WorldWideScience

Sample records for energy storage heat

  1. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  2. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  3. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  4. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2015-01-01

    Highlights: • A parameter to indicate the energy efficiency ratio of PCTES units is defined. • The characteristics of the energy efficiency ratio of PCTES units are reported. • A combined parameter of the physical properties of the working mediums is found. • Some implications of the energy efficiency ratio in design of PCTES units are analyzed. - Abstract: From aspect of energy consuming to pump heat transfer fluid, there is no sound basis on which to create an optimum design of a thermal energy storage unit. Thus, it is necessary to develop a parameter to indicate the energy efficiency of such unit. This paper firstly defines a parameter that indicates the ratio of heat storage of phase change thermal energy storage unit to energy consumed in pumping heat transfer fluid, which is called the energy efficiency ratio, then numerically investigates the characteristics of this parameter. The results show that the energy efficiency ratio can clearly indicate the energy efficiency of a phase change thermal energy storage unit. When the fluid flow of a heat transfer fluid is in a laminar state, the energy efficiency ratio is larger than in a turbulent state. The energy efficiency ratio of a shell-and-tube phase change thermal energy storage unit is more sensitive to the outer tube diameter. Under the same working conditions, within the heat transfer fluids studied, the heat storage property of the phase change thermal energy storage unit is best for water as heat transfer fluid. A combined parameter is found to indicate the effects of both the physical properties of phase change material and heat transfer fluid on the energy efficiency ratio

  5. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  6. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  7. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat

  8. EPR ohmic heating energy storage

    International Nuclear Information System (INIS)

    Heck, F.M.; Stillwagon, R.E.; King, E.I.

    1977-01-01

    The Ohmic Heating (OH) Systems for all the Experimental Power Reactor (EPR) designs to date have all used temporary energy storage to assist in providing the OH current charge required to build up the plasma current. The energies involved (0.8 x 10 9 J to 1.9 x 10 9 J) are so large as to make capacitor storage impractical. Two alternative approaches are homopolar dc generators and ac generators. Either of these can be designed for pulse duty and can be made to function in a manner similar to a capacitor in the OH circuit and are therefore potential temporary energy storage devices for OH systems for large tokamaks. This study compared total OH system costs using homopolar and ac generators to determine their relative merits. The total system costs were not significantly different for either type of machine. The added flexibility and the lower maintenance of the ac machine system make it the more attractive approach

  9. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  10. Flexibility of a combined heat and power system with thermal energy storage for district heating

    International Nuclear Information System (INIS)

    Nuytten, Thomas; Claessens, Bert; Paredis, Kristof; Van Bael, Johan; Six, Daan

    2013-01-01

    Highlights: ► A generic model for flexibility assessment of thermal systems is proposed. ► The model is applied to a combined heat and power system with thermal energy storage. ► A centrally located storage offers more flexibility compared to individual units. ► Increasing the flexibility requires both a more powerful CHP and a larger buffer. - Abstract: The trend towards an increased importance of distributed (renewable) energy resources characterized by intermittent operation redefines the energy landscape. The stochastic nature of the energy systems on the supply side requires increased flexibility at the demand side. We present a model that determines the theoretical maximum of flexibility of a combined heat and power system coupled to a thermal energy storage solution that can be either centralized or decentralized. Conventional central heating, to meet the heat demand at peak moments, is also available. The implications of both storage concepts are evaluated in a reference district. The amount of flexibility created in the district heating system is determined by the approach of the system through delayed or forced operation mode. It is found that the distinction between the implementation of the thermal energy storage as a central unit or as a collection of local units, has a dramatic effect on the amount of available flexibility

  11. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  12. Rapid charging of thermal energy storage materials through plasmonic heating.

    Science.gov (United States)

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  13. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  14. Heat storage. Role in the energy system of the future

    International Nuclear Information System (INIS)

    Hauer, Andreas; Woerner, Antje; Kranz, Stefan; Schumacher, Patrick; Gschwander, Stefan; Appen, Jan von; Hidalgo, Diego; Gross, Bodo; Grashof, Katherina

    2015-01-01

    For the implementation of the energy transition in Germany can contribute in a variety of applications thermal energy storage. Both at the integration of renewable energy sources, as well as in increasing the energy efficiency in the building sector and industry can utilize heat and cold storage great potential. For this diverse storage technologies are available. In Germany numerous research and development projects are running currently, covering the broad possibilities of thermal energy storage. [de

  15. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    Hadorn, J.-C.; Renaud, P.

    2003-01-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  16. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage

    International Nuclear Information System (INIS)

    Utlu, Zafer; Aydın, Devrim; Kıncay, Olcay

    2014-01-01

    Highlights: • An experimental thermal investigation of hybrid renewable heating system is presented. • Analyses were done by using real data obtained from a prototype structure. • Exergy efficiency of system components investigated during discharging period are close to each other as 32%. • The average input energy and exergy rates to the LHS were 0.770 and 0.027 kW. • Overall total energy and exergy efficiencies of LHS calculated as 72% and 28.4%. - Abstract: In this study an experimental thermal investigation of hybrid renewable heating system is presented. Latent heat storage stores energy, gained by solar collectors and supplies medium temperature heat to heat pump both day time also night time while solar energy is unavailable. In addition to this an accumulation tank exists in the system as sensible heat storage. It provides supply–demand balance with storing excess high temperature heat. Analyses were done according to thermodynamic’s first and second laws by using real data obtained from a prototype structure, built as part of a project. Results show that high percent of heat loses took place in heat pump with 1.83 kW where accumulator-wall heating cycle followed it with 0.42 kW. Contrarily highest break-down of exergy loses occur accumulator-wall heating cycle with 0.28 kW. Averagely 2.42 kW exergy destruction took place in whole system during the experiment. Solar collectors and heat pump are the promising components in terms of exergy destruction with 1.15 kW and 1.09 kW respectively. Exergy efficiency of system components, investigated during discharging period are in a close approximately of 32%. However, efficiency of solar collectors and charging of latent heat storage are 2.3% and 7% which are relatively low. Average overall total energy and exergy efficiencies of latent heat storage calculated as 72% and 28.4% respectively. Discharging energy efficiency of latent heat storage is the highest through all system components. Also heat

  17. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2006-01-01

    to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will require a storage...... of the storage to cool down below the melting point without solidification preserving the heat of fusion energy. If the supercooled storage reaches the surrounding temperature no heat loss will take place until the supercooled salt is activated. The investigation shows that this concept makes it possible...

  18. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262

  19. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  20. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  1. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  2. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation

    International Nuclear Information System (INIS)

    Chan, C.W.; Ling-Chin, J.; Roskilly, A.P.

    2013-01-01

    A major cause of energy inefficiency is a result of the generation of waste heat and the lack of suitable technologies for cost-effective utilisation of low grade heat in particular. The market potential for surplus/waste heat from industrial processes in the UK is between 10 TWh and 40 TWh, representing a significant potential resource which has remained unexploited to date. This paper reviews selected technologies suitable for utilisation of waste heat energy, with specific focus on low grade heat, including: (i) chemical heat pumps, such as adsorption and absorption cycles for cooling and heating; (ii) thermodynamic cycles, such as the organic Rankine cycle (ORC), the supercritical Rankine cycle (SRC) and the trilateral cycle (TLC), to produce electricity, with further focus on expander and zeotropic mixtures, and (iii) thermal energy storage, including sensible and latent thermal energy storages and their corresponding media to improve the performance of low grade heat energy systems. - Highlights: ► The review of various thermal technologies for the utilisation of under exploited low grade heat. ► The analyses of the absorption and adsorption heat pumps possibly with performance enhancement additives. ► The analyses of thermal energy storage technologies (latent and sensible) for heat storage. ► The analyses of low temperature thermodynamic cycles to maximise power production.

  3. Transient modelling of heat loading of phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Asyraf W.M.

    2017-01-01

    Full Text Available As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3 and potassium nitrate (KNO3 was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.

  4. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  5. Increasing RES Penetration and Security of Energy Supply by Use of Energy Storages and Heat Pumps in Croatian Energy System

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2010-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped hydro and heat pumps in combination with heat storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro-plant may facilitate more than 10% wind power in the electricity system. Large-scale integration of wind...

  6. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating and dome......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...... storage parts already melted to cool down to surrounding temperature without solidification in which state that part of the storage will be heat loss free but still will hold the latent heat in form of the heat of fusion. At the time of energy demand the solidification of the super-cooled storage part...

  7. Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material

    Directory of Open Access Journals (Sweden)

    Martin Haemmerle

    2017-03-01

    Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.

  8. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  9. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  10. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  11. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  12. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  13. Dynamic modeling of а heating system using geothermal energy and storage tank

    Directory of Open Access Journals (Sweden)

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  14. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  15. Optimal study of a solar air heating system with pebble bed energy storage

    International Nuclear Information System (INIS)

    Zhao, D.L.; Li, Y.; Dai, Y.J.; Wang, R.Z.

    2011-01-01

    Highlights: → Use two kinds of circulation media in the solar collector. → Air heating and pebble bed heat storage are applied with different operating modes. → Design parameters of the system are optimized by simulation program. → It is found that the system can meet 32.8% of the thermal energy demand in heating season. → Annual solar fraction aims to be 53.04%. -- Abstract: The application of solar air collectors for space heating has attracted extensive attention due to its unique advantages. In this study, a solar air heating system was modeled through TRNSYS for a 3319 m 2 building area. This air heating system, which has the potential to be applied for space heating in the heating season (from November to March) and hot water supply all year around in North China, uses pebble bed and water storage tank as heat storage. Five different working modes were designed based on different working conditions: (1) heat storage mode, (2) heating by solar collector, (3) heating by storage bed, (4) heating at night and (5) heating by an auxiliary source. These modes can be operated through the on/off control of fan and auxiliary heater, and through the operation of air dampers manually. The design, optimization and modification of this system are described in this paper. The solar fraction of the system was used as the optimization parameter. Design parameters of the system were optimized by using the TRNSYS program, which include the solar collector area, installation angle of solar collector, mass flow rate through the system, volume of pebble bed, heat transfer coefficient of the insulation layer of the pebble bed and water storage tank, height and volume of the water storage tank. The TRNSYS model has been verified by data from the literature. Results showed that the designed solar system can meet 32.8% of the thermal energy demand in the heating season and 84.6% of the energy consumption in non-heating season, with a yearly average solar fraction of 53.04%.

  16. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  17. Evaluation of an earth heat storage system in a solar energy greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Langrell, J.; Boris, R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering

    2010-07-01

    Greenhouses store solar energy in the walls and floors during the daytime and release the stored energy back to the greenhouse at night. In this study, an earth heat storage system was constructed and tested in a solar energy greenhouse in order to enhance energy storage. The system consisted of a network of perforated pipes buried in the soil at depths from 0.3 to 1 m. The warm air near the greenhouse ceiling was drawn to the buried pipes. Soil and air temperatures were recorded at various locations by a network of thermocouples. The energy balance was analyzed in order to evaluate the effectiveness of the earth heat storage system. The temperature profiles in the soil were used to determine the summer recharge and winter energy depletion behaviour of the system.

  18. Central unresolved issues in thermal energy storage for building heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  19. Thermal energy storage with geothermal triplet for space heating and cooling

    Science.gov (United States)

    Bloemendal, Martin; Hartog, Niels

    2017-04-01

    Many governmental organizations and private companies have set high targets in avoiding CO2 emissions and reducing energy (Kamp, 2015; Ministry-of-Economic-affairs, 2016). ATES systems use groundwater wells to overcome the discrepancy in time between the availability of heat (during summer) and the demand for heat (during winter). Aquifer Thermal Energy Storage is an increasingly popular technique; currently over 2000 ATES systems are operational in the Netherlands (Graaf et al., 2016). High temperature ATES may help to improve performance of these conventional ATES systems. ATES systems use heat pumps to get the stored heat to the required temperature for heating of around 40-50°C and to produce the cold water for cooling in summer. These heat pumps need quite a lot of power to run; on average an ATES system produces 3-4 times less CO2 emission compared to conventional. Over 60% of those emission are accounted for by the heat pump (Dekker, 2016). This heat pump power consumption can be reduced by utilizing other sources of sustainable heat and cooling capacity for storage in the subsurface. At such operating temperatures the required storage temperatures do no longer match the return temperatures in the building systems. Therefore additional components and an additional well are required to increase the groundwater temperature in summer (e.g. solar collectors) and decrease it in winter (e.g. dry coolers). To prevent "pollution" of the warm and cold well return water from the building can be stored in a third well until weather conditions are suitable for producing the required storage temperature. Simulations and an economical evaluation show great potential for this type of aquifer thermal energy storage; economic performance is better than normal ATES while the emissions are reduce by a factor ten. At larger temperature differences, also the volume of groundwater required to pump around is much less, which causes an additional energy saving. Research now

  20. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  1. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  2. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  3. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    International Nuclear Information System (INIS)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B.

    2017-01-01

    Highlights: •A new configuration of compressed air energy storage system is proposed and analyzed. •This system, so-called subcooled-CAES, offers cogeneration of electricity, heat and cooling. •A pseudo-dynamic energy, exergy and economic analysis of the system for an entire year is presented. •The annual power, cooling and heat efficiencies of the system are around 31%, 32% and 92%. •The overall energy and exergy performance coefficients of the system are 1.55 and 0.48, respectively. -- Abstract: Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of electricity, heat and cooling. The new system may be very advantageous for locations with high penetration of renewable energy in the electricity grid as well as high heating and cooling demands. The latter would typically be locations with district heating and cooling networks. A thorough design, sizing and thermodynamic analysis of the system for a typical wind farm with 300 MW capacity in Denmark is presented. The results show a great potential of the system to support the local district heating and cooling networks and reserve services in electricity market. The values of power-to-power, power-to-cooling and power-to-heat efficiencies of this system are 30.6%, 32.3% and 92.4%, respectively. The exergy efficiency values are 30.6%, 2.5% and 14.4% for power, cooling and heat productions. A techno-economic comparison of this system with two of the most efficient previous designs of compressed air energy storage system proves the firm superiority of the new concept.

  4. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  5. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  6. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  7. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  8. Compressed air energy storage with waste heat export: An Alberta case study

    International Nuclear Information System (INIS)

    Safaei, Hossein; Keith, David W.

    2014-01-01

    Highlights: • Export of compression waste heat from CAES facilities for municipal heating can be profitable. • D-CAES concept has a negative abatement cost of −$40/tCO 2 e under the studied circumstances. • Economic viability of D-CAES highly depends on distance between air storage site and heat load. - Abstract: Interest in compressed air energy storage (CAES) technology has been renewed driven by the need to manage variability form rapidly growing wind and solar capacity. Distributed CAES (D-CAES) design aims to improve the efficiency of conventional CAES through locating the compressor near concentrated heating loads so capturing additional revenue through sales of compression waste heat. A pipeline transports compressed air to the storage facility and expander, co-located at some distance from the compressor. The economics of CAES are strongly dependant on electricity and gas markets in which they are embedded. As a case study, we evaluated the economics of two hypothetical merchant CAES and D-CAES facilities performing energy arbitrage in Alberta, Canada using market data from 2002 to 2011. The annual profit of the D-CAES plant was $1.3 million more on average at a distance of 50 km between the heat load and air storage sites. Superior economic and environmental performance of D-CAES led to a negative abatement cost of −$40/tCO 2 e. We performed a suite of sensitivity analyses to evaluate the impact of size of heat load, size of air storage, ratio of expander to compressor size, and length of pipeline on the economic feasibility of D-CAES

  9. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  10. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  11. High-Temperature Thermal Energy Storage for electrification and district heating

    DEFF Research Database (Denmark)

    Pedersen, A. Schrøder; Engelbrecht, K.; Soprani, S.

    stability upon thermal cycling. The most promising material consists of basalt, diabase, and magnetite, whereas the less suited rocks contain larger proportions of quartz and mica. An HT-TES system, containing 1.5 m3 of rock pieces, was constructed. The rock bed was heated to 600 ˚C using an electric heater......The present work describes development of a High Temperature Thermal Energy Storage (HT-TES) system based on rock bed technology. A selection of rocks was investigated by thermal analysis in the range 20-800 ˚C. Subsequently, a shortlist was defined primarily based on mechanical and chemical...... to simulate thermal charging from wind energy. After complete heating of the rock bed it was left fully charged for hours to simulate actual storage conditions. Subsequently the bed discharging was performed by leading cold air through the rock bed whereby the air was heated and led to an exhaust. The results...

  12. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  13. Exchanging and Storing Energy. Reducing Energy Demand through Heat Exchange between Functions and Temporary Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sillem, E.

    2011-06-15

    As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging

  14. Analysis of an underground electric heating system with short-term energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, B.H. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

    1994-12-31

    The principal commercially active heat storage application in which concrete is used as the storage medium is in the use of subfloor electric heaters embedded in a layer of sand. The resistance heaters are energized when utility offpeak rates are in effect. The sand bed and the concrete floor are then heated to some predetermined temperature, and the floor releases heat slowly and remains warm during the subsequent period of high demand. Analysis of the slab-heating system for varying design parameters, such as the depth of the placement of the heaters, the sand properties, the energy input, and the insulation thickness, was considered. The system was also optimized based on life-cycle costs. The suitability of using this system for heating a warehouse in four representative cities in the United States was also considered The response of the system was found to be greatly influenced by the depth of the placement of the heaters, the sand`s moisture content, and the heating strategy. Optimum insulation levels were determined for the prototypical building in all four of the representative cities. Because of the difficulty of controlling the energy release from the heating mats, this system may not be suitable for heating residential and office buildings but may be more appropriate for heating maintenance and storage facilities.

  15. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  16. Study of thermal energy storage using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  17. Current status of ground source heat pumps and underground thermal energy storage in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Justus Liebig University, Giessen (Germany). Institute of Applied Geosciences; Karytsas, C.; Mendrinos, D. [Center for Renewable Energy Sources, Pikermi (Greece); Rybach, L. [Geowatt AG, Zurich (Switzerland)

    2003-12-01

    Geothermal Heat Pumps, or Ground Coupled Heat Pumps (GCHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water-antifreeze mixture) as the medium that transfers the heat from the earth to the evaporator of the heat pump, thus utilising geothermal energy. In cooling mode, they use the earth as a heat sink. With Borehole Heat Exchangers (BHE), geothermal heat pumps can offer both heating and cooling at virtually any location, with great flexibility to meet any demands. More than 20 years of R and D focusing on BUE in Europe has resulted in a well-established concept of sustainability for this technology, as well as sound design and installation criteria. Recent developments are the Thermal Response Test, which allows in-situ-determination of ground thermal properties for design purposes, and thermally enhanced grouting materials to reduce borehole thermal resistance. For cooling purposes, but also for the storage of solar or waste heat, the concept of underground thermal energy storage (UTES) could prove successful. Systems can be either open (aquifer storage) or can use BHE (borehole storage). Whereas cold storage is already established on the market, heat storage, and, in particular, high temperature heat storage (> 50{sup o}C) is still in the demonstration phase. Despite the fact that geothermal heat pumps have been in use for over 50 years now (the first were in the USA), market penetration of this technology is still in its infancy, with fossil fuels dominating the space heating market and air-to-air heat pumps that of space cooling. In Germany, Switzerland, Austria, Sweden, Denmark, Norway, France and the USA, large numbers of geothermal heat pumps are already operational, and installation guidelines, quality control and contractor certification are now major issues

  18. A Comprehensive Review of Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2018-01-01

    Full Text Available Thermal energy storage (TES is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.

  19. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  20. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  1. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  2. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  3. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  4. Comparing energy storage options for renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The paper investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage......Increasing penetrations of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilizing storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This paper takes its point of departure in an all...

  5. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2016-01-01

    Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.

  6. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  7. Field evaluation and assessment of thermal energy storage for residential space heating

    Science.gov (United States)

    Hersh, H. N.

    1982-02-01

    A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.

  8. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  9. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  10. German central solar heating plants with seasonal heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  11. Energy study of heat pumps and energy storage at Cisco Systems International; Energiestudie warmtepompen en energieopslag Cisco Systems International

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-23

    Cisco Systems International considers the use of energy storage in combination with heat pumps for the new office building in Amsterdam South-East, Netherlands. This office building has a floor space of 35,000 m{sup 2}. In a later phase this can be enlarged to 45,000 m{sup 2} (phase 1b) or 90,000 m{sup 2} (phase 2). This study is based on phase 1b. The mounting heat capacity is 2,760 kW and the cooling capacity is 7,045 kW. The annually cooling demand is estimated to be 30,400 MWh/a. The computer cooling forms a greater part of the cooling request (28,300 MWh/a). This study is a pilot study to the applicability of subsurface energy storage where heat pumps in the new office building are involved. However, nearby the Cisco location IKEA (furniture warehouse) has also planned an energy storage system. Therefore, the interaction between the two storage systems was examined. Cost effectiveness was analysed by comparison of the storage system with an energy system using conventional cooling machines and gas boilers. 5 refs.

  12. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  13. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    Science.gov (United States)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  14. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  15. Wind power integration using individual heat pumps – Analysis of different heat storage options

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power....... Heat accumulation tanks and passive heat storage in the construction are investigated as two alternative storage options in terms of their ability to increase wind power utilisation and to provide cost-effective fuel savings. Results show that passive heat storage can enable equivalent to larger...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...

  16. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  17. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Yang, Ke; Zhang, Yuan; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  18. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  19. Operation of heat pumps for smart grid integrated buildings with thermal energy storage

    NARCIS (Netherlands)

    Finck, C.J.; Li, R.; Zeiler, W.

    2017-01-01

    A small scale office building consisting of radiant heating, a heat pump, and a water thermal energy storage tank is implemented in an optimal control framework. The optimal control aims to minimize operational electricity costs of the heat pump based on real-time power spot market prices. Optimal

  20. Energy density enhancement of chemical heat storage material for magnesium oxide/water chemical heat pump

    International Nuclear Information System (INIS)

    Myagmarjav, Odtsetseg; Zamengo, Massimiliano; Ryu, Junichi; Kato, Yukitaka

    2015-01-01

    A novel candidate chemical heat storage material having higher reaction performance and higher thermal conductivity used for magnesium oxide/water chemical heat pump was developed in this study. The material, called EML, was obtained by mixing pure Mg(OH)_2 with expanded graphite (EG) and lithium bromide (LiBr), which offer higher thermal conductivity and reactivity, respectively. With the aim to achieve a high energy density, the EML composite was compressed into figure of the EML tablet (ϕ7.1 mm × thickness 3.5 mm). The compression force did not degrade the reaction conversion, and furthermore it enabled us to achieve best heat storage and output performances. The EML tablet could store heat of 815.4 MJ m_t_a_b"−"3 at 300 °C within 120 min, which corresponded to almost 4.4 times higher the heat output of the EML composite, and therefore, the EML tablet is the solution which releases more heat in a shorter time. A relatively larger volumetric gross heat output was also recorded for the EML tablet, which was greater than one attained for the EML composite at certain temperatures. As a consequence, it is expected that the EML tablet could respond more quickly to sudden demand of heat from users. It was concluded that the EML tablet demonstrated superior performances. - Highlights: • A new chemical heat storage material, donated as EML, was developed. • EML composite made from pure Mg(OH)_2, expanded graphite and lithium bromide. • EML tablet was demonstrated by compressing the EML composite. • Compression force did not degrade the conversion in dehydration and hydration. • EML tablet demonstrated superior heat storage and output performances.

  1. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  2. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  3. The Role of Energy Storages in Energy Independent Croatia

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2009-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped Hydro and Heat Pumps in combination with Heat Storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro- plant may facilitate more than 10% wind power in the electricity system. In future research more precise...

  4. Liquid neon heat intercept for superconducting energy storage magnets

    International Nuclear Information System (INIS)

    Khalil, A.; McIntosh, G.E.

    1982-01-01

    Previous analyses of heat intercept solutions are extended to include both insulation and strut heat leaks. The impact of using storable, boiling cryogens for heat intercept fluids, specifically liquid neon and nitrogen, is also examined. The selection of fluid for the heat intercepts is described. Refrigeration power for 1000 and 5000 MWhr SMES units is shown with optimum refrigeration power for each quantity shown in tables. Nitrogen and Neon cooled intercept location for minimum total refrigeration power for a 5000 MWhr SMES are each shown, as well as the location of nitrogen and neon cooled intercepts for minimum total refrigeration power for 5000 MWhr SMES. Cost comparisons are itemized and neon cost and availability discussed. For a large energy storage magnet system, liquid neon is a more effective heat intercept fluid than liquid nitrogen. Reasons and application of the conclusion are amplified

  5. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  6. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    Science.gov (United States)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  7. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  8. Hydration of Magnesium Carbonate in a Thermal Energy Storage Process and Its Heating Application Design

    Directory of Open Access Journals (Sweden)

    Rickard Erlund

    2018-01-01

    Full Text Available First ideas of applications design using magnesium (hydro carbonates mixed with silica gel for day/night and seasonal thermal energy storage are presented. The application implies using solar (or another heat source for heating up the thermal energy storage (dehydration unit during daytime or summertime, of which energy can be discharged (hydration during night-time or winter. The applications can be used in small houses or bigger buildings. Experimental data are presented, determining and analysing kinetics and operating temperatures for the applications. In this paper the focus is on the hydration part of the process, which is the more challenging part, considering conversion and kinetics. Various operating temperatures for both the reactor and the water (storage tank are tested and the favourable temperatures are presented and discussed. Applications both using ground heat for water vapour generation and using water vapour from indoor air are presented. The thermal energy storage system with mixed nesquehonite (NQ and silica gel (SG can use both low (25–50% and high (75% relative humidity (RH air for hydration. The hydration at 40% RH gives a thermal storage capacity of 0.32 MJ/kg while 75% RH gives a capacity of 0.68 MJ/kg.

  9. Energetic and Exergy Efficiency of a Heat Storage Unit for Building Heating

    International Nuclear Information System (INIS)

    Hazami, Mejdi; Kooli, Sami; Lazaar, Meriem; Farhat, Abdelhamid; Belghith, Ali

    2009-01-01

    This paper deals with a numerical and experimental investigation of a daily solar storage system conceived and built in Laboratoire de Maitrise des Technologies de l Energie (LMTE, Borj Cedria). This system consists mainly of the storage unit connected to a solar collector unit. The storage unit consists of a wooden case with dimension of 5 m 3 (5 m x 1m x 1m) filed with fin sand. Inside the wooden case was buried a network of a polypropylene capillary heat exchanger with an aperture area equal to 5 m 2 . The heat collection unit consisted of 5 m 2 of south-facing solar collector mounted at a 37 degree tilt angle. In order to evaluate the system efficiency during the charging period (during the day) and discharging period (during the night) an energy and exergy analyses were applied. Outdoor experiments were also carried out under varied environmental conditions for several consecutive days. Results showed that during the charging period, the average daily rates of thermal energy and exergy stored in the heat storage unit were 400 and 2.6 W, respectively. It was found that the net energy and exergy efficiencies in the charging period were 32 pour cent and 22 pour cent, respectively. During the discharging period, the average daily rates of the thermal energy and exergy recovered from the heat storage unit were 2 kW and 2.5 kW, respectively. The recovered heat from the heat storage unit was used for the air-heating of a tested room (4 m x 3 m x 3 m). The results showed that 30 pour cent of the total heating requirement of the tested room was obtained from the heat storage system during the whole night in cold seasons

  10. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  11. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  12. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost...... of electricity in a system with a TES unit to the case where no storage is in use and the entire heat requirement is fulfilled by purchasing electricity according to the actual load. The study had two goals: 1. Determining how the size – in terms of electricity input (Pmax) and energy capacity (Emax...

  13. Maximizing the energy storage performance of phase change thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Amin, N.A.M.; Bruno, F.; Belusko, M. [South Australia Univ., Mawson Lakes, South Australia (Australia). Inst. for Sustainable Systems and Technologies

    2009-07-01

    The demand for electricity in South Australia is highly influenced by the need for refrigeration and air-conditioning. An extensive literature review has been conducted on the use of phase change materials (PCMs) in thermal storage systems. PCMs use latent heat at the solid-liquid phase transition point to store thermal energy. They are considered to be useful as a thermal energy storage (TES) material because they can provide much higher energy storage densities compared to conventional sensible thermal storage materials. This paper reviewed the main disadvantages of using PCMs for energy storage, such as low heat transfer, super cooling and system design issues. Other issues with PCMs include incongruence and corrosion of heat exchanger surfaces. The authors suggested that in order to address these problems, future research should focus on maximizing heat transfer by optimizing the configuration of the encapsulation through a parametric analysis using a PCM numerical model. The effective conductivity in encapsulated PCMs in a latent heat thermal energy storage (LHTES) system can also be increased by using conductors in the encapsulation that have high thermal conductivity. 47 refs., 1 tab., 1 fig.

  14. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  15. The utilization of the storage of thermal energy in buildings. Underground heat storages - thermic simulation and profitability; Termisen energian varastoinnin hyvaeksikaeyttoemahdollisuudet rakennusten laemmityksessae ja jaeaehdytyksessae. Maanalaiset varastot - laempoetekninen simulointi ja taloudellinen kannattavuus

    Energy Technology Data Exchange (ETDEWEB)

    Suokas, M.; Heinonen, J.; Karola, A.; Laine, T.; Siren, K.

