; Fedorova, E.; Svetlichnyy, L.; Utianskaia, T.; Korovin, Y.

    2015-01-01

    This report delineates the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE developed at the National Research Nuclear University MEPhI and the Obninsk Institute for Nuclear Power Engineering intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty. The authors present some results of implementation of these tools for multi-objective nuclear energy system optimization studies. The developed software allows searching for compromises between the conflicting factors that determine the nuclear energy systems' effectiveness and calculating corresponding trade-off rates; carrying out comparative multi-criteria analysis of alternatives as well as choosing, ranking, and sorting corresponding options taking into account the evolution dynamics, structure and organization of a nuclear fuel cycle and the most important system constraints and restrictions. (authors)

  11. Development, energy, environment: changing the paradigm

    International Nuclear Information System (INIS)

    2006-01-01

    A first set of contributions comments the various risks and challenges which are to be faced in terms of energy, climate and environment: the deadlock of present 'laisser-faire' policies, recent findings in climate science in 2005, oil as the reason of a possible economic crisis in developing countries, recent evolution of energy systems. The next set of contributions discusses the possible solutions and their limits: CO 2 capture and sequestration in coal plants, nuclear renaissance, renewable energies, hydro-electricity, CO 2 capture by biomass, energy sobriety, urban morphology and transports in emerging cities, integration of service demand with energy supply, energy decentralized production

  12. What drives renewable energy development?

    International Nuclear Information System (INIS)

    Alagappan, L.; Orans, R.; Woo, C.K.

    2011-01-01

    This viewpoint reviews renewable energy development in 14 markets that differ in market structure (restructured vs. not restructured), use of feed-in-tariff (FIT) (yes vs. no), transmission planning (anticipatory vs. reactive), and transmission interconnection cost allocated to a renewable generator (high vs. low). We find that market restructuring is not a primary driver of renewable energy development. Renewable generation has the highest percent of total installed capacity in markets that use a FIT, employ anticipatory transmission planning, and have loads or end-users paying for most, if not all, of the transmission interconnection costs. In contrast, renewable developers have been less successful in markets that do not use a FIT, employ reactive transmission planning, and have generators paying for most, if not all, of the transmission interconnection costs. While these policies can lead to higher penetration of renewable energy in the short run, their high cost to ratepayers can threaten the economic sustainability of renewable energy in the long-run. - Highlights: → Market structure seems to have little effect on renewable energy development. → Renewable energy development is more successful in markets that use a FIT. → Anticipatory transmission planning aids renewable energy development. → Low interconnection costs for developers also aids renewable energy development.

  13. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  14. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  15. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  16. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  17. Developing a computer-controlled simulated digestion system to predict the concentration of metabolizable energy of feedstuffs for rooster.

    Science.gov (United States)