    1998-12-31

    Interest in different sources of free energy has significantly increased due to the possibility to decrease the consumption of fossil fuels and nuclear power. This can be reached, for example, with waste heat recovery and by utilising natural heat and cool energy sources. The main problem is that the supply and use of energy do not encounter and this causes a need for thermal energy storage. The earlier heat storage systems have utilised compressor heat pumps because the temperature levels of heat storages are not high enough for the ordinary heating and cooling systems. The disadvantage is the complexity of these systems which leads to increasing building costs. Therefore, this study deals with systems of low temperature levels used mainly for cooling purposes. The aim was to find out their usability, savings and profitability. The function and energy consumption of systems were simulated with models of buildings, soil heat storage and climate. The soil model simulates heat dynamic behaviour of the masses of soil. With the climate model it was possible to simulate transient heat losses of the storage and building. It was also possible to simulate various climatic conditions by changing input data of the climate model. In the simulated systems the emphasis is on the production of cooling energy by utilising the low temperature of the ground. The systems consist of heat storage and building. The cooling energy will be charged in winter to the storage when the heat energy charged in summer will be transferred to the supply air of ventilating unit. After the energy simulations the investment and usage costs of this kind of systems were compared with costs of ordinary compressor cooling systems. The buildings studied were an imaginary LVIS 2000 office building and the Messukeskus in Helsinki which is a large hall built for exhibitions. The types of soil were wet clay and granite. The LVIS 2000 office building needs a rock heat storage with capacity of 8 000-30 000 m

  16. Thermal energy storage in the form of heat or cold with using of the PCM-based accumulation panels

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2016-01-01

    Full Text Available This article describes the usage of thermal energy storage in the form of heat and cold with an adaptation of the special device which is composed of the thermal panels. These panels are based on the phase change materials (PCM for normal inner environment temperature in buildings. The energy for the thermal energy storage is possible to get from built-in electric heating foil or from the tube heat exchanger, which is build in the thermal panels. This technology is able to use renewable energy sources, for example, solar thermal collectors and air-to-water heat pump as a source of heat for heating of the hot water tank. In the cooling mode, there is able to use the heat pump or photovoltaics panels in combination with thermoelectric coolers for cooling.

  17. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented

  18. Energy storage: a review of recent literature

    International Nuclear Information System (INIS)

    Tatone, O.S.

    1981-12-01

    Recent literature on the technological and economic status of reversible energy storage has been reviewed. A broad range of research and development activities have been pursued between 1975 and the present. Most of this work has concentrated on improving technical and economic performance of previously known storage technologies. Hydraulic pumped storage with both reservoirs above ground and compressed air storage (1 plant) are the only methods that have been adopted by electric utilities. The need for electrical energy storage in Canada has not been acute because of the large proportion of hydraulic generation which incorporates some storge and, in most cases, can readily be used for load-following. Residential heat storage in ceramic room heaters has been used in Europe for several years. For Canadian climatic and market conditions larger, central heating units would be required. Residential heat storage depends upon utilities offering time-of-use rates and none in Canada do so at present. Most seasonal storage concepts depend upon storage of low-grade heat for district heating. The cost of energy storage is highly dependent upon annual energy throughput and hence favours smaller capacity systems operating on frequent charge/discharge cycles over long-term storage. Capital costs of energy storage methods from the literature, expressed in constant dollars, are compared graphically and tentative investment costs are presented for several storage methods

  19. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...

  20. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  1. Energy storage. A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Brisse, Annabelle; Cagnac, Albannie; Delille, Gauthier; Hinchliffe, Timothee; Lancel, Gilles; Jeandel, Elodie; Lefebvre, Thierry; Loevenbruck, Philippe; Penneau, Jean-Francois; Soler, Robert; Stevens, Philippe; Radvanyi, Etienne; Torcheux, Laurent

    2017-06-01

    Written by several EDF R and D engineers, this book aims at presenting an overview of knowledge and know-how of EDF R and D in the field of energy storage, and at presenting the different technologies and their application to electric power systems. After a description of the context related to a necessary energy transition, the authors present the numerous storage technologies. They distinguish direct storage of power (pumped storage water stations, compressed air energy storage, flywheels, the various electrochemical batteries, metal-air batteries, redox flow batteries, superconductors), thermal storage (power to heat, heat to power) and hydrogen storage (storage under different forms), and propose an overview of the situation of standardisation of storage technologies. In the next part, they give an overview of the main services provided by storage to the electric power system: production optimisation, frequency adjustment, grid constraint resolution, local smoothing of PV and wind production, supply continuity. The last part discusses perspectives regarding the role of tomorrow's storage in the field of electrical mobility, for emerging markets, and with respect to different scenarios

  2. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  3. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  4. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  5. Thermal energy storage material thermophysical property measurement and heat transfer impact

    Science.gov (United States)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  6. Energy conservation indicators cold and heat storage. Revision factsheet cold and heat storage 2009; Besparingskentallen koude- en warmteopslag. Herziening factsheet koude- en warmteopslag 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bosselaar, L. [SenterNovem, Utrecht (Netherlands); Koenders, M.J.B.; Van Helden, M.J.C.; Kleinlugtenbelt, J.H. [IF Technology, Arnhem (Netherlands)

    2009-08-15

    The aim of the title revision is to update the existing indicators for cold and heat storage as given in the Protocol Monitoring Sustainable Energy [Dutch] Het doel van het onderzoek is om de bestaande set van kentallen voor koude- en warmteopslag uit het Protocol Monitoring Duurzame Energie te actualiseren.

  7. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  8. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...... of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments....

  9. Latent Heat Storage Through Phase Change Materials

    Indian Academy of Sciences (India)

    IAS Admin

    reducing storage volume for different materials. The examples are numerous: ... Latent heat is an attractive way to store solar heat as it provides high energy storage density, .... Maintenance of the PCM treated fabric is easy. The melted PCM.

  10. Implementation of heat production and storage technology and devices in power systems

    International Nuclear Information System (INIS)

    Romanovsky, G.; Mutale, J.

    2012-01-01

    Implementation of heat storage devices and technologies at power generation plants is a promising way to provide more efficient use of natural energy resources. Heat storage devices can partly replace conventional heating technologies (such as direct use of fossil fuels) during peak energy demand or in the situations where heat and electricity supply and demand do not coincide and to obtain low cost heat energy which can be further transmitted to industrial, commercial and domestic consumers. This paper presents the innovative Heat Production and Storage Device and its application at conventional, nuclear and renewable power generation plants for optimization and balancing of electricity grids. The Heat Production and Storage Device is a vessel type induction-immersion heat production and storage device which produces pre-heated water under pressure for heat energy conservation. Operation of this device is based on simultaneous and/or sequential action of an inductor and an immersion heater and can be easily connected to the electricity network as a single or a three phase unit. Heat energy accumulated by the Heat Production and Storage Device can be utilized in different industrial technological processes during periods of high energy prices. - Highlights: ► Heat Production and Storage Device for energy conservation within low load hours. ► Simultaneous and/or sequential operation of the inductor and immersion heater. ► Transform the energy of low frequency electrical current (50 Hz) into heat energy. ► Connection to the electricity network either in single or three phase unit. ► Heat Production and Storage Device will enhance the economic value of the system.

  11. Application of thermal energy storage to process heat recovery in the aluminum industry

    Science.gov (United States)

    Mccabe, J.

    1980-01-01

    The economic viability and the institutional compatibility of a district heating system in the city of Bellingham, Washington are assessed and the technical and economic advantages of using thermal energy storage methods are determined.

  12. Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2017-02-01

    Full Text Available Various energy sources can be used for room heating, among which waste heat utilization has significantly improved in recent years. However, the majority of applicable waste heat resources are high-grade or stable thermal energy, while the low-grade or unstable waste heat resources, especially low-temperature industrial residual water (IRW, are insufficiently used. A thermal energy storage (TES unit with paraffin wax as a phase change material (PCM is designed to solve this problem in a pharmaceutical plant. The mathematical models are developed to simulate the heat storage and release processes of the TES unit. The crucial parameters in the recurrence formulae are determined: the phase change temperature range of the paraffin wax used is 47 to 56 °C, and the latent heat is 171.4 kJ/kg. Several thermal behaviors, such as the changes of melting radius, solidification radius, and fluid temperature, are simulated. In addition, the amount of heat transferred, the heat transfer rate, and the heat storage efficiency are discussed. It is presented that the medicine production unit could save 10.25% of energy consumption in the investigated application.

  13. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    DEFF Research Database (Denmark)

    Haller, M.Y.; Yazdanshenas, Eshagh; Andersen, Elsa

    2010-01-01

    process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged......A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification...

  14. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    Science.gov (United States)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, G

  15. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  16. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  17. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan; Kim, Taeil; France, David M.; Smith, Roger K.

    2018-01-01

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degrees C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.

  18. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

    Directory of Open Access Journals (Sweden)

    Wangsik Jung

    2017-12-01

    Full Text Available A heat pump with thermal storage system is a system that operates a heat pump during nighttime using inexpensive electricity; during this time, the generated thermal energy is stored in a thermal storage tank. The stored thermal energy is used by the heat pump during daytime. Based on a model of a dual latent thermal storage tank and a heat pump, this study conducts control simulations using both conventional and advanced methods for heating in a building. Conventional methods include the thermal storage priority method and the heat pump priority method, while advanced approaches include the region control method and the dynamic programming method. The heating load required for an office building is identified using TRNSYS (Transient system simulation, used for simulations of various control methods. The thermal storage priority method shows a low coefficient of performance (COP, while the heat pump priority method leads to high electricity costs due to the low use of thermal storage. In contrast, electricity costs are lower for the region control method, which operates using the optimal part load ratio of the heat pump, and for dynamic programming, which operates the system by following the minimum cost path. According to simulation results for the winter season, the electricity costs using the dynamic programming method are 17% and 9% lower than those of the heat pump priority and thermal storage priority methods, respectively. The region control method shows results similar to the dynamic programming method with respect to electricity costs. In conclusion, advanced control methods are proven to have advantages over conventional methods in terms of power consumption and electricity costs.

  19. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  20. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  1. Thermal storage in a heat pump heated living room floor for urban district power balancing - effects on thermal comfort, energy loss and costs for residents

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    2014-01-01

    For the Dutch smart grid demonstration project Meppelenergie, the effects of controlled thermal energy storage within the floor heating structure of a living room by a heat pump are investigated. Storage possibilities are constrained by room operative and floor temperatures. Simulations indicate

  2. Application of large underground seasonal thermal energy storage in district heating system : a model-based energy performance assessment of a pilot system in Chifeng, China

    NARCIS (Netherlands)

    Xu, L.; Torrens Galdiz, J.I.; Guo, F.; Yang, X.; Hensen, J.L.M.

    Seasonal thermal energy storage (STES) technology is a proven solution to resolve the seasonal discrepancy between heating energy generation from renewables and building heating demands. This research focuses on the performance assessment of district heating (DH) systems powered by low-grade energy

  3. Process for adapting a heat source and a thermal machine by temporary heat storage

    International Nuclear Information System (INIS)

    Cahn, R.P.; Nicholson, E.W.

    1975-01-01

    The process described is intended to ensure the efficient use of the heat from a nuclear reactor or from a furnace burning fossil fuel at constant power, and of a boiler in a power station comprising a multi-stage steam turbine, the steam extracted from the turbine being used for pre-heating the boiler feed water. This process is most flexible with a varying load. It includes the high temperature storage of the excess heat energy in a low vapor pressure storage liquid (hydrocarbon oils, molten salts or liquid metals) at atmospheric pressure when the demand is low; then, when the energy demand is at its height, the reduction of steam extraction from the turbine with simultaneous utilisation of the hot heat storage liquid for the various maintenance heating functions of the power station by heat exchange, so that the heat can expand totally in the turbine with generation of energy [fr

  4. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  5. Studies on heat storage, 9

    International Nuclear Information System (INIS)

    Taoda, Hiroshi; Hayakawa, Kiyoshi; Kawase, Kaoru; Kosaka, Mineo

    1985-01-01

    To estimate the extent of thermal oxidative aging of the crosslinked and surface coated polyethylene pellets used as a latent heat thermal storage material, their deterioration was investigated by applying the heating-cooling cycle which simulated the daily insolation over 6 months (8-hour holding at 150 deg C as the highest temperature in a day followed by 5-hour holding at 30 deg C as the lowest one). The degradation, e.g., the lowering of heat of crystallization and in crystallization temperature, is thought to be caused by both the decrease in molecular weight of polyethylene due to thermal oxidative decomposition and the crosslinking between produced radicals. With the increase in the degree of crosslinking and branching in a molecular chain which has low bond dissociation energy, thermal deterioration of polyethylene proceeds more rapidly. Polyethylene pellets can endure long periods of practical heat cycling as a thermal storage material when they are treated with radical scavengers under proper control of their crosslinking degrees. The repeating heat storage experiments by using the developed polyethylene thermal storage material were performed and very promising results were obtained. (author)

  6. 4th international renewable energy storage conference (IRES 2009)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 4th International Renewable Energy Storage Conference of The European Association for Renewable Energy (Bonn, Federal Republic of Germany) and The World Council for Renewable Energy (Bonn, Federal Republic of Germany) between 24th and 25 November, 2009, in Berlin (Federal Republic of Germany), the following lectures were held: (1) The World Wind Energy Association (A. Kane); (2) The contribution of wind power to the energy supply of tomorrow (H. Albers); (3) Intelligent energy systems for the integration of renewable energies (A.-C. Agricola); (4) 100% Renewable energies: From fossil baseload plants to renewable plants for basic supply (M. Willenbacher); (5) High-performance Li-ion technology for stationary and mobile applications (A. Gutsch); (6) Energy storage in geological underground - Competition of use at storage formations (L. Dietrich); (7) E-mobility concepts for model region ''Rhein-Ruhr'' in North Rhine Westphalia (G.-U. Funk); (8) Photovoltaic energy storage for a better energy management in residential buildings (S. Pincemin); (9) Self-consuming photovoltaic energy in Germany - Impact on energy flows, business cases, and the distribution grid (M. Braun); (10) Local energy systems -optimized for local consumption of self-produced electricity (B. Wille-Haussmann); (11) Assessing the economics of distributed storage systems at the end consumer level (K.-H. Ahlert); (12) A new transportation system for heat on a wide temperature range (S. Gschwander); (13) Latent heat storage media for cooling applications (C. Doetsch); (14) Numerical and experimental analysis of latent heat storage systems for mobile application (F. Roesler); (15) CO{sub 2}-free heat supply from waste heat (H.-W. Etzkorn); (16) Stationary Li-Ion-technology applications for dispatchable power (C. Kolligs); (17) Redox-flow batteries - Electric storage systems for renewable energy (T. Smolinka); (18) Energy storage by means of flywheels (H. Kielsein); (19

  7. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Heat-storage subsystems); 1977 nendo taiyo energy riyo system chosa kenkyu. Chikunetsu sub system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at surveys and researches on materials for heat-storage systems for solar thermal power generation systems and solar energy systems for air conditioning and hot water supply; analysis of current status of heat-storage subsystems and extraction of problems involved therein; and sorting out the research themes. Surveyed are the tower type light-collecting systems under development for solar thermal power generation systems, heat-storage subsystems with flat- and curved-surface type light-collecting systems; heat-storage systems being developed by the Electrotechnical Laboratory; heat-storage materials for solar thermal power generation techniques; regenerative heat exchangers; thermodynamic considerations for heat storage and molten salt techniques; and relationship between heat storage material properties and containers. Problems involved in each item are also extracted. The heat-storage subsystems for solar energy systems for air conditioning and hot water supply are now being under development, some being already commercialized, and the classification of and surveys on the related techniques are conducted. At the same time, problems involved in the heat-storage subsystems, being developed for residential buildings, condominiums and large-size buildings, are also extracted. The research themes for the heat-storage subsystems for solar air conditioning and hot water supply systems are sorted out, and case studies are conducted, based on the discussions on, e.g., thermal properties of heat-storage materials, behavior and heat transfer characteristics of latent heat type heat-storage materials, and corrosion of the heat-storage materials. (NEDO)

  8. Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts

    Directory of Open Access Journals (Sweden)

    Vikram C. Patil

    2018-01-01

    Full Text Available Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.

  9. Thermal energy storage based on cementitious materials: A review

    Directory of Open Access Journals (Sweden)

    Khadim Ndiaye

    2018-01-01

    Full Text Available Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Many heat storage materials can be used in the building sector in order to avoid the phase shift between solar radiation and thermal energy demand. However, the use of storage material in the building sector is hampered by problems of investment cost, space requirements, mechanical performance, material stability, and high storage temperature. Cementitious material is increasingly being used as a heat storage material thanks to its low price, mechanical performance and low storage temperature (generally lower than 100 °C. In addition, cementitious materials for heat storage have the prominent advantage of being easy to incorporate into the building landscape as self-supporting structures or even supporting structures (walls, floor, etc.. Concrete solutions for thermal energy storage are usually based on sensible heat transfer and thermal inertia. Phase Change Materials (PCM incorporated in concrete wall have been widely investigated in the aim of improving building energy performance. Cementitious material with high ettringite content stores heat by a combination of physical (adsorption and chemical (chemical reaction processes usable in both the short (daily, weekly and long (seasonal term. Ettringite materials have the advantage of high energy storage density at low temperature (around 60 °C. The encouraging experimental results in the literature on heat storage using cementitious materials suggest that they could be attractive in a number of applications. This paper summarizes the investigation and analysis of the available thermal energy storage systems using cementitious materials for use in various applications.

  10. Phase Change Energy Storage Material Suitable for Solar Heating System

    Science.gov (United States)

    Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa

    2018-01-01

    Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.

  11. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...

  12. Long-term heat storage in calcium sulfoaluminate cement (CSA) based concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Josef P.; Winnefeld, Frank [Empa Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland). Lab. for Concrete and Construction Chemistry

    2011-07-01

    In general, the selection of materials proposed for solar heat storage is based on one of two principal processes: sensible heat storage or latent heat storage. Sensible heat storage utilizes the specific heat capacity of a material, while latent heat storage is based on the change in enthalpy (heat content) associated with a phase change of the material. Long time sensible heat storage requires excellent thermal insulation whereas latent heat storage allows permanent (seasonal) storage without significant energy losses and any special insulation. Ettringite, one of the cement hydration products, exhibits a high dehydration enthalpy. Calcium sulfoaluminate cement based concrete containing a high amount of ettringite is henceproposed as an efficient latent heat storage material. Compared to conventional heat storage materials this innovative concrete mixture has a high loss-free storage energy density (> 100-150 kWh/m{sup 3}) which is much higher than the one of paraffin or the (loss-sensitive) sensible heat of water. Like common concrete the CSA-concrete is stable and even may carry loads. The dehydration of the CSA-concrete is achieved at temperatures below 100 C. The rehydration process occurs as soon as water (liquid or vapor) is added. In contrast to paraffin, the phase change temperature is not fixed and the latent heat may be recovered at any desired temperature. Furthermore the heat conductivity of this material is high, so that the energy transfer from/to an exchange medium is easy. Additionally CSA-concrete is not flammable and absolutely safe regarding any health aspects. The cost of such CSA-concrete isin the order of normal concrete. The main application is seen in house heating systems. Solar heat, mostly generated during the summer period by means of roof collectors, can be stored in CSA-concrete until the winter. A part or even the whole annual heatingenergy may be produced and saved locally by the householder himself. Additional applications may be

  13. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  14. Integration of Decentralized Thermal Storages Within District Heating (DH Networks

    Directory of Open Access Journals (Sweden)

    Schuchardt Georg K.

    2016-12-01

    Full Text Available Thermal Storages and Thermal Accumulators are an important component within District Heating (DH systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  15. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Ladekar, Chandrakishor; Choudhary, S. K. [RTM Nagpur University, Wardha (India); Khandare, S. S. [B. D. College of Engineering, Wardha (India)

    2017-06-15

    We investigated the optimum performance of heat pipe in Latent heat thermal energy storage (LHTES), and compared it with copper pipe. Classical plan of experimentation was used to optimize the parameters of heat pipe. Heat pipe fill ratio, evaporator section length to condenser section length ratio i.e., Heat pipe length ratio (HPLR) and heat pipe diameter, was the parameter used for optimization, as result of parametric analysis. Experiment with flow rate of 10 lit./min. was conducted for different fill ratio, HPLR and different diameter. Fill ratio of 80 %, HPLR of 0.9 and heat pipe with diameter of 18 mm showed better trend in charging and discharging. Comparison between the storage tank with optimized heat pipe and copper pipe showed almost 186 % improvement in charging and discharging time compared with the copper pipe embedded thermal storage. Heat transfer between Heat transferring fluid (HTF) and Phase change material (PCM) increased with increase in area of heat transferring media, but storage density of storage tank decreased. Storage tank with heat pipe embedded in place of copper pipe is a better option in terms of charging and discharging time as well heat storage capacity due to less heat lost. This justifies the better efficiency and effectiveness of storage tank with embedded optimized heat pipe.

  16. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system

    International Nuclear Information System (INIS)

    Yao, Erren; Wang, Huanran; Wang, Ligang; Xi, Guang; Maréchal, François

    2017-01-01

    Highlights: • A novel tri-generation based compressed air energy storage system. • Trade-off between efficiency and cost to highlight the best compromise solution. • Components with largest irreversibility and potential improvements highlighted. - Abstract: Compressed air energy storage technologies can improve the supply capacity and stability of the electricity grid, particularly when fluctuating renewable energies are massively connected. While incorporating the combined cooling, heating and power systems into compressed air energy storage could achieve stable operation as well as efficient energy utilization. In this paper, a novel combined cooling, heating and power based compressed air energy storage system is proposed. The system combines a gas engine, supplemental heat exchangers and an ammonia-water absorption refrigeration system. The design trade-off between the thermodynamic and economic objectives, i.e., the overall exergy efficiency and the total specific cost of product, is investigated by an evolutionary multi-objective algorithm for the proposed combined system. It is found that, with an increase in the exergy efficiency, the total product unit cost is less affected in the beginning, while rises substantially afterwards. The best trade-off solution is selected with an overall exergy efficiency of 53.04% and a total product unit cost of 20.54 cent/kWh, respectively. The variation of decision variables with the exergy efficiency indicates that the compressor, turbine and heat exchanger preheating the inlet air of turbine are the key equipment to cost-effectively pursuit a higher exergy efficiency. It is also revealed by an exergoeconomic analysis that, for the best trade-off solution, the investment costs of the compressor and the two heat exchangers recovering compression heat and heating up compressed air for expansion should be reduced (particularly the latter), while the thermodynamic performance of the gas engine need to be improved

  17. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  18. Electricity storage - A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Cagnac, Albannie; Brisse, Annabelle; Jeandel, Elodie; Lefebvre, Thierry; Penneau, Jean-Francois; Radvanyi, Etienne; Delille, Gautier; Hinchliffe, Timothee; Lancel, Gilles; Loevenbruck, Philippe; Soler, Robert; Stevens, Philippe; Torcheux, Laurent

    2017-01-01

    After a presentation of the energetic context and of its issues, this collective publication proposes presentations of various electricity storage technologies with a distinction between direct storage, thermal storage and hydrogen storage. As far as direct storage is concerned, the following options are described: pumped energy transfer stations or PETS, compressed air energy storage or CAES, flywheels, various types of electrochemical batteries (lead, alkaline, sodium, lithium), metal air batteries, redox flow batteries, and super-capacitors. Thermal storage comprises power-to-heat and heat-to-power technologies. Hydrogen can be stored under different forms (compressed gas, liquid), in saline underground cavities, or by using water electrolysis and fuel cells. The authors propose an overview of the different services provided by energy storage to the electricity system, and discuss the main perspectives and challenges for tomorrow's storage (electric mobility, integration of renewable energies, electrification of isolated areas, scenarios of development)

  19. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    Science.gov (United States)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  20. Underground storage of heat

    International Nuclear Information System (INIS)

    Despois, J.; Nougarede, F.

    1976-01-01

    The interest laying in heat storage is envisaged taking account of the new energy context, with a view to optimizing the use of production means of heat sources hardly modulated according to the demand. In such a way, a natural medium, without any constructions cost but only an access cost is to be used. So, porous and permeable rocky strata allowing the use of a pressurized water flow as a transfer fluid are well convenient. With such a choice high temperatures (200 deg C) may be obtained, that are suitable for long transmissions. A mathematical model intended for solving the conservation equations in the case of heat storage inside a confined water layer is discussed. An approach of the operating conditions of storage may involve either a line-up arrangement (with the hot drilling at the center, the cold drillings being aligned on both sides) or a radial arrangement (with cold drillings at the peripheral edge encircling the hot drilling at the center of the layer). The three principal problems encountered are: starting drilling, and the circuit insulation and control [fr

  1. Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems

    International Nuclear Information System (INIS)

    Caliano, Martina; Bianco, Nicola; Graditi, Giorgio; Mongibello, Luigi

    2017-01-01

    Highlights: • A novel operation strategy for biomass-fired combined cooling, heating and power system is presented. • A design optimization of the system is conducted. • The effects of variation of the incentive for the electricity generation are evaluated. • The effects of the variation of the absorption chiller size and the thermal energy storage system one are evaluated. • The inclusion of a cold storage system into the combined cooling, heating and power system is also analyzed. - Abstract: In this work, an operation strategy for a biomass-fired combined cooling, heating and power system, composed of a cogeneration unit, an absorption chiller, and a thermal energy storage system, is formulated in order to satisfy time-varying energy demands of an Italian cluster of residential multi-apartment buildings. This operation strategy is adopted for performing the economical optimization of the design of two of the devices composing the combined cooling, heating and power system, namely the absorption chiller and the storage system. A sensitivity analysis is carried out in order to evaluate the impact of the incentive for the electricity generation on the optimized results, and also to evaluate, separately, the effects of the variation of the absorption chiller size, and the effects of the variation of the thermal energy storage system size on the system performance. In addition, the inclusion into the system of a cold thermal energy storage system is analyzed, as well, assuming different possible values for the cold storage system cost. The results of the sensitivity analysis indicate that the most influencing factors from the economical point of view are represented by the incentive for the electricity generation and the absorption chiller power. Results also show that the combined use of a thermal energy storage and of a cold thermal energy storage during the hot season could represent a viable solution from the economical point of view.

  2. Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems

    International Nuclear Information System (INIS)

    Arteconi, A.; Hewitt, N.J.; Polonara, F.

    2013-01-01

    Heat pumps are seen as a promising technology for load management in the built environment, in combination with the smart grid concept. They can be coupled with thermal energy storage (TES) systems to shift electrical loads from high-peak to off-peak hours, thus serving as a powerful tool in demand-side management (DSM). This paper analyzes heat pumps with radiators or underfloor heating distribution systems coupled with TES with a view to showing how a heat pump system behaves and how it influences the building occupants' thermal comfort under a DSM strategy designed to flatten the shape of the electricity load curve by switching off the heat pump during peak hours (16:00–19:00). The reference scenario for the analysis was Northern Ireland (UK). The results showed that the heat pump is a good tool for the purposes of DSM, also thanks to the use of TES systems, in particular with heating distribution systems that have a low thermal inertia, e.g. radiators. It proved possible to achieve a good control of the indoor temperature, even if the heat pump was turned off for 3 h, and to reduce the electricity bill if a “time of use” tariff structure was adopted. -- Highlights: ► Heat pump heating systems with thermal energy storage are considered. ► System behavior is investigated during a DSM strategy for reducing peak energy demand. ► Heat pump heating systems demonstrate to be able to have an active role in DSM programs. ► A TES system must be coupled with the heat pump in presence of low thermal inertia heating distribution systems. ► Central role played by incentives schemes to promote this technology

  3. Efficient numerical simulation of heat storage in subsurface georeservoirs

    Science.gov (United States)

    Boockmeyer, A.; Bauer, S.

    2015-12-01

    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  4. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  5. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  6. Heat transfer enhancement in triplex-tube latent thermal energy storage system with selected arrangements of fins

    Science.gov (United States)

    Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng

    2018-01-01

    The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.

  7. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  8. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  9. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  10. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan; Yu, Wenhua; France, David M.

    2016-08-01

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.

  11. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    Science.gov (United States)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  12. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  13. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  14. Concrete thermal energy storage for steam generation

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Establishing enhancement methods to develop cost-effective thermal energy storage technology requires a detailed analysis. In this paper, a numerical investigation of the concrete based thermal energy storage system is carried out. The storage system consists of a heat transfer fluid flowing inside...

  15. Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy

    International Nuclear Information System (INIS)

    Zhao, Y.J.; Wang, R.Z.; Li, T.X.; Nomura, Y.

    2016-01-01

    Heating and domestic hot water for family houses represents a notable share of energy consumption. However, sufficient space for the installation of thermal energy storage (TES) components may not be available in family houses or urban areas, where space may be restricted and expensive. Sorption TES devices seem to be a promising means of replacing conventional TES devices and reducing the occupied space for its high energy density. In this paper, a 10 kWh short-term sorption TES device was developed and investigated. The employed composite sorbent was formed from lithium chloride (LiCl) with the addition of expanded graphite (EG). The principle of sorption TES for the LiCl/water working pair is first illustrated. This prototype was tested under conditions representative of transition or winter seasons. Under the conditions used (charging temperature T_c_h_a at 85 °C, discharging temperature T_d_i_s at 40 °C, condensing temperature T_c at 18 °C, and evaporating temperature T_e at 30 °C), the heat storage capacity can reach 10.25 kWh, of which sorption heat accounts for approximately 60%. The heat storage density obtained was 873 Wh per kg of composite sorbent or 65.29 kWh/m"3, while the heat storage density of hot water tank was about 33.02 kWh/m"3. - Highlights: • A 10 kWh short-term sorption thermal energy device was developed. • The device was tested under conditions of transition and winter seasons. • The performance of the device was improved by recovering waste heat. • The sorption thermal energy device was compared with a 300-L hot water tank.

  16. Latent heat coldness storage; Stockage du froid par chaleur latente

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, J.P. [Pau Univ., Lab. de Thermodynamique et Energetique, LTE, 64 (France)

    2002-07-01

    This article presents the advantages of latent heat storage systems which use the solid-liquid phase transformation of a pure substance or of a solution. The three main methods of latent heat storage of coldness are presented: ice boxes, encapsulated nodules, and ice flows: 1 - definition of the thermal energy storage (sensible heat, latent heat, thermochemical storage); 2 - advantages and drawbacks of latent heat storage; 3 - choice criteria for a phase-change material; 4 - phenomenological aspect of liquid-solid transformations (phase equilibrium, crystallisation and surfusion); 5 - different latent heat storage processes (ice boxes, encapsulated nodules, two-phase refrigerating fluids); 6 - ice boxes (internal and external melting, loop, air injection, measurement of ice thickness); 7 - encapsulated nodules (nodules, tank, drainage, advantage and drawbacks, charge and discharge); 8 - two-phase refrigerating fluids (composition, ice fabrication, flow circulation, flow storage, exchangers). (J.S.)

  17. Freestanding, heat resistant microporous film for use in energy storage devices

    Science.gov (United States)

    Pekala, Richard W.; Cherukupalli, Srinivas; Waterhouse, Robert R.

    2018-02-20

    Preferred embodiments of a freestanding, heat resistant microporous polymer film (10) constructed for use in an energy storage device (70, 100) implements one or more of the following approaches to exhibit excellent high temperature mechanical and dimensional stability: incorporation into a porous polyolefin film of sufficiently high loading levels of inorganic or ceramic filler material (16) to maintain porosity (18) and achieve low thermal shrinkage; use of crosslinkable polyethylene to contribute to crosslinking the polymer matrix (14) in a highly inorganic material-filled polyolefin film; and heat treating or annealing of biaxially oriented, highly inorganic material-filled polyolefin film above the melting point temperature of the polymer matrix to reduce residual stress while maintaining high porosity. The freestanding, heat resistant microporous polymer film embodiments exhibit extremely low resistance, as evidenced by MacMullin numbers of less than 4.5.

  18. Conception of a heat storage system for household applications. Category: New product innovations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Thomas [Leuphana Univ. Lueneburg (Germany); Rammelberg, Holger U.; Roennebeck, Thomas [and others

    2012-07-01

    Almost 90% of the energy consumption of private households in Germany is used for heating. Thus, an efficient, sustainable and reliable heat management is one of the main challenges in the future. Heat storage will become a key technology when considering the daily, weekly, seasonal and unpredictable fluctuations of energy production with renewables. The storage of heat is much more volume- and energy-efficient as well as more economical than electricity storage. However, transport of heat over long distances is coupled with high losses, compared with electricity transport. Therefore, we propose the use of micro CHP in combination with volume-efficient and nearly loss-free heat storage to counteract electricity fluctuations. Focus of this contribution the conception of the large-scale project ''Thermal Battery'', funded by the European Union and the Federal State of Lower Saxony. The underlying principle is the utilization of reversible thermochemical reactions, such as dehydration and rehydration of salt hydrates for heat storage. The main goal is the development of a prototypical storage tank, which is capable of storing 80 kWh of heat with a system volume of less than 1 m{sup 3}. Importantly, the Vattenfall New Energy Services as a collaboration partner will support the development of an application-oriented heat storage device. This project is being carried out by an interdisciplinary team of engineers, chemists, physicists and environmental scientists.

  19. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  20. A review on phase change energy storage: materials and applications

    International Nuclear Information System (INIS)

    Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.; Al-Hallaj, Said

    2004-01-01

    Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed

  1. Thermal energy storage for solar power generation - State of the art

    Science.gov (United States)

    Shukla, K. N.

    1981-12-01

    High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.

  2. Energy and exergy analyses of an ice-on-coil thermal energy storage system

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Erek, Aytunç; Dincer, Ibrahim

    2011-01-01

    In this study, energy and exergy analyses are carried out for the charging period of an ice-on-coil thermal energy storage system. The present model is developed using a thermal resistance network technique. First, the time-dependent variations of the predicted total stored energy, mass of ice, and outlet temperature of the heat transfer fluid from a storage tank are compared with the experimental data. Afterward, performance of an ice-on-coil type latent heat thermal energy storage system is investigated for several working and design parameters. The results of a comparative study are presented in terms of the variations of the heat transfer rate, total stored energy, dimensionless energetic/exergetic effectiveness and energy/exergy efficiency. The results indicate that working and design parameters of the ice-on-coil thermal storage tank should be determined by considering both energetic and exergetic behavior of the system. For the current parameters, storage capacity and energy efficiency of the system increases with decreasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. Besides, the exergy efficiency increases with increasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. -- Highlights: ► A comprehensive study on energy and exergy analyses of an ice-on-coil TES system. ► Determination of irreversibilities and their potential sources. ► Evaluation of both energy and exergy efficiencies and their comparisons.

  3. Central solar heating plants with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, D; Hadorn, J C; Van Gilst, J; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    On May 9, 1979, the Federal Department for Buildings released instructions concerning the use of alternative energies. The federal energy policy is to be as much as possible independent on oil imports. The canton Fribourg decided to equip the new maintenance and service center for the national high-road N12, with alternative energy, resources, and to apply new concepts with respect to passive and active solar energy. The project uses active solar energy with an earth-storage and heat pump. A conventional oil-heating system provides energy for peak-loads and can be operated in stand-by. A delay in the construction of the earth storage sub system was requested because it was intended to optimize the system with respect to the solar sub system, and heat pump sub system. The design work was done by SORANE which also is the coordinator for Switzerland in the I.E.A. Task VII. However, the preplanning of the project started in 1978 before the I.E.A. Task VII started. As a consequence, many design parameters were determined before 1980. The optimization of the solar collector, heat-pump etc. sub system was performed by a simulation approach developed by SORANE. The Vaulruz service center has been commissioned during the winter 1981/82.

  4. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  5. Exergy and exergoeconomic analysis of a Compressed Air Energy Storage combined with a district energy system

    International Nuclear Information System (INIS)

    Bagdanavicius, Audrius; Jenkins, Nick

    2014-01-01

    Highlights: • CAES and CAES with thermal storage systems were investigated. • The potential for using heat generated during the compression stage was analysed. • CAES-TS has the potential to be used both as energy storage and heat source. • CAES-TS could be a useful tool for balancing overall energy demand and supply. - Abstract: The potential for using heat generated during the compression stage of a Compressed Air Energy Storage system was investigated using exergy and exergoeconomic analysis. Two Compressed Air Energy Storage systems were analysed: Compressed Air Energy Storage (CAES) and Compressed Air Energy Storage combined with Thermal Storage (CAES-TS) connected to a district heating network. The maximum output of the CAES was 100 MWe and the output of the CAES-TS was 100 MWe and 105 MWth. The study shows that 308 GW h/year of electricity and 466 GW h/year of fuel are used to generate 375 GW h/year of electricity. During the compression of air 289 GW h/year of heat is generated, which is wasted in the CAES and used for district heating in the CAES-TS system. Energy efficiency of the CAES system was around 48% and the efficiency of CAES-TS was 86%. Exergoeconomic analysis shows that the exergy cost of electricity generated in the CAES was 13.89 ¢/kW h, and the exergy cost of electricity generated in the CAES-TS was 11.20 ¢/kW h. The exergy cost of heat was 22.24 ¢/kW h in the CAES-TS system. The study shows that CAES-TS has the potential to be used both as energy storage and heat source and could be a useful tool for balancing overall energy demand and supply

  6. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  7. Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage

    Directory of Open Access Journals (Sweden)

    Huaiyu Shao

    2017-11-01

    Full Text Available Mg-based materials have been investigated as hydrogen storage materials, especially for possible onboard storage in fuel cell vehicles for decades. Recently, with the development of large-scale fuel cell technologies, the development of Mg-based materials as stationary storage to supply hydrogen to fuel-cell components and provide electricity and heat is becoming increasingly promising. In this work, numerical analysis of heat balance management for stationary solid oxide fuel cell (SOFC systems combined with MgH2 materials based on a carbon-neutral design concept was performed. Waste heat from the SOFC is supplied to hydrogen desorption as endothermic heat for the MgH2 materials. The net efficiency of this model achieves 82% lower heating value (LHV, and the efficiency of electrical power output becomes 68.6% in minimizing heat output per total energy output when all available heat of waste gas and system is supplied to warm up the storage. For the development of Mg-based hydrogen storage materials, various nano-processing techniques have been widely applied to synthesize Mg-based materials with small particle and crystallite sizes, resulting in good hydrogen storage kinetics, but poor thermal conductivity. Here, three kinds of Mg-based materials were investigated and compared: 325 mesh Mg powers, 300 nm Mg nanoparticles synthesized by hydrogen plasma metal reaction, and Mg50Co50 metastable alloy with body-centered cubic structure. Based on the overall performances of hydrogen capacity, absorption kinetics and thermal conductivity of the materials, the Mg nanoparticle sample by plasma synthesis is the most promising material for this potential application. The findings in this paper may shed light on a new energy conversion and utilization technology on MgH2-SOFC combined concept.

  8. Aquifer thermal energy (heat and chill) storage

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A. (ed.)

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  9. Design and installation manual for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  10. Development of latent heat storage systems. New storage materials and concepts for solar energy, efficient use, and spaceflight applications. Entwicklung von Latentwaermespeichern. Neue Speichermaterialien und Konzepte fuer Solarenergie, rationelle Energienutzung und Raumfahrtanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, A.; Krause, S.; Lindner, F.; Staehle, H.J.; Tamme, R. (DLR, Stuttgart (Germany). Inst. fuer Technische Thermodynamik)

    1991-11-01

    To extend the operational range of thermal energy storage systems and to provide access to new fields of applications, it is necessary to develop storage systems with higher energy densities than can be achieved with conventional materials. Advanced storage concepts such as latent heat storage and chemical storage are suitable for this. (orig.).

  11. Low temperature thermal energy storage: a state-of-the-art survey

    Energy Technology Data Exchange (ETDEWEB)

    Baylin, F.

    1979-07-01

    The preliminary version of an analysis of activities in research, development, and demonstration of low temperature thermal energy storage (TES) technologies having applications in renewable energy systems is presented. Three major categories of thermal storage devices are considered: sensible heat; phase change materials (PCM); and reversible thermochemical reactions. Both short-term and annual thermal energy storage technologies based on prinicples of sensible heat are discussed. Storage media considered are water, earth, and rocks. Annual storage technologies include solar ponds, aquifers, and large tanks or beds of water, earth, or rocks. PCM storage devices considered employ salt hydrates and organic compounds. The sole application of reversible chemical reactions outlined is for the chemical heat pump. All program processes from basic research through commercialization efforts are investigated. Nongovernment-funded industrial programs and foreign efforts are outlined as well. Data describing low temperature TES activities are presented also as project descriptions. Projects for all these programs are grouped into seven categories: short-term sensible heat storage; annual sensible heat storage; PCM storage; heat transfer and exchange; industrial waste heat recovery and storage; reversible chemical reaction storage; and models, economic analyses, and support studies. Summary information about yearly funding and brief descriptions of project goals and accomplishments are included.

  12. The energy challenge of a post-fossil world: Seasonal energy storage

    International Nuclear Information System (INIS)

    Forsberg, C.

    2009-01-01

    Fossil fuels are an energy source and an energy storage system. The demand for electricity and heat varies daily, weekly, and seasonally with seasonal variations often varying by a factor of two or more. The variable demand is met by fossil fuels because 1) fossil fuels are inexpensive to store in coal piles, oil tanks, and underground natural gas storage facilities and 2) the capital cost of the equipment to burn fossil fuels and convert the energy to heat or electricity is small relative to the cost of the fossil fuels. Concerns about climate change may limit the conventional use of fossil fuels. The alternative low-carbon energy production systems (nuclear, fossil fuels with carbon dioxide sequestration, wind, and solar) are capital-intensive energy sources with low operating costs. To obtain favorable economics these technologies must operate at full capacity; but, their output does not match energy demand. We have energy alternatives to fossil fuels but no replacements for the energy storage capabilities or fossil fuels. Proposed strategies and technologies to address the grand storage challenge (including seasonal storage of electricity) are described. The options suggest a nuclear-renewable future to address seasonal energy storage needs in a low-carbon world.

  13. Steam-based Charging-Discharging of a PCM Heat Storage

    African Journals Online (AJOL)

    fire7-

    2016-11-10

    Nov 10, 2016 ... 2Department of Energy and Process Engineering, Norwegian University of Science and. Technology ... Keywords: Solar energy, PCM storage, Latent heat storage, Two-phase thermosyphon. 1. ..... principle, with water as the working fluid at about 35-bar pressure. ... generator as applied to PTC systems.

  14. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003; Programme 'Solaire actif - Chaleur et Stockage de chaleur'. Activites et projets en 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hadorn, J.-C. [Base Consultants, Geneva (Switzerland); Renaud, P. [Planair SA, La Sagne (Switzerland)

    2003-07-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD

  15. Critical phenomena and their effect on thermal energy storage in supercritical fluids

    International Nuclear Information System (INIS)

    Hobold, Gustavo M.; Da Silva, Alexandre K.

    2017-01-01

    Highlights: •High power thermal energy storage using supercritical fluids. •Influence of property variation on energy and power density. •Multi-fluid analysis and generalization for several storage temperatures. •Cost, heat transfer and energy density evaluation for high temperature storage. -- Abstract: Large-scale implementation of concentrated solar power plants requires energy storage systems if fossil sources are to be fully replaced. While several candidates have appeared, most still face major issues such as cost, limited energy density and material compatibility. The present paper explores the influence of property variation in the proximity of the critical point on thermal energy storage using supercritical fluids (sTES) from thermodynamic and heat transfer standpoints. Influence of thermodynamic operational parameters on energy density of isobaric and isochoric sTES and their optima is discussed, showing that the energy density results from a competition between average specific heat and loaded density. Moreover, sTES is shown to be applicable to virtually any storage temperature, depending only on the fluid’s critical point. Finally, a heat transfer and energy density comparison to other existing storage mechanisms is presented and supercritical water is shown to be competitive for high temperature thermal energy storage.

  16. Experimental investigation on an innovative resorption system for energy storage and upgrade

    International Nuclear Information System (INIS)

    Jiang, Long; Wang, Liwei; Wang, Ruzhu; Zhu, Fangqi; Lu, Yiji; Roskilly, Anthony Paul

    2017-01-01

    Highlights: • A resorption thermal energy storage system is established and investigated for energy upgrade. • The highest heat release temperature is 155 °C. • The maximum thermal storage density is about 662 kJ/kg. • The energy efficiency and exergy efficiency range from 27.5% to 40.6% and from 32.5% to 47%. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. - Abstract: Progress of efficient thermal energy storage (TES) has become a key technology for the development of energy conversion system. Among TES technologies, sorption thermal energy storage (STES) has drawn burgeoning attentions due to its advantages of high energy density, little heat loss and flexible working modes. Based on STES, this paper presents an innovative resorption sorption energy storage (RTES), and the experimental system is established and investigated for energy storage and upgrade. 4.8 kg and 3.9 kg MnCl 2 and CaCl 2 composite sorbents are separately filled in the sorption reactor, and expanded natural graphite treated with sulfuric acid (ENG-TSA) is integrated as the matrix for heat transfer intensification. It is indicated that the highest energy storage density are 662 kJ/kg and 596 kJ/kg when heat input temperature is 125 °C and heat release temperature are 130 °C and 135 °C, respectively. For different heat input and release temperature, the energy efficiency and exergy efficiency range from 27.5% to 40.6% and from 32.5% to 47%, respectively. The novel RTES system verifies the feasibility for energy storage and upgrade, which shows the great potential for low grade heat utilization especially for industrial process.

  17. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  18. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  19. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  20. Surface-near geothermal energy. Ground coupled heat pumps and underground thermal energy storage; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the eleventh International User Forum at 27th/28th September, 2011 in Regensburg (Federal Republic of Germany) the following lectures were held: (1) Ecologic evaluation of heat pumps - a question of approach (Roland Koenigsdorff); (2) An actual general comment to WHG, the preparations for the new VAUwS and possible consequences on the surface-near geothermal energy (Walker-Hertkorn); (3) Field-test experiences: Ground source heat pumps in small residential buildings (Jeannette Wapler); (4) GeoT*SOL basic - Program for the evaluation and simulation of heat pump systems (Bernhard Gatzka); (5) Monitoring and modelling of geothermal heat exchanger systems (Fabian Ochs); (6) Thermal response tests for the quality assurance of geothermal heat probes (Markus Proell); (7) Process of determining an untroubled soil temperature in comparison (Andreas Koehler); (8) Borehole resistance - Is the TRT measured value also the planning value? (Roland Koenigsdorff); (9) Consideration of the heat transport in geothermal probes (Martin Konrad); (10) Process of evaluation the sealing of geothermal probes with backfilling materials (Manfred Reuss); (11) Quality assessment of geothermal probes in real standard (Mathieu Riegger); (12) Comparison of flat collectors salt water and direct evaporation, design, impacs, consequences (Bernhard Wenzel); (13) Non-covered photovoltaic thermal collectors in heat pump systems (Erik Bertram); (14) Seasonal geothermal probe-heat storage - Heat supply concepts for objects with overbalancing heating level of more than 100 kW (Volker Liebel); (15) Application of geothermal probe fields as a cold storage (Rolf Wagner); (16) Geothermal energy and waste water warmth: State of the art and new technologies for a combined utilization (Wolfram Stodtmeister); (17) Integration of a heat pump into a solar supported local heat supply in Neckarsulm (Janet Nussbicker-Lux); (18) Regenerative heating with photovoltaics and geothermal energy (Christoph Rosinski

  1. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times.

    Science.gov (United States)

    Mansø, Mads; Petersen, Anne Ugleholdt; Wang, Zhihang; Erhart, Paul; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2018-05-16

    Molecular photoswitches can be used for solar thermal energy storage by photoisomerization into high-energy, meta-stable isomers; we present a molecular design strategy leading to photoswitches with high energy densities and long storage times. High measured energy densities of up to 559 kJ kg -1 (155 Wh kg -1 ), long storage lifetimes up to 48.5 days, and high quantum yields of conversion of up to 94% per subunit are demonstrated in norbornadiene/quadricyclane (NBD/QC) photo-/thermoswitch couples incorporated into dimeric and trimeric structures. By changing the linker unit between the NBD units, we can at the same time fine-tune light-harvesting and energy densities of the dimers and trimers so that they exceed those of their monomeric analogs. These new oligomers thereby meet several of the criteria to be met for an optimum molecule to ultimately enter actual devices being able to undergo closed cycles of solar light-harvesting, energy storage, and heat release.

  2. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep

    2016-01-01

    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  3. Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Aadmi, Moussa; Karkri, Mustapha; El Hammouti, Mimoun

    2014-01-01

    In the present study, phase change materials based on epoxy resin paraffin wax with the melting point 27 °C were used as a new energy storage system. Thermophysical properties and the process of melting of a PCM (phase change material) composite were investigated numerically and experimentally. DSC (differential scanning calorimetry) has been used for measurement of melting enthalpy and determination of PCM heat capacity. The thermophysical properties of the prepared composite have been characterized by using a new transient hot plate apparatus. The results have shown that the most important thermal properties of these composites at the solid and liquid states are like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. These experimental results have been simulated by using numerical Comsol ® Multiphysiques 4.3 based models with success. The results of the experimental investigation compare favorably with the numerical results and thus serve to validate the numerical approach. - Highlights: • Phase change materials based on paraffin spheres used as new energy storage system. • Thermophysical properties and the melting process of composites were investigated. • All experimental results have been simulated using Comsol ® Multiphysiques. • The ability to store and release the thermal energy were investigated. • A very thin molten PCM (phase change material) exists which is apparently visible in the spheres

  4. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    NARCIS (Netherlands)

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  5. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  6. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  7. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  8. Design and installation manual for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M [eds.

    1979-02-01

    The purpose for this manual is to provide information on the design and installation of thermal energy storage in solar heating systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating system, and stand-alone domestic hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  9. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-06-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  10. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector

    DEFF Research Database (Denmark)

    Jradi, M.; Veje, C.; Jørgensen, B. N.

    2017-01-01

    and the economic and environmental aspects. However, the intermittent nature of solar energy and the lack of high solar radiation intensities in various climates favour the use of various energy storage techniques to eliminate the discrepancy between energy supply and demand. The current work presents an analysis......, Denmark, in addition to charging the soil storage medium in summer months when excess electric power is generated. The stored heat is discharged in December and January to provide the space heating and domestic hot water demands of the residential project without the utilization of an external heating...... losses and the surrounding soil temperature variation throughout the year. It was found that the overall system heating coefficient of performance is around 4.76, where the reported energetic efficiency is 5.88% for the standalone PV system, 19.1% for the combined PV-ASHP system, and 22...

  11. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    International Nuclear Information System (INIS)

    Kangas, M.T.; Lund, P.D.

    1994-01-01

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, District heating and utilities

  12. Performance analysis of phase-change material storage unit for both heating and cooling of buildings

    Science.gov (United States)

    Waqas, Adeel; Ali, Majid; Ud Din, Zia

    2017-04-01

    Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ∼29°C in summer and 21°C during winter season. The appropriate melting point was ∼27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.

  13. Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Pan, Lehua; Cai, Zuansi; Li, Cai; Li, Yi

    2017-01-01

    Highlights: •One wellbore-reservoir numerical model was built to study the impact of ATES on CAESA. •With high injection temperature, the joint of ATES can improve CAESA performance. •The considerable utilization of geothermal occurs only at the beginning of operations. •Combination of CAESA and ATES can be achieved in common aquifers. -- Abstract: Different from conventional compressed air energy storage (CAES) systems, the advanced adiabatic compressed air energy storage (AA-CAES) system can store the compression heat which can be used to reheat air during the electricity generation stage. Thus, AA-CAES system can achieve a higher energy storage efficiency. Similar to the AA-CAES system, a compressed air energy storage in aquifers (CAESA) system, which is integrated with an aquifer thermal energy storage (ATES) could possibly achieve the same objective. In order to investigate the impact of ATES on the performance of CAESA, different injection air temperature schemes are designed and analyzed by using numerical simulations. Key parameters relative to energy recovery efficiencies of the different injection schemes, such as pressure distribution and temperature variation within the aquifers as well as energy flow rate in the injection well, are also investigated in this study. The simulations show that, although different injection schemes have a similar overall energy recovery efficiency (∼97%) as well as a thermal energy recovery efficiency (∼79.2%), the higher injection air temperature has a higher energy storage capability. Our results show the total energy storage for the injection air temperature at 80 °C is about 10% greater than the base model scheme at 40 °C. Sensitivity analysis reveal that permeability of the reservoir boundary could have significant impact on the system performance. However, other hydrodynamic and thermodynamic properties, such as the storage reservoir permeability, thermal conductivity, rock grain specific heat and rock

  14. Experimental study on heat storage system using phase-change material in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Shon, Jungwook; Lee, Kihyung

    2017-01-01

    Engines usually use only about 25% of the total fuel energy for power, and the rest is discarded to the cooling water and exhaust gas. Therefore, a technique for utilizing external waste heat is required to improve fuel efficiency in terms of total energy consumption. In this study, a heat storage system was built using a phase-change material in order to recover about 30% of the thermal energy wasted through engine cooling. The components of the heat storage system were divided into phase-change material, a heat exchanger, and a heat-insulating container. For each component, a phase-change material that is suitable for use in vehicles was selected based on the safety, thermal properties, and durability. As a result, a stearic acid of a fatty acid series with natural extracts was determined to be appropriate. In order to measure the reduction in engine fuel consumption, a thermal storage system designed for the actual engine was applied to realize a quick warm-up by releasing stored heat energy directly on the coolant during a cold start. This technique added about 95 calories of heat storage device warm-up time compared to the non-added state, which was reduced by about 18.1% to about 27.1%. - Highlights: • The diesel engine used phase-change material with heat storage system. • The thermal storage system designed for the actual engine. • A stearic acid of a fatty acid series was determined to be appropriate. • Applied heat storage system was reduced by about 18.1%–27.1%.

  15. Geothermal heating saves energy

    International Nuclear Information System (INIS)

    Romsaas, Tor

    2003-01-01

    The article reviews briefly a pioneer project for a construction area of 200000 m''2 with residences, business complexes, a hotel and conference centre and a commercial college in Oslo. The energy conservation potential is estimated to be about 60-70 % compared to direct heating with oil, gas or electricity as sources. There will also be substantial reduction in environmentally damaging emissions. The proposed energy central combines geothermal energy sources with heat pump technology, utilises water as energy carrier and uses terrestrial wells for energy storage. A cost approximation is presented

  16. Improved performance of heat pumps helps to use full potential of subsurface space for Aquifer Thermal Energy Storage

    NARCIS (Netherlands)

    Bloemendal, J.M.; Jaxa-Rozen, M.; Rostampour Samarin, Vahab

    2017-01-01

    The application of seasonal Aquifer Thermal Energy Storage (ATES) contributes to meet goals for energy savings and greenhouse gas (GHG) emission reductions. Heat pumps have a crucial position in ATES systems because they dictate the operation scheme of the ATES wells and therefore play an important

  17. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  18. Experimental research on thermal characteristics of a hybrid thermocline heat storage system

    International Nuclear Information System (INIS)

    Yin, Huibin; Ding, Jing; Yang, Xiaoxi

    2014-01-01

    Considering the high-temperature thermal utilization of solar energy as the research background in this paper and focussing on the heat storage process, a kind of hybrid thermocline heat storage method in multi-scale structure and relevant experimental systems are designed by using the mixed molten nitrate salt as the heat storage medium and two representative porous materials, i.e. zirconium ball and silicon carbide (SiC) foam, as the heat storage fillers. The fluid flow and heat storage performance of molten salt in multi-scale structure are experimentally investigated. The results show that the theoretical heat storage efficiencies amongst the three experimental heat storage manners are less than 80% because of the existence of thermocline layers. Comparing to the single-phase molten salt heat storage, the two hybrid thermocline heat storage manners with porous fillers lead to a certain decrease in the effective heat storage capacity. The presence of porous fillers can also help to maintain the molten salt fluid as ideal gravity flow or piston flow and partially replace expensive molten salt. Therefore, it requires a combination of heat storage capacity and economical consideration for optimization design when similar spherical particles or foam ceramics are employed as the porous fillers. -- Highlights: • A hybrid thermocline heat storage method in multi-scale structure is developed. • The fluid flow and heat storage performance are experimentally investigated. • Stable thermocline can form in single tank for the experimental cases. • The hybrid thermocline heat storage with porous filler is promising

  19. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    Science.gov (United States)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  20. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2016-03-01

    Full Text Available In the presented study the shell and tube type latent heat storage (LHS has been designed for solar dryer and paraffin wax is used as heat storage material. In the first part of the study, the thermal and heat transfer characteristics of the latent heat storage system have been evaluated during charging and discharging process using air as heat transfer fluid (HTF. In the last section of the study the effectiveness of the use of an LHS for drying of food product and also on the drying kinetics of a food product has been determined. A series of experiments were conducted to study the effects of flow rate and temperature of HTF on the charging and discharging process of LHS. The temperature distribution along the radial and longitudinal directions was obtained at different time during charging process to analyze the heat transfer phenomenon in the LHS. Thermal performance of the system is evaluated in terms of cumulative energy charged and discharged, during the charging and discharging process of LHS, respectively. Experimental results show that the LHS is suitable to supply the hot air for drying of food product during non-sunshine hours or when the intensity of solar energy is very low. Temperature gain of air in the range of 17 °C to 5 °C for approximately 10 hrs duration was achieved during discharging of LHS.

  1. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  2. Quantification of the reactions in heat storage systems in the Malm aquifer

    Science.gov (United States)

    Ueckert, Martina; Baumann, Thomas

    2017-04-01

    Combined heat and power plants (CHP) are efficient and environmentally friendly because excess heat produced during power generation is used for heating purposes. While the power demand remains rather constant throughout the year, the heat demand shows seasonal variations. In a worst-case scenario, the heat production in winter is not sufficient, and the power production in summer has to be ramped down because the excess heat cannot be released to the environment. Therefore, storage of excess heat of CHP is highly beneficial from an economic and an ecological point of view. Aquifer thermal energy storage (ATES) is considered as a promising technology for energy storage. In a typical setting, water from an aquifer is produced, heated up by excess heat from the CHP and injected through a second borehole back into the aquifer. The carbonate rocks of the upper Jurrasic in the Molasse Basin seem to be promising sites for aquifer heat storage because of their high transmissivity combined with a typical geological setting with tight caprock. However, reactions in the aquifer cannot be neglected and may become the limiting process of the whole operation. While there have been several studies performed in clastic aquifers and for temperatures below 100°C, the knowledge about high injection temperatures and storage into a carbonatic aquifer matrix is still limited. Within a research project funded by the Bavarian State Ministry for Economic Affairs and the BMW Group, the storage and recuperation of excess heat energy into the Bavarian Malm aquifer with flow rates of 15 L/s and temperatures of up to 110°C was investigated. The addition of {CO_2} was used to prevent precipitations. Data from the field site was backed up by autoclave experiments and used to verify a conceptional hydrogeochemical model with PhreeqC for the heat storage operation. The model allows to parametrize the operation and to predict possible reactions in the aquifer.

  3. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae

    2013-01-01

    A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube

  4. Experimental and numerical investigation of a scalable modular geothermal heat storage system

    Science.gov (United States)

    Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof

    2017-04-01

    Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days

  5. Thermal performance and heat transport in aquifer thermal energy storage

    NARCIS (Netherlands)

    Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; Gaans, van P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as

  6. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  7. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module......, recommendations on how best to transfer heat to and from the seasonal heat storage module are given....

  8. Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    Deterministic constrained optimization and stochastic optimization approaches were used to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An economic linear programming model with a sliding time window was developed to assess design and scheduling...... of biomass combined heat and power (BCHP) based microgrid systems. Other available technologies considered within the microgrid were small-scale wind turbines, photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and heat-only boilers. As an illustrative example, a case...... study was examined for a conceptual utility grid-connected microgrid application in Davis, California. The results show that for the assumptions used, a BCHP/PV with battery storage combination is the most cost effective design based on the assumed energy load profile, local climate data, utility tariff...

  9. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  10. Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy......, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates....

  11. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage

    International Nuclear Information System (INIS)

    Xiao, X.; Zhang, P.; Li, M.