    Zhao, F; Ren, L Q; Mi, B M; Tan, H Z; Zhao, J T; Li, H; Zhang, H F; Zhang, Z Y

    2014-04-01

    Four experiments were conducted to evaluate the effectiveness of a computer-controlled simulated digestion system (CCSDS) for predicting apparent metabolizable energy (AME) and true metabolizable energy (TME) using in vitro digestible energy (IVDE) content of feeds for roosters. In Exp. 1, the repeatability of the IVDE assay was tested in corn, wheat, rapeseed meal, and cottonseed meal with 3 assays of each sample and each with 5 replicates of the same sample. In Exp. 2, the additivity of IVDE concentration in corn, soybean meal, and cottonseed meal was tested by comparing determined IVDE values of the complete diet with values predicted from measurements on individual ingredients. In Exp. 3, linear models to predict AME and TME based on IVDE were developed with 16 calibration samples. In Exp. 4, the accuracy of prediction models was tested by the differences between predicted and determined values for AME or TME of 6 ingredients and 4 diets. In Exp. 1, the mean CV of IVDE was 0.88% (range = 0.20 to 2.14%) for corn, wheat, rapeseed meal, and cottonseed meal. No difference in IVDE was observed between 3 assays of an ingredient, indicating that the IVDE assay is repeatable under these conditions. In Exp. 2, minimal differences (<21 kcal/kg) were observed between determined and calculated IVDE of 3 complete diets formulated with corn, soybean meal, and cottonseed meal, demonstrating that the IVDE values are additive in a complete diet. In Exp. 3, linear relationships between AME and IVDE and between TME and IVDE were observed in 16 calibration samples: AME = 1.062 × IVDE - 530 (R(2) = 0.97, residual standard deviation [RSD] = 146 kcal/kg, P < 0.001) and TME = 1.050 × IVDE - 16 (R(2) = 0.97, RSD = 148 kcal/kg, P < 0.001). Differences of less than 100 kcal/kg were observed between determined and predicted values in 10 and 9 of the 16 calibration samples for AME and TME, respectively. In Exp. 4, differences of less than 100 kcal/kg between determined and predicted

  18. Worldwide clean energy system technology using hydrogen (WE-NET). Interim report of the research and development in Phase 1; Suiso riyo kokusai clean energy system gijutsu (WE-NET). Daiikki kenkyu kaihatsu chukan seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    Large scale and effective utilization of renewable energy including hydroelectric power, photovoltaic power, and wind power which are abundant on the earth can contribute to the solution of global environmental issues as well as the release of energy demand and supply. Hydrogen can be produced from the renewable energy, and is converted, transferred and stored if necessary. Such hydrogen can be used in various fields for power generation, fuel for transport, and city gas. In order to establish the technology by which worldwide energy network can be introduced for wide range of fields, conceptual design of a total system has been conducted, and elemental core technologies have been developed. Conceptual design of a practical scale system (total system) including a wide range from production of hydrogen to its utilization has been conducted, and its constitution has been illustrated. In addition, the energy balance and cost of hydrogen have been calculated and analyzed as a trial. Hydrogen production technology, transport and storage technology, and hydrogen utilization technology are introduced as individual elemental technologies. Research results of innovative and leading technologies obtained in FY 1996 are reviewed. 80 figs., 56 tabs.

  19. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  20. Report on the FY 1999 results of the development of the wide area energy utilization network system - Eco/energy urban system. 2/2. Study of the systematization technology/evaluation technology out of the study of the energy system design technology (Study of the application method of element technology/system and trial calculation of the introduction effect); Koiki energy riyo network system kaihatsu (eco energy toshi system). 2/2. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu 1999 nendo seika hokokusho (zenkoku no netsu juyo no bunpu jokyo chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of smoothly introducing the equipment technology and system technology being studied in the development of element technology in the eco/energy urban project, the paper conducted the study of conditions/application method in applying the technology to the actual energy supply system, analysis of the introduction effect, arrangement of the subjects on technical development, etc. In the study, for the methanol/hydrogen base technology, heat pump technology, heat recovery technology, heat transport technology and heat power generation technology, the quantitative analysis was made in terms of the lifecycle energy consumption amount, lifecycle CO2 emission amount and lifecycle expenses. As to the methanol base system, the subject is the reduction in auxiliary power. Concerning the heat pump technology, the subject is the enlargement of simple equipment. As regards the heat recovery technology, the subject is the development of system with long useful year. Relating to the heat transport technology, subjects are the completion of the menu of large-diameter piping in the vacuum thermal insulation heat transport piping system, and reduction in conveyance power of heat medium. About the heat power generation technology, subjects are the stability/durability of the system. (NEDO).

  1. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  2. Remote operation systems and development cooperation, future couple in alternative energy sources; Telegestion y cooperacion al desarrollo, binomio de futuro en energias renovables

    Energy Technology Data Exchange (ETDEWEB)

    Borge Diez, D.