    2015-01-01

    Highlights: • Thermal conductivity of nitrate/EG composite was accurately measured by considering thermal contact resistance. • Heat storage and retrieval tests were conducted with binary nitrates and nitrates/EG composites. • A comprehensive model was built to interpret the heat transfer characteristics. - Abstract: Eutectic molten salt can be used as the latent thermal energy storage medium in solar energy applications. Nitrates and their binary mixtures are suitable phase change material (PCM) for solar energy applications in middle-temperature-range of 200–300 °C. In the present study, binary nitrate (50 wt.% NaNO_3, 50 wt.% KNO_3) with a melting temperature of about 220 °C was employed as the PCM, and expanded graphite (EG) with the mass fraction of 5%, 10% or 20% was used to enhance the thermal conductivity. The thermal conductivities of pure nitrates and nitrate/EG shape-stabilized composites were measured with a steady-state test rig firstly. Results showed that the addition of EG significantly enhanced the thermal conductivities, e.g., the thermal conductivities of sodium nitrate/20 wt.% EG composite PCM were measured to be 6.66–7.70 W/(m K) in the temperature range of 20–120 °C, indicating about seven times larger than those of pure sodium nitrate. Furthermore, pure binary nitrate and nitrate/EG composite PCM were encapsulated in a cylindrical storage unit with a diameter of 70.0 mm and a length of 280.0 mm. Heat storage and retrieval tests were conducted extensively at different heating temperatures of 250 °C, 260 °C and 270 °C, and different cooling temperatures of 30 °C, 70 °C and 110 °C. Time-durations from temperature evolutions showed that both the melting and solidification processes were accelerated by EG, and the heat transfer characteristics were interpreted by the numerical analysis based on enthalpy–porosity and volume-of-fluid models. The evolution of nitrate/air interface caused by volume expansion ascended gradually

  12. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material

    International Nuclear Information System (INIS)

    Fan, Li-Wu; Wu, Yu-Yue; Xiao, Yu-Qi; Zeng, Yi; Zhang, Yi-Ling; Yu, Zi-Tao

    2016-01-01

    Highlights: • A liquid metal is adopted as the PCM in a thermal energy storage-based heat sink. • Transient performance of the heat sink is tested in comparison to an organic PCM. • The liquid metal has a similar volumetric latent heat of fusion to the organic PCM. • Outperformance of the liquid metal is found due to its higher thermal conductivity. • Liquid metals are preferred when the system weight is less important than volume. - Abstract: In this Technical Note, the use of a liquid metal, i.e., a low melting point Pb–Sn–In–Bi alloy, as the phase change material (PCM) in thermal energy storage-based heat sinks is tested in comparison to an organic PCM (1-octadecanol) having a similar melting point of ∼60 °C. The thermophysical properties of the two types of PCM are characterized, revealing that the liquid metal is much more conductive while both have nearly identical volumetric latent heat of fusion (∼215 MJ/m"3). By using at the same volume of 80 mL, i.e., the same energy storage capacity, the liquid metal is shown to outperform significantly over the organic PCM under the various heating powers up to 105.3 W/cm"2. During the heating period, the use of the liquid metal leads to a remarkable extension of the effective protection time to nearly twice longer as well as a reduction of the highest overheating temperature by up to 50 °C. The cool-down period can also be shortened significantly by taking advantage of the much higher thermal conductivity of the liquid metal. These findings suggest that liquid metals could serve as a promising PCM candidate for particular applications where the volume limit is very rigorous and the penalty in weight increment is acceptable.

  13. Evaluation of a ground thermal energy storage system for heating and cooling of an existing dwelling

    Energy Technology Data Exchange (ETDEWEB)

    Leong, W.H; Lawrence, C.J. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Tarnawski, V.R. [Saint Mary' s Univ., Halifax, NS (Canada). Dept. of Engineering; Rosen, M.A. [University of Ontario Institute of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2006-07-01

    A ground-coupled heat pump (GCHP) system for heating and cooling a residential house in Ontario was simulated. The system uses the surface ground as a thermal energy storage for storing thermal energy in the summer for later use in the winter. In the summer, the ground receives both solar energy and the heat rejected by the system during cooling operation. The relationship between a heat pump and the ground is a ground heat exchanger (GHE). This presentation described the vertical and horizontal configurations of the GHE, which are the 2 basic configurations. It also described the modelling and analysis of the GCHP system. The modelling involved both simplified and comprehensive models. The simplified models of heating and cooling loads of a building, a heat pump unit, and heat transfer at the ground heat exchanger provided a direct link to the comprehensive model of heat and moisture transfer in the ground, based on the finite element method. This combination of models provided an accurate and practical simulation tool for GCHP systems. The energy analysis was used to evaluate the performance of the system. The use of a horizontal ground heat exchanging pipe and the impact of heat deposition and extraction through it in the ground were also studied with reference to the length of pipe, depth of pipe and layout of the pipe loop. The objective of the analysis was to find ways to optimize the thermal performance of the system and environmental sustainability of the ground. 14 refs., 3 tabs., 5 figs.

  14. Heat transfer from aluminum to He II: application to superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Boom, R.W.

    1979-01-01

    Heat transfer problems associated with large scale Superconductive Magnetic Energy Storage (SMES) are unique due to the proposed size of a unit. The Wisconsin design consists of a cryogenically stable magnet cooled with He II at 1.8 K. The special properties of He II (T 2 at 1.91 K and a recovery at 0.7 W/cm 2 . The advantages of operating the magnet under subcooled conditions are exemplified by improved heat transfer. The maximum at 1.89 K and 1.3 atm pressure is 2.3 W/cm 2 with recovery enhanced to 1.9 W/cm 2 . A conservative maximum heat flux of 0.5 W/cm 2 with an associated temperature difference of 0.5 K has been chosen for design. Elements of the experimental study as well as the design will be discussed

  15. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  16. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis

    International Nuclear Information System (INIS)

    Calise, Francesco; Figaj, Rafal Damian; Vanoli, Laura

    2017-01-01

    Highlights: • Space heating/cooling, domestic hot water and electrical energy are provided by the system. • Two different users are investigated: fitness center and office. • The influence of the battery system on system economic performance is scarce. • Net metering contract is more profitable compared to simplified purchase/resale arrangement one. - Abstract: In this paper a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system are presented. The system includes photovoltaic/thermal collectors coupled with a solar-assisted heat pump, an adsorption chiller and an electrical energy storage. The modelled plant supplies electrical energy, space heating and cooling and domestic hot water. The produced solar thermal energy is used during the winter to supply the heat pump evaporator, providing the required space heating. In summer, solar thermal energy is used to drive an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess, with respect to the space heating and cooling demand, is used to produce domestic hot water. The produced electrical energy is self-consumed by both user and system auxiliary equipment and/or supplied to the grid. The system model includes a detailed electrical energy model for user storage and exchange with the grid along with a detailed building model. This study is a continuation of previous works recently presented by the authors. In particular, the present paper focuses on the real electrical demands of several types of users and on the analysis of the comfort of building users. Differently from the works previously published by the authors, the present work bases the calculations on measured electrical demands of real users (fitness center and offices). The system performance is analyzed with two different electricity supply contracts: net metering and simplified purchase/resale arrangement. Daily, weekly and yearly results are presented. Finally, a

  17. Peak Load Regulation and Cost Optimization for Microgrids by Installing a Heat Storage Tank and a Portable Energy System

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-04-01

    Full Text Available With the rapid growth of electricity demands, many traditional distributed networks cannot cover their peak demands, especially in the evening. Additionally, with the interconnection of distributed electrical and thermal grids, system operational flexibility and energy efficiency can be affected as well. Therefore, by adding a portable energy system and a heat storage tank to the traditional distributed system, this paper proposes a newly defined distributed network to deal with the aforementioned problems. Simulation results show that by adding a portable energy system, fossil fuel energy consumption and daily operation cost can be reduced by 8% and 28.29%, respectively. Moreover, system peak load regulating capacity can be significantly improved. However, by introducing the portable energy system to the grid, system uncertainty can be increased to some extent. Therefore, chance constrained programming is proposed to control the system while considering system uncertainty. By applying Particle Swarm Optimization—Monte Carlo to solve the chance constrained programming, results show that power system economy and uncertainty can be compromised by selecting appropriate confidence levels α and β. It is also reported that by installing an extra heat storage tank, combined heat and power energy efficiency can be significantly improved and the installation capacity of the battery can be reduced.

  18. Selection of materials with potential in sensible thermal energy storage

    International Nuclear Information System (INIS)

    Fernandez, A.I.; Martinez, M.; Segarra, M.; Martorell, I.; Cabeza, L.F.

    2010-01-01

    Thermal energy storage is a technology under investigation since the early 1970s. Since then, numerous new applications have been found and much work has been done to bring this technology to the market. Nevertheless, the materials used either for latent or for sensible storage were mostly investigated 30 years ago, and the research has lead to improvement in their performance under different conditions of applications. In those years a significant number of new materials were developed in many fields other than storage and energy, but a great effort to characterize and classify these materials was done. Taking into account the fact that thousands of materials are known and a large number of new materials are developed every year, the authors use the methodology for materials selection developed by Prof. Ashby to give an overview of other materials suitable to be used in thermal energy storage. Sensible heat storage at temperatures between 150 and 200 C is defined as a case study and two different scenarios were considered: long term sensible heat storage and short term sensible heat storage. (author)

  19. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  20. Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Aadmi, Moussa; Karkri, Mustapha; El Hammouti, Mimoun

    2015-01-01

    This paper focuses on the experimental and numerical study of the storage and release of thermal heat during melting and solidification of PCM (phase change material). Heat transfer enhancement techniques such as the use of conductors like graphite and metal tubes have been proven to be effective. The material used for thermal energy storage systems is a composite based on epoxy resin loaded with metal hollow tubes filled with paraffin wax. Differential Scanning Calorimetry has been used for measurement of melting enthalpy and determination of heat capacity. The thermophysical properties of the prepared composite phase change material have been characterized using a new transient hot plate apparatus. The results have shown that most important thermal properties of these composites at the solid and liquid states are the ‘‘apparent’’ thermal conductivity, the heat storage capacity and the latent heat of fusion. These experimental results have been simulated using numerical Comsol ® Multiphysics 4.3 based models with success. The results of the experimental investigation are compared favorably with the numerical results and thus serve to validate the numerical approach. - Highlights: • Phase change materials based on cylindrical used as new energy storage system. • Thermophysical properties and the melting process of composites were investigated. • All experimental results have been simulated using Comsol ® Multiphysiques. • The ability to store and release the thermal energy were investigated. • Good improvement in the thermal conductivity of composites

  1. Effect of kinetics on the thermal performance of a sorption heat storage reactor

    NARCIS (Netherlands)

    Gaeini, M.; Zondag, H.A.; Rindt, C.C.M.

    2016-01-01

    To reach high solar fractions for solar thermal energy in the built environment, long-term heat storage is required to overcome the seasonal mismatch. A promising method for long term heat storage is to use thermochemical materials, TCMs. In this research, a lab-scale test thermochemical heat

  2. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  3. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  4. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  5. Exergy efficient production, storage and distribution of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sandnes, Bjoernar

    2003-07-01

    There are two main themes in this thesis. 1) Exergy efficient utilization of solar energy, where the introduction of alternative technologies such as photovoltaic/thermal collectors and phase change energy storage in a low temperature solar system is investigated. 2) The possibility of storing thermal energy in supercooled liquids is investigated. The introductory chapters introduce the concept of exergy, and focus on the use of solar heat as an inherently low quality source for covering low quality demands associated with space heating and hot water. The different stages of solar energy production, storage, and distribution of heat is discussed, with emphasis on exergy relevant issues. With the low temperature solar heating system as background, the introduction of some additional technologies that are investigated. A section of this thesis presents a study of a small scale PV/T collector as a possible component in a low temperature system. In another section the instrumentation that has been built for studies of full-size PV and thermal systems is described, and the possibility of using the PV unit outputs as parameters for controlling the thermal system operation is briefly discussed. It is suggested that the design of the PV/T unit in terms of whether priority should be given to electricity or heat production should be based on how consumption of high quality auxiliary energy is minimized, and not on adding up the combined exergy which is being produced. Solar combisystems require larger heat storage capacities compared to the more common solar hot water systems. Increased volumetric heat storage capacity can be achieved by latent heat storage systems where thermal energy is stored as heat of fusion in phase change materials (PCMs). A section presents a study where spherically encapsulated PCM is incorporated in a solar heat store. Solar combisystems are often complex, and have a relatively large number of interacting components. Another section describes a

  6. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  7. Experimental and theoretic investigations of thermal behavior of a seasonal water pit heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Chatzidiakos, Angelos

    Seasonal heat storages are considered essential for district heating systems because they offer flexibility for the system to integrate different fluctuating renewable energy sources. Water pit thermal storages (PTES) have been successfully implemented in solar district heating plants in Denmark....... Thermal behavior of a 75,000 m3 water pit heat storage in Marstal solar heating plant was investigated experimentally and numerically. Temperatures at different levels of the water pit storage and temperatures at different depths of the ground around the storage were monitored and analyzed. A simulation...... model of the water pit storage is built to investigate development of temperatures in and around the storage. The calculated temperatures are compared to the monitored temperatures with an aim to validate the simulation model. Thermal stratification in the water pit heat storage and its interaction...

  8. Mobile heat storage containers and their transport by rail or road

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-10-15

    Mobile heat storage containers are capable of making a contribution to the meaningful use of energy which is needed for use at a location other than where it originates. The study presented in this report outlines the technology of mobile heat storage and analyses an example of its transport by rail or road. (orig.)

  9. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Chen, Yuan; Ding, Jing; Wang, Weilong

    2016-01-01

    Highlights: • Energy storage of methane reforming in a tubular packed reactor is investigated. • Thermochemical storage efficiency approaches maximum at optimal temperature. • Sensible heat and heat loss play important roles in the energy storage system. • The reaction and energy storage models of methane reforming reactor are established. • The simulated methane conversion and energy storage efficiency fit with experiments. - Abstract: High temperature heat transfer and energy storage performances of methane reforming with carbon dioxide in tubular packed reactor are investigated under different operating conditions. Experimental results show that the methane reforming in tubular packed reactor can efficiently store high temperature thermal energy, and the sensible heat and heat loss besides thermochemical energy storage play important role in the total energy storage process. When the operating temperature is increased, the thermochemical storage efficiency first increases for methane conversion rising and then decreases for heat loss rising. As the operating temperate is 800 °C, the methane conversion is 79.6%, and the thermochemical storage efficiency and total energy efficiency can be higher than 47% and 70%. According to the experimental system, the flow and reaction model of methane reforming is established using the laminar finite-rate model and Arrhenius expression, and the simulated methane conversion and energy storage efficiency fit with experimental data. Along the flow direction, the fluid temperature in the catalyst bed first decreases because of the endothermic reaction and then increases for the heat transfer from reactor wall. As a conclusion, the maximum thermochemical storage efficiency will be obtained under optimal operating temperature and optimal flow rate, and the total energy efficiency can be increased by the increase of bed conductivity and decrease of heat loss coefficient.

  10. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2012-01-01

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity......Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all...

  11. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  12. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  13. Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; Wolfe, Edward [MAHLE Behr Troy Inc.; LaClair, Tim J. [ORNL; Gao, Zhiming [ORNL; Levin, Michael [Ford Motor Company; Demitroff, Danrich [Ford Motor Company; Shaikh, Furqan [Ford Motor Company

    2017-03-01

    It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work.The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements. The final system development for EV implementation has occurred on a mid-range EV and has been evaluated for its capability to extend the driving range. Both simulated driving in a climatic tunnel and actual road testing have been carried out. The ePATHS has demonstrated its ability to supply the entire cabin heating needs for a round trip commute totaling 46 minutes, including 8 hours of parking, at an ambient temperature of -10°C.

  14. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case

    International Nuclear Information System (INIS)

    Morandin, Matteo; Maréchal, François; Mercangöz, Mehmet; Buchter, Florian

    2012-01-01

    The interest in large scale electricity storage (ES) with discharging time longer than 1 h and nominal power greater than 1 MW, is increasing worldwide as the increasing share of renewable energy, typically solar and wind energy, imposes severe load management issues. Thermo-electrical energy storage (TEES) based on thermodynamic cycles is currently under investigation at ABB corporate research as an alternative solution to pump hydro and compressed air energy storage. TEES is based on the conversion of electricity into thermal energy during charge by means of a heat pump and on the conversion of thermal energy into electricity during discharge by means of a thermal engine. The synthesis and the thermodynamic optimization of a TEES system based on hot water, ice storage and transcritical CO 2 cycles, is discussed in two papers. In this first paper a methodology for the conceptual design of a TEES system based on the analysis of the thermal integration between charging and discharging cycles through Pinch Analysis tools is introduced. According to such methodology, the heat exchanger network and temperatures and volumes of storage tanks are not defined a priori but are determined after the cycle parameters are optimized. For this purpose a heuristic procedure based on the interpretation of the composite curves obtained by optimizing the thermal integration between the cycles was developed. Such heuristic rules were implemented in a code that allows finding automatically the complete system design for given values of the intensive parameters of the charging and discharging cycles only. A base case system configuration is introduced and the results of its thermodynamic optimization are discussed here. A maximum roundtrip efficiency of 60% was obtained for the base case configuration assuming turbomachinery and heat exchanger performances in line with indications from manufacturers. -- Highlights: ► Energy storage based on water, ice, and transcritical CO 2 cycles is

  15. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  16. Annual Collection and Storage of Solar Energy for the Heating of Buildings, Report No. 3. Semi-Annual Progress Report, August 1977 - January 1978.

    Science.gov (United States)

    Beard, J. Taylor; And Others

    This report is part of a series from the Department of Energy on the use of solar energy in heating buildings. Described here is a new system for year around collection and storage of solar energy. This system has been operated at the University of Virginia for over a year. Composed of an underground hot water storage system and solar collection,…

  17. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  18. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  19. Compressed Air Energy Storage in Denmark

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    is analysed with regard to the Danish energy system. In Denmark, wind power supplies 20% of the electricity demand and 50% is produced by combined heat and power (CHP). The operation of CAES requires high electricity price volatility. However, in the Nordic region, large hydro capacities have so far kept......Compressed air energy storage system (CAES) is a technology which can be used for integrating more fluctuating renewable energy sources into the electricity supply system. On a utility scale, CAES has a high feasibility potential compared to other storage technologies. Here, the technology...

  20. Heat storage system utilizing phase change materials government rights

    Science.gov (United States)

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  1. The impact of short-term heat storage on the ice-albedo feedback loop

    Science.gov (United States)

    Polashenski, C.; Wright, N.; Perovich, D. K.; Song, A.; Deeb, E. J.

    2016-12-01

    The partitioning of solar energy in the ice-ocean-atmosphere environment is a powerful control over Arctic sea ice mass balance. Ongoing transitions of the sea ice toward a younger, thinner state are enhancing absorption of solar energy and contributing to further declines in sea ice in a classic ice-albedo feedback. Here we investigate the solar energy balance over shorter timescales. In particular, we are concerned with short term delays in the transfer of absorbed solar energy to the ice caused by heat storage in the upper ocean. By delaying the realization of ice melt, and hence albedo decline, heat storage processes effectively retard the intra-season ice-albedo feedback. We seek to quantify the impact and variability of such intra-season storage delays on full season energy absorption. We use in-situ data collected from Arctic Observing Network (AON) sea ice sites, synthesized with the results of imagery processed from high resolution optical satellites, and basin-scale remote sensing products to approach the topic. AON buoys are used to monitor the storage and flux of heat, while satellite imagery allows us to quantify the evolution of surrounding ice conditions and predict the aggregate scale solar absorption. We use several test sites as illustrative cases and demonstrate that temporary heat storage can have substantial impacts on seasonal energy absorption and ice loss. A companion to this work is presented by N. Wright at this meeting.

  2. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  3. Steam-based charging-discharging of a PCM heat storage | Tesfay ...

    African Journals Online (AJOL)

    ... the intermittent solar energy for continuous and near isothermal applications. ... The storage has the capacity of storing up to 250ºC heat and supply this heat ... which includes bread baking, kita (large pancake) baking and water boiling.

  4. Optimal Scheduling of a Multi-Carrier Energy Hub Supplemented By Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper introduces a management model for optimal scheduling of a multi-carrier energy hub. In the proposed hub, three types of assets are considered: dispersed generating systems (DGs) such as micro-combined heat and power (mCHP) units, storage devices such as battery-based electrical storage...... systems (ESSs), and heating/cooling devices such as electrical heater, heat-pumps and absorption chillers. The optimal scheduling and management of the examined energy hub assets in line with electrical transactions with distribution network is modeled as a mixed-integer non-linear optimization problem....... In this regard, optimal operating points of DG units as well as ESSs are calculated based on a cost-effective strategy. Degradation cost of ESSs is also taken into consideration for short-term scheduling. Simulation results demonstrate that including well-planned energy storage options together with optimal...

  5. Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

    OpenAIRE

    Shane D. Inder; Mehrdad Khamooshi

    2017-01-01

    Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored fo...

  6. Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage

    Science.gov (United States)

    Pop, Octavian G.; Fechete Tutunaru, Lucian; Bode, Florin; Balan, Mugur C.

    2018-02-01

    Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One approach in intensifying heat transfer is by increasing the air's velocity. A LHTES was designed to be integrated in the air cooling system of a building located in Bucharest, during the month of July. This study presents a numerical investigation concerning the impact of air inlet temperatures and air velocity on the formation of solid PCM, on the cold storing capacity and energy consumption of the LHTES. The peak amount of accumulated cold is reached at different air velocities depending on air inlet temperature. For inlet temperatures of 14°C and 15°C, an increase of air velocity above 50% will not lead to higher amounts of cold being stored. For Bucharest during the hottest night of the year, a 100 % increase in air velocity will result in 5.02% more cold being stored, at an increase in electrical energy consumption of 25.30%, when compared to the reference values.

  7. Advanced high-temperature thermal energy storage media for industrial applications

    Science.gov (United States)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  8. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  9. Experimental investigation on charging and discharging performance of absorption thermal energy storage system

    International Nuclear Information System (INIS)

    Zhang, Xiaoling; Li, Minzhi; Shi, Wenxing; Wang, Baolong; Li, Xianting

    2014-01-01

    Highlights: • A prototype of ATES using LiBr/H 2 O was designed and built. • Charging and discharging performances of ATES system were investigated. • ESE and ESD for cooling, domestic hot water and heating were obtained. - Abstract: Because of high thermal storage density and little heat loss, absorption thermal energy storage (ATES) is known as a potential thermal energy storage (TES) technology. To investigate the performance of the ATES system with LiBr–H 2 O, a prototype with 10 kW h cooling storage capacity was designed and built. The experiments demonstrated that charging and discharging processes are successful in producing 7 °C chilled water, 65 °C domestic hot water, or 43 °C heating water to meet the user’s requirements. Characteristics such as temperature, concentration and power variation of the ATES system during charging and discharging processes were investigated. The performance of the ATES system for supplying cooling, heating or domestic hot water was analyzed and compared. The results indicate that the energy storage efficiencies (ESE) for cooling, domestic hot water and heating are 0.51, 0.97, 1.03, respectively, and the energy storage densities (ESD) for cooling, domestic hot water and heating reach 42, 88, 110 kW h/m 3 , respectively. The performance is better than those of previous TES systems, which proves that the ATES system using LiBr–H 2 O may be a good option for thermal energy storage

  10. New kinds of energy-storing building composite PCMs for thermal energy storage

    International Nuclear Information System (INIS)

    Biçer, Alper; Sarı, Ahmet

    2013-01-01

    Graphical abstract: In this work, 10 new kinds of BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters into gypsum, cement, diatomite, perlite and vermiculite. DSC results showed that the melting temperatures and energy storage capacities of the prepared BCPCMs are in range of about 40–55 °C and 31–126 J/g, respectively. TG investigations and thermal cycling test showed that the BCPCMs had good thermal endurance and thermal reliability. It can be also concluded that among the prepared 10 kinds materials, especially the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage applications in buildings due to the fact that they have relatively high heat storage ability. Highlights: ► New kinds BCPCMs were prepared by blending of liquid XPL and XPM esters with some building materials. ► The BCPCMs had suitable melting temperatures and energy storage capacities. ► Especially, the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage. - Abstract: Energy storing-composite phase change materials (PCMs) are significant means of thermal energy storage in buildings. Although several building composite PCMs (BCPCMs) have been developed in recent years, the additional investigations are still required to enrich the diversity of BCPCMs for solar heating and energy conservation applications in buildings. For this purpose, the present work is focused the preparation, characterization and determination of 10 new kinds of BCPCMs. The BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters with gypsum, cement, diatomite, perlite and vermiculite as supporting matrices. The scanning electron microscopy (SEM) and Fourier Transform Infrared (FT-IR) analysis showed that the ester compounds were adsorbed uniformly into the building materials due to capillary forces

  11. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  12. Method and equipment to utilize solar heat. [paraffin used as heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Poellein, H

    1976-09-16

    In this process, solar radiation is converted into heat by means of absorbers. The heat transferred to a liquid is led in forced circulation, first into a heat storage device and then into a water heater. The cooled-down liquid is rercirculated. The storage material used here is paraffin. A measuring and control device is provided to switch from periods with solar radiation to periods where only stored energy is consumed. This device consists of a photocell measuring the incoming sunlight and a temperarure sensor. The control system is put into operation by a combination of the two measured values. The heat accumulator consists of several elements connected in parallel. A control device makes sure that only one accumulator element at a time is part of the circuit. The absorbers, as usual, consists of the absorber plate proper and a cover plate.

  13. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  14. Low-Temperature Thermal Energy Storage Program. Annual progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, G.D.; Eissenberg, D.M.; Kedl, R.J.

    1979-05-01

    The Low-Temperature Thermal Energy Storage (LTTES) Program is part of a national effort to develop means for reducing United States dependence on oil and natural gas as primary energy sources. To this end, LTTES addresses the development of advanced sensible and latent heat storage technologies that permit substitution by solar or off-peak electrical energies or permit conservation by recovery and reuse of waste heat. Emphasis is on applying these technologies to heating and cooling of buildings. As the LTTES program continued to mature, a number of technologies were identified for development emphasis, including (1) seasonal storage of hot and cold water from waste or natural sources in aquifers, (2) short-term or daily storage of heat or coolness from solar or off-peak electrical sources in phase-change materials, and (3) recovery and reuse of rejected industrial heat through thermal storage. These areas have been further divided into three major and four minor activities; significant accomplishments are reported for each.

  15. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  16. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  17. Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Baydaa Jaber Nabhan

    2015-06-01

    Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.

  18. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  19. Sustainable energy supply for mushroom cultivation. Application of underground energy storage. Application of a heat pump for heat production. Feasibility study; Duurzame energievoorziening paddestoelen kwekerij. toepassing van energieopslag in de bodem. Toepassing van warmtepomp voor warmteopwekking. Een haalbaarheidsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Koel, J.J. [EBS-Adviseurs, Veenendaal (Netherlands)

    2001-02-26

    The results of a feasibility study on the use of heat and cold storage and the use of an electric heat pump for the energy supply of a mushroom cultivation business (Verbruggen paddestoelen in Erp, Netherlands) are presented.

  20. Strategies for commercializing customer thermal-energy storage. [64 references

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.H.

    1976-12-01

    This report presents strategies for commercializing customer thermal storage. Four storage techniques are evaluated: space heating, air conditioning, hot-water heating, and interruptible hot-water heating. The storage systems involved store off-peak electric energy for thermal applications during peak load hours. Analyses of both storage techniques and principal parties affected by storage indicate four barriers: the absence of (1) commercially available air conditioning storage devices, (2) appropriate rates, (3) information on both rates and devices, and (4) widespread utility support. Development of appropriate rates is the key to commercialization. The criteria used to evaluate rate types are: maximum combined utility and customer benefits, ease of commercialization, and practical feasibility. Four rate types--demand charges, time-of-use rates, and two forms of load management rates (a monthly credit and an off-peak discount)--plus the possibility of utility ownership are considered. The best rate types for each storage option are: for hot-water heating, a monthly credit for allowing utility interruptions or an off-peak price discount for storage; for space heating, an off-peak discount contingent upon meeting utility requirements; and for air conditioning, an off-peak discount plus monthly credit.

  1. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  2. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  3. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  4. LiH thermal energy storage device

    Science.gov (United States)

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  5. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material

    International Nuclear Information System (INIS)

    Trigui, Abdelwaheb; Karkri, Mustapha; Krupa, Igor

    2014-01-01

    Highlights: • This study deals with the comparison of experimental results for different PCM composite to be used in passive solar walls. • This paper reports on the successful use of a specific experimental method in order to characterize the phase change effects. • The results have shown that most important thermal properties of these composites at the solid and liquid states. • Results indicate the thermal effectiveness of phase change material and significant amount of energy saving can be achieved. • Heat flux measurements are a very interesting experimental source of data which comes to complete the calorimetric device (DSC). - Abstract: Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The LDPE as the supporting matrix kept the molten waxes in compact shape during its phase transition from solid to liquid. Immiscibility of the PCMs (waxes) and the supporting matrix (LDPE) is a necessary property for effective energy storage. Therefore, this type paraffin can be used in a latent heat storage system without encapsulation. The objective of this research is to use PCM composite as integrated components in a passive solar wall. The proposed composite TROMBE wall allows daily storage of the solar energy in a building envelope and restitution in the evening, with a possible control of the air flux in a ventilated air layer. An experimental set-up was built to determine the thermal response of these composites to thermal solicitations. In addition, a DSC analysis was carried out. The results have shown that most important thermal properties of these composites at the solid and liquid states, like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. Results indicate the performance of the proposed system is affected by the thermal effectiveness of

  6. Initial Development of a Combined PCM and TABS Solution for Heat Storage and Cooling

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    to their significant thermal energy storage capabilities. The TABS has a potential for increasing the exploitation of the thermal mass of the building, which is rarely exposed for heat transfer.The main objective of this study is to optimize the location and amount of PCM in a hollow core deck in order to optimize...... heat storage capacity. A series of simulations were conducted using the COMSOL program to obtain knowledge regarding the dynamic heat storage capacity of the investigated hollow core deck element as a function of the amount and location of PCM. Furthermore, the dynamic heat storage capacity...

  7. Thermal energy storage using chloride salts and their eutectics

    International Nuclear Information System (INIS)

    Myers, Philip D.; Goswami, D. Yogi

    2016-01-01

    Achieving the goals of the U.S. Department of Energy (DOE) Sunshot initiative requires (1) higher operating temperatures for concentrating solar power (CSP) plants to increase theoretical efficiency, and (2) effective thermal energy storage (TES) strategies to ensure dispatchability. Current inorganic salt-based TES systems in large-scale CSP plants generally employ molten nitrate salts for energy storage, but nitrate salts are limited in application to lower temperatures—generally, below 600 °C. These materials are sufficient for parabolic trough power plants, but they are inadequate for use at higher temperatures. At the higher operating temperatures achievable in solar power tower-type CSP plants, chloride salts are promising candidates for application as TES materials, owing to their thermal stability and generally lower cost compared to nitrate salts. In light of this, a recent study was conducted, which included a preliminary survey of chloride salts and binary eutectic systems that show promise as high temperature TES media. This study provided some basic information about the salts, including phase equilibria data and estimates of latent heat of fusion for some of the eutectics. Cost estimates were obtained through a review of bulk pricing for the pure salts among various vendors. This review paper updates that prior study, adding data for additional salt eutectic systems obtained from the literature. Where possible, data are obtained from the thermodynamic database software, FactSage. Radiative properties are presented, as well, since at higher temperatures, thermal radiation becomes a significant mode of heat transfer. Material compatibility for inorganic salts is another important consideration (e.g., with regard to piping and/or containment), so a summary of corrosion studies with various materials is also presented. Lastly, cost data for these systems are presented, allowing for meaningful comparison among these systems and other materials for TES

  8. U.S. Department of Energy thermal energy storage research activities review: 1989 Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W. [ed.] [PAI Corp., Oak Ridge, TN (United States); Tomlinson, J.J. [ed.] [Oak Ridge National Lab., TN (United States)

    1989-03-01

    Thermal Energy Storage (TES) offers the opportunity for the recovery and re-use of heat currently rejected to the ambient environment. Further, through the ability of TES to match an energy supply with a thermal energy demand, TES increases efficiencies of energy systems and improves capacity factors of power plants. The US Department of Energy has been the leader in TES research, development, and demonstration since recognition in 1976 of the need for fostering energy conservation as a component of the national energy budget. The federal program on TES R and D is the responsibility of the Office of Energy Storage and Distribution within the US Department of Energy (DOE). The overall program is organized into three program areas: diurnal--relating primarily to lower temperature heat for use in residential and commercial buildings on a daily cycle; industrial--relating primarily to higher temperature heat for use in industrial and utility processes on an hourly to daily cycle; seasonal--relating primarily to lower temperature heat or chill for use in residential complexes (central supply as for apartments or housing developments), commercial (light manufacturing, processing, or retail), and industrial (space conditioning) on a seasonal to annual cycle. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Passive annual heat storage principles in earth sheltered housing, a supplementary energy saving system in residential housing

    Energy Technology Data Exchange (ETDEWEB)

    Anselm, Akubue Jideofor [Green Architecture Department, School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-07-01

    This paper looks through the many benefits of earth not only as a building element in its natural form but as a building mass, energy pack and spatial enclosure which characterized by location, unique physical terrain and climatic factors can be utilized in developing housing units that will provide the needed benefits of comfort alongside the seasons. Firstly the study identifies existing sunken earth houses in the North-west of China together with identifying the characters that formed the ideas behind the choice of going below the ground. Secondly, the study examines the pattern of heat exchange, heat gains and losses as to identify the principles that makes building in earth significant as an energy conservation system. The objective of this, is to relate the ideas of sunken earth home design with such principles as the passive annual heat storage systems (PAHS) in producing houses that will serve as units used to collect free solar heat all summer and cools passively while heating the earth around it and also keeping warm in winter by retrieving heat from the soil while utilizing the free solar heat stored throughout the summer as a year-round natural thermal resource. (author)

  10. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  11. Numerical simulation of a heat pump assisted regenerative solar still with PCM heat storage for cold climates of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Shakir Yessen

    2017-01-01

    Full Text Available A numerical model has been proposed in this work for predicting the energy performances of the heat pump assisted regenerative solar still with phase changing material heat storage under Kazakhstan climates. The numerical model is based on energy and mass balance. A new regenerative heat pump configuration with phase changing material heat storage is proposed to improve the performance. A comparison of results has been made between the conventional solar still and heat pump assisted regenerative solar still with phase changing material. The numerical simulation was performed for wide range of ambient temperatures between -30 and 30°C with wide range of solar intensities between 100 and 900 W/m2. The numerical simulation results showed that heat pump assisted regenerative solar still is more energy efficient and produce better yield when compared to the conventional simple solar still. The influences of solar intensity, ambient temperature, different phase changing materials, heat pump operating temperatures are discussed. The predicted values were found to be in good agreement with experimental results reported in literature.

  12. Economics of compressed air energy storage employing thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Reilly, R.W.

    1979-11-01

    The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

  13. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    compare different storage solutions. In chapter 5, energy storage is evaluated as an alternative for increasing the value of wind power in a market-based power system. A method for optimal short-term scheduling of wind power with energy storage has been developed. The basic model employs a dynamic programming algorithm for the scheduling problem. Moreover, different variants of the scheduling problem based on linear programming are presented. During on-line operation, the energy storage is operated to minimize the deviation between the generation schedule and the actual power output of the wind-storage system. It is shown how stochastic dynamic programming can be applied for the on-line operation problem by explicitly taking into account wind forecast uncertainty. The model presented in chapter 6 extends and improves the linear programming model described in chapter 5. An operation strategy based on model predictive control is developed for effective management of uncertainties. The method is applied in a simulation model of a wind-hydrogen system that supplies the local demand for electricity and hydrogen. Utilization of fuel cell heat and electrolytic oxygen as by-products is also considered. Computer simulations show that the developed operation method is beneficial for grid-connected as well as for isolated systems. For isolated systems, the method makes it possible to minimize the usage of backup power and to ensure a secure supply of hydrogen fuel. For grid-connected wind-hydrogen systems, the method could be applied for maximizing the profit from operating in an electricity market. Comprehensive simulation studies of different example systems have been carried out to obtain knowledge about the benefits and limitations of using energy storage in conjunction with wind power. In order to exploit the opportunities for energy storage in electricity markets, it is crucial that the electrical efficiency of the storage is as high as possible. Energy storage combined with

  14. Modelling and experimental study of low temperature energy storage reactor using cementitious material

    International Nuclear Information System (INIS)

    Ndiaye, Khadim; Ginestet, Stéphane; Cyr, Martin

    2017-01-01

    Highlights: • Numerical study of a thermochemical reactor using a cementitious material for TES. • Development and test of an original prototype based on this original material. • Comparison of the experimental and numerical results. • Energy balance of the experimental setup (charging and discharging phases). - Abstract: Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Most adsorbent materials are capable of storing heat, in a large range of temperature. Ettringite, the main product of the hydration of sulfoaluminate binders, has the advantage of high energy storage density at low temperature, around 60 °C. The objective of this study is, first, to predict the behaviour of the ettringite based material in a thermochemical reactor during the heat storage process, by heat storage modelling, and then to perform experimental validation by tests on a prototype. A model based on the energy and mass balance in the cementitious material was developed and simulated in MatLab software, and was able to predict the spatiotemporal behaviour of the storage system. This helped to build a thermochemical reactor prototype for heat storage tests in both the charging and discharging phases. Thus experimental tests validated the numerical model and served as proof of concept.

  15. Building with integral solar-heat storage--Starkville, Mississippi

    Science.gov (United States)

    1981-01-01

    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  16. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  17. Novel “open-sorption pipe” reactor for solar thermal energy storage

    International Nuclear Information System (INIS)

    Aydin, Devrim; Casey, Sean P.; Chen, Xiangjie; Riffat, Saffa

    2016-01-01

    Highlights: • A novel ‘open sorption pipe’ heat storage was experimentally investigated. • Effect of absolute moisture levels on heat storage performance was analyzed. • Hygrothermal-cyclic performances of Zeolite 13X and vermiculite–calcium chloride were compared. • Vermiculite–calcium chloride has more durable performance than Zeolite at 80 °C regeneration temperature. • Sorption pipe system using vermiculite–calcium chloride provides energy storage density of 290 kW h/m"3. - Abstract: In the last decade sorption heat storage systems are gaining attention due to their high energy storage density and long term heat storage potential. Sorption reactor development is vital for future progress of these systems however little has done on this topic. In this study, a novel sorption pipe reactor for solar thermal energy storage is developed and experimentally investigated to fulfill this gap. The modular heat storage system consists of sorption pipe units with an internal perforated diffuser pipe network and the sorption material filled in between. Vermiculite–calcium chloride composite material was employed as the sorbent in the reactor and its thermal performance was investigated under different inlet air humidity levels. It was found that, a fourfold increase of absolute humidity difference of air led to approximately 2.3 times boost in average power output from 313 W to 730 W and an 8.8 times boost of average exergy from 4.8 W to 42.3 W. According to the testing results, each of three sorption pipes can provide an average air temperature lift of 24.1 °C over 20 h corresponding to a system total energy storage capacity of 25.5 kW h and energy storage density of 290 kW h/m"3. Within the study, vermiculite–calcium chloride performance was also compared with the widely investigated Zeolite 13X. Vermiculite–calcium chloride showed a good cyclic ability at regeneration temperature of 80 °C with a steadier thermal performance than Zeolite

  18. Parametrical analysis of latent heat and cold storage for heating and cooling of rooms

    International Nuclear Information System (INIS)

    Osterman, E.; Hagel, K.; Rathgeber, C.; Butala, V.; Stritih, U.

    2015-01-01

    One of the problems we are facing today is the energy consumption minimization, while maintaining the indoor thermal comfort in buildings. A potential solution to this issue is use of phase change materials (PCMs) in thermal energy storage (TES), where cold gets accumulated during the summer nights in order to reduce cooling load during the day. In winter, on the other hand, heat from solar air collector is stored for evening and morning hours when solar radiation is not available. The main objective of the paper is to examine experimentally whether it is possible to use such a storage unit for heating as well as for cooling. For this purpose 30 plates filled with paraffin (melting point around 22°C) were positioned into TES and applied with the same initial and boundary conditions as they are expected in reality. Experimental work covered flow visualization, measurements of air velocity in the channels between the plates, parametric analysis in conjunction with TES thermal response and measurements of the pressure drops. The results indicate that this type of storage technology could be advantageously used in real conditions. For optimized thermal behavior, only plate thickness should be reduced. - Highlights: • Thermal properties of paraffin RT22HC were measured. • Flow visualization was carried out and velocity between plates was measured. • Thermal and pressure drop analysis were performed. • Melting times are too long however, use of storage tank for heating and cooling looks promising

  19. Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light–heat conversion for thermal energy storage

    International Nuclear Information System (INIS)

    Li, Benxia; Nie, Shibin; Hao, Yonggan; Liu, Tongxuan; Zhu, Jinbo; Yan, Shilong

    2015-01-01

    Highlights: • A facile preparation of shape-stabilized composite PCMs for thermal energy storage. • The composite PCMs present tunable phase change temperatures and enthalpy. • Sunlight-driven phase change for photothermal conversion and storage. - Abstract: The development of functional materials with both light–heat conversion and thermal energy storage properties is of crucial importance for efficient utilization of sunlight to meet the growing demand for sustainable energy. In this work, the shape-stabilized phase change composites were designed and prepared by integration of stearic acid (SA) and acid-treated carbon nanotubes (a-CNTs). The a-CNTs not only acted as a flexible matrix but also endowed the composites high light–heat conversion ability. The reversible phase transitions shifted from high temperatures (T m = 74 °C, T f = 57 °C) of pure SA to near room temperature (T m = ∼30 °C, T f = ∼22 °C) of SA/a-CNTs composites, probably resulting from the strong interface confinement effect. The phase change enthalpy of the SA/a-CNTs composite could also be tailored by changing the mass ratio of SA and a-CNTs. The composites containing SA of 54.2 wt.%, 67.8 wt.% and 79.5 wt.% presented the melting enthalpy of 76.3 J/g, 98.8 J/g and 111.8 J/g, respectively. Moreover, the phase transition of SA/a-CNTs composite could be driven by sunlight for the energy storage/release. Therefore, this research provides a new platform for improving solar utilization, and understanding the phase transition behaviors of organic PCMs in dimensionally confined environments as well

  20. Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-06-01

    Full Text Available Integrated energy systems (IESs are considered a trending solution for the energy crisis and environmental problems. However, the diversity of energy sources and the complexity of the IES have brought challenges to the economic operation of IESs. Aiming at achieving optimal scheduling of components, an IES operation optimization model including photovoltaic, combined heat and power generation system (CHP and battery energy storage is developed in this paper. The goal of the optimization model is to minimize the operation cost under the system constraints. For the optimization process, an optimization principle is conducted, which achieves maximized utilization of photovoltaic by adjusting the controllable units such as energy storage and gas turbine, as well as taking into account the battery lifetime loss. In addition, an integrated energy system project is taken as a research case to validate the effectiveness of the model via the improved differential evolution algorithm (IDEA. The comparison between IDEA and a traditional differential evolution algorithm shows that IDEA could find the optimal solution faster, owing to the double variation differential strategy. The simulation results in three different battery states which show that the battery lifetime loss is an inevitable factor in the optimization model, and the optimized operation cost in 2016 drastically decreased compared with actual operation data.

  1. Thermochemical heat storage for high temperature applications. A review

    Energy Technology Data Exchange (ETDEWEB)

    Felderhoff, Michael [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Urbanczyk, Robert; Peil, Stefan [Institut fuer Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Germany)

    2013-07-01

    Heat storage for high temperature applications can be performed by several heat storage techniques. Very promising heat storage methods are based on thermochemical gas solid reactions. Most known systems are metal oxide/steam (metal hydroxides), carbon dioxide (metal carbonates), and metal/hydrogen (metal hydrides) systems. These heat storage materials posses high gravimetric and volumetric heat storage densities and because of separation of the reaction products and their storage in different locations heat losses can be avoided. The reported volumetric heat storage densities are 615, 1340 and 1513 [ kWh m{sup -3}] for calcium hydroxide Ca(OH){sub 2}, calcium carbonate CaCO{sub 3} and magnesium iron hydride Mg{sub 2}FeH{sub 6} respectively. Additional demands for gas storage decrease the heat storage density, but metal hydride systems can use available hydrogen storage possibilities for example caverns, pipelines and chemical plants. (orig.)

  2. Demonstration of EnergyNest thermal energy storage (TES) technology

    Science.gov (United States)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  3. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  4. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  5. Solar-hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat : hydrogen production, storage, and utilisation

    National Research Council Canada - National Science Library

    Ōta, Tokio

    1979-01-01

    ... An Authoritative Review of Watersplitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilisation edited by TOKIO OHTA Professor of Materials Science and Energy System Yoko...

  6. Optically-controlled long-term storage and release of thermal energy in phase-change materials

    OpenAIRE

    Han, Grace G. D.; Li, Huashan; Grossman, Jeffrey C.

    2017-01-01

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid–solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive ...

  7. Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system

    International Nuclear Information System (INIS)

    Pandiyarajan, V.; Chinnappandian, M.; Raghavan, V.; Velraj, R.

    2011-01-01

    The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste. The major technical constraint that prevents successful implementation of waste heat recovery is due to intermittent and time mismatched demand for and availability of energy. The present work deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from a diesel engine and stored in a combined sensible and latent heat storage system. This analysis is utilized to identify the sources of losses in useful energy within the components of the system considered, and provides a more realistic and meaningful assessment than the conventional energy analysis. The energy and exergy balance for the overall system is quantified and illustrated using energy and exergy flow diagrams. In order to study the discharge process in a thermal storage system, an illustrative example with two different cases is considered and analyzed, to quantify the destruction of exergy associated with the discharging process. The need for promoting exergy analysis through policy decision in the context of energy and environment crisis is also emphasized. - Highlights: → WHR with TES system eliminates the mismatch between the supply of energy and demand. → A saving of 15.2% of energy and 1.6% of exergy is achieved with PCM storage. → Use of multiple PCMs with cascaded system increases energy and exergy efficiency.

  8. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Tsolakoglou Nikolas P.

    2017-01-01

    Full Text Available This work investigates melting and solidification processes of four different Phase Change Materials (PCM used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF. Both charging (melting and discharging (solidification processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates. Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  9. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Science.gov (United States)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  10. Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled

    Directory of Open Access Journals (Sweden)

    Hossein Safaei

    2017-07-01

    Full Text Available We present analyses of three families of compressed air energy storage (CAES systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both a low-temperature and a high-temperature electrolysis process for hydrogen production. Adiabatic CAES (A-CAES with physical storage of heat is the most efficient option with an exergy efficiency of 69.5% for energy storage. The exergy efficiency of the conventional CAES system is estimated to be 54.3%. Both high-temperature and low-temperature electrolysis CAES systems result in similar exergy efficiencies (35.6% and 34.2%, partly due to low efficiency of the electrolyzer cell. CAES with high-temperature electrolysis has the highest energy storage density (7.9 kWh per m3 of air storage volume, followed by A-CAES (5.2 kWh/m3. Conventional CAES and CAES with low-temperature electrolysis have similar energy densities of 3.1 kWh/m3.

  11. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  12. Preparation of fine powdered composite for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz; Pavlík, Zbyšek, E-mail: pavlikz@fsv.cvut.cz [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic); Pomaleski, Marina, E-mail: marina-pomaleski@fsv.cvut.cz [Faculty of Civil Engineering, Architecture and Urbanism, University of Campinas, R. Saturnino de Brito 224, 13083-889 Campinas – SP (Brazil)

    2016-07-07

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  13. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  14. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  15. Energy-Storage Modules for Active Solar Heating and Cooling

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  16. Optically-controlled long-term storage and release of thermal energy in phase-change materials.

    Science.gov (United States)

    Han, Grace G D; Li, Huashan; Grossman, Jeffrey C

    2017-11-13

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid-solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g -1 ) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.

  17. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  18. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  19. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  20. Thermal Energy Storage with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available Thermal energy storage (TES systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, have been a main topic in research for the last 30 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. PCMs for TES are generally solid-liquid phase change materials and therefore they need encapsulation. TES systems using PCMs as a storage medium offers advantages such as high TES capacity, small unit size and isothermal behaviour during charging and discharging when compared to the sensible TES.

  1. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  2. Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage

    Directory of Open Access Journals (Sweden)

    Florian Chavagnat

    2018-04-01

    Full Text Available The Firebrick Resistance-Heated Energy Storage (FIRES concept developed by the Massachusetts Institute of Technology aims to enhance profitability of the nuclear power industry in the next decades. Studies carried out at Massachusetts Institute of Technology already provide estimates of the potential revenue from FIRES system when it is applied to industrial heat supply, the likely first application. Here, we investigate the possibility of operating a power plant (PP with a fluoride-salt-cooled high-temperature reactor and a closed Brayton cycle. This variant offers features such as enhanced nuclear safety as well as flexibility in design of the PP but also radically changes the way of operating the PP. This exploratory study provides estimates of the revenue generated by FIRES in addition to the nominal revenue of the stand-alone fluoride-salt-cooled high-temperature reactor, which are useful for defining an initial design. The electricity price data is based on the day-ahead markets of Germany/Austria and the United States (Iowa. The proposed method derives from the equation of revenue introduced in this study and involves simple computations using MatLab to compute the estimates. Results show variable economic potential depending on the host grid but stress a high profitability in both regions. Keywords: Firebrick Resistance-Heated Energy Storage, Nuclear Power Plant, Revenue Estimate, Storage System

  3. Energy storage systems: a strategic road-book

    International Nuclear Information System (INIS)

    2011-01-01

    Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

  4. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank

    International Nuclear Information System (INIS)

    Allouche, Yosr; Varga, Szabolcs; Bouden, Chiheb; Oliveira, Armando C.

    2015-01-01

    Highlights: • Cold storage characteristics in latent and sensible heat storage mediums were studied. • Thermo-physical characterization of the phase change material was carried out. • A non-Newtonian shear thickening behavior of the phase change material was observed. • An energy storage enhancement (53%) was observed in the latent heat storage medium. - Abstract: In the present paper, the performance of a microencapsulated phase change material (in 45% w/w concentration) for low temperature thermal energy storage, suitable for air conditioning applications is studied. The results are compared to a sensible heat storage unit using water. Thermo-physical properties such as the specific heat, enthalpy variation, thermal conductivity and density are also experimentally determined. The non-Newtonian shear-thickening behavior of the phase change material slurry is quantified. Thermal energy performance is experimentally determined for a 100 l horizontal tank. The heat transfer between the heat transfer fluid and the phase change material was provided by a tube-bundle heat exchanger inside the tank. The results show that the amount of energy stored using the phase change material is 53% higher than for water after 10 h of charging, for the same storage tank volume. It was found that the heat transfer coefficient between the phase change material and the tube wall increases during the phase change temperature range, however it remains smaller than the values obtained for water

  5. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  6. Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Manfrida, Giampaolo; Secchi, Riccardo; Stańczyk, Kamil

    2016-01-01

    Highlights: • A mathematical model of a Latent Heat Storage system was developed. • Energy and exergy analysis of the storage system were carried out. • A solar powered ORC unit coupled with the Latent Heat Storage was studied. • The dynamic performance of the overall plant was simulated with TRNSYS. - Abstract: Solar energy is one of the most promising renewable energy sources, but is intermittent by its nature. The study of efficient thermal heat storage technologies is of fundamental importance for the development of solar power systems. This work focuses on a robust mathematical model of a Latent Heat Storage (LHS) system constituted by a storage tank containing Phase Change Material spheres. The model, developed in EES environment, provides the time-dependent temperature profiles for the PCM and the heat transfer fluid flowing in the storage tank, and the energy and exergy stored as well. A case study on the application of the LHS technology is also presented. The operation of a solar power plant associated with a latent heat thermal storage and an ORC unit is simulated under dynamic (time-varying) solar radiation conditions with the software TRNSYS. The performance of the proposed plant is simulated over a one week period, and the results show that the system is able to provide power in 78.5% of the time, with weekly averaged efficiencies of 13.4% for the ORC unit, and of 3.9% for the whole plant (from solar radiation to net power delivered by the ORC expander).

  7. Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment

    International Nuclear Information System (INIS)

    Facci, Andrea L.; Sánchez, David; Jannelli, Elio; Ubertini, Stefano

    2015-01-01

    Highlights: • The trigenerative-CAES concept is introduced. • The thermodynamic feasibility of the trigenerative-CAES is assessed. • The effects of the relevant parameter on the system performances are dissected. • Technological issues on the trigenerative-CAES are highlighted. - Abstract: Energy storage is a cutting edge front for renewable and sustainable energy research. In fact, a massive exploitation of intermittent renewable sources, such as wind and sun, requires the introduction of effective mechanical energy storage systems. In this paper we introduce the concept of a trigenerative energy storage based on a compressed air system. The plant in study is a simplified design of the adiabatic compressed air energy storage and accumulates mechanical and thermal (both hot and cold) energy at the same time. We envisage the possibility to realize a relatively small size trigenerative compressed air energy storage to be placed close to the energy demand, according to the distributed generation paradigm. Here, we describe the plant concept and we identify all the relevant parameters influencing its thermodynamic behavior. Their effects are dissected through an accurate thermodynamic model. The most relevant technological issues, such as the guidelines for a proper choice of the compressor, expander and heat exchangers are also addressed. Our results show that T-CAES may have an interesting potential as a distributed system that combines electricity storage with heat and cooling energy production. We also show that the performances are significantly influenced by some operating and design parameters, whose feasibility in real applications must be considered.

  8. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    N’Tsoukpoe, Kokouvi Edem; Schmidt, Thomas; Rammelberg, Holger Urs; Watts, Beatriz Amanda; Ruck, Wolfgang K.L.

    2014-01-01

    Highlights: • We report an evaluation of the potential of salt hydrates for thermochemical storage. • Both theoretical calculations and experimental measurements using TGA/DSC are used. • Salt hydrates offer very low potential for thermochemical heat storage. • The efficiency of classical processes using salt hydrates is very low: typically 25%. • New processes are needed for the use of salt hydrates in thermochemical heat storage. - Abstract: In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 °C, SrBr 2 ·6H 2 O and LaCl 3 ·7H 2 O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m −3 and 89 kW h m −3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates

  9. The use of solar energy for heating an asphalt storage tank.

    Science.gov (United States)

    1984-01-01

    10,000 gal. asphalt storage tank was equipped with a solar heating system and instrumented to determine its effectiveness over a 12.5-month period. An evaluation of the data indicated that the solar system conserved 25,126 kWh of electrical power dur...

  10. Thermal energy storage in granular deposits

    Science.gov (United States)

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  11. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2018-04-01

    Full Text Available A large amount of energy is consumed by heating and cooling systems to provide comfort conditions for commercial building occupants, which generally contribute to peak electricity demands. Thermal storage tanks in HVAC systems, which store heating/cooling energy in the off-peak period for use in the peak period, can be used to offset peak time energy demand. In this study, a theoretical investigation on stratified thermal storage systems is performed to determine the factors that significantly influence the thermal performance of these systems for both heating and cooling applications. Five fully-insulated storage tank geometries, using water as the storage medium, were simulated to determine the effects of water inlet velocity, tank aspect ratio and temperature difference between charging (inlet and the tank water on mixing and thermocline formation. Results indicate that thermal stratification enhances with increased temperature difference, lower inlet velocities and higher aspect ratios. It was also found that mixing increased by 303% when the temperature difference between the tank and inlet water was reduced from 80 °C to 10 °C, while decreasing the aspect ratio from 3.8 to 1.0 increased mixing by 143%. On the other hand, increasing the inlet water velocity significantly increased the storage mixing. A new theoretical relationship between the inlet water velocity and thermocline formation has been developed. It was also found that inlet flow rates can be increased, without increasing the mixing, after the formation of the thermocline.

  12. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  13. Energy analysis of thermal energy storages with grid configurations

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    Highlights: • Grid configurations of TESs are developed and assessed. • Characteristics of various configurations of TESs are developed as functions of properties. • Functions for the discharge temperature and the discharge energy of the TES are developed. - Abstract: In some thermal networks like district energy systems, there can exist conditions, depending on space availability, economics, project requirements, insulation, storing media type and other issues, for which it may be advantageous to utilize several thermal energy storages (TESs) instead of one. Here, various configurations for multiple TESs are proposed and investigated. Significant parameters for a TES, or a set of TESs, include discharging temperature and recovered energy. First, one TES is modeled to determine the final temperature, energy recovery, and energy efficiency. Next, characteristics for various grid configurations of multiple TESs are developed as functions of TES characteristics (e.g., charging and discharging temperatures and energy quantities). Series, parallel and comprehensive grid TES configurations are considered. In the parallel configuration, the TESs behave independently. This suggests that the TES can consist of different storage media types and sizes, and that there is no restriction on initial temperature of the TES. In the series configuration, the situation is different because the TESs are connected directly or indirectly through a heat exchanger. If there is no heat exchanger between the TESs, the TES storage media should be the same, because the outlet of one TES in the series is the inlet to the next. The initial temperature of the second TES must be smaller than the discharge temperature of the first. There is no restriction on the TES size for series configurations. The general grid configuration is observed to exhibit characteristics of both series and parallel configurations

  14. Dossier: renewable energies for heat production; Dossier: energies renouvelables pour la production de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-09-01

    This dossier makes a state-of-the-art of today's applications of renewable energy sources in the residential, collective and tertiary sectors for the space heating and the hot water production. In France, three energy sources profit by a particularly favorable evolution: the solar thermal, the wood fuel and the geothermal energies. In these sectors, the offer of reliable and technically achieved appliances has been considerably widen thanks to the impulse of some French and German manufacturers. Part 1 - solar thermal: individual solar water heaters (monobloc, thermosyphon with separate tank, forced circulation systems, auxiliary heating systems); combined solar systems (direct heating floor, system with storage); collective solar systems for hot water production (receivers, efficiency, heat storage and transfer, auxiliary heating, decentralized systems); heating of open-air swimming pools; some attempts in air-conditioning; the warranty of results. Part 2 - wood fuels: domestic space heating (log boilers, installation rules, hydro-accumulation, automatic boilers); collective and tertiary wood-fueled heating plants (design of boiler plants, fuel supply, combustion chamber, smoke purification systems, ash removal, regulation system), fuels for automatic collective plants, design and installation rules. Part 3 - geothermal energy: different types (water-source and ground-source heat pumps, financial incentive). (J.S.)

  15. Nanoencapsulation of phase change materials for advanced thermal energy storage systems

    Science.gov (United States)

    Shchukina, E. M.; Graham, M.; Zheng, Z.

    2018-01-01

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes energy release/uptake. PMID:29658558

  16. Nanoencapsulation of phase change materials for advanced thermal energy storage systems.

    Science.gov (United States)

    Shchukina, E M; Graham, M; Zheng, Z; Shchukin, D G

    2018-04-16

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes energy release/uptake.

  17. Experimental Research on Multi-source Solar Energy and Air Source Heat Pump System with Serpentine Tube Energy Storage Exchangers%蓄能型蛇形管太阳能——空气源复合热泵系统实验研究

    Institute of Scientific and Technical Information of China (English)

    陈杨华; 彭辉; 郭文帅; 李钰; 陈非凡

    2013-01-01

    蛇形管蓄能型太阳能——空气源复合热泵系统结合了空气源热泵技术、太阳能利用技术和蓄能技术三者的优点,是一种高效新型的热泵系统.在搭建好实验台后,通过实验分析了该系统在常规空气源热泵供热模式、蓄冷模式、取冷模式、蓄能热泵供热模式、边蓄热边供热模式下的性能特性.实验结果证明蓄能型蛇形管太阳能——空气源复合热泵系统运行高效、安全、稳定可靠.%Multi-source solar energy and air source heat pump system with serpentine tube energy storage exchanges combine the advantages of air source heat pump, solar energy utilization technology and energy storage technology. It is a new high-efficiency heat pump system. After setting up experimental station, the performance characteristics of the system is analysed when conventional air source heat pump heating mode, cold storage mode, cold release mode, heating mode using heat storage, heat storage and heat release using solar heat pump mode is operated. Experimental results show that the system is efficient, safe, stable and reliable.

  18. On energy optimisation in multipurpose batch plants using heat storage

    CSIR Research Space (South Africa)

    Majozi, T

    2010-10-01

    Full Text Available time interval. Indirect heat integration makes use of a heat transfer fluid for storing energy and allows heat integration of processes regardless of the time interval. This is possible as long as the source process takes place before the sink process...