    2008-07-01

    Despite of the rising in the fuel and its by-products, alternative energy sources have not vet developed specially in small plants for local generation. Thermal solar energy and biomass could provide most of the thermal energy required in the residential and commercial buildings and provide new solutions such as solar cooling, but people usually distrust because of its difficulties to be operated by no expert staff. In this situation remote operation systems are necessary to increase the number of installations and increase the sales. In the same way these kinds of systems could increase the technology exports to development countries where alternative energy sources can provide energy generation solutions that would improve the quality of life. (Author) 6 refs.

  3. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  4. Balanced evaluation of energy systems: development of an integration model between use and energy generation; Avaliacao balanceada de sistemas energeticos: desenvolvimento de um modelo de integracao entre uso e geracao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Karin Regina de Castro [Universidade do Estado de Sao Paulo, SP (Brazil). Faculdade de Arquitetura e Urbanismo]. E-mail: kmarins@gmail.com

    2006-07-01

    The present theme treats of urban and environment planning through an integrated approach. Developed as master of science dissertation, the project included the development of a balanced evaluation of energy systems, having in mind the efficient, potentialize initiatives of both sides. In the system of 'Energy use' strategies for energy efficiency in residential and commercial buildings from urban, architecture solutions were included. In {sup e}nergy generation{sup ,} urban centralized systems and distributed generation systems were included. Electricity, environmental heating and refrigeration were considered, excepting peaks in the daily consumption. The model involve quantitative evaluation modules and graphical interfaces, giving support to development of project and decision making processes, demonstrating the advantages of the integrated approach.

  5. Financial overview of integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Croke, K. G.; Hurter, A. P.; Lerner, E.; Breen, W.; Baum, J.

    1977-01-01

    This report is designed to analyze the commercialization potential of various concepts of community-scale energy systems that have been termed Integrated Community Energy Systems (ICES). A case analysis of alternative ICES concepts applied to a major metropolitan development complex is documented. The intent of this study is twofold: (1) to develop a framework for comparing ICES technologies to conventional energy supply systems and (2) to identify potential problems in the commercialization of new systems approaches to energy conservation. In brief, the ICES Program of the ERDA Office of Energy Conservation is intended to identify the opportunities for energy conservation in the community context through analysis, development, and/or demonstration of: location and design of buildings, building complexes, and infrastructure links; engineering and systems design of existing, emerging, and advanced energy production and delivery technologies and systems; regulatory designs for public planning, administration, and regulation of energy-conserving community development and energy services; and financial planning for energy-conserving community development and energy supply systems.

  6. Integrated energy systems and local energy markets

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable...... energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade...

  7. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  8. Engineered Geothermal Systems Energy Return On Energy Investment

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A J

    2012-12-10

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use efficiency when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the minimum EROI an energy production system should have to be an asset rather than a liability.

  9. Energy Systems and Population Health

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy

  10. Energy analysis of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    From 1995 to 1998, an energy test method for supermarket refrigeration systems was developed in a project financed by the Danish Energy Agency. The purpose of the energy test method is to provide the means for evaluating the energy efficiency of these systems. The test method requires measurements...... of air temperatures and energy consumption to be carried out on the selected supermarket refrigeration system. In addition to the measurements required by the method, more measurements of individual energy consumptions have been carried in the case described in this paper. The purpose of the additional...

  11. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  12. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  13. Potential of renewable energy systems in China

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad; Zhang, Xiliang

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO 2 emitting country in the world. In this case, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously. In this process, assessment of domestic renewable energy sources is the first step. Then appropriate methodologies are needed to perform energy system analyses involving the integration of more sustainable strategies. Denmark may serve as an example of how sustainable strategies can be implemented. The Danish system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy system. The conclusion is that China's domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system in China is not unreasonable. (author)