  19. Daily heat storage for a concentrating solar cooker; Tages-Hitzespeicher fuer einen konzentrierenden Solarkocher

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, M.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project that concerned the development and testing of two storage heating elements for automatic parabolic solar cookers. The first variant is made of solid aluminium and stores sensible heat; the second one is filled with tin and uses the latent heat of the solid-liquid phase-change of the tin as well as the storage of sensible heat, too. Various materials for use in heat storage - metals and salts - were examined. Tin was finally chosen for further experiments. The author concludes that the storage units work well, whereby the tin variant was more flexible for changing-weather conditions because of its latent heat storage. Because of their weight, however, the mobile use of the units is restricted. Suggestions for further development are made, including the integration of the units in the bases of solar cookers and the simplification of their construction. The article also reviews the development and application of concentrating-mirror solar cooking systems in India, where large-scale use can be found.

  20. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    OpenAIRE

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-01-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from “purely” sensible to “hybrid” sensible/ thermochemical one, via coating...

  1. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO 2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO 2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  2. Special file on the storage of energies

    International Nuclear Information System (INIS)

    Signoret, Stephane; Kim, Caroline; Bohlinger, Philippe; Petitot, Pauline; Mary, Olivier; Guilhem, Jean

    2017-01-01

    After brief presentations of current research and industrial activities, a first article comments the new impetus of storage technologies and projects due to regulatory and legal evolutions associated with the French law on energy transition. Self-consumption and flexibility systems in distribution networks are practical factors of this evolution. Benefits provided by energy storage are notably outlined. The next articles present several examples: a decentralised heat storage in Brest, a flywheel plant by Levisys. An article then discusses the technological and commercial aspects of the battle in this sector for the French majors (EDF, Engie, Total). An article comments the emergence and development of a range of solutions for energy storage in case of self-consumption. The next article briefly presents the Elsa project (financed by the EU) which gives a second life to electric vehicle batteries by developing an energy storage and control solution for professionals. A system developed by French researchers is briefly presented: it aims at producing electricity, at storing it, and at using it to supply isolated autonomous systems. The idea developed in a published study is then discussed: to use electric vehicle batteries to store the intermittent energy produced by renewable sources. The last article comments the integration by Enedis of intelligent devices into the grid

  3. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  4. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  5. Energy efficiency ground-source energy system, Environmental Protection Law, article 'Heat and cold storage, value for money'; Energierendement bodemenergiesysteem, Wet milieubeheer, artikel 'WKO, waar voor je geld'

    Energy Technology Data Exchange (ETDEWEB)

    Lambregts, E.G.M.; Teunissen, P.O.M.; Beukenhorst, E.

    2013-01-15

    Upscaling of ground-source energy systems can contribute to heat and cold storage systems and thus reduce CO2 emission for the Amsterdam municipality. Based on the results of the project 'Heat and cold storage; Value for money' a proposal was made to the Dutch Ministry of Infrastructure and Environment to include a regulation 'energy efficiency heat and cold storage' in the Environmental Protection Law [Dutch] In het kader van de CO2 doelstelling van Amsterdam om 40% CO2 te reduceren in 2025 t.o.v. van 1990 wordt de verdere opschaling van de techniek bodemenergiesysteem gezien als een techniek die in belangrijke mate kan bijdragen aan de pijler 'transitie duurzame warmte en koude'. Op landelijk en gemeentelijk niveau werd gesignaleerd dat (open) bodemenergiesystemen in de exploitatiefase veelal onvoldoende functioneerden. In dit rapport wordt op basis van de resultaten van het project 'WKO, waar voor je geld' een voorstel aan het Ministerie van I en M gedaan om een voorschrift 'energierendement wko' op te nemen in het Activiteitenbesluit Wet milieubeheer.

  6. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    Science.gov (United States)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  7. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    2017-01-01

    Sorption heat storage has the potential to store large amounts of thermal energy from renewables and other distributed energy sources. This article provides an overview on the recent advancements on long-term sorption heat storage at material- and prototype- scales. The focus is on applications

  8. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  9. Variable mass energy transformation and storage (VMETS) system using NH3-H2O as working fluid, Part 1: Modeling and simulation under full storage strategy

    International Nuclear Information System (INIS)

    Xu, S.M.; Zhang, L.; Liang, J.; Du, R.

    2007-01-01

    This paper presents a new variable mass energy transformation and storage (VMETS) system using ammonia-water solution (NH 3 -H 2 O) as working fluid. The system has a wide range of working temperature. It can be used to shift load with a diurnal energy storage system for cooling in summer, heating in winter, or hot water supplying all year long. It can also be used to store refrigerating energy for various industrial and commercial applications. The key to the system is to regulate the chemical potential by controlling the refrigerant mass fraction in the working fluid with respect to time. As a result, by using a solution storage tank and an ammonia storage tank, the energy transformation and storage can be performed at the desirable time to provide low cost cooling and heating efficiently. As the first part of our study, this paper presents the principle and dynamic models of the VMETS system and performs the numerical simulation when the system works in the cooling and heating modes, respectively, under the full storage strategy. The simulation predicts the dynamic behavior of the VMETS system under various operation conditions and shows that the VMETS system for cooling in summer is also suitable for heating in winter or for hot water supplying all year long by adjusting the initial solution concentration. The energy conversion efficiency of the system is larger than that of conventional thermal energy storage (TES) systems, especially under the condition of system operation for heating or hot water supplying in the heating mode. These simulation results are very helpful for detailed design and control of the system. To investigate the system performance under the partial storage strategy, modeling and numerical simulation will be performed in a subsequent paper

  10. Development of a thermal storage system based on the heat of adsorption of water in hygroscopic materials

    NARCIS (Netherlands)

    Wijsman, A.J.T.M.; Oosterhaven, R.; Ouden, C. den

    1979-01-01

    A thermal storage system based on the heat of adsorption of water in hygroscopic materials has been studied as a component of a solar space heating system. The aim of this project is to decrease the storage volume in comparison with a rock-bed storage system by increasing the stored energy density.

  11. Development of road hydronic snow-ice melting system with solar energy and seasonal underground thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q.; Liu, Y.; Ma, C.Q.; Li, M.; Huang, Y.; Yu, M. [Jilin Univ., Changchun (China). Dept. of Thermal Energy Engineering; Liu, X.B. [Climate Master Inc., OK (United States)

    2008-07-01

    Snow and ice melting technologies that used thermal energy storage were explored. The study included analyses of solar heat slab, seasonal underground thermal energy storage, and embedded pipe technologies. Different road materials, roadbed construction methods, and underground rock and soil conditions were also discussed. New processes combining all 3 of the main technologies were also reviewed. Other thermal ice melting technologies included conductive concrete and asphalt; heating cables, and hydronic melting systems. Geothermal energy is increasingly being considered as a means of melting snow and ice from roads and other infrastructure. Researchers have also been focusing on simulating heat transfer in solar collectors and road-embedded pipes. Demonstration projects in Japan, Switzerland, and Poland are exploring the use of combined geothermal and solar energy processes to remove snow and ice from roads. Research on hydronic melting technologies is also being conducted in the United States. The study demonstrated that snow-ice melting energy storage systems will become an important and sustainable method of snow and ice removal in the future. The technology efficiently uses renewable energy sources, and provides a cost-effective means of replacing or reducing chemical melting agents. 33 refs., 1 fig.

  12. PBMR spent fuel bulk dry storage heat removal - HTR2008-58170

    International Nuclear Information System (INIS)

    De Wet, G. J.; Dent, C.

    2008-01-01

    A low decay heat (implying Spent Fuel (SF) pebbles older than 8-9 years) bulk dry storage section is proposed to supplement a 12-tank wet storage section. Decay heat removal by passive means must be guaranteed, taking into account the fact that dry storage vessels are under ground and inside the building footprint. Cooling takes place when ambient air (drawn downwards from ground level) passes on the outside of the 6 tanks' vessel containment (and gamma shielding), which is in a separate room inside the building, but outside PBMR building confinement and open to atmosphere. Access for loading/unloading of SF pebbles is only from the top of a tank, which is inside PBMR building confinement. No radioactive substances can therefore leak into atmosphere, as vessel design will take into account corrosion allowance. In this paper, it is shown (using CFD (Computational Fluid Dynamics) modelling and analytical analyses) that natural convection and draught induced flow combine to remove decay heat in a self-sustaining process. Decay heat is the energy source, which powers the draught inducing capability of the dry storage modular cell system: the more decay heat, the bigger the drive to expel heated air through a higher outlet and entrain cool ambient air from ground level to the bottom of the modular cell. (authors)

  13. Modeling and Control of Heat Networks with Storage : the Single-Producer Multiple-Consumer Case

    NARCIS (Netherlands)

    Scholten, Tjeert Wobko; De Persis, Claudio; Tesi, Pietro

    2015-01-01

    In heat networks, energy storage is a viable approach to balance demand and supply. In such a network, a heat carrier is used in the form of water, where heat is injected and extracted through heat exchangers. The network can transport and store heated water in stratification tanks to shift loads in

  14. Modeling and control of heat networks with storage: The single-producer multiple-consumer case.

    NARCIS (Netherlands)

    Scholten, Tjardo; De Persis, Claudio; Tesi, Pietro

    2015-01-01

    In heat networks, energy storage is a viable approach to balance demand and supply. In such a network, a heat carrier is used in the form of water, where heat is injected and extracted through heat exchangers. The network can transport and store heated water in stratification tanks to shift loads in

  15. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  16. Analysis of the Storage Capacity in an Aggregated Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergård

    2015-01-01

    Energy storages connected to the power grid will be of great importance in the near future. A pilot project has investigated more than 100 single family houses with heat pumps all connected to the internet. The houses have large heat capacities and it is possible to move energy consumption to sui...... (scheduling) algorithm. The properties of this scheduling are investigated in the paper especially the flexibility and ability to trade on the intra-day regulating market is in focus....

  17. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    International Nuclear Information System (INIS)

    Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil

    2005-01-01

    Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics

  18. Development of a revolving drum reactor for open-sorption heat storage processes

    International Nuclear Information System (INIS)

    Zettl, Bernhard; Englmair, Gerald; Steinmaurer, Gerald

    2014-01-01

    To evaluate the potential of an open sorption storage process using molecular sieves to provide thermal energy for space heating and hot water, an experimental study of adsorption heat generation in a rotating reactor is presented. Dehydrated zeolite of the type 4A and MSX were used in form of spherical grains and humidified room air was blown through the rotating bed. Zeolite batches of about 50 kg were able to generate an adsorption heat up to 12 kWh and temperature shifts of the process air up to 36 K depending on the inlet air water content and the state of dehydration of the storage materials. A detailed study of the heat transfer effects, the generated adsorption heat, and the evolving temperatures show the applicability of the reactor and storage concept. - Highlights: • Use of an open adsorption concept for domestic heat supply was proved. • A rotating heat drum reactor concept was successfully applied. • Zeolite batches of 50 kg generated up to 12 kWh adsorption heat (580 kJ/kg). • Temperature shift in the rotating material bed was up to 60 K during adsorption

  19. Installation with energy storage and heat pump at Cisco Campus; Installatie met energieopslag en warmtepomp bij Cisco Campus

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    This article briefly discusses a study of options for efficient energy generation at the headquarters of internet company Cisco. The study shows that an installation with long-term energy storage and heat pumps provides the most optimal situation from an economic and energetic point of view. [Dutch] De resultaten van een onderzoek naar de mogelijkheden van efficiente energieopwekking in het hoofdkantoor van het internetbedrijf Cisco worden kort besproken. Uit de studie is naar voren gekomen dat een installatie met lange termijn energieopslag en warmtepompen economisch en energetisch gezien een optimale situatie geeft.

  20. Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials

    OpenAIRE

    Gutiérrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez Aseguinolaza, Javier; Barreneche Güerisoli, Camila; Calvet, Nicolas; Py, Xavier; Fernández Renna, Ana Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-01-01

    Today, one of the biggest challenges our society must face is the satisfactory supply, dispatchability and management of the energy. Thermal Energy Storage (TES) has been identified as a breakthrough concept in industrial heat recovery applications and development of renewable technologies such as concentrated solar power (CSP) plants or compressed air energy storage (CAES). A wide variety of potential heat storage materials has been identified depending on the implemented TES method: sensibl...

  1. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  2. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  3. Solar energy plant as a complement to a conventional heating system: Measurement of the storage and consumption of solar energy

    Science.gov (United States)

    Doering, E.; Lippe, W.

    1982-08-01

    The technical and economic performances of a complementary solar heating installation for a new swimming pool added to a two-floor dwelling were examined after measurements were taken over a period of 12 months and analyzed. In particular, the heat absorption and utilization were measured and modifications were carried out to improve pipe insulation and regulation of mixer valve motor running and volume flow. The collector system efficiency was evaluated at 15.4%, the proportion of solar energy of the total consumption being 6.1%. The solar plant and the measuring instruments are described and recommendations are made for improved design and performance, including enlargement of the collector surface area, further modification of the regulation system, utilization of temperature stratification in the storage tanks and avoiding mutual overshadowing of the collectors.

  4. Marketing research on heat storage in aquifers. Systems, applications and combinations with heat generating techniques, and sector potentials. Marktorientatie warmte-opslag in aquifers. Systemen, toepassingen en combinaties met warmte-producerende technieken, deelsector potentielen

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The market research on the title subject concentrates on the possible applications of seasonal heat storage for space heating in buildings (not industrial). Some selected heat storage systems in aquifers were analyzed with regard to the state of the technology, minimal storage capacity and the price/performance ratio. Then a number of co binations with bridging techniques has been investigated: combinations with cogeneration systems, heat pumps or solar energy systems. Finally the potentials of energy conservation in non-industrial buildings for small-scale and large-scale heat storage are listed. 6 figs., 16 refs., 24 tabs., 9 apps.

  5. HEAT STORAGE SYSTEM WITH PHASE CHANGE MATERIALS IN COGENERATION UNITS: STUDY OF PRELIMINARY MODEL

    Directory of Open Access Journals (Sweden)

    Claudio Caprara

    2008-12-01

    Full Text Available The continuous increase in the mechanization of farm activities, the rise in fuel prices and the environmental aspects concerning gas emissions are the main driving forces behind efforts toward more effective use of renewable energy sources and cogeneration systems even in agricultural and cattle farms. Nevertheless these systems are still not very suitable for this purpose because of their little flexibility in following the changing energy demand as opposed to the extremely various farm load curves, both in daytime and during the year. In heat recovery systems, the available thermal energy supply is always linked to power production, thus it does not usually coincide in time with the heat demand. Hence some form of thermal energy storage (TES is necessary in order to reach the most effective utilization of the energy source. This study deals with the modelling of a packed bed latent heat TES unit, integrating a cogeneration system made up of a reciprocating engine. The TES unit contains phase change materials (PCMs filled in spherical capsules, which are packed in an insulated cylindrical storage tank. Water is used as heat transfer fluid (HTF to transfer heat from the tank to the final uses, and exhausts from the engine are used as thermal source. PCMs are considered especially for their large heat storage capacity and their isothermal behaviour during the phase change processes. Despite their high energy storage density, most of them have an unacceptably low thermal conductivity, hence PCMs encapsulation technique is adopted in order to improve heat transfer. The special modular configuration of heat exchange tubes and the possibility of changing water flow through them allow to obtain the right amount of thermal energy from the tank, according to the hourly demand of the day. The model permits to choose the electrical load of the engine, the dimensions of the tank and the spheres, thickness and diameter of heat exchanger and the nature of

  6. Thermodynamic characteristics of a novel supercritical compressed air energy storage system

    International Nuclear Information System (INIS)

    Guo, Huan; Xu, Yujie; Chen, Haisheng; Zhou, Xuezhi

    2016-01-01

    Highlights: • A novel supercritical compressed air energy storage system is proposed. • The energy density of SC-CAES is approximately 18 times larger than that of conventional CAES. • The characteristic of thermodynamics and exergy destruction is comprehensively analysed. • The corresponding optimum relationship between charging and discharging pressure is illustrated. • A turning point of efficiency is indicated because of the heat transfer of crossing the critical point. - Abstract: A novel supercritical compressed air energy storage (SC-CAES) system is proposed by our team to solve the problems of conventional CAES. The system eliminates the dependence on fossil fuel and large gas-storage cavern, as well as possesses the advantages of high efficiency by employing the special properties of supercritical air, which is significant for the development of electrical energy storage. The thermodynamic model of the SC-CAES system is built, and the thermodynamic characters are revealed. Through the exergy analysis of the system, the processes of the larger exergy destruction include compression, expansion, cold storage/heat exchange and throttle. Furthermore, sensitivity analysis shows that there is an optimal energy releasing pressure to make the system achieve the highest efficiency when energy storage pressure is constant. The efficiency of SC-CAES is expected to reach about 67.41% when energy storage pressure and energy releasing pressure are 120 bar and 95.01 bar, respectively. At the same time, the energy density is 18 times larger than that of conventional CAES. Sensitivity analysis also shows the change laws of system efficiency varying with other basic system parameters. The study provides support for the design and engineering of SC-CAES.

  7. Scenario simulation based assessment of subsurface energy storage

    Science.gov (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  8. Development of heat pump technology in eco-energy city project

    Energy Technology Data Exchange (ETDEWEB)

    Omata, Tomio [New Energy Development Organization (Japan); Ogisu, Yoshihiro [Office of Eco-Energy City Project, Energy Conservation Center (Japan)

    1999-07-01

    In the New Sunshine Project conducted by MITI Japan, Eco-Energy City-Project covers the research area of utilization of industrial and municipal waste heat. For the further utilization of waste heat, several research programs are carried out for recovery and conversion of waste heat, transportation and storage of waste heat and final use of rather low temperature heat transported. Various types of heat driven heat pumps are developed in the Eco-Energy City Project. Concept of the Project is to utilize industrial and municipal waste heat for the city where energy demand is increasing. These heat pumps will contribute for the reduction of CO{sub 2} emission. (orig.)

  9. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  10. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  11. Impacts of convection on high-temperature aquifer thermal energy storage

    Science.gov (United States)

    Beyer, Christof; Hintze, Meike; Bauer, Sebastian

    2016-04-01

    Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when

  12. Study of the potential of energy storage - Investigation report - Synthesis

    International Nuclear Information System (INIS)

    Renaud, Arnaud; Fournie, Laurent; Girardeau, Pierre; Chammas, Maxime; Tarel, Guillaume; Chiche, Alice; De Freminville; Pierre; Lacroix, Olivier; Rakotojaona, Loic; Payen, Luc; Riu, Delphine; Kerouedan, Anne-Fleur

    2013-01-01

    The objective of this study is to assess, for France and its overseas territories, the potential of energy storage by 2030, and to identify the technological sectors which are the most economically relevant. A global surplus has been calculated, as well as the benefit from additional storage capacities. This benefit has been compared with cost predictions by 2030 for different storage technologies. Economically viable powers and types of energy storages are assessed with respect to different scenarios, and impacts in terms of associated jobs are assessed. The document reports and discusses the surplus assessment for the community, describes the various services provided by energy storage, presents the modelling scenarios and hypotheses, discusses the main results of valorisation for the community, presents the various energy storage technologies (gravity, thermodynamic, electrochemical, electrostatic, inertial, latent thermal, thermo-chemical, and power to gas), presents business models and deployment potential for different applications (mass storage of electricity in France, electricity storage in a non-connected area, decentralised electricity storage as a response to grid congestion, valorisation of an electricity storage, thermal storage on a heat network, cold storage, management of diffuse demand of hot water), and discusses implications regarding employment

  13. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  14. Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials

    International Nuclear Information System (INIS)

    Tessier, Michael J.; Floros, Michael C.; Bouzidi, Laziz; Narine, Suresh S.

    2016-01-01

    Adiabatic compressed air energy storage is an emerging energy storage technology with excellent power and storage capacities. Currently, efficiencies are approximately 70%, in part due to the issue of heat loss during the compression stage. An exergy analysis is presented on a novel adiabatic compressed air energy storage system design utilizing a cascade of PCMs (phase change materials) for waste heat storage and recovery. The melting temperatures and enthalpies of the PCMs were optimized for this system and were shown to be dependent on the number of PCMs, the number of compression stages, and the maximum compression ratio. Efficiencies of storage and recovery using this approach are predicted to be as high as 85%, a 15% increase over current designs which do not incorporate PCMs. - Highlights: • A compressed air energy storage plant using phase change materials is proposed. • Increasing number of phase change materials increases roundtrip exergy efficiency. • A thermodynamic model allows melting points and latent heats required to be predicted.

  15. Thermal contact resistance in carbon nanotube enhanced heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Nedea, S.V.; Rindt, C.C.M.; Smeulders, D.M.J.

    2015-01-01

    Solid-liquid phase change is one of the most favorable means of compact and economical heat storage in the built environment. In such storage systems, the vast available solar heat is stored as latent heat in the storage materials. Recent studies suggest using sugar alcohols as seasonal heat storage

  16. Research opportunities in salt hydrates for thermal energy storage

    Science.gov (United States)

    Braunstein, J.

    1983-11-01

    The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.

  17. Energy storage

    International Nuclear Information System (INIS)

    Odru, P.

    2010-01-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  18. Thermoelectric cooling in combination with photovoltaics and thermal energy storage

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2017-01-01

    Full Text Available The article deals with the use of modern technologies that can improve the thermal comfort in buildings. The article describes the usage of thermal energy storage device based on the phase change material (PCM. The technology improves the thermal capacity of the building and it is possible to use it for active heating and cooling. It is designed as a “green technology” so it is able to use renewable energy sources, e.g., photovoltaic panels, solar thermal collectors, and heat pump. Moreover, an interesting possibility is the ability to use thermal energy storage in combination with a photovoltaic system and thermoelectric coolers. In the research, there were made measurements of the different operating modes and the results are presented in the text.

  19. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  20. Analysis of energy saving performance for household refrigerator with thermal storage of condenser and evaporator

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Ding, Miao; Yuan, Xu-dong; Han, Bing-Chuan

    2017-01-01

    Highlights: • A novel refrigerator with both HSC and CSE is proposed. • The operational characteristics of novel refrigerator is analyzed. • The comparison of CSE, HSC and DES refrigerators is analyzed. • DES refrigerator has a largest off-time to on-time ratio of 4.3. • DES refrigerator has the best electrical energy saving performance (32%). - Abstract: The heat transfer performances of evaporators and condensers significantly affect the efficiency of household refrigerators. For enhancing heat transfer of the condensers and evaporators, a novel dual energy storage (DES) refrigerator with both heat storage condenser (HSC) and cold storage evaporator (CSE) is proposed. The performance comparison of three kinds of energy storage refrigerators: HSC refrigerator, CSE refrigerator and DES refrigerator is analyzed by establishing dynamic simulation models. According to the simulation results, the DES refrigerator combines the advantage of HSC refrigerator and CSE refrigerator, it has more balanced operational cycle and higher evaporation pressure and temperature. The DES refrigerator shows a best energy saving performance among the three energy storage refrigerators with largest off-time to on-time ratio of 4.3 and the electrical consumption saving can reach 32%, which is greater than the sum (28%) of the other two kinds of energy storage refrigerators.

  1. Energy storage

    Energy Technology Data Exchange (ETDEWEB)

    1962-07-01

    The papers on energy storage problems, given to the United Nations Conference on New Sources of Energy, Rome, 1961, are reviewed. Many aspects of the subject are discussed: comparisons between the costs of storing energy in batteries and in fuel cells; the use, efficiency and expected improvement of fuel cells; the principles involved in the chemical conversion of solar energy to chemical energy; the use of metal hydride fuel cells; the chemical conversion and storage of concentrated solar energy for which the solar furnace is used for photochemical reactions. Finally, the general costs of storing energy in any form and delivering it are analyzed with particular reference to storage batteries and fuel cells.

  2. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  3. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  4. Feasibility study on conversion and storage of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Senghaphan, W; Tunsiri, P; Trivijitkasem, P; Ratanathammaphan, K

    1982-01-01

    A study has been conducted on the energy conversion system from solar energy to mechanical energy and on the efficiency of energy storage by an ordinary battery. The conversion system makes use of a thermal cycle, that is to say, the solar energy is collected as heat, and this heat makes suitable working substances evaporate into vapor with volume and pressure which can be used to drive the turbine resulting in mechanical energy. The vapor which passes through the turbine will have reduced pressure and reduced temperature and will be recondensed into liquid after passing through a suitable radiator. This liquid can be pumped back into the hot part of the conversion system with little energy. It is found by this study that the turbine could be operated by using acetone as working substance with a 80-90/sup 0/C source of heat. In the energy conversion system from solar energy to electrical energy, it is essential to provide for an energy storage, so that energy can be used in the absence of sunshine. To store energy by using a batter is one of the convenient methods. Therefore the efficiency of the batteries has been studied. Owing to incompleteness of the researched system, a conventional DC power supply has been used for charging the batteries. It is found that the efficiency of the charging and discharging cycle of batteries is about 40-60%.

  5. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying...... an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly...... to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also...

  6. Latent energy storage with salt and metal mixtures for solar dynamic applications

    Science.gov (United States)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  7. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development

    International Nuclear Information System (INIS)

    Yuan, Yanping; Gao, Xiangkui; Wu, Hongwei; Zhang, Zujin; Cao, Xiaoling; Sun, Liangliang; Yu, Nanyang

    2017-01-01

    The traditional cooling methods cannot meet the requirements of safety, stability, reliability and no-power at the same time under some special circumstances. In this study, a new coupled cooling method of Latent Heat Thermal Energy Storage (LHTES) combined with Pre-cooling of Envelope (PE) is proposed and the numerical model of the coupled cooling method is developed. In the current study, a refuge chamber is selected as a case study. A semi-analytical method is used to analyze the cold storage performance of the Surrounding Rock (SR). Afterwards, a numerical model of the coupled cooling system, which takes the heat source, SR, Phase Change Material (PCM) and air heat transfer into consideration, is further established. The study identified that the simplified semi-analytical calculation formula with the diagram of the cold storage quantity of SR are very helpful for engineering calculation. The influence of the Fourier and Biot number on the cold storage capacity of SR can be easily analyzed. In addition, the whole-field model of the coupled cooling system is completely developed based on the PCM unit. - Highlights: • A new coupled cooling method that combines LHTES with PE is proposed. • This method can be applicable to a high-temperature and no-power circumstance. • The simplified calculation formula of the cold storage quantity of SR is given. • An efficient simulation model of the coupled cooling system is established.

  8. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  9. Economic analyses of central solar heating systems with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D; Keinonen, R.S.

    1986-10-01

    Economic optimization of large active community solar heating systems with annual thermal storage is discussed. The economic evaluation is based on a thermal performance simulation model employing one hour time steps and on detailed up-date data. Different system configurations and sub-system sizes have been considered. For Northern European weather conditions (60/sup 0/N) and with at least 400-500 residential units, the life-cycle cost of delivered solar heat was 6.5-7.5 c/kWh for 50% fraction of non-purchased energy. For a solar fraction of 70%, the solar energy price would be 8 c/kWh.

  10. Modeling of greenhouse with PCM energy storage

    International Nuclear Information System (INIS)

    Najjar, Atyah; Hasan, Afif

    2008-01-01

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 deg. C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse

  11. Modeling of greenhouse with PCM energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Atyah [Computation Science, Birzeit University, Birzeit (PS); Hasan, Afif [Mechanical Engineering Department, Birzeit University, Birzeit (PS)

    2008-11-15

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse. (author)

  12. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  13. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  14. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs

    DEFF Research Database (Denmark)

    Major, Márton; Poulsen, Søren Erbs; Balling, Niels

    2018-01-01

    Heat storage capabilities of deep sedimentary geothermal reservoirs are evaluated through numerical model simulations. We combine storage with heat extraction in a doublet well system when storage phases are restricted to summer months. The effects of stored volume and annual repetition on energy...... recovery are investigated. Recovery factors are evaluated for several different model setups and we find that storing 90 °C water at 2500 m depth is capable of reproducing, on average 67% of the stored energy. In addition, ambient reservoir temperature of 75 °C is slightly elevated leading to increased...... efficiency. Additional simulations concerning pressure build-up in the reservoir are carried out to show that safety levels may not be reached. Reservoir characteristics are inspired by Danish geothermal conditions, but results are assumed to have more general validity. Thus, deep sedimentary reservoirs...

  15. Using Heat Pump Energy Storages in the Power Grid

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2011-01-01

    The extensive growth of installed wind energy plants lead to increasing balancing problems in the power grid due to the nature of wind fields and diurnal variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction...... and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  16. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  17. Swiss energy research programme on solar heat and storage for 2008-2011; Programme de recherche energetique. Chaleur solaire et stockage pour la periode 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Hadorn, J.-C.

    2009-07-15

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the research programme on solar heat and heat storage for the years 2008 - 2011. This document presents some aspects of the solar thermal market in 2007, summarizes the main solar thermal technologies for buildings and sketches the main topics of the 'Solar Heat and Heat Storage' research programme. Research and development issues looked at focus mainly on the heating and cooling of buildings. The research and development issues for solar thermal technologies during the period 2008-2011 include improved performance and durability of solar collectors and components, new coatings for solar collectors based on nano-materials as well as simplified and standardised systems for solar heating and cooling. Building Integration and integration in existing heating systems and long-term work with a focus on new materials for storing heat for use in residential buildings are discussed. Also, calculation methods and simulation tools are examined. Pilot and demonstration projects are reviewed.

  18. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NARCIS (Netherlands)

    Duan, Z.; Bastiaanssen, W.G.M.

    2017-01-01

    The heat storage changes (Qt) can be a significant component of the energy balance in lakes, and it is important to account for Qt for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Qt has been often neglected in

  19. Technical and economic feasibility of thermal energy storage. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, D.R.