  14. Renewable energy research and development in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, M S

    1979-12-01

    Canadian research and development (R and D) in renewable energy began as a result of the oil crisis in 1974, and in keeping with government policy, is predominantly carried out in the private sector under contract to the federal government. The variety in technical maturity of the renewable energy technologies is reflected in the non-uniform funding levels among the five constituent programs. The greatest support is allotted to solar energy in recognition of its enormous potential, both in low to mid-temperature thermal and in photovoltaic applications. This report describes the technical content of these five renewable energy and R and D programs, and outlines the organization and management structures used to direct the effort. Biomass energy R and D concentrates on the harvesting, processing and conversion of wood wastes into convenient fuel forms. Near-term applications will continue to be in the forest products industries. Wind energy R and D in geothermal energy are focussed on identification and quantification of the resource. A five-megawatt experimental geothermal heating system is being established at the University of Regina. The hydraulic energy R and D program does not consider conventional hydro-electric systems which are well developed; rather, it primarily covers laboratory-scale tests on conversion devices for wave, tidal, and river flow energy systems. A substantial effort is also underway in analytic and modelling techniques for hydraulic energy systems of all types. 3 figs., 2 tabs.

  15. Energy and development : A modelling approach

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521

    2008-01-01

    Rapid economic growth of developing countries like India and China implies that these countries become important actors in the global energy system. Examples of this impact are the present day oil shortages and rapidly increasing emissions of greenhouse gases. Global energy models are used explore

  16. Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2016-05-01

    Full Text Available As the largest carbon emission source in China, the power sector grows rapidly owing to the country’s unprecedented urbanization and industrialization processes. In order to explore a low carbon urbanization pathway by reducing carbon emissions of the power sector, the Chinese government launched an international low carbon city (ILCC project in Shenzhen. This paper presents a feasibility analysis on the potential hybrid energy system based on local renewable energy resources and electricity demand estimation over the three planning stages of the ILCC project. Wind power, solar power, natural gas and the existing power grid are components considered in the hybrid energy system. The simulation results indicate that the costs of energy in the three planning stages are 0.122, 0.105 and 0.141 $/kWh, respectively, if external wind farms and pumped storage hydro stations (PSHSs exist. The optimization results reveal that the carbon reduction rates are 46.81%, 62.99% and 75.76% compared with the Business as Usual scenarios. The widely distributed water reservoirs in Shenzhen provide ideal conditions to construct PSHS, which is crucial in enhancing renewable energy utilization.

  17. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  18. The intelligent energy system for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Morthorst, Poul Erik; Bindslev, Henrik; Sonderberg Petersen, Leif

    2010-09-15

    In a future energy system non-fossil fuels have taken the lead, end-use technologies are highly efficient and closely interlinked to supply through intelligent energy systems. Climate change issues, security of supply and economic development need to be pursued concurrently. This calls for flexible and intelligent energy system infrastructures that effectively accommodate large amounts of fluctuating renewable energy and let the end-user interact with the supply through advanced ICT. The second important characteristic is intelligent integration of the entire transport sector. The third key area is advanced energy storage facilities in the system and the introduction of super-grids.

  19. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  20. Interim report on research and development of super heat pump energy accumulation system by the evaluation working group; Super heat pump energy shuseki system hyoka work group chukan hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The evaluation working group of the Large-scale Energy-saving Technology Research and Development Promotion Council has made an interim evaluation of the results obtained so far by the R and D project for the super heat pump energy accumulation systems. The working group evaluates the bench plant operation test results comprehensively, covering technical, economic and social aspects, and R and D promotion methodology. The working group has concluded that a significant technological break-through is made for the super high performance compression heat pumps, and the technological groundwork is now established for the future pilot system. For the chemical heat storage technologies, it is concluded that system feasibility is demonstrated, and the technological groundwork for the future development is established. The super heat pump is evaluated to potentially realize significant economic superiority over the conventional devices both in the domestic and industrial areas, and to be highly rated potentially in the areas of energy-saving, power load leveling and environmental preservation. (NEDO)