    1976-02-01

    This study provides a first-look at the system elements involved in: (1) creating a market; (2) understanding and deriving the requirements; (3) performing analytical effort; (4) specifying equipment; and (5) synthesizing applications for a thermal energy storage (TES) function. The work reviews implicated markets, energy consumption patterns, TES technologies, and applications. Further, several concepts are developed and evaluated in some detail. Key findings are: (1) there are numerous technical opportunities for TES in the residential and industrial market sectors; (2) apart from sensible heat storage and transfer, significant R and D is required to fully exploit the superior heat densities of latent heat-based TES systems, particularly at temperatures above 600/sup 0/F; (3) industrial energy conservation can be favorably impacted by TES where periodic or batch-operated unit functions characterize product manufacturing processes, i.e. bricks, steel, and ceramics; and (4) a severe data shortage exists for describing energy consumption rates in real time as related to plant process operations--a needed element in designing TES systems.

  20. Exact solution of thermal energy storage system using PCM flat slabs configuration

    International Nuclear Information System (INIS)

    Bechiri, Mohammed; Mansouri, Kacem

    2013-01-01

    Highlights: • An exact solution of a latent heat storage unit (LHSU) consisting of several flat slabs was obtained. • The working fluid (HTF) circulating by forced convection between the slabs charges and discharges the storage unit. • The charging/discharging process is investigated for various HTF working conditions and different design parameters. - Abstract: An analytical investigation of thermal energy storage system (TESS) consisting of several flat slabs of phase change material (PCM) is presented. The working fluid (HTF) circulating on laminar forced convection between the slabs charges and discharges the storage unit. The melting and solidification of the PCM was treated as a radial one dimensional conduction problem. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the PCM container. The comparison between the present exact solution with the numerical predictions and experimental data available in literature shows good agreement. The charging/discharging process is investigated in terms of liquid–solid interface position, liquid fraction, total heat transmitted to the PCM and thermal storage efficiency for various HTF working conditions and different design parameters such as PCM slab length, fluid passage gap and thickness of PCM duct container

  1. Current status of and problems in ice heat storage systems contributing to improving load rate. Air conditioning system utilizing ice heat storage and building frame storage (Takenaka Corporation); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsu to kutai chikunetsu wo riyoshita kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y.; Yoshitake, Y. [Takenaka Corp., Osaka (Japan)

    1998-02-01

    Development was made on a new air conditioning system, `building frame heat storage air conditioning system`, which combines an ice heat storage system with a building frame heat storage. With the building frame heat storage system, a damper is installed on an indoor device to blow cold air from the air conditioner onto slabs on the upper floor during nighttime power generating period. Heat is stored in beams, pillars and walls, and the shell absorbs and dissipates heat during daytime. Since general office buildings consume primary energy at 22.8% for heat source and 26.9% for transportation, which is greater, a natural coolant circulation type air conditioning system was developed as an air conditioning system for the secondary side. This made the building frame heat regeneration possible for the first time. With regard to heat storage quantity and heat dissipation quantity, the quantity of heat which can be stored during nighttime (10 hours) and dissipated during air conditioning using period in daytime (10 hours) is 80% of the stored heat quantity. This system was installed in a building in Kobe City. As a result of the measurement, it was found that indoor heat load reduction rate as a result of using the building frame heat storage was 24% or more in summer and 80% or more in winter. 7 figs., 2 tabs.

  2. Annual experimental results on heat and cool storage modes for natural energy autonomous house, HARBEMAN house; Shizen energy jiritsu house (HARBEMAN house) no chikunetsu chikurei mode no jissoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T; Fujino, T; Suzuki, M [Tohoku University, Sendai (Japan)

    1997-11-25

    Outlined herein is performance of the solar system, followed for a year, installed in a solar house (HARBEMAN HOUSE) built in 1996 in City of Sendai. The house is equipped, on the roof, with a 30.42m{sup 2} wide solar collector on the south and sky radiator on the north. They are connected to a heat-insulated tank (31m{sup 3}) installed underground, storing hot or cool water which carries energy for heating/air-conditioning and hot water. The solar system operates in a long-term hot or cool water storage mode. In the hot water storage mode, the solar collector is connected to the underground main tank, where pumped-up water heated by solar heat is stored to be supplied as hot water. Heat collected is low during the December-February period, and recovered in March. In the cool water storage mode, the radiator is connected to the underground main tank, where pumped-up water is cooled by radiation and stored to be supplied to a fan coil unit in each room for air-conditioning. The recorded lowest temperature of water in the tank is 5.1degC. No air-conditioning load is observed, on account of the unseasonal weather. 3 refs., 10 figs., 2 tabs.

  3. Trial production of ceramic heat storage unit and study on thermal properties and thermal characteristics of the heat storage unit. Mixed salts of Na2CO3, MgCl2 and CaCl2 as heat storage medium

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    1998-12-01

    Heat storage technique of high temperature and high density latent heat can be applied to an accumulator of heat generated by nuclear power plant in the night and to a thermal load absorber. For the practical use of the heat storage technique, it is important to improve heat exchange characteristics between heat storage medium, such as molten salts, and heat transfer fluid because of low thermal conductivity of the molten salts, to improve durability among molten salt and structure materials and to develop the molten salt with stable thermal properties for a long period. Considering the possibility for the improvement of heat exchange characteristics of phase change heat storage system by absorbing molten salt in porous ceramics with high thermal conductivity, high temperature proof and high resistance to corrosion, several samples of the ceramics heat storage unit were made. Basic characteristics of the samples (strength, thermal properties, temperature characteristics during phase change) were measured experimentally and analytically to study the utility and applicability of the samples for the heat storage system. The results show that the heat storage unit should be used in inactive gas condition because water in the air absorbed in the molten salts would yield degeneration of properties and deterioration of strength and that operation temperature should be confined near fusion temperature because some molten salts would be vaporized and mass would be decreased in considerable high temperature. The results also show that when atmospheric temperature changes around the melting temperature, change in ceramic temperature becomes small. This result suggests the possibility that ceramic heat storage unit could be used as thermal load absorber. (J.P.N.)

  4. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  5. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  6. Transportation over long distance and thermal energy storage, coupling with energetic valuation processes from waste. State of art. Extended abstract

    International Nuclear Information System (INIS)

    Megret, O.; Bequet, L.; Manificat, A.; Weber, C.

    2011-12-01

    This study aims, on one hand, to realize a state of art about over long distance transport and heat energy storage and, on the other hand, to examine their coupling with waste valuation systems. After reminding the adequate context of development with those solutions and too showing the importance of the stake linked to the current work, we first expose the introductive elements in terms of storage and heat energy transport. The second chapter deals with the description of some materials, equipment and systems concerning heat storage energy. Afterward, the over long distance heat transport systems are detailed in the third chapter. In the fourth chapter, it is about waste valuation techniques and heat energy potentials users. The fifth chapter sums up the different techniques of storage and heat transport that are applicable to waste field according to the appropriate sector. Finally, the sixth chapter goes about 3 case-works in 3 fields: housing/commercial, industrial laundry and high temperature industry (steel industry). The purpose is to determine the implementation feasibility of the different techniques of storage and waste heat transport. (authors)

  7. Effectiveness of solar heating systems for the regeneration of adsorbents in recessed fruit and vegetable storages

    International Nuclear Information System (INIS)

    Khuzhakulov, S.M.; Uzakov, G.N.; Vardiyashvili, A.B

    2013-01-01

    A new method for the regeneration of adsorbents using solar heating systems is proposed. It provides energy saving through the control of the gas composition and humidity in recessed fruit and vegetable storages. The effectiveness of solar heating systems, such as a 'hot box' for the regeneration of adsorbents in fruit and vegetable storages is shown. (author)

  8. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  9. EXPERIMENTAL INVESTIGATION OF HEAT STORAGE CHARACTERISTIC OF UREA AND BORAX SALT GRADIENT SOLAR PONDS

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2006-03-01

    Full Text Available Salt gradient solar ponds are simple and low cost solar energy system for collecting and storing solar energy. In this study, heat storage characteristic of urea and borax solutions in the solar pond were examined experimentally. Establishing density gradients in different concentration, variations in the temperature and density profiles were observed in four different experiments. Maximum storage temperatures were measured as 28ºC and 36 ºC for the ponds with urea and borax solution, respectively. The temperature difference between the bottom and the surface of the pond were measured as 13 ºC for urea and 17 ºC for borax- solutions. According to these results, heat storage characteristic of the solar pond with borax solution was found to be better than urea solution.

  10. Analysis of a thermal energy storage system for air cooling–heating application through cylindrical tube

    International Nuclear Information System (INIS)

    Anisur, M.R.; Kibria, M.A.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C.

    2013-01-01

    Highlights: • Some design parameters of TES system for air cooling–heating application are studied. • Allowable inner radius and thickness of the tube for air flow should be considered. • Better COP is observed by decreasing the PCM container diameter. - Abstract: In order to reduce building energy consumption, thermal energy storage (TES) system has been explored as an alternative solution for air cooling–heating application. Different types of phase change materials (PCMs) along with the different geometries of TES system have been investigated for this application. In this work, a theoretical model was used to analyse the TES system for air cooling–heating application. The heat transfer phenomena in a phase change material (PCM) outside a double wall circular tube with heat transfer fluid (HTF) as air inside the tube were studied. Potassium fluoride tetrahydrate was used as a PCM for the TES system. Laminar forced convection with varying wall temperature was considered to analyse this system. Here, some important design parameters like inner radius and thickness of the tube for HTF flow were also investigated. It was found that an optimum inner radius and thickness of the tube should be considered to design a TES system. Since, significant change in outlet air temperature from the system was observed for reducing inner radius and increasing the thickness of the tube. The coefficients of performances (COPs) for cooling were found 8.79 and 7.20 for 15 mm and 25 mm inner radiuses of the PCM container respectively. Hence, the system can be optimized by reducing the volume of the PCM container. Furthermore, better COP was observed for higher inlet air temperature while the outlet air temperature was almost identical

  11. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  12. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  13. Optimum heat storage design for SDHWsystems

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    -in spiral. The other model is especially designed for low flow SDHWsystems based on a mantle tank.The tank design's influence on the thermal performance of the SDHWsystems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct......Two simulation models have been used to analyse the heat storage design's influence on the thermal performance of solar domestic hot water systems, SDHWsystems. One model is especially designed for traditional SDHWsystems based on a heat storage design where the solar heat exchanger is a built...

  14. Experimental investigation on AC unit integrated with sensible heat storage (SHS)

    Science.gov (United States)

    Aziz, N. A.; Amin, N. A. M.; Majid, M. S. A.; Hussin, A.; Zhubir, S.

    2017-10-01

    The growth in population and economy has increases the energy demand and raises the concerns over the sustainable energy source. Towards the sustainable development, energy efficiency in buildings has become a prime objective. In this paper, the integration of thermal energy storage was studied. This paper presents an experimental investigation on the performance of an air conditioning unit integrated with sensible heat storage (SHS) system. The results were compared to the conventional AC systems in the terms of average electricity usage, indoor temperature and the relative humidity inside the experimented room (cabin container). Results show that the integration of water tank as an SHS reduces the electricity usage by 5%, while the integration of well-insulated water tank saves up to 8% of the electricity consumption.

  15. Semi-transparent solar energy thermal storage device

    Science.gov (United States)

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  16. Heat storage in the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Heat storage in the Andaman Sea in upper 20 m, where a strong halocline seems to inhibit vertical heat transport has been evaluated and discussed in relation to the other parameters of heat budget. Estimation of annual evaporation gives rise to 137...

  17. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  18. Smart Energy Storages for Integration of Renewables in 100% Independent Energy Systems

    DEFF Research Database (Denmark)

    Krajačić, Goran; Duić, Neven; Mathiesen, Brian Vad

    2010-01-01

    leads to decreased security of energy supply, due to current geopolitical situation in which main sources of fossil fuels are in unstable regions and in which the competition for those resources from developing countries is growing. EU energy strategy, and a compatible Croatian strategy, is focused......, even less economically viable. Although there are a number of storage technologies, as chemical, potential or heat energy, not all those technologies are optimal for each energy system. The paper shows results of energy planning and several cases where use of smart energy storage system could help......Primary energy import dependence of the European Union is currently around 53%, and it is expected that in the next 20-30 years it will reach or surpass 70%. The situation in Croatia is similar. In 2007 import dependence was 53.1%, while for 2030 it is predicted to reach 72%. Such import dependence...

  19. Investigation of innovative thermochemical energy storage processes and materials for building applications

    OpenAIRE

    Aydin, Devrim

    2016-01-01

    In this study, it is aimed to develop an innovative thermochemical energy storage system through material, reactor and process based investigations for building space heating applications. The developed system could be integrated with solar thermal collectors, photovoltaic panels or heat pumps to store any excess energy in the form of heat for later use. Thereby, it is proposed to address the problem of high operational costs and CO2 emissions released by currently used fossil fuel based heat...

  20. Application of lithium orthosilicate for high-temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    Takasu, Hiroki; Ryu, Junichi; Kato, Yukitaka

    2017-01-01

    Highlights: • Li_4SiO_4/CO_2 system is proposed for use in chemical heat pump systems at 650 and 700 °C. • Li_4SiO_4/CO_2 system showed an enough cyclic reaction durability for 5 cycles. • The energy storage density of Li_4SiO_4 was estimated to be 750 kJ L"−"1 and 780 kJ kg"−"1. • It was demonstrated that Li_4SiO_4 could be used as a thermal heat storage material. - Abstract: A lithium orthosilicate/carbon dioxide (Li_4SiO_4/CO_2) reaction system is proposed for use in thermochemical energy storage (TcES) and chemical heat pump (CHP) systems at around 700 °C. Carbonation of Li_4SiO_4 exothermically produces lithium carbonate (Li_2CO_3) and lithium metasilicate (Li_2SiO_3). Decarbonation of these products is used for heat storage, and carbonation is used for heat output in a TcES system. A Li_4SiO_4 sample around 20 μm in diameter was prepared from Li_2CO_3 and SiO_2 using a solid-state reaction method. To determine the reactivity of the sample, Li_4SiO_4 carbonation and decarbonation experiments were conducted under CO_2 at several pressures in a closed reactor using thermogravimetric analysis. The Li_4SiO_4 sample’s carbonation and decarbonation performance was sufficient for use as a TcES material at around 700 °C. In addition, both reaction temperatures of Li_4SiO_4 varied with the CO_2 pressure. The durability under repeated Li_4SiO_4 carbonation and decarbonation was tested using temperature swing and pressure swing methods. Both methods showed that the Li_4SiO_4 sample has sufficient durability. These results indicate that the temperature for heat storage and heat output by carbonation and decarbonation, respectively, could be controlled by controlling the CO_2 pressure. Li_4SiO_4/CO_2 can be used not only for TcES but also in CHPs. The volumetric and gravimetric thermal energy densities of Li_4SiO_4 for TcES were found to be 750 kJ L"−"1 and 780 kJ kg"−"1, where the porosity of Li_4SiO_4 was assumed to be 59%. When the reaction system

  1. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  2. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  3. Effect of heat storage and fuel price on energy management and economics of micro CCHP cogeneration systems

    Energy Technology Data Exchange (ETDEWEB)

    Askari, I. Baniasad [University of Zabol, Zabol (Iran, Islamic Republic of); Sadegh, M. Oukati [University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Ameri, M. [Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

    2014-05-15

    In the present work, a typical combined cooling, heating and power (CCHP) system comprised of boiler, flat solar collectors, absorption chiller and heat storage tank was investigated. The described system was considered to supply the given electricity, cooling and heating demand of a residential building; with heating and cooling needs of 100 and 50 kW, respectively. To find the optimum hybrid configurations with high reliability, low costs, low fuel consumption and emissions, a computer program was provided by authors in FORTRAN language. Different fuel prices were considered in the present work. The results indicated that the optimal operation strategy changes with Boiler and NGG fuel prices while it also changes with increasing the number of solar collectors, heat storage capacity and consequently decreasing total annual emission.

  4. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  5. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    Science.gov (United States)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the

  6. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  7. Unregulated heat output of a storage heater

    OpenAIRE

    Lysak, Oleg Віталійович

    2017-01-01

    In the article the factors determining the heat transfer between the outer surfaces of a storage heater and the ambient air. This heat exchange is unregulated, and its definition is a precondition for assessing heat output range of this type of units. It was made the analysis of the literature on choosing insulating materials for each of the external surfaces of storage heaters: in foreign literature, there are recommendations on the use of various types of insulation depending on the type of...

  8. Buffer thermal energy storage for a solar Brayton engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  9. Sustainable energy with thermochemical storage; Duurzame energie met thermochemische opslag

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, M. [ECN Efficiency and Infrastructure, Petten (Netherlands)

    2010-03-15

    The Energy research Centre of the Netherlands ECN) foresees an important role for heat in sustainable construction of buildings. Using salt hydrates the surplus of heat can be stored in the summer which then can be used in the winter. By means of thermochemical storage natural gas for heating tap water or houses is no longer necessary. [Dutch] Energieonderzoek Centrum Nederland (ECN) ziet voor warmteopslag een belangrijke rol weggelegd in het duurzaam bouwen. Met behulp van zouthydraten kan de overtollige warmte in de zomer opgeslagen worden om deze in de winter weer vrij te maken. Met deze thermochemische opslag is in de nabije toekomst aardgas overbodig voor de verwarming van kraanwater of woonhuis.

  10. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  11. Quantifying induced effects of subsurface renewable energy storage

    Science.gov (United States)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  12. Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization

    DEFF Research Database (Denmark)

    Dominkovic, D. F.; Gianniou, P.; Münster, M.

    2018-01-01

    on the energy supply of district heating. Results showed that longer preheating time increased the possible duration of cut-off events. System optimization showed that the thermal mass for storage was used as intra-day storage. Flexible load accounted for 5.5%–7.7% of the total district heating demand...

  13. Heat pumps combined with cold storage; Warmtepompen gecombineerd met koudeopslag

    Energy Technology Data Exchange (ETDEWEB)

    Van Ingen, M.A. [Techniplan Adviseurs, Rotterdam (Netherlands)

    1999-09-01

    The architects of the new Nike head office building in Hilversum, Netherlands, opted for a heat pump combined with a cold storage system. The most efficient design was found to be a single central location for the production of heat and cold, with distribution lines to each of the five buildings. The cold storage system provides direct cooling and indirect heating: the heat pump raises the low-temperature heat from the cold storage to a usable temperature (augmented by district heating when necessary). In addition, the heat pump generates cold as a by-product in winter, which can be stored in the sources system and utilised during the following summer. The heat pump can also be used for cooling, for peak load supply and for any short-term storage requirement in emergencies

  14. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  15. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  16. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  17. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    Science.gov (United States)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  18. A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage

    International Nuclear Information System (INIS)

    Dominković, D.F.; Ćosić, B.; Bačelić Medić, Z.; Duić, N.

    2015-01-01

    Highlights: • Hybrid optimization model of biomass trigeneration system with PTES is developed. • Influence of premium feed-in tariffs on trigeneration systems is assessed. • Influence of total system efficiency on biomass trigeneration system with PTES is assessed. • Influence of energy savings on project economy is assessed. - Abstract: This paper provides a solution for managing excess heat production in trigeneration and thus, increases the power plant yearly efficiency. An optimization model for combining biomass trigeneration energy system and pit thermal energy storage has been developed. Furthermore, double piping district heating and cooling network in the residential area without industry consumers was assumed, thus allowing simultaneous flow of the heating and cooling energy. As a consequence, the model is easy to adopt in different regions. Degree-hour method was used for calculation of hourly heating and cooling energy demand. The system covers all the yearly heating and cooling energy needs, while it is assumed that all the electricity can be transferred to the grid due to its renewable origin. The system was modeled in Matlab© on hourly basis and hybrid optimization model was used to maximize the net present value (NPV), which was the objective function of the optimization. Economic figures become favorable if the economy-of-scale of both power plant and pit thermal energy storage can be utilized. The results show that the pit thermal energy storage was an excellent option for storing energy and shaving peaks in energy demand. Finally, possible switch from feed-in tariffs to feed-in premiums was assessed and possible subsidy savings have been calculated. The savings are potentially large and can be used for supporting other renewable energy projects

  19. 'Eco-house 99' - Full-scale demonstration of solar walls with building integrated heat storages

    Energy Technology Data Exchange (ETDEWEB)

    Hummelshoej, R.M.; Rahbek, J.E. [COWI Consulting Engineers and Planners AS (Denmark)

    2000-07-01

    A critical issue for solar systems in northern latitudes is the economic profitability. It is often said that the techniques for solar utilisation are expensive and unprofitable. This is, however, not always the case. A new project with 59 low energy terrace houses was carried out in Kolding, Denmark. The houses are designed as ecological buildings with emphasis on total economy based on low operation and maintenance costs, energy conservation and passive/hybrid solar utilisation. Besides direct solar gain through windows, each house has a solar wall of 6-8.5 m{sup 2} on the south facade. The solar walls are used both for heating of ventilation air and for space heating. The solar walls deliver heat to the dwellings during the heating season. To optimise the energy utilisation from the solar walls, the energy is stored internally in building integrated heat storages. Two different new types of prefabricated heat storages are built into the houses. One is an internal concrete wall with embedded ventilation pipes, and the other is a hollow concrete element with integrated stone bed. The heat storages are mainly designed to store solar energy from the day to the evening and the night. Because the solar walls and the heat storages have been a part of the design process from the start, the additional expenses are as low as 30-140 Euro/m{sup 2} solar wall compared with the alternative facade. This is far less than what it costs to add a solar wall on an existing building. Measurements over one year show that the yield of the solar walls is in the range of 115-125 kWh/m{sup 2}/year as expected. With the actual financing, the annual payment of the additional expenses for the solar systems is between 1-6 Euro/m{sup 2} solar wall, while the annual savings are about 5 Euro/year/m{sup 2} (with an energy price of 0.042 Euro/kWh). Dependent on which alternative facade construction the solar wall system is compared with, the profit of the system is in the range of 1 to +4 Euro

  20. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, an underground cavern is used as a pressure vessel for the storage of the compressed air. Both systems are in the range of 100 MW electrical power output with several hours of production stored as compressed air. In this range, enormous volumes are required, which make underground caverns the only economical way to design the pressure vessel. Both systems use axial turbine compressors to compress air when charging the system. The compression leads to a significant increase in temperature, and the heat generated is dumped into the ambient. This energy loss results in a low efficiency of the system, and when expanding the air, the expansion leads to a temperature drop reducing the mechanical output of the expansion turbines. To overcome this, fuel is burned to heat up the air prior to expansion. The fuel consumption causes a significant cost for the storage. Several suggestions have been made to store compression heat for later use during expansion and thereby avoid the use of fuel (so called Adiabatic CAES units), but no such units are in operation at present. The CAES system investigated in this project uses a different approach to avoid compression heat loss. The system uses a pre-compressed pressure vessel full of air. A liquid is pumped into the bottom of the vessel when charging and the same liquid is withdrawn through a turbine when discharging. In this case, the liquid works effectively as a piston compressing the gas in the vessel, hence the name &apos

  1. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 2. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 2. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the chemical heat storage techniques and plant simulation, for R and D of the super heat pump energy accumulation system. For R and D of the chemical heat storage techniques, the R and D efforts are directed to the researches on the fundamental reactions and continuous exothermic reactions involved for the high temperature heat storage type (utilizing the metathesis reactions); researches on the physical properties, heat storage systems, solid-phase reactions, liquid-phase reactors, corrosion of the materials, and so on for the high temperature heat storage type (utilizing ammonia complex); collection of the data related to media and structural materials, tests of the elementary equipment for the absorption and hydration reactions, and so on for the high temperature heat storage type (chemical heat storage utilizing hydration); researches on the media properties and system performance, tests of equipment, and so on for the high temperature heat storage type (heat storage/heating utilizing solvation); researches on the heat storage media, heat storage techniques, corrosion of the materials, systems, and so on for the low temperature heat storage type (utilizing the hydration reactions by mixing solutes); and researches on the media, corrosion and elementary equipment, optimization of the system, and so on for the low temperature heat storage type (clathrate low temperature heat storage systems). (NEDO)

  2. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  3. A review on transportation of heat energy over long distance. Exploratory development

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.; Wang, R.Z. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Luo, L.; Sauce, G. [LOCIE, Polytech' Savoie, Campus Scientifique, Savoie Technolac, 73376 Le Bourget-Du-Lac cedex (France)

    2009-08-15

    This paper presents a review on transportation of heat energy over long distance. For the transportation of high-temperature heat energy, the chemical catalytic reversible reaction is almost the only way available, and there are several reactions have been studied. For the relatively low-temperature heat energy, which exists widely as waste heat, there are mainly five researching aspects at present: chemical reversible reactions, phase change thermal energy storage and transportation, hydrogen-absorbing alloys, solid-gas adsorption and liquid-gas absorption. The basic principles and the characteristics of these methods are discussed. (author)

  4. More with thermal energy storage. Report 8. Autonomous heating. Autonomous development of ground temperature. Final report; Meer met bodemenergie. Rapport 8. Autonome opwarming. Autonome ontwikkeling bodemtemperatuur. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Drijver, B. [IF Technology, Arnhem (Netherlands)

    2012-03-30

    The project More With Thermal Energy Storage (MMB, abbreviated in Dutch) focuses on knowledge gaps and potential opportunities regarding open systems. The main questions to be answered are: (1) What effects (hydrological, thermal, microbiological and chemical) occur in the soil system by application of thermal energy storage; (2) Which technical options are available for a sustainable integration of thermal energy storage in the water and energy chain?; (3) Is it possible to achieve multiple objectives by using smart combinations? The project is organized in different work packages. In work package 2, the effects of individual and collective thermal energy storage storage systems on subsoils and the environment are determined. In work package 3 the opportunities for thermal energy storage and soil remediation are examined, while in work package 4 the focus is on new sustainable combinations of heat and cold storage. Work package 1 is the umbrella part where communication and policy of and participation in MMB are the main subjects. This report contains an analysis of the thermal impact of climate change and urbanization on the soil temperature. Attention is paid to the autonomous heating of the subsurface that occurred since 1900 and that still may be expected up to 2040. A distinction is made between rural areas, where only the climate change plays a role, and urban areas, where the UHI effect (Urban Heat Island) is of importance [Dutch] Het project Meer Met Bodemenergie (MMB) richt zich op het invullen van kennisleemtes en mogelijke kansen ten aanzien van open systemen. De belangrijkste vragen waarop het onderzoeksprogramma MMB antwoord geeft zijn: (1) Welke effecten (hydrologisch, thermisch, microbiologisch en chemisch) treden op in het bodemsysteem bij toepassing van bodemenergie?; (2) Welke technische mogelijkheden zijn er voor het duurzaam inpassen van bodem-energie in de water- en energieketen?; (3) Is het mogelijk om meerdere doelstellingen tegelijk te

  5. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  6. Some wind-energy storage options

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    Systems capable of storing energy generated from the wind can be categorized in terms of electrochemical energy storage systems, thermal energy storage systems, kinetic energy systems, and potential energy systems. Recent surveys of energy storage systems have evaluated some of these available storage technologies in terms of the minimum economic sizes for utility applications, estimated capital costs of these units, expected life, dispersed storage capabilities, and estimated turn-around efficiencies of the units. These are summarized for various types of energy storage options.

  7. Development of evaluation method for heat removal design of dry storage facilities. pt. 1. Heat removal test on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Koga, Tomonari; Wataru, Masumi; Hattori, Yasuo

    1997-01-01

    The report describes the result of heat removal test of passive cooling vault storage system of cross flow type using 1/5 scale model. Based on a prospect of steady increase in the amount of spent fuel, it is needed to establish large capacity dry storage technologies for spent fuel. Air flow patterns, distributions of air temperature and velocity were measured, by which heat removal characteristics of the system were made clear. Air flow patterns in the storage module depended on the ratio of the buoyant force to the inertial force; the former generated by the difference of air temperatures and the height of the storage module, the latter by the difference of air densities between the outlet of the storage module and ambience and the height of the chimney of the storage facility. A simple method to estimate air flow patterns in the storage module was suggested, where Ri(Richardson) number was applied to represent the ratio. Moreover, heat transfer coefficient from a model of storage tube to cooling air was evaluated, and it was concluded that the generalized expression of heat transfer coefficient for common heat exchangers could be applied to the vault storage system of cross flow type, in which dozens of storage tubes were placed in a storage module. (author)

  8. Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume V. Thermal storage subsystem. [Sensible heat storage using Caloria HT43 and mixture of gravel and sand

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The proposed 100-MWe Commercial Plant Thermal Storage System (TSS) employs sensible heat storage using dual liquid and solid media for the heat storage in each of four tanks, with the thermocline principle applied to provide high-temperature, extractable energy independent of the total energy stored. The 10-MW Pilot Plant employs a similar system except uses only a single tank. The high-temperature organic fluid Caloria HT43 and a rock mixture of river gravel and No. 6 silica sand were selected for heat storage in both systems. The system design, installation, performance testing, safety characteristics, and specifications are described in detail. (WHK)

  9. Compact and energy-saving trickle film ice storage unit; Rieselfilm-Eisspeicheranlage baut kompakt und spart Energie

    Energy Technology Data Exchange (ETDEWEB)

    Pompetzki, F. [Zimmer Edelstahl GmbH, Nuernberg (Germany)

    1998-12-31

    Ice storages are well established in industrial refrigeration systems. The contribution describes new, compact trickle film ice storages with plate heat exchangers. These systems need less refrigerant and consume up to 30% less energy. (orig.) [Deutsch] Eisspeicher haben sich in der industriellen Kaeltetechnik seit langem bewaehrt. Neue Impulse erhaelt diese Technik jetzt durch kompakt aufgebaute Rieselfilm-Eisspeicher mit Plattenwaermeaustauscher. Aufgrund ihrer Konzeption benoetigen sie bei gleicher Leistung deutlich weniger Kaeltemittel und verbrauchen bis zu 30% weniger Energie. (orig.)