  1. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  2. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  3. Report on achievements in fiscal 1998. Surveys on development of an at-home welfare device system to rationalize energy use. (Ube City); 1998 nendo energy shiyo gorika zaitaku fukushi kiki system kaihatsu chosa (Ube) saiitaku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The present study utilizes a Welfare Techno-House to analyze structural characteristics of residential houses arranged with considerations for elderly people, and operation characteristics of at-home welfare devices. It is also intended to identify the status of energy consumption, and research and develop energy saving devices. The research and development items for the current fiscal year are as follows: (1) survey on power consumption in at-home welfare devices, and (2) development of at-home welfare device systems utilizing energy more effectively - sub-item a.: studies on leveling of energy use, b.: studies on identification of load applied to riders of power driven wheelchairs when they are operated, c.: studies on next generation housing for elderly and physically handicapped people, d.: surveys on discharged VOC concentration in houses built in warm districts. In item (1), power consumption of air conditioners for room heating in winter was measured to have derived time series data of daily change in the energy consumption. In the sub-item a, discussions were given on system efficiency evaluation on ice heat storing devices and floor cooling devices, and the indoor thermal environment characteristics. In the sub-item b, load applied to riders of power driven wheelchairs when they are operated was experimented for verification. In the sub-item c, surveys were performed on hot heat environment in a greenhouse attached to a residential houses arranged with considerations for elderly people. In the sub-item d, measurements were carried out on formaldehyde concentration and VOC in houses newly built in warm and cold districts to discuss preventive measures for indoor air pollution. (NEDO)

  4. Energy policy and development of the energy sector in Macedonia

    International Nuclear Information System (INIS)

    Blazhev, Blagoja.

    1996-01-01

    Energetics is an important precondition for everyday life in the economic activities as well as the social activities on the whole. The main goal of the energy sector is to monitor and support the planned social development. Consequently, the development of the society and the development of energetics must be coordinated as much as possible. If not, with an autarchic development of the energy system, because of its capital characteristic, could mean a substantial erosion of the social accumulation, without an appropriate contribution to the growth of the national income. Because of this, the issue we wish to speak of is constantly current. (author). 1 tab., 6 ills

  5. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  6. Renewable energy covernance systems

    International Nuclear Information System (INIS)

    Hvelplund, F.

    2001-01-01

    The 'political quota-/certificate price market' system introduces an inefficient competition between energy robots, and weakens the increasingly important competition between equipment producers. It hampers the competition between investors by making it difficult for neighbours and local investors to invest in wind turbines. Due to its mono price character, it gives too high profits to wind turbine owners at very good wind sites, and not high enough to wind turbine owners at poor wind sites. The 'political quota-/certificate price market' system is very far from being a market model, as the RE amount is politically decided and the certificate market price is also political influenced. The conclusion, therefore, is that it is time to find a RE governance model that considers the specific needs and characteristics of RE technologies. The present analysis strongly indicates that a 'political price-/amount market' model in this connection is far better than the 'political quota-/certificate price market' model. Furthermore, a common EU model, based on the principle of site efficiency, would be much more flexible, cheaper and easier to pursue than the 'political quota-/certificate price market', or mono price model, which is designed for uranium and fossil fuel technologies, and represents a governance model designed for the technologies of yesterday. (EHS)

  7. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  8. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  9. Renewable energy for sustainable development and environment

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen

    2010-09-15

    The increased availability of reliable and efficient energy services stimulates new development alternatives. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Throughout the theme several issues relating to renewable energies, environment and sustainable development are examined from both current and future perspectives. It is concluded that renewable environmentally friendly energy must be encouraged, promoted, implemented and demonstrated by full-scale plan especially for use in remote rural areas.

  10. Energy supply/demand structure development survey project / comprehensive survey on energy supply/demand development. FY1997 survey on techniques for pyroelectric power generation systems; Energy jukyu kozo kodoka chosa jigyo / energy jukyu kodoka sogo chosa. 1997 nendo shoden hatsuden system no gijutsu chosa seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Pyroelectric conversion systems were surveyed as the techniques for effective utilization of low-temperature waste heat sources. Described herein are the principle of pyroelectric power generation, including pyroelectric phenomenon, origin of pyroelectricity in polymers, and pyroelectric polymers and copolymers; utilization of the pyroelectric phenomenon, including hysteresis of pyroelectric materials, general pyroelectric conversion principle, pyroelectric conversion cycle, analysis of power output by an Olsen cycle, comparison with a steam engine, and power outputting methods; pyroelectric conversion systems, including heat regeneration method, plate type pyroelectric conversion devices using the heat regeneration method, and voltage controlling methods; and pyroelectric conversion outputting, including calculations of power output and loss, conduction-caused loss, pumping loss, and pyroelectric converter efficiency. Other items described herein include conceptual designs of 1 and 100 kW pyroelectric converters for utilization of waste heat, and current status of pyroelectric converter development at CANMET Energy Technology Center. (NEDO)

  11. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Research and development of solar beam power generation and utilization systems and ancillary technologies (Investigations and researches on large-size energy supply system); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (ogata energy kyokyu system no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    With an objective to propose large-size system development scenarios assuming installations in deserts, the following investigations have been carried out: (1) collection of data on societies, economy, and energies in China and other countries where the large systems are assumed to be installed, (2) in order to reduce the costs, comparison was given on power generation cost by using a fixed tracking frame, a single axial tracking frame, and a biaxial tracking frame, (3) in order to evaluate the life cycle, discussions were given on the required energy inputs for system equipment, transmission and transformer equipment, and the installation construction to estimate the energy payback time (EPT) and CO2 emission unit requirement, and (4) discussions on development scenarios. In Item (1), while China expects on natural gas and atomic energy as the supply source, 80% of the energy would be supplied from coal in 2010. The development of new energies in India would further be delayed than in China. In item (2), the trially calculated power generation costs in Mongol by using the fixed frame, single axial tracking frame, and biaxial tracking frame were 8.72, 8.23 and 6.94 yen per watt. In Item (3) The EPT was two years or less in a 100-MW system, and the CO2 emission unit requirements in the silicon systems were 10 to 19 kg-C/kWh. (NEDO)

  12. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  13. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  14. Fiscal 1999 achievement report on development of wide-range energy utilization network system development. Research on energy system design technology (Survey and research on factory group energy system); Kojogun no energy system ni kansuru chosa kenkyu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Waste heat may be made good use of only after available waste heat is grasped. From this viewpoint, efforts were made to develop databases which would enable the preparation of an available waste heat map. Activities were conducted in the three fields of (1) the construction of an available waste heat database, (2) the construction of a database for estimating waste heat planar density distribution, and (3) the study of correlations between such databases and input-output tables. In Field (1), information on waste heat, gathered for each business type and facility type by questionnairing, was classified into 20 facility-oriented categories, and was used for the calculation of the amount of Japan's waste heat actually in existence with each business type and facility type. In Field (2), relations between the questionnairing-provided waste heat, purchased energy, number of employees, and the amount of shipment were analyzed for the estimation of the magnitude of factory waste heat using the number of employees. The amount of waste heat from each business type thus estimated was 310,000 T cal/year, which occupied 97% of the amount estimated by use of purchased energy. In Field (3), no satisfying correlation was detected between the amount of shipment and the amount of waste heat. (NEDO)

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  16. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan; Yu, Wenhua; France, David M.

    2016-08-01

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.

  17. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  18. The IIASA'83 scenario of energy development

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1984-01-01

    The prospects for natural gas as a major source of energy supply are good. Spurred by the energy crises of the 'seventies, recent exploration for gas resources as well as technological advances in deep drilling have enhanced the picture of gas as a plentiful fossil resource. Technological improvements in transporting gas over large distances, as piped gas and as a liquid, suggest the strong possibility of gas as an important commodity in energy trade. In addition, gas is a high quality and relatively clean fuel, which is especially attractive in today's world of environmental concern for pollution emissions from energy combustion. Such developments led to the design of the IIASA'83 Scenario of Energy Development, which explored the techno-economic feasibility of the expanded use of gas in energy systems. The work drew on the findings of the IIASA global energy analysis, documented in 'Energy in a Finite World'. All countries of the world were covered in the quantitative analysis, grouped regionally by similarity in energy resources and economic structure and not necessarily on the basis of geographic proximity. The period studied was necessarily the next half century, from 1980 to 2030, in view of the inertia in technological and economic systems and this constraint on the development of energy infrastructures. Global primary energy consumption increases some twofold from 10 TW.a/a to 21.9 TW.a/a over the next 50 years, while economic output globally grows some threefold. The breakdown of global primary energy consumption indicates an absolute increase in the use of all primary energy sources over the study period, with fossil fuels continuing to supply the lion's share of primary energy. The buildup of non-fossil energy sources to global supply levels by 2030 is likely to be constrained by the high capital investments required at a period of modest economic growth and by the sociopolitical controversy surrounding the use of some of these technologies. (author)

  19. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  20. Achievement report on research and development in the Sunshine Project in fiscal 1977. Studies on hydrogen energy total systems and the safety assuring technologies thereon (Studies on hydrogen energy total systems); 1977 nendo suiso energy total system to sono hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso energy total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    A numerical model was prepared to express fields and size of hydrogen energy introduction in Japan's energy systems in the future. Dividing Japan into 13 weather sections, one to two energy bases (import and secondary production bases in coastal areas) were assumed on each section. Secondary energies produced in these energy bases are transported to intermediate bases, from which the energies are distributed into cities and consumed. For the purpose of simplification, final consumption departments are hypothesized to exist in these intermediate bases. Parameters that characterize the flows on networks in the processes of supply, distribution, production, storage, transportation and utilization are divided largely into energy efficiency and cost of the processes. The amount of energy demand in each final consumption department was defined as an amount to maximize the expected effects as a result of having satisfied the demand. The result of trial calculations revealed that, as long as the hydrogen to be introduced is limited to hydrogen produced via electrolysis using thermally generated power, the hydrogen introduction into the future energy systems is difficult in terms of economic performance. (NEDO)

  1. Energy investment in developing countries

    International Nuclear Information System (INIS)

    Rovani, Y.

    1982-01-01

    The developing countries are likely to represent the fastest growing component of the global energy demand over the next two decades. The paper presents considerations based on the World Bank's approach to the energy sector in these countries. It is considered that an accelerated development of conventional indigenous sources of energy is absolutely vital if developing countries are to attain a satisfactory rate of economic growth. The cost of the energy investment, the power sector issues, the optimal use of the resources, the role of the external financing and the need of technical assistance are reviewed. One emphasizes the role of the World Bank in analyzing and preparing projects, and in mobilizing financing from other official and commercial sources

  2. Analysis of the energy development variants

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    Analysis of the variants of energy development is made as the third stage of a procedure of energy-economy interrelations dynamics study, the other two stages being the scenarios description and the formulation of the variants. This stage includes a research on the dimensions and the dynamics of the resources demands, the general features and the trends of the national energy development. There is a presentation of a comparative analysis of the variants in terms of economic indices and energy values, computed by the model IMPACT-B. A resource evaluation of the development variants is given in terms of investments, requirements (direct, indirect and total) and limited national resources demands of the energy system. The trends of the national energy development discussed are: trends characterizing the changes in the structure of the energy consumption, resulting from changes in the economy; trends of the energy system impact on the productivity of labor; general trends of the proportionality in the industrial, the household and services sector development. 16 refs., 16 figs., 4 tabs. (R.Ts.)

  3. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  4. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    Science.gov (United States)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.