  10. FY 1989 Report on heat pump/storage markets in Australia and New Zealand by the survey team; 1989 nendo Australia New Zealand heat pump chikunetsu shijo chosadan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    Inspections/surveys are conducted on the markets of heat pumps and heat storage systems in Australia and New Zealand, spread of these systems, R and D situations, energy-related problems and policies, and so on. In Australia, heat pumps are mainly used for air conditioning. Several heat pump units are in service in NSW, including the one in Grosvnor Place Building, which is combined with an ice heat storage system. It seems that no waste heat is utilized. Use of heat pumps in this country is possible, in particular for industrial purposes. Use of fluorochlorohydrocarbons is restricted in Australia, in spite of their small quantities actually used, which is accepted as a political consideration. No system of discounted late-nigh rate is adopted in this country, but heat storage is planned as a measure to level power consumption, because the power rate is increased when the consumption exceeds the contracted level. Water is replaced by ice as the heat storage medium. (NEDO)

  11. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  12. Thermal energy storage for sustainable energy consumption : fundamentals, case studies and design

    CERN Document Server

    Paksoy, Halime

    2007-01-01

    We all share a small planet. Our growing thirst for energy already threatens the future of our earth. Fossil fuels - energy resources of today - are not evenly distributed on the earth. 10 per cent of the world's population exploits 90 per cent of its resources. Today's energy systems rely heavily on fossil fuel resources which are diminishing ever faster. The world must prepare for a future without fossil fuels. Thermal energy storage provides us with a flexible heating and/or cooling tool to combat climate change through conserving energy and increasing energy while utilizing natural renewab

  13. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  14. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  15. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    Sugo, Heber; Kisi, Erich; Cuskelly, Dylan

    2013-01-01

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  16. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Technologies LLC, Minneapolis, MN (United States)

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the

  17. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  18. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  19. Review of Phase Change Materials Based on Energy Storage System with Applications

    Science.gov (United States)

    Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.

    2017-05-01

    The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.

  20. Proceedings of solar energy storage options. Volume I. An intensive workshop on thermal energy storage for solar heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Separate abstracts were prepared for the 28 papers presented. Panel chairmen's summaries are included; the complete panel reports will be published in Volume II of the Solar Energy Storage Options Workshop proceedings. (WHK)

  1. Annual cycle solar energy utilization with seasonal storage. Part 7. Examination on design and control of the system partially recovering exhaust heat of heat pump; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 7. Bubuntekina hainetsu kaishu wo koryoshita baai no sekkei seigyoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    The capacity and performance of the existing system that recovers the overall heating and cooling exhaust heat completely into a seasonal storage tank and the system that discharges the exhaust heat slightly to the outside and recovers it partially were compared and investigated. The system uses a central single-duct discharge system as an air-conditioning system. A heat pump and a flat-plate solar collector installed on the roof of a building are used as the heat source. The seasonal storage tank in the ground just under the building is a cylindrical water tank of 5 m deep with the concrete used as body. The upper surface of a storage tank is heat-insulated by a stylo-platform of 200 mm, and the lower side surface by a stylo-platform of 100 mm. Calculation when the difference in temperature used in a seasonal storage tank is set to 35{degree}C and 25{degree}C was performed for the system that has two control methods. The overall exhaust heat recovery system is almost the same in energy performance as the partial exhaust heat recovery system. The partial exhaust heat recovery system is more advantageous on the economic side. 4 refs., 6 figs., 3 tabs.

  2. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  3. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  4. Performance Evaluation of a Demonstration System with PCM for Seasonal Heat Storage: Charge with Evacuated Tubular Collectors

    DEFF Research Database (Denmark)

    Englmair, Gerald; Furbo, Simon; Kong, Weiqiang

    with sunshine, the storage system performance was evaluated regarding charge with solar heat. It shows the system behavior during typical operation resulting from the control strategy. Heat transfer rates from the solar collector array (22.4 m2 aperture area) to the heat stores reached a peak of 19 kW, when PCM......A seasonal heat storage with phase change material (PCM) for a solar space heating and domestic hot water combisystem was tested in automated operation during charge with solar collectors. A water tank was operating as buffer heat storage. Based on measurements during a representative day...... temperatures were increasing with the state of charge. This is in contrast to maximization of solar yield. However, the energy conversion efficiency (65 %) of the collector array was satisfying. By considering pump electricity consumption, an overall performance ratio of 30.8 was obtained....

  5. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...... capacity. An external expansion vessel minimized the pressure built up in the module while heating and reduced the risk of instable supercooling. The module was stable supercooled at indoor ambient temperature for up to two months after which it was discharged. The energy discharged after activating...

  6. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    NARCIS (Netherlands)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G. B.

    2017-01-01

    Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of

  7. Durability of a fin-tube latent heat storage using high density polyethylene as PCM

    Science.gov (United States)

    Zauner, Christoph; Hengstberger, Florian; Etzel, Mark; Lager, Daniel; Hofmann, Rene; Walter, Heimo

    2017-10-01

    Polymers have rarely been used as storage materials in latent heat storages up to now. Thus, we systematically screened all polymers available on a large-scale, selected promising ones based on their theoretical properties and experimentally tested more than 50 candidates. We found that polyethylene, polyoxymethylene and polyamides are promising even as recycled material. Especially high density polyethylene (HDPE) turned out to be suitable as was shown by detailed thermophysical characterization including more than 1000 heating and cooling cycles for INEOS Rigidex HD6070EA. We built a storage with 170 kg HDPE and a total mass of 600 kg based on a fin-tube heat exchanger and characterized its energy capacity, power characteristics and temperature profiles using a thermal oil test rig. In total we performed 30 melting and crystallization cycles where the whole storage was above 100 °C for more than 140 hours. After usage we examined the interior of the storage by cutting it into various pieces. A thin layer of degradation was observed on the surfaces of the PCM which is most likely related to thermo-oxidative degeneration of HDPE. However, the bulk of the PCM is still intact as well as the heat exchanger itself.

  8. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.

  9. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  10. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua

    2011-01-01

    to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests......Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...

  12. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  13. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  14. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  15. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  16. Thermal energy storage for smart grid applications

    Science.gov (United States)

    Al-Hallaj, Said; Khateeb, Siddique; Aljehani, Ahmed; Pintar, Mike

    2018-01-01

    Energy consumption for commercial building cooling accounts for 15% of all commercial building's electricity usage [1]. Electric utility companies charge their customers time of use consumption charges (/kWh) and additionally demand usage charges (/kW) to limit peak energy consumption and offset their high operating costs. Thus, there is an economic incentive to reduce both the electricity consumption charges and demand charges by developing new energy efficient technologies. Thermal energy storage (TES) systems using a phase change material (PCM) is one such technology that can reduce demand charges and shift the demand from on-peak to off-peak rates. Ice and chilled water have been used in thermal storage systems for many decades, but they have certain limitations, which include a phase change temperature of 0 degrees Celsius and relatively low thermal conductivity in comparison to other materials, which limit their applications as a storage medium. To overcome these limitations, a novel phase change composite (PCC) TES material was developed that has much higher thermal conductivity that significantly improves the charge / discharge rate and a customizable phase change temperature to allow for better integration with HVAC systems. Compared to ice storage, the PCC TES system is capable of very high heat transfer rate and has lower system and operational costs. Economic analysis was performed to compare the PCC TES system with ice system and favorable economics was proven. A 4.5 kWh PCC TES prototype system was also designed for testing and validation purpose.

  17. Advanced latent heat of fusion thermal energy storage for solar power systems

    Science.gov (United States)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  18. Current status of and problems in ice heat storage systems contributing to improving load rate. Proliferation of the ice heat storage type air conditioning system and roles of the Heat Pump and Heat Storage Center; Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsushiki kucho system no fukyu to heat pump chikunetsu center no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, T.

    1998-02-01

    This paper introduces the roles played by the `Heat Pump and Heat Storage Center`. This foundation had been performing research and development and international information exchange in devices and equipment as the `Heat Pump Technology Development Center`. Development of heat storage type air conditioning systems as a measure for load leveling, and efforts of their proliferation and enlightenment were added to the business activities. As a result, the foundation`s name was changed to the present name. Its activities being planned and performed include: interest supplementing operation for installation of an air conditioning system of the heat pump system using storage of latent heat such as ice heat storage, holding seminars for promoting proliferation of the ice heat storage type air conditioning system, opening the home page, participation in exhibitions of various types, and preparation of different publicity tools. More specifically, carrying series advertisements in newspapers and magazines, holding nation-wide symposiums tying up with Japan Economic Press, publishing an organ newspaper targeted at both of experts and general people, and preparation of general pamphlets to introduce comprehensively the information about heat storage. 3 figs., 1 tab.

  19. Rock bed storage with heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, H.E.; Mills, G.L.

    1979-05-01

    The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

  20. Energy storage crystalline gel materials for 3D printing application

    Science.gov (United States)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  1. Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zheng, Maoyu; Zhang, Wenyong; Zhang, Shu; Yang, Tao [School of Municipal and Environmental Engineering, Harbin Institute of Technology, NO 202 Haihe Road, Harbin, Hei Longjiang 150090 (China)

    2010-11-15

    This paper presents the experimental study of a solar-assisted ground-coupled heat pump system (SAGCHPS) with solar seasonal thermal storage installed in a detached house in Harbin. The solar seasonal thermal storage was conducted throughout the non-heating seasons. In summer, the soil was used as the heat sink to cool the building directly. In winter, the solar energy was used as a priority, and the building was heated by a ground-coupled heat pump (GCHP) and solar collectors alternately. The results show that the system can meet the heating-cooling energy needs of the building. In the heating mode, the heat directly supplied by solar collectors accounted for 49.7% of the total heating output, and the average coefficient of performance (COP) of the heat pump and the system were 4.29 and 6.55, respectively. In the cooling mode, the COP of the system reached 21.35, as the heat pump was not necessary to be started. After a year of operation, the heat extracted from the soil by the heat pump accounted for 75.5% of the heat stored by solar seasonal thermal storage. The excess heat raised the soil temperature to a higher level, which was favorable for increasing the COP of the heat pump. (author)

  2. Hot tap water production by a 4 kW sorption segmented reactor in household scale for seasonal heat storage

    NARCIS (Netherlands)

    Gaeini, M.; van Alebeek, R.; Scapino, L.; Zondag, H. A.; Rindt, C C.M.

    2018-01-01

    Replacing fossil fuel by solar energy as a promising sustainable energy source, is of high interest, for both electricity and heat generation. However, to reach high solar thermal fractions and to overcome the mismatch between supply and demand of solar heat, long term heat storage is necessary. A

  3. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  4. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system

    International Nuclear Information System (INIS)

    Baran, Guelseren; Sari, Ahmet

    2003-01-01

    The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA-SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 deg. C and has a latent heat of 181.7 J g -1 , and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA-SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems

  5. Optimal Sizing of Energy Storage for Community Microgrids Considering Building Thermal Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Li, Zhi [ORNL; Starke, Michael R. [ORNL; Ollis, Ben [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2017-07-01

    This paper proposes an optimization model for the optimal sizing of energy storage in community microgrids considering the building thermal dynamics and customer comfort preference. The proposed model minimizes the annualized cost of the community microgrid, including energy storage investment, purchased energy cost, demand charge, energy storage degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation. The decision variables are the power and energy capacity of invested energy storage. In particular, we assume the heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently by the microgrid central controller while maintaining the indoor temperature in the comfort range set by customers. For this purpose, the detailed thermal dynamic characteristics of buildings have been integrated into the optimization model. Numerical simulation shows significant cost reduction by the proposed model. The impacts of various costs on the optimal solution are investigated by sensitivity analysis.

  6. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  7. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  8. Wallboard with Latent Heat Storage for Passive Solar Applications; TOPICAL

    International Nuclear Information System (INIS)

    Kedl, R.J.

    2001-01-01

    Conventional wallboard impregnated with octadecane paraffin[melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications

  9. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral....... The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...

  10. Process modeling of a reversible solid oxide cell (r-SOC) energy storage system utilizing commercially available SOC reactor

    International Nuclear Information System (INIS)

    Mottaghizadeh, Pegah; Santhanam, Srikanth; Heddrich, Marc P.; Friedrich, K. Andreas; Rinaldi, Fabio

    2017-01-01

    Highlights: • An electric energy storage system was developed based on a commercially available SOC reactor. • Heat generated in SOFC mode of r-SOC is utilized in SOEC operation of r-SOC using latent heat storage. • A round trip efficiency of 54.3% was reached for the reference system at atmospheric pressure. • An improved process system design achieved a round-trip efficiency of 60.4% at 25 bar. - Abstract: The increase of intermittent renewable energy contribution in power grids has urged us to seek means for temporal decoupling of electricity production and consumption. A reversible solid oxide cell (r-SOC) enables storage of surplus electricity through electrochemical reactions when it is in electrolysis mode. The reserved energy in form of chemical compounds is then converted to electricity when the cell operates as a fuel cell. A process system model was implemented using Aspen Plus® V8.8 based on a commercially available r-SOC reactor experimentally characterized at DLR. In this study a complete self-sustaining system configuration is designed by optimal thermal integration and balance of plant. Under reference conditions a round trip efficiency of 54.3% was achieved. Generated heat in fuel cell mode is exploited by latent heat storage tanks to enable endothermic operation of reactor in its electrolysis mode. In total, out of 100 units of thermal energy stored in heat storage tanks during fuel cell mode, 90% was utilized to offset heat demand of system in its electrolysis mode. Parametric analysis revealed the significance of heat storage tanks in thermal management even when reactor entered its exothermic mode of electrolysis. An improved process system design demonstrates a system round-trip efficiency of 60.4% at 25 bar.

  11. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage

    International Nuclear Information System (INIS)

    Barbour, Edward; Mignard, Dimitri; Ding, Yulong; Li, Yongliang

    2015-01-01

    Highlights: • The paper presents a thermodynamic analysis of A-CAES using packed bed regenerators. • The packed beds are used to store the compression heat. • A numerical model is developed, validated and used to simulate system operation. • The simulated efficiencies are between 70.5% and 71.1% for continuous operation. • Heat build-up in the beds reduces continuous cycle efficiency slightly. - Abstract: The majority of articles on Adiabatic Compressed Air Energy Storage (A-CAES) so far have focussed on the use of indirect-contact heat exchangers and a thermal fluid in which to store the compression heat. While packed beds have been suggested, a detailed analysis of A-CAES with packed beds is lacking in the available literature. This paper presents such an analysis. We develop a numerical model of an A-CAES system with packed beds and validate it against analytical solutions. Our results suggest that an efficiency in excess of 70% should be achievable, which is higher than many of the previous estimates for A-CAES systems using indirect-contact heat exchangers. We carry out an exergy analysis for a single charge–storage–discharge cycle to see where the main losses are likely to transpire and we find that the main losses occur in the compressors and expanders (accounting for nearly 20% of the work input) rather than in the packed beds. The system is then simulated for continuous cycling and it is found that the build-up of leftover heat from previous cycles in the packed beds results in higher steady state temperature profiles of the packed beds. This leads to a small reduction (<0.5%) in efficiency for continuous operation

  12. Cold storage condensation heat recovery system with a novel composite phase change material

    International Nuclear Information System (INIS)

    Xia, Mingzhu; Yuan, Yanping; Zhao, Xudong; Cao, Xiaoling; Tang, Zhonghua

    2016-01-01

    Highlights: • Cold storage condensation heat recovery system using PCM was proposed. • CW with a phase change temperature of nearly 80 °C was selected as the potential PCM. • The optimal mass ratio between the CW and EG was 10:1. • The thermal and physical performances of the CW/EG were investigated. • The thermal reliability was demonstrated by 1000 cycles. - Abstract: Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively

  13. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  14. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  15. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  16. Multi-Fluid Geo-Energy Systems for Bulk and Thermal Energy Storage and Dispatchable Renewable and Low-Carbon Electricity

    Science.gov (United States)

    Buscheck, T. A.; Randolph, J.; Saar, M. O.; Hao, Y.; Sun, Y.; Bielicki, J. M.

    2014-12-01

    Integrating renewable energy sources into electricity grids requires advances in bulk and thermal energy storage technologies, which are currently expensive and have limited capacity. We present an approach that uses the huge fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources. CO2 captured from fossil-energy systems and N2 separated from air are injected into permeable formations to store pressure, generate artesian flow of brine, and provide additional working fluids. These enable efficient fluid recirculation, heat extraction, and power conversion, while adding operational flexibility. Our approach can also store and dispatch thermal energy, which can be used to levelize concentrating solar power and mitigate variability of wind and solar power. This may allow low-carbon, base-load power to operate at full capacity, with the stored excess energy being available to addresss diurnal and seasonal mismatches between supply and demand. Concentric rings of horizontal injection and production wells are used to create a hydraulic divide to store pressure, CO2, N2, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Supercritical CO2 and N2 function as cushion gases to provide enormous pressure-storage capacity. Injecting CO2 and N2 displaces large quantities of brine, reducing the use of fresh water. Geologic CO2 storage is a crucial option for reducing CO2 emissions, but valuable uses for CO2 are needed to justify capture costs. The initial "charging" of our system requires permanently isolating large volumes of CO2 from the atmosphere and thus creates a market for its disposal. Our approach is designed for locations where a permeable

  17. The costs and profitability of heat-energy entrepreneurship

    International Nuclear Information System (INIS)

    Solmio, H.

    1998-01-01

    Heat-energy entrepreneurs are responsible for the supply of fuel to and the labour input required by heating of buildings in their locality. An individual heat-energy entrepreneur or a consortium of them, a company or a co-operative is paid for the work according to the amount of heat-energy produced. In Finland there are about 50 operational heating targets and about 100 in planning stage. TTS-Institute has studied the activities of heat-energy entrepreneurs since 1993 in connection with research projects included in the national Bioenergy research programme. This study covered 10 heating plants with capacities 60 - 1000 kW, two of which are district heating plants. Five of the targets (60 - 370 kW) were included in the previous heat-energy entrepreneurs follow-up study conducted in 1993 - 1995 and five (80 - 1000 kW) were new. The main fuel used in all the targets was wood chips with light fuel oil reserve or auxiliary fuel. All but one of the entrepreneurs, supplying these heating targets located in Central and Southern Finland, are farmers, who procure the fuelwood and take care of heating and its supervision. Transportation of wood chips, topping up of the silo and heating work and working path consumed 0.12-0.78 h of time/MWh. When compared to the five study targets' follow-up results of the years 1993 - 1995, the results of the present study show reduction in labour consumption on part of the heat-energy entrepreneurs in all these targets. Profit margins of the entrepreneurs supplying heating energy were 73 - 132 FIM/h (excluding the interest on the equipment acquisition (agricultural tractor and associated equipment), and insurance and storage costs). When these costs were also taken into account, the resulting profit margin was 71 - 127 FIM/h. The margin included the entrepreneurs' earnings incl. monitoring of the heating plant, social security costs connected to earnings and entrepreneur's risk. When compared to the previous follow-up study, also the

  18. Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency

    Directory of Open Access Journals (Sweden)

    Michael Lanahan

    2017-05-01

    Full Text Available Buildings consume approximately ¾ of the total electricity generated in the United States, contributing significantly to fossil fuel emissions. Sustainable and renewable energy production can reduce fossil fuel use, but necessitates storage for energy reliability in order to compensate for the intermittency of renewable energy generation. Energy storage is critical for success in developing a sustainable energy grid because it facilitates higher renewable energy penetration by mitigating the gap between energy generation and demand. This review analyzes recent case studies—numerical and field experiments—seen by borehole thermal energy storage (BTES in space heating and domestic hot water capacities, coupled with solar thermal energy. System design, model development, and working principle(s are the primary focus of this analysis. A synopsis of the current efforts to effectively model BTES is presented as well. The literature review reveals that: (1 energy storage is most effective when diurnal and seasonal storage are used in conjunction; (2 no established link exists between BTES computational fluid dynamics (CFD models integrated with whole building energy analysis tools, rather than parameter-fit component models; (3 BTES has less geographical limitations than Aquifer Thermal Energy Storage (ATES and lower installation cost scale than hot water tanks and (4 BTES is more often used for heating than for cooling applications.

  19. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  20. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  1. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    Science.gov (United States)

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  2. Characterization of sugar alcohols as seasonal heat storage media - experimental and theoretical investigations

    NARCIS (Netherlands)

    Zhang, H.; van Wissen, R.M.J.; Nedea, S.V.; Rindt, C.C.M.

    2014-01-01

    Sugar alcohols are under investigation as phase change materials for long term heat storage applications. The thermal performance in such systems is strongly dominated by the nucleation and crystal growth kinetics, which is further linked to the crystal-melt interfacial free energy (surface

  3. Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands

    NARCIS (Netherlands)

    Wesselink, Maxim; Liu, Wen; Koornneef, Joris; van den Broek, Machteld

    2018-01-01

    High temperature aquifer thermal energy storage (HT-ATES) can contribute to the integration of renewable energy sources in the energy system, the replacement of fossil fuel-based heat supply and the utilization of surplus heat from industrial sources. However, there is limited understanding on the

  4. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  5. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  6. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  7. The Evaluation of Feasibility of Thermal Energy Storage System at Riga TPP-2

    Science.gov (United States)

    Ivanova, P.; Linkevics, O.; Cers, A.

    2015-12-01

    The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP-2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen - the increase of cogeneration unit efficiency during the summer.

  8. Investigation of metal fluoride thermal energy storage materials: availability, cost, and chemistry. Final report, July 15, 1976--December 15, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Eichelberger, J.L.

    1976-12-01

    Storage of thermal energy in the 400 to 1000/sup 0/C range is attracting increasing consideration for use in solar power, central power, vehicular, and commercial process systems. This study investigates the practicality of using metal fluorides as the heat storage medium. The projected availability of metal fluorides has been studied and is shown to be adequate for widespread thermal storage use. Costs are projected and discussed in relation to thermal energy storage applications. Phase diagrams, heats of fusion, heat capacities, vapor pressures, toxicity, stability, volume changes, thermal conductivities, fusion kinetics, corrosion, and container materials of construction for a wide range of fluorides have been examined. Analyses of these data in consideration of thermal energy storage requirements have resulted in selection of the most cost-effective fluoride mixture for each of 23 temperature increments between 400 and 1000/sup 0/C. Thermo-physical properties of these 23 materials are presented. Comparison of fluoride with non-fluoride materials shows that the fluorides are suitable candidates for high temperature applications on the bases of cost, heat capacity/unit volume, heat capacity/unit weight, corrosive properties, and availability.

  9. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2015-01-01

    Highlights: • Review of organic phase change materials for thermal energy storage. • Review of the eutectic mixtures of organic PCMs. • Review of the techniques of PCM encapsulations and enhancing the thermal conductivity. • Applications of low and medium temperature organic PCMs are listed in detail. • Recommendations are made for future applications of organic PCMs. - Abstract: Thermal energy storage as sensible or latent heat is an efficient way to conserve the waste heat and excess energy available such as solar radiation. Storage of latent heat using organic phase change materials (PCMs) offers greater energy storage density over a marginal melting and freezing temperature difference in comparison to inorganic materials. These favorable characteristics of organic PCMs make them suitable in a wide range of applications. These materials and their eutectic mixtures have been successfully tested and implemented in many domestic and commercial applications such as, building, electronic devices, refrigeration and air-conditioning, solar air/water heating, textiles, automobiles, food, and space industries. This review focuses on three aspects: the materials, encapsulation and applications of organic PCMs, and provides an insight on the recent developments in applications of these materials. Organic PCMs have inherent characteristic of low thermal conductivity (0.15–0.35 W/m K), hence, a larger surface area is required to enhance the heat transfer rate. Therefore, attention is also given to the thermal conductivity enhancement of the materials, which helps to keep the area of the system to a minimum. Besides, various available techniques for material characterization have also been discussed. It has been found that a wide range of the applications of organic PCMs in buildings and other low and medium temperature solar energy applications are in abundant use but these materials are not yet popular among space applications and virtual data storage media. In

  10. IEA SHC Task 42 / ECES Annex 29 - Working Group B: Applications of Compact Thermal Energy Storage

    NARCIS (Netherlands)

    Helden, W. van; Yamaha, M.; Rathgeber, C.; Hauer, A.; Huaylla, F.; Le Pierrès, N.; Stutz, B.; Mette, B.; Dolado, P.; Lazaro, A.; Mazo, J.; Dannemand, M.; Furbo, S.; Campos-Celador, A.; Diarce, G.; Cuypers, R.; König-Haagen, A.; Höhlein, S.; Brüggemann, D.; Fumey, B.; Weber, R.; Köll, R.; Wagner, W.; Daguenet-Frick, X.; Gantenbein, P.; Kuznik, F.

    2016-01-01

    The IEA joint Task 42 / Annex 29 is aimed at developing compact thermal energy storage materials and systems. In Working Group B, experts are working on the development of compact thermal energy storage applications, in the areas cooling, domestic heating and hot water and industry. The majority of

  11. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  12. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  13. Developing pathways for energy storage in the UK using a coevolutionary framework

    International Nuclear Information System (INIS)

    Taylor, Peter G.; Bolton, Ronan; Stone, Dave; Upham, Paul

    2013-01-01

    A number of recent techno-economic studies have shown that energy storage could offer significant benefits to a low-carbon UK energy system as it faces increased challenges in matching supply and demand. However, the majority of this work has not investigated the real-world issues affecting the widespread deployment of storage. This paper is designed to address this gap by drawing on the systems innovation and socio-technical transitions literature to identify some of the most important contextual factors which are likely to influence storage deployment. Specifically it uses a coevolutionary framework to examine how changes in ecosystems, user practices, business strategies, institutions and technologies are creating a new selection environment and potentially opening up the energy system to new variations of storage for both electricity and heat. The analysis shows how these different dimensions of the energy regime can coevolve in mutually reinforcing ways to create alternative pathways for the energy system which in turn have different flexibility requirements and imply different roles for storage technologies. Using this framework three pathways are developed – user led, decentralised and centralised – which illustrate potential long-term trajectories for energy storage technologies in a low-carbon energy system. - highlights: • Energy storage can play a significant role in a low carbon UK energy system. • Changes in the selection environment will impact its deployment. • Several different deployment pathways are possible. • Its precise role is still subject to considerable uncertainty

  14. Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage

    International Nuclear Information System (INIS)

    Li, Qiyuan; Tehrani, S. Saeed Mostafavi; Taylor, Robert A.

    2017-01-01

    In this paper, the feasibility of a medium temperature, low profile concentrated solar thermal collector integrated with latent heat thermal energy storage (LHTES) is investigated. The proposed modular integrated collector storage (ICS) system consists of six solar receiver units and seven cylindrical shell and tube LHTES tanks. By implementing an innovative optical concentration assembly and an internal linear tracking mechanism, the collector can concentrate beam radiation to the tube receivers during the highest flux hours of a day without any external or rotational motion. The collector's efficiency correlations were obtained experimentally and its integrated performance – with the LHTES units – was evaluated numerically. To demonstrate the potential of this proposed ICS system, an annual analysis was carried out for a characteristic industrial application – a dairy dehydration process that requires a constant 50 kW th of heat in the 120–150 °C temperature range. It was found that adding the storage units will increase the capital costs by ∼10%, but it can increase the annual thermal output of the system by up to ∼20%. A solar fraction of 65% was achievable with some design alternatives, but the optimum techno-economic design had a solar fraction of ∼35% and an annual charging efficiency of nearly 100%. It was also found that if the capital cost of the ICS (collector and LHTES tank) system could be reduced by 50% from an estimated ∼1000 US$/m 2 to ∼500 US$/m 2 through mass production and/or further design optimizations, this system could provide industrial process heat with a levelized cost of heating (LCOH) of ∼0.065 US$/kWh th . - Highlights: • An innovative ICS system was proposed and analyzed for industrial heat applications. • The optimum design can achieve a ∼35% solar fraction with ∼100% charging efficiency. • A 0.12 US$/kWh LCOH was found, but further reductions could result in 0.065 US$/kWh. • Costs reductions of

  15. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  16. Effects of preincubation heating of broiler hatching eggs during storage, flock age, and length of storage period on hatchability.

    Science.gov (United States)

    Gucbilmez, M; Ozlü, S; Shiranjang, R; Elibol, O; Brake, J

    2013-12-01

    The effects of heating of eggs during storage, broiler breeder age, and length of egg storage on hatchability of fertile eggs were examined in this study. Eggs were collected from Ross 344 male × Ross 308 broiler breeders on paper flats, held overnight (1 d) at 18°C and 75% RH, and then transferred to plastic trays. In experiment 1, eggs were obtained at 28, 38, and 53 wk of flock age. During a further 10 d of storage, eggs either remained in the storage room (control) or were subjected to a heat treatment regimen of 26°C for 2 h, 37.8°C for 3 h, and 26°C for 2 h in a setter at d 5 of storage. In experiment 2, eggs from a flock at 28 wk of age were heated for 1 d of a 6-d storage period. Eggs from a 29-wk-old flock were either heated at d 1 or 5 of an 11-d storage period in experiment 3. In experiment 4, 27-wk-old flock eggs were heated twice at d 1 and 5 of an 11-d storage period. Control eggs stored for 6 or 11 d were coincubated as appropriate in each experiment. Heating eggs at d 5 of an 11-d storage period increased hatchability in experiment 1. Although no benefit of heating 28-wk-old flock eggs during 6 d of storage in experiment 2 was observed, heating eggs from a 29-wk-old flock at d 1 or 5 of an 11-d storage period increased hatchability in experiment 3. Further, heating eggs from a 27-wk-old flock twice during 11 d of storage increased hatchability in experiment 4. These effects were probably due to the fact that eggs from younger flocks had been reported to have many embryos at a stage of development where the hypoblast had not yet fully developed (less than EG-K12 to EG-K13), such that heating during extended storage advanced these embryos to a more resistant stage.

  17. Optimum heat storage design for heat integrated multipurpose batch plants

    CSIR Research Space (South Africa)

    Stamp, J

    2011-01-01

    Full Text Available procedure is presented tha journal homepage: www All rights reserved. ajozi T, Optimum heat storage grated multipurpose batch plants , South Africa y usage in multipurpose batch plants has been in published literature most present methods, time... � 2pL?u?kins ? 1 h3A3?u?cu?U (36) The internal area for heat loss by convection from the heat transfer medium is given by Constraint (37) and the area for convective heat transfer losses to the environment is given in Constraint (38). A1?u? ? 2...

  18. Heat-pump cool storage in a clathrate of freon

    Science.gov (United States)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  19. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    Science.gov (United States)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  20. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, R. Panneer; Hale, Micah; Strasser, Matt

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 °C to 600 °C) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal. Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal. The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES