WorldWideScience

Sample records for energy star concepts

  1. Energy Star Concepts for Highway Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  2. Stable dark energy stars

    International Nuclear Information System (INIS)

    Lobo, Francisco S N

    2006-01-01

    The gravastar picture is an alternative model to the concept of a black hole, where there is an effective phase transition at or near where the event horizon is expected to form, and the interior is replaced by a de Sitter condensate. In this work a generalization of the gravastar picture is explored by considering matching of an interior solution governed by the dark energy equation of state, ω ≡ p/ρ < -1/3, to an exterior Schwarzschild vacuum solution at a junction interface. The motivation for implementing this generalization arises from the fact that recent observations have confirmed an accelerated cosmic expansion, for which dark energy is a possible candidate. Several relativistic dark energy stellar configurations are analysed by imposing specific choices for the mass function. The first case considered is that of a constant energy density, and the second choice that of a monotonic decreasing energy density in the star's interior. The dynamical stability of the transition layer of these dark energy stars to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that large stability regions exist that are sufficiently close to where the event horizon is expected to form, so that it would be difficult to distinguish the exterior geometry of the dark energy stars, analysed in this work, from an astrophysical black hole

  3. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  4. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  5. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  6. ENERGY STAR Certified Televisions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Televisions that are effective as of October 30,...

  7. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  8. ENERGY STAR Certified Telephones

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Telephony (cordless telephones and VoIP...

  9. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  10. ENERGY STAR Certified Commercial Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Dishwashers that are effective as of...

  11. ENERGY STAR Certified Commercial Ovens

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.2 ENERGY STAR Program Requirements for Commercial Ovens that are effective as of...

  12. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  13. ENERGY STAR Certified Commercial Griddles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Commercial Griddles that are effective as of May...

  14. ENERGY STAR Certified Smart Thermostats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Connected Thermostats that are effective as of...

  15. ENERGY STAR Certified Residential Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Residential Dishwashers that are effective as of...

  16. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  17. ENERGY STAR Certified Pool Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Pool Pumps that are effective as of February 15,...

  18. ENERGY STAR Certified Imaging Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Imaging Equipment that are effective as of...

  19. ENERGY STAR Certified Vending Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are...

  20. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  1. ENERGY STAR Certified Audio Video

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of...

  2. ENERGY STAR Certified Ceiling Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1,...

  3. ENERGY STAR Certified Ventilating Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of...

  4. ENERGY STAR Certified Commercial Fryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Commercial Fryers that are effective as of...

  5. ENERGY STAR Certified Residential Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  6. ENERGY STAR Certified Residential Refrigerators

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  7. ENERGY STAR Certified Vending Machines

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are effective as of March 1, 2013. A detailed listing of key efficiency criteria are available at

  8. ENERGY STAR Certified Ceiling Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans

  9. ENERGY STAR Certified Ventilating Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  10. ENERGY STAR Certified Products - Lighting

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains a simplified list of all currently certified ENERGY STAR Lighting models with basic model information collected across all product categories...

  11. Fundamental concepts on energy

    International Nuclear Information System (INIS)

    Rodriguez, M.H.

    1998-01-01

    The fundamental concepts on energy and the different forms in which it is manifested are presented. Since it is possible to transform energy in a way to other, the laws that govern these transformations are discussed. The energy transformation processes are an essential compound in the capacity humanizes to survive and be developed. The energy use brings important economic aspects, technical and political. Because this, any decision to administer energy system will be key for our future life

  12. ENERGY STAR Certified Commercial Ice Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Automatic Commercial Ice Makers that are...

  13. ENERGY STAR Certified Commercial Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Commercial Refrigerators and Freezers that are...

  14. ENERGY STAR Laboratory Grade Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Laboratory Grade Refrigerators and Freezers that...

  15. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  16. ENERGY STAR Certified Residential Clothes Washers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 8.0 ENERGY STAR Program Requirements for Clothes Washers that are effective as of...

  17. ENERGY STAR Certified Residential Clothes Dryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Clothes Dryers that are effective as of January...

  18. ENERGY STAR Certified Commercial Clothes Washers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 8.0 ENERGY STAR Program Requirements for Clothes Washers that are effective as of...

  19. ENERGY STAR Certified Electric Vehicle Supply Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Electric Vehicle Supply Equipment that are...

  20. ENERGY STAR Certified Light Commercial HVAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Light Commercial HVAC that are effective as of...

  1. ENERGY STAR Certified Room Air Conditioners

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Room Air Conditioners that are effective as of...

  2. ENERGY STAR Certified Commercial Steam Cookers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Commercial Steam Cookers that are effective as...

  3. ENERGY STAR Certified Small Network Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Small Networking Equipment that are effective as...

  4. ENERGY STAR Certified Room Air Cleaners

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Room Air Cleaners that are effective as of July...

  5. ENERGY STAR Certified Uninterruptible Power Supplies

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Uninterruptible Power Supplies that are...

  6. ENERGY STAR Certified Geothermal Heat Pumps

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps

  7. ENERGY STAR Certified Data Center Storage

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Data Center Storage that are effective as of December 2, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/certified-products/detail/data_center_storage

  8. Zero energy Tunnel-concept

    NARCIS (Netherlands)

    Dzhusupova, R.

    2012-01-01

    Creating a zero energy environment is a hot topic. The developments in this field are based on the concept of the "Trias Energetica": reducing energy consumption, using renewable energy sources, and efficiently using fossil fuels. A zero energy concept can also be applied to road tunnels to improve

  9. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  10. An Unwelcome Place for New Stars (artist concept)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes This artist's concept depicts a supermassive black hole at the center of a galaxy. NASA's Galaxy Evolution Explorer found evidence that black holes -- once they grow to a critical size -- stifle the formation of new stars in elliptical galaxies. Black holes are thought to do this by heating up and blasting away the gas that fuels star formation. The blue color here represents radiation pouring out from material very close to the black hole. The grayish structure surrounding the black hole, called a torus, is made up of gas and dust. Beyond the torus, only the old red-colored stars that make up the galaxy can be seen. There are no new stars in the galaxy.

  11. Energy Literacy : Essential Principles and Fundamental Concepts for Energy Education

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-03-01

    Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education presents energy concepts that, if understood and applied, will help individuals and communities make informed energy decisions.

  12. Energy Literacy : Essential Principles and Fundamental Concepts for Energy Education

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education presents energy concepts that, if understood and applied, will help individuals and communities make informed energy decisions.

  13. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  14. Lev Landau and the concept of neutron stars

    International Nuclear Information System (INIS)

    Yakovlev, Dmitrii G; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-01-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores. (from the history of physics)

  15. Efficient Energy-Storage Concept

    Science.gov (United States)

    Brantley, L. W. J.; Rupp, C.

    1982-01-01

    Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.

  16. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  17. ENERGY STAR Certified Commercial Hot Food Holding Cabinet

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Hot Food Holding Cabinets that are...

  18. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  19. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  20. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    Science.gov (United States)

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  1. Nuclear symmetry energy and stability of matter in neutron stars

    International Nuclear Information System (INIS)

    Kubis, Sebastian

    2007-01-01

    It is shown that the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star

  2. 11 New England Organizations Recognized as Energy Star Partners

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s New England office, along with the U.S. Department of Energy are honoring 11 ENERGY STAR partners for their outstanding contributions to public health and the environment.

  3. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  4. Concept for Energy Security Matrix

    International Nuclear Information System (INIS)

    Kisel, Einari; Hamburg, Arvi; Härm, Mihkel; Leppiman, Ando; Ots, Märt

    2016-01-01

    The following paper presents a discussion of short- and long-term energy security assessment methods and indicators. The aim of the current paper is to describe diversity of approaches to energy security, to structure energy security indicators used by different institutions and papers, and to discuss several indicators that also play important role in the design of energy policy of a state. Based on this analysis the paper presents a novel Energy Security Matrix that structures relevant energy security indicators from the aspects of Technical Resilience and Vulnerability, Economic Dependence and Political Affectability for electricity, heat and transport fuel sectors. Earlier publications by different authors have presented energy security assessment methodologies that use publicly available indicators from different databases. Current paper challenges viability of some of these indicators and introduces new indicators that would deliver stronger energy security policy assessments. Energy Security Matrix and its indicators are based on experiences that the authors have gathered as high-level energy policymakers in Estonia, where all different aspects of energy security can be observed. - Highlights: •Energy security should be analysed in technical, economic and political terms; •Energy Security Matrix provides a framework for energy security analyses; •Applicability of Matrix is limited due to the lack of statistical data and sensitivity of output.

  5. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    International Nuclear Information System (INIS)

    Webber, Carrie A.; Brown, Richard E.

    1998-01-01

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than$100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  6. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo

    2017-01-01

    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  7. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  8. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  9. Energy flux determines magnetic field strength of planets and stars.

    Science.gov (United States)

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  10. Risk concepts and energy systems

    International Nuclear Information System (INIS)

    Otway, H.J.

    1975-01-01

    Many countries are experiencing a period in which traditional values are being questioned; plans for further technological progress are being met by a variety of demands for a closer examination of the benefits and risks of large-scale technologies. In this paper the concepts of risk assessment are introduced and a model is proposed which illustrates the importance of socio-psychological mechanisms in the societal acceptance of technological risks. The research plan of the joint IAEA/IIASA Research Project is outlined: this work is directed toward gaining an improved understanding of how societies judge the acceptability of technologies and how societal attitudes and anticipated responses may be better integrated into the decision-making process. Some preliminary results are reported [fr

  11. Nanostructured energy devices equilibrium concepts and kinetics

    CERN Document Server

    Bisquert, Juan

    2014-01-01

    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  12. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  13. Resonant Wave Energy Converters: Concept development

    International Nuclear Information System (INIS)

    Arena, Felice; Barbaro, Giuseppe; Fiamma, Vincenzo; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati, Federica Mara

    2015-01-01

    The Resonant Wave Energy Converter (REWEC) is a device for converting sea wave energy to electrical energy. It belongs to the family of Oscillating Water Columns and is composed by an absorbing chamber connected to the open sea via a vertical duct. The paper gives a holistic view on the concept development of the device, starting from its implementation in the context of submerged breakwaters to the recently developed vertical breakwaters. [it

  14. Energy Concepts for the Shahre Javan Community

    OpenAIRE

    Huber, Jörg; Nytsch-Geusen, Christoph

    2013-01-01

    Zugleich gedruckt veröffentlicht im Universitätsverlag der TU Berlin unter der ISBN 978-3-7983-2548-7. The aim of the Young Cities Team 2 sub-project “Energy Infrastructure systems” consists of the development and the design of energy efficient buildings and energy supply systems for new Towns in Iran. This document gives an overview over the design and the development of the energy supply systems for the 35 ha pilot area in Hashtgerd New Town. In general, these energy concepts are suitabl...

  15. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  16. Hot Brakes and Energy-Related Concepts: Is Energy Lost?

    Science.gov (United States)

    Lopez, V.; Pinto, R.

    2012-01-01

    This paper describes a secondary school experience which is intended to help students to think profoundly about some energy-related concepts. It is quite different to other experiences of mechanics because the focus is not on the quantitative calculation of energy conservation but on the qualitative understanding of energy degradation. We first…

  17. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  18. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  19. Hot neutron stars at birth and energy release

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    1994-01-01

    For the discussion of hot neutron stars at birth, it is necessary to calculate the equation of state for a so-called 'supernova matter' consisting of a neutron-rich nuclear matter and degenerated leptons. One of the aims of this paper is to obtain the realistic results for the equation of state. In 10-20s after the birth, new born hot neutron stars are cooled down by neutrino diffusion process, and gradually contract to usual cold neutron starts. It is another aim of this paper to determine how much energy is released during this cooling stage. The points to which attention was paid are explained. A three-nucleon interaction was introduced phenomenologically, as a two-nucleon interaction is insufficient to satisfy the empirical saturation property of symmetric nuclear matters. The separation of uncertain part from well-known part has the merit to clarify the dependence of the results on the present theoretical uncertainties. The validity of the simplified calculation as an approximation for the exact calculation is discussed. The results by both calculations were compared for the case of hot symmetric nuclear matters. The comparison of the density profiles for a hot neutron star and a cold neutron star is shown. The binding energy for hot and cold neutron stars was plotted. These results are examined. (K.I.)

  20. Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Gearheart, Michael; Hooker, Joshua; Krastev, Plamen G; Lin Weikang; Newton, William G; Wen Dehua; Xu Chang; Ko Cheming; Xu Jun

    2011-01-01

    Significant progress has been made in recent years in constraining the density dependence of nuclear symmetry energy using terrestrial nuclear laboratory data. Around and below the nuclear matter saturation density, the experimental constraints start to merge in a relatively narrow region. At supra-saturation densities, there are, however, still large uncertainties. After summarizing the latest experimental constraints on the density dependence of nuclear symmetry energy, we highlight a few recent studies examining imprints of nuclear symmetry energy on the binding energy, energy release during hadron-quark phase transitions as well as the ω-mode frequency and damping time of gravitational wave emission of neutron stars.

  1. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...

  2. The systematics of emerging nuclear energy concepts

    International Nuclear Information System (INIS)

    Harms, A.A.; Ligou, J.

    1980-01-01

    The basic systematics pertaining to emerging nuclear energy concepts are examined from a historical and categorical perspective. For this purpose a complementary formulation of the interdependence of the vital fission-fusion-acceleration processes is established and then developed to accommodate explicitly recent developments for advanced synergetic nuclear energy proposals. The papers presented at the conference which form these proceeding are shown to integrate well and thus ecluidate the generalized systematics of this formulation. (orig.) [de

  3. Home Performance with ENERGY STAR(R) Exchange

    Energy Technology Data Exchange (ETDEWEB)

    2003-10-01

    Handout for the Energy and Environmental Building Association's Building Solutions 2003 Conference and Expo: Chicago, Illinois, October 2003 The following summaries, provided by implementers of ''Home Performance with ENERGY STAR{reg_sign}'' around the country, are for use in the October 15 discussion during the Energy & Environmental Building Association (EEBA) Building Solutions, 2003 Conference in Chicago. The summaries and session discussions provide an overview of ''Home Performance with ENERGY STAR'', along with results and lessons learned from existing ''Home Performance'' implementers in New York, Wisconsin, Massachusetts, California, and Kansas City. Five future pilot projects set to begin in Georgia/Alabama, Idaho, Missouri, New Jersey and Texas will also be presented and discussed. Session topics will include the use of different training approaches, methods of quality assurance, and the role contractor certification plays in several of the programs. The session will conclude with a roundtable discussion of Home Performance issues by current and emerging implementers, with time for participant questions. ''Home Performance with ENERGY STAR'' uses the growing awareness and credibility of the ENERGY STAR brand to encourage and facilitate whole-house energy improvements in existing homes through self-sustaining energy efficiency programs. Whether you're a state energy official, utility program manager, contractor training professional or efficiency program implementer, you're sure to benefit from the unique presentations and networking opportunities that this session will offer.

  4. Symmetry Energy Effects in the Neutron Star Properties

    Science.gov (United States)

    Alvarez-Castillo, D. E.; Kubis, S.

    2012-12-01

    The functional form of the nuclear symmetry energy has only been determined in a very narrow range of densities. Uncertainties concern both the low as well as the high density behaviour of this function. In this work different shapes of the symmetry energy, consistent with the experimental data, were introduced and their consequences for the crustal properties of neutron stars are presented. The resulting models are in agreement with astrophysical observations.

  5. Switch green : Energy Star appliance feebate

    International Nuclear Information System (INIS)

    2007-01-01

    Between 1990 and 2004, greenhouse gas (GHG) emissions from the residential sector have grown by 10 per cent, and are likely to continue growing unless a policy aimed at reducing emissions is introduced. The residential sector is a significant contributor to Canada's overall GHG emissions, and an important source for potential reductions. This report presented the results of a study that described and evaluated a new economic instrument aimed at reducing greenhouse gas (GHG) emissions and energy consumption in Canada from household appliances, such as air conditioners, furnaces and boilers. Results of a quantitative analysis to determine the effect of changing taxation of residential appliances to reflect energy consumption and greenhouse gas emissions were presented. In addition, the report presented the results of a qualitative evaluation of the policy, using the criteria established in the 2005 budget plan, a framework for evaluating environmental tax proposals. The report outlined the context for the tax proposal that was evaluated and provided a summary of trends in Canada's greenhouse gas emissions and energy consumption as well as a discussion of important trends in residential energy consumption. A review of policies already in place to address energy consumption from household appliances was also presented. 11 tabs., 6 figs

  6. Investigation of Preservice Science Teachers' Comprehension of the Star, Sun, Comet and Constellation Concepts

    Science.gov (United States)

    Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan

    2017-01-01

    The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…

  7. A novel bistable energy harvesting concept

    International Nuclear Information System (INIS)

    Scarselli, G; Nicassio, F; Pinto, F; Ciampa, F; Iervolino, O; Meo, M

    2016-01-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%–6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments. (paper)

  8. The France and the stars energy

    International Nuclear Information System (INIS)

    Balibar, S.; Pomeau, Y.; Treiner, J.

    2004-10-01

    This paper discusses the project ITER International Thermonuclear Experimental Reactor. It shows that the nuclear fusion is not the solution to energy supply problems and the ITER project do not solve two main problems of the nuclear fusion, for an industrial application: the material behavior under high irradiation and the massive production of tritium. (A.L.B.)

  9. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  10. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner...

  11. New types of nuclear energy concepts

    International Nuclear Information System (INIS)

    Ledinegg, E.; Heindler, M.

    1978-10-01

    The article summarises the results of a conference on new concepts of nuclear energy, held from 29 - 31 March 1978. Principles of known systems are briefly outlined, mainly from the standpoint of neutron formation by fission, blanket breeding etc, and power production by plasma focussing and thermonuclear fusion. The new concepts include the Migma system and micro-explosions. A section is included on 'hybrid' reactors using a electronuclear source (ENQ) as neutron supply, and 'symbiotic' reactors using ENQ for fuel supply. (G.C.)

  12. Energy spectrum of flares of the UV Cet stars and physical measunings of several statistical characteristics of these stars

    International Nuclear Information System (INIS)

    Gershberg, R.E.

    1985-01-01

    Accounting the observed power character of the energy spectrum of flares of the UV Cet-type stars, several statistical characterisitics of there stars are considered. It is shown that a mean amplitude of flares is mainly determined with an amplitude of the faintest flare that can be registered at the star under consideration and therefore - contrary to tradition - the mean flare amplitude cannot be used as a measure of a flare activity of the star. Mean frequencuy of flares registered at a flare star dependes statisticaally certainly ona an absolute magneitude of the star - contary to wide spread belief, true mean frequencies are higher at brighter stars. On the basis of the Cataloque of flare stars in Pleiades by Haro, Chavira and Gonzalez a luminosity function of therese stars is constructed. Using this function and the revealed dependence of flare mean frequencies on stellar absolute magnitudes, a distribution of flare stars in Pleiades along flare mean frequencies is constructed. This shows that the cluster contains flare stars with mean frequencies of photographically registered flares from 10 -4 to 10 -2 hour -1 or within even narrower interval of frequencies and the total number of such stars in the cluster exceeds 1100

  13. Constraints on the symmetry energy from neutron star observations

    International Nuclear Information System (INIS)

    Newton, W G; Gearheart, M; Wen, De-Hua; Li, Bao-An

    2013-01-01

    The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density L. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict L < 70 MeV.

  14. 77 FR 46089 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR...

    Science.gov (United States)

    2012-08-02

    ... Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR Program in the Commercial and Industrial... this action are participants in EPA's ENERGY STAR Program in the Commercial and Industrial Sectors. Title: Information Collection Activities Associated with EPA's ENERGY STAR Program in the Commercial and...

  15. ''Neighbourhood'' as an international energy policy concept

    International Nuclear Information System (INIS)

    Noel, Pierre; Campaner, Nadia

    2005-01-01

    Since 2002, the concept of ''neighbourhood'' has been central to the EU thinking about the emergence of a European foreign and security policy. The relations between the EU and the countries that share - or could share in the future - a border with it, but have little or no prospects for full membership, are supposed to be structured by the emerging ''European Neighbourhood Policy'' (ENP). On the receiving end of this policy proposal are a number of countries on the Eastern edge of the Union, in the South Caucasus, East and South of the Mediterranean. The ENP is very much a ''transformationist'' agenda, with very ambitious goals of bringing about long term political and economic reforms in the neighbour countries. The ultimate goal is to promote stability and prosperity on the edges of the Union. The means for that is to exchange gradual integration into the EU common market and direct economic aid against verifiable commitments of political and economic reforms. Many neighbour countries are of great significance as energy producers, energy exporters, or transit countries to the EU. Hence the following two questions: 1) Is there an explicit energy security component - or energy motive - in the ENP. If yes, how is it structured. 2) What are the potential energy security implications of the ENP. In other words: To what extent, and through which mechanisms, would EU energy security be served by a process of economic and political reforms in the neighbour countries. It's worth extending the questioning to the study of the ''neighbourhood'' dimension in the existing EU international energy policy. It appears that the energy security thinking of the EU Commission has long been structured by the concept of ''neighbourhood''. It is then of some importance to study how the development of this policy will be affected by the implementation of the ENP. Beyond that, we develop a critical assessment of ''neighbourhood'' as a concept for energy security policies. Based on a

  16. Energy saving and energy efficiency concepts for policy making

    International Nuclear Information System (INIS)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies.

  17. Energy saving and energy efficiency concepts for policy making

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, V. [SOM, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Becchis, F. [POLIS Department, University of East Piedmont, via Duomo, 6-13100 Vercelli (Italy); Steg, L. [Faculty of Behavioural and Social Sciences, University of Groningen, P.O. Box 72 9700 AB (Netherlands); Russolillo, D. [Fondazione per l' Ambiente ' T. Fenoglio' , Via Gaudenzio Ferrari 1, I-10124 Torino (Italy)

    2009-11-15

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies. (author)

  18. Qualitative pre-test of Energy Star advertising : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    Natural Resources Canada launched a print advertising campaign and one 30-second television commercial to promote the Energy Star symbol and to acquaint the public with the program that identifies energy efficient products that reduce energy use, save money and reduce greenhouse gas emissions that contribute to climate change. The Communications Branch of Natural Resources Canada wanted to pre-test the television and print ads. Each print ad focused on a particular product category, including home comfort, appliances, electronics and office equipment. The qualitative research methodology was used in the pre-testing because it is the best learning tool for understanding the range and depth of reactions toward a subject at any given time. The findings were not quantifiable because they are not representative of the population at large. Ten focus groups were surveyed in January 2003 in 5 Canadian centres with a total of 83 participants aged 18 to 54. The target groups included people who were informed about climate change issues as well as those who were note. Participants were questioned about the Energy Star Product. Findings were consistent across all 5 locations. There was some general awareness of EnerGuide on appliances in all groups, but generally a low awareness of the Energy Star symbol. Most people did not place energy efficiency as a high priority when purchasing appliances. This report presented the main findings of attitudes towards climate change, Kyoto and energy efficiency. The reaction to the television and print ads was also included along with opinions regarding their main weaknesses and strengths. Some recommendations for improvement were also included. Samples of the print advertisements were included in both English and French. tabs., figs.

  19. The Sun - From the star to domestic energy

    International Nuclear Information System (INIS)

    2009-06-01

    Considered as a star and a deity, for a long period of time the Sun was thought to be another planet, whereas the word 'star' was reserved for all the brilliant points of light in the night sky. The Sun's status as a star in the sense of 'an astral body producing and emitting energy' was firmly established only at the beginning of the 20. century. Today astrophysicists are revealing more and more secrets of the fusion burning region located in its core. It is thanks to the Sun that life has appeared and evolved on Earth; it controls the cycle of 'For the last 4.6 million years the Sun has being providing us with light and heat. Today it is man's ambition to control this energy source'. The seasons and provides us with heat and light. But what exactly is the nature and origin of this prodigious energy source, with which man attempts to provide warmth and produce electricity? What is happening in this gigantic ball of fire, impossible to observe without protective glasses? And finally, how long will it continue to shine? Questions such as these took many centuries to be solved and will continue to be the subject of research for a long time to come. (authors)

  20. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    Science.gov (United States)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  1. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  2. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  3. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  4. The concept of energy justice across the disciplines

    International Nuclear Information System (INIS)

    Heffron, Raphael J.; McCauley, Darren

    2017-01-01

    Over the last decade, ‘Energy Justice’ is a concept that has emerged in research across many disciplines. This research explores the role and value of the energy justice concept across the disciplines. It provides the first critical account of the emergence of the energy justice concept in both research and practice. A diagrammatical image for examining the energy justice concepts is presented and this is a tool for interdisciplinary engagement with the concept. In this context, restorative justice is introduced and how it results in energy justice applying in practice is detailed. Energy research scholarship at universities is assessed and it is clear that through universities there is a platform for energy justice scholarship to build on the interdisciplinary energy scholarship at universities. Further, the role of education is vital to policy-making, and the understanding and development of the energy justice concept. Finally, in analysing how the energy justice concept can impact on policy-making, there is a critical examination of the energy justice and its relationship with economics, and how it can transfer directly into practice by assisting in balancing the competing aims of the energy trilemma. - Highlights: • Presents the value of the energy justice concept itself. • Introduces restorative justice as having a key role across the energy justice concept. • Expresses the need to develop a ‘common approach’ for the energy justice concept Advances the conceptual framework for energy justice – from theory to practice.

  5. Adaptive acoustic energy delivery to near and far fields using foldable, tessellated star transducers

    Science.gov (United States)

    Zou, Chengzhe; Harne, Ryan L.

    2017-05-01

    Methods of guiding acoustic energy arbitrarily through space have long relied on digital controls to meet performance needs. Yet, more recent attention to adaptive structures with unique spatial configurations has motivated mechanical signal processing (MSP) concepts that may not be subjected to the same functional and performance limitations as digital acoustic beamforming counterparts. The periodicity of repeatable structural reconfiguration enabled by origami-inspired tessellated architectures turns attention to foldable platforms as frameworks for MSP development. This research harnesses principles of MSP to study a tessellated, star-shaped acoustic transducer constituent that provides on-demand control of acoustic energy guiding via folding-induced shape reconfiguration. An analytical framework is established to probe the roles of mechanical and acoustic geometry on the far field directivity and near field focusing of sound energy. Following validation by experiments and verification by simulations, parametric studies are undertaken to uncover relations between constituent topology and acoustic energy delivery to arbitrary points in the free field. The adaptations enabled by folding of the star-shaped transducer reveal capability for restricting sound energy to angular regions in the far field while also introducing means to modulate sound energy by three orders-of-magnitude to locations near to the transducer surface. In addition, the modeling philosophy devised here provides a valuable approach to solve general sound radiation problems for foldable, tessellated acoustic transducer constituents of arbitrary geometry.

  6. How to Launch an Energy Star Energy Efficiency Competition for K-12 Schools

    Science.gov (United States)

    Utebay Kudret; McArthur, Ashley

    2012-01-01

    In recent years, schools have been forced by rising costs and shrinking budgets to stretch their resources further than ever before in order to meet the educational needs of today's students. EPA's ENERGY STAR program helps K-12 schools and districts improve energy efficiency, reduce operating costs and redirect critical resources into the…

  7. Nucleosynthesis and Energy Production in Stars: Bethe's Crowning ...

    Indian Academy of Sciences (India)

    Today we understand that the study of the structure and ... periodically if it is unable to maintain this balance. Cre- ... mon source of energy in our day to day life, could not account for the .... The concept of hydrogen burning and the work on bar-.

  8. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  9. Reconsidering relations between nuclear energy and security concepts

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2004-01-01

    Relations between nuclear energy and security concepts can be clarified through investigation into the multivocal nature of security concepts. While military uses of nuclear energy significantly influence national security, peaceful uses of nuclear energy contribute energy security, which is an expanded concept of national security. Military and peaceful uses of nuclear energy have reciprocal actions, thus influencing national security and energy security, respectively. Nuclear security, which means security of nuclear systems themselves, recently attracts the attention of the international society. Nuclear security directly influences national security issues. On the other hand, along with nuclear safety, nuclear security becomes a prerequisite for energy security through peaceful uses of nuclear energy. In investigating into relations between nuclear energy and security concepts, the difficulty of translating the English word of 'nuclear security' into Japanese as well as other languages is found. (author)

  10. High energy neutrinos from the tidal disruption of stars

    Energy Technology Data Exchange (ETDEWEB)

    Lunardini, Cecilia [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-05-17

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  11. High energy neutrinos from the tidal disruption of stars

    International Nuclear Information System (INIS)

    Lunardini, Cecilia

    2017-01-01

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  12. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  13. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  14. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  15. Essential aspects and concepts of the energy debate

    International Nuclear Information System (INIS)

    Kotte, U.

    1985-01-01

    The paper abstracted intends to elucidate the structures of modern energy supply and explains a number of concepts arising in the energy debate. Among others, the paper discusses the different energy sources, the relation between per capita income and primary energy consumption, the development of primary energy consumption classified by energy sources, economic growth and electric power consumption in the Federal Republic of Germany and end use energy consumption classified by different groups of consumers. (DG) [de

  16. Concepts. Environmental care through energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1987-04-01

    Energy saving is an important ingredient of a preventive energy policy. It helps to reduce pollutants which are one essential source of damage done to air, water and soil. But even the environmentally damaging side effects of energy production, storage and distribution can be cut down through energy saving.

  17. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  18. Institutional aspects of the energy centers concept

    International Nuclear Information System (INIS)

    1977-03-01

    Information is presented concerning the socio-economic impacts of nuclear energy centers; equity considerations relating to taxation and revenue distribution; report on jurisdictional authorities of state and local government related to centralized and decentralized alternative energy systems; federal-state conflicts and cooperation in the siting of nuclear energy facilities; the energy park experience in Pennsylvania; and a socio-economic institution summary of energy centers in Washington State

  19. Institutional aspects of the energy centers concept

    Energy Technology Data Exchange (ETDEWEB)

    Esser, George H.

    1977-03-01

    Information is presented concerning the socio-economic impacts of nuclear energy centers; equity considerations relating to taxation and revenue distribution; report on jurisdictional authorities of state and local government related to centralized and decentralized alternative energy systems; federal-state conflicts and cooperation in the siting of nuclear energy facilities; the energy park experience in Pennsylvania; and a socio-economic institution summary of energy centers in Washington State.

  20. High-energy emission from star-forming galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Rephaeli, Y.

    2011-01-01

    Adopting the convection-diffusion model for energetic electron and proton propagation, and accounting for al lthe relevant hadronic and leptonic processes, the steady-state energy distributions of these particles in the starburst galaxies M 82 and NGC 253 can be determined with a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radioemission from the central starburst region; a commonly expected theoretical relationis then used to normalize the proton spectrum in thisr egion, and a radial profile is assumed for the magnetic field. The resulting radiative yields of electrons and protons are calculated: thepredicted > 100MeV and > 100GeV fluxes are in agreement with the corresponding quantities measured with the orbiting Fermite lescope and the ground-based VERITAS and HESS Cherenkov telescopes. The cosmic-rayenergy densities in central regions of starburst galaxies, as inferred from the radioand γ-ray measurements of (respectively) non-thermal synchrotron and π 0 -decay emission, are U p = O(100)eVcm -3 , i.e. at least an order of magnitude larger than near the Galactic center and in other non-very-actively star-forming galaxies. These very different energy density levelsr eflect a similar disparity in the respective supernova rates in the two environments. A L γ proper to SFR 1.4 relationship is then predicted, in agreement with preliminary observational evidence.

  1. On the Concept of Energy: Eclecticism and Rationality

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2014-06-01

    In the theory of heat of the first half of the nineteenth century, heat was a substance. Mayer and Joule contradicted this thesis but developed different concepts of heat. Heat was a force for Mayer and a motion for Joule. Both Mayer and Joule determined the mechanical equivalent of heat. This result was, however, justified in accordance with those concepts of heat. Mayer's characterisation of force reappears in the very common textbook definition `energy cannot be created or destroyed but only transformed' and his theory led to a phenomenological approach to energy. Joule and Thomson's concept of heat led to a mechanistic approach to energy and to the common definition `energy is the capacity of doing work'. One and the same term `energy' subsumed these two approaches. The problematic concept of energy, energy as a substance, appears then as a result of an eclectic development of the concept. Another approach, which appeared in the 1860s, is directly based on the mechanical equivalent of heat and can be characterized by the use of `principle of equivalence' instead of `principle of energy conservation'. Unlike the others, this approach, which has been lost, poses no problems with the concept of energy. The problems with the energy concept as to the kind of phenomena dealt with in the present paper can, however, be overcome, as we shall see, in distinguishing between that which comes from experiments and that which is an interpretation of the experimental results within a conceptual framework.

  2. Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance

    International Nuclear Information System (INIS)

    Gliedt, Travis; Hoicka, Christina E.

    2015-01-01

    Highlights: • Energy Star property owners/managers view energy as strategic or financial investments. • Energy performance improvements and motivations differ by property type. • Energy projects are most often funded by internal cash reserves. • Motivations and funding sources differ by type of energy project. • Environmental sustainability is an important criterion in many energy projects. - Abstract: Due to its significant carbon footprint and cost-effectiveness for upgrades, the commercial property sector is important for climate change mitigation. Although barriers to energy system changes, such as funding, financing and information, are well recognized, Energy Star property owners and managers are successfully overcoming these barriers and instigating energy efficiency upgrades, renewable energy installations, and behavior and management programs. To examine the decision-making process that leads to energy performance improvements, a national survey of property owners and management organizations of buildings that earned an Energy Star score of 75 or higher was conducted. The extent to which energy upgrades were considered strategic investments motivated by environmental sustainability or corporate social responsibility, or financial investments motivated by payback period or return-on-investment criteria, was contingent upon the property type and type of energy project. Environmental sustainability was found to be an important motivation for energy projects in office spaces in general, but in the case of smaller office spaces was often combined with motivations for corporate social responsibility. Energy projects on education properties were motivated by financial investment. Building envelope and mechanical efficiency upgrades were considered financial investments, while renewable energy, green roofs, and water conservation technologies were considered environmental sustainability initiatives

  3. Factors influencing willingness-to-pay for the ENERGY STAR label

    International Nuclear Information System (INIS)

    Ward, David O.; Clark, Christopher D.; Jensen, Kimberly L.; Yen, Steven T.; Russell, Clifford S.

    2011-01-01

    In the United States, nearly 17% of greenhouse gas emissions come from residential energy use. Increases in energy efficiency for the residential sector can generate significant energy savings and emissions reductions. Consumer labels, such as the US Environmental Protection Agency's ENERGY STAR, promote conservation by providing consumers with information on energy usage for household appliances. This study examines how the ENERGY STAR label affects consumer preferences for refrigerators. The results of an online survey of a national sample of adults suggest that consumers are, on average, willing to pay an extra $249.82-$349.30 for a refrigerator that has been awarded the ENERGY STAR label. Furthermore, the results provide evidence that respondent willingness-to-pay was motivated by both private (energy cost savings) and public (environmental) benefits. - Research highlights: → Results of a contingent choice experiment from an online survey of a national sample suggest that consumers are, on average, willing to pay an extra $249.82-$349.30 for a refrigerator awarded the ENERGY STAR label. → Preferences for ENERGY STAR refrigerators are motivated by both private (energy cost savings) and public (environmental) benefits. → Preferences for ENERGY STAR refrigerators decrease with age but are stronger among males than among females.

  4. Factors influencing willingness-to-pay for the ENERGY STAR label

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David O. [Department of Agricultural and Resource Economics, University of Tennessee, 302 Morgan Hall, 2621 Morgan Circle, Knoxville, TN 37996 (United States); Clark, Christopher D., E-mail: cdclark@utk.ed [Department of Agricultural and Resource Economics, University of Tennessee, 302 Morgan Hall, 2621 Morgan Circle, Knoxville, TN 37996 (United States); Jensen, Kimberly L.; Yen, Steven T. [Department of Agricultural and Resource Economics, University of Tennessee, 302 Morgan Hall, 2621 Morgan Circle, Knoxville, TN 37996 (United States); Russell, Clifford S. [Vanderbilt University, Nashville, TN (United States); Bowdoin College, Brunswick, ME (United States)

    2011-03-15

    In the United States, nearly 17% of greenhouse gas emissions come from residential energy use. Increases in energy efficiency for the residential sector can generate significant energy savings and emissions reductions. Consumer labels, such as the US Environmental Protection Agency's ENERGY STAR, promote conservation by providing consumers with information on energy usage for household appliances. This study examines how the ENERGY STAR label affects consumer preferences for refrigerators. The results of an online survey of a national sample of adults suggest that consumers are, on average, willing to pay an extra $249.82-$349.30 for a refrigerator that has been awarded the ENERGY STAR label. Furthermore, the results provide evidence that respondent willingness-to-pay was motivated by both private (energy cost savings) and public (environmental) benefits. - Research highlights: {yields} Results of a contingent choice experiment from an online survey of a national sample suggest that consumers are, on average, willing to pay an extra $249.82-$349.30 for a refrigerator awarded the ENERGY STAR label. {yields} Preferences for ENERGY STAR refrigerators are motivated by both private (energy cost savings) and public (environmental) benefits. {yields} Preferences for ENERGY STAR refrigerators decrease with age but are stronger among males than among females.

  5. Conception for economical energy utilization and supply

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H; Canzler, B

    1977-10-01

    This study was performed to study the factors which determine energy consumption within buildings and how to optimize such energy use. The parameters of the principal energy consumers, i.e., HVAC and lighting systems, were analyzed. Possibilities for obtaining economical energy supplies and for reducing energy consumption were studied with emphasis on adapting the building mechanical equipment and the building design and construction to each other. It was concluded that planning for energy conservation in buildings will decrease the cost of constructing and operating buildings if the architect, building contractor and building operator work together from the initial planning stages.

  6. The STAR concept, systems to assist the operator during abnormal events

    International Nuclear Information System (INIS)

    Felkel, L.

    1984-01-01

    Man-machine-communication in electrical power plants is increasingly based on the capabilities of minicomputers. Rather than just displaying raw process data more complex processing is done to aid operators by improving information quality. Advanced operator aids for nuclear power plants are e.g. alarm reduction, disturbance analysis and expert systems. Operator aids use complex combinations and computations of plant signals, which have to be described in a formal and homogeneous way. The design of such computer-based information systems requires extensive software and engineering efforts. The STAR software concept described in this paper, however, reduces the software effort to a minimum by providing an advanced program package which facilitates specification and implementation of engineering know-how necessary for sophisticated operator aids. (orig.)

  7. Laboratory astrophysics with high energy and high power lasers: from radiative shocks to young star jets

    International Nuclear Information System (INIS)

    Diziere, A.

    2012-01-01

    Laboratory astrophysics are a rapidly developing domain of the High Energy Density Physics. It aims to recreate at smaller scales physical processes that astronomical telescopes have difficulties observing. We shall approach, in this thesis, three major subjects: 1) Jets ejected from young stars, characterized by an important collimation degree and ending with a bow shock; 2) Radiative shocks in which radiation emitted by the shock front itself plays a dominant role in its structure and 3) Accretion shocks in magnetic cataclysmic variables whose important cooling factor allows them to reach stationarity. From the conception to experimental realization, we shall attempt to reproduce in laboratory each of these processes by respecting the scaling laws linking both situations (experimental and astrophysical) established beforehand. The implementation of a large array of visible and X-ray diagnostics will finally allow to completely characterize them and calculate the dimensionless numbers that validate the astrophysical relevance. (author) [fr

  8. Building concepts for a transition towards energy neutrality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.J.; Paauw, J. [TNO Built Environment and Geosciences, Delft (Netherlands); Opstelten, I.J.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2007-03-15

    In this paper building concepts for the near future are described which enable the transition towards a net energy neutral building sector in the Netherlands by the year 2050. With 'net energy neutrality' is meant that, on a yearly basis, the total energy consumption in the built environment is compensated by local renewable energy production e.g. by using solar thermal (T), photovoltaic (PV), PVT and/or wind. A study concerning the feasibility of a 'net energy neutral built environment by 2050' set the energetic ambitions for the building concepts to be developed. This resulted in different concepts for residential buildings and for office-buildings. The building concepts are based on passive house technology to minimise the heating and cooling demand, and make optimal use of active and passive solar energy. Concepts for new to build domestic buildings are in fact energy producing to compensate for the remaining energy demand of existing, renovated dwellings. In all concepts the 'trias energetica' or 'energy pyramid' served as a general guideline, striving for minimisation of energy demand, maximal usage of renewable energy and usage of fossil fuels as efficiently as possible. Different full roof integrated options for using solar energy (PV, T or PVT) with variable storage options have been compared by making simulations with a dynamic simulation programme, to gain insight on their impact on energy, building engineering and economic impact. Also different possibilities for installations to fulfil the heating demand for the space heating and DHW demand are compared. For each concept, the resulting primary energy profiles for space heating and cooling, domestic hot water, electricity consumption for lighting, ventilation and household appliances are given.

  9. An energy balance concept for habitability.

    Science.gov (United States)

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  10. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  11. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  12. Effect of the Curved Spacetime on the Electrostatic Potential Energy Distribution of Strange Stars

    Institute of Scientific and Technical Information of China (English)

    陈次星; 张家铝

    2001-01-01

    The effect of the strong gravitational field of the strange core of a strange star on its surface electrostatic potential energy distribution is discussed. We present the general-relativistic hydrodynamics equations of fluids in the presence of the electric fields and investigate the surface electrostatic potential distribution of the strange core of a strange star in hydrostatic equilibrium to correct Alcock and coworker's result [Astrophys. J. 310 (1986) 261]. Also, we discuss the temperature distribution of the bare strange star surface and give the related formulae, which may be useful if we are concerned further about the physical processes near the quark atter surfaces of strange stars.

  13. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  14. Modeling Energy and Development : An Evaluation of Models and Concepts

    NARCIS (Netherlands)

    Ruijven, Bas van; Urban, Frauke; Benders, René M.J.; Moll, Henri C.; Sluijs, Jeroen P. van der; Vries, Bert de; Vuuren, Detlef P. van

    2008-01-01

    Most global energy models are developed by institutes from developed countries focusing primarily oil issues that are important in industrialized countries. Evaluation of the results for Asia of the IPCC/SRES models shows that broad concepts of energy and development. the energy ladder and the

  15. Development of concepts for a zero-fossil-energy greenhouse

    NARCIS (Netherlands)

    Ooster, A. van 't; Henten, E.J. van; Janssen, E.G.O.N.; Bot, G.P.A.; Dekker, E.

    2008-01-01

    Dutch government and greenhouse horticultural practice aim for strongly reduced fossil energy use and of environmental loads in 2010 and energy neutral greenhouses in 2020. This research aims to design a greenhouse concept with minimal use of fossil energy and independent of nearby greenhouses. The

  16. Department of Energy low-level radioactive waste disposal concepts

    International Nuclear Information System (INIS)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites

  17. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  18. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  19. Concept Study of Foundation Systems for Wave Energy Converters

    DEFF Research Database (Denmark)

    Molina, Salvador Devant; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Analysis of possible foundation solution for Wave Energy Converters (WEC) is presented by investigating and optimizing novel foundation systems recently developed for offshore wind turbines. Gravity based, pile and bucket foundations are innovative foundation systems that are analyzed. Concept...

  20. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  1. Ionization Energy: Implications of Preservice Teachers' Conceptions

    Science.gov (United States)

    Tan, Kim Chwee Daniel; Taber, Keith S.

    2009-01-01

    The results from a study to explore pre-service teachers' understanding of ionization energy, a topic that features in A-level (grade 11 and 12) chemistry courses. in Singapore , is described. A previous study using a two-tier multiple choice diagnostic test has shown that Singapore A-level students have considerable difficulty understanding the…

  2. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  3. Status report of the energy amplifier concept

    CERN Document Server

    Rubbia, Carlo

    1997-01-01

    We report the main results of study performed at CERN over the last three years by few people and with shoe-string funding on the potential impact of new Accelerators technologies in the field of Energy production from nuclei. Accelerators have been universal tools to nuclear reactions : why not using them to produce practical, sizeable amounts of nuclear transmutations, i.e. to: 1. eliminate unwanted long-lived, radioactive Waste from LWR's; 2. (eventually to produce energy in non-critical conditions, similar to the promises of Fusion and 3. as a substitution of Reactors for the neutron activation of short-lived radioactive elements for industrial and medical applications. - We have studied at the CERN-PS both the energy (heat) produced in nuclear cascades in a sub-critical environment (k=0.90) and the transmutation of unwanted waste in a small lethargy, transparent medium (lead). These experiments have been driven by conceptual studies and elaborate computer simulations of nuclear cascades and extend the we...

  4. 2003 status report savings estimates for the energy star(R)voluntary labeling program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-11-09

    ENERGY STAR(R) is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2002, what we expect in 2003, and provide savings forecasts for two market penetration scenarios for the period 2003 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

  5. 2005 Status Report Savings Estimates for the ENERGY STAR(R)Voluntary Labeling Program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

    2006-03-07

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), Energy Star labels exist for more thanforty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2004, whatwe expect in 2005, and provide savings forecasts for two marketpenetration scenarios for the periods 2005 to 2010 and 2005 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  6. 2004 status report: Savings estimates for the Energy Star(R)voluntarylabeling program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-03-09

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2003, whatwe expect in 2004, and provide savings forecasts for two marketpenetration scenarios for the periods 2004 to 2010 and 2004 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  7. 2002 status report: Savings estimates for the ENERGY STAR(R) voluntary labeling program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan

    2003-03-03

    ENERGY STAR [registered trademark] is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2001, what we expect in 2002, and provide savings forecasts for two market penetration scenarios for the period 2002 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

  8. Savings estimates for the ENERGY STAR (registered trademark) voluntary labeling program: 2001 status report

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; Mahajan, Akshay; Koomey, Jonathan G.

    2002-02-15

    ENERGY STAR(Registered Trademark) is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2000, what we expect in 2001, and provide savings forecasts for two market penetration scenarios for the period 2001 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

  9. Savings estimates for the ENERGY STAR (registered trademark) voluntary labeling program: 2001 status report; TOPICAL

    International Nuclear Information System (INIS)

    Webber, Carrie A.; Brown, Richard E.; Mahajan, Akshay; Koomey, Jonathan G.

    2002-01-01

    ENERGY STAR(Registered Trademark) is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2000, what we expect in 2001, and provide savings forecasts for two market penetration scenarios for the period 2001 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period

  10. 2007 Status Report: Savings Estimates for the ENERGY STAR(R)VoluntaryLabeling Program

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla; Webber, Carrie A.; Brown, Richard E.; Homan,Gregory K.

    2007-03-23

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2006, whatwe expect in 2007, and provide savings forecasts for two marketpenetration scenarios for the periods 2007 to 2015 and 2007 to 2025. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  11. Multiple-choice test of energy and momentum concepts

    OpenAIRE

    Singh, Chandralekha; Rosengrant, David

    2016-01-01

    We investigate student understanding of energy and momentum concepts at the level of introductory physics by designing and administering a 25-item multiple choice test and conducting individual interviews. We find that most students have difficulty in qualitatively interpreting basic principles related to energy and momentum and in applying them in physical situations.

  12. Students' Conceptions about Energy and the Human Body

    Science.gov (United States)

    Mann, Michael; Treagust, David F.

    2010-01-01

    Students' understanding of energy has been primarily within the domain of physics. This study sought to examine students' understanding of concepts relating to energy and the human body using pencil and paper questionnaires administered to 610 students in Years 8-12. From students' responses to the questionnaires, conceptual patterns were…

  13. A concept for a new Energy Efficient Actuator

    NARCIS (Netherlands)

    Stramigioli, Stefano; van Oort, Gijs; Dertien, Edwin Christian

    2008-01-01

    In this paper a novel concept of embedded robotic actuator is presented which has been named the Very Versatile Energy Efficient (V2E2) actuator. This actuator stores energy during any force profile which generates negative work on the load and it does therefore have unprecedented potentials for

  14. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... and the orbital period decay due to the emission of gravitational radiation. ˙P = −. 192π ... masses severely restrict the EoS of neutron star matter. Masses ..... (9) Is unstable burning of carbon (C) the real cause of superbursts?

  15. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla; Homan, Gregory; Lai, Judy; Brown, Richard

    2009-09-24

    This report provides a top-level summary of national savings achieved by the Energy Star voluntary product labeling program. To best quantify and analyze savings for all products, we developed a bottom-up product-based model. Each Energy Star product type is characterized by product-specific inputs that result in a product savings estimate. Our results show that through 2007, U.S. EPA Energy Star labeled products saved 5.5 Quads of primary energy and avoided 100 MtC of emissions. Although Energy Star-labeled products encompass over forty product types, only five of those product types accounted for 65percent of all Energy Star carbon reductions achieved to date, including (listed in order of savings magnitude)monitors, printers, residential light fixtures, televisions, and furnaces. The forecast shows that U.S. EPA?s program is expected to save 12.2 Quads of primary energy and avoid 215 MtC of emissions over the period of 2008?2015.

  16. A new star tracker concept for satellite attitude determination based on a multi-purpose panoramic camera

    Science.gov (United States)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele; Pernechele, Claudio; Dionisio, Cesare

    2017-11-01

    This paper presents an innovative algorithm developed for attitude determination of a space platform. The algorithm exploits images taken from a multi-purpose panoramic camera equipped with hyper-hemispheric lens and used as star tracker. The sensor architecture is also original since state-of-the-art star trackers accurately image as many stars as possible within a narrow- or medium-size field-of-view, while the considered sensor observes an extremely large portion of the celestial sphere but its observation capabilities are limited by the features of the optical system. The proposed original approach combines algorithmic concepts, like template matching and point cloud registration, inherited from the computer vision and robotic research fields, to carry out star identification. The final aim is to provide a robust and reliable initial attitude solution (lost-in-space mode), with a satisfactory accuracy level in view of the multi-purpose functionality of the sensor and considering its limitations in terms of resolution and sensitivity. Performance evaluation is carried out within a simulation environment in which the panoramic camera operation is realistically reproduced, including perturbations in the imaged star pattern. Results show that the presented algorithm is able to estimate attitude with accuracy better than 1° with a success rate around 98% evaluated by densely covering the entire space of the parameters representing the camera pointing in the inertial space.

  17. 77 FR 66976 - Star Energy Partners LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER13-281-000] Star Energy Partners LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Star Energy...

  18. ICT - Energy Concepts for Energy Efficiency and Sustainability

    NARCIS (Netherlands)

    Pesch, D.; Rea, S.; Torrens Galdiz, J.I.; Zavrel, V.; Hensen, J.L.M.; Grimes, D.; O'Sullivan, B.; Scherer, T.; Birke, R.; Chen, L.; Engbersen, T.; Lopez, L.; Pages, E.; Mehta, D.; Townley, J.; Tsachouridis, V.

    2017-01-01

    Data centres are part of today's critical information and communication infrastructure, and the majority of business transactions as well as much of our digital life now depend on them. At the same time, data centres are large primary energy consumers, with energy consumed by IT and server room air

  19. Integral energy concepts for housing estates; Integrale Energiekonzepte fuer Wohnsiedlungen

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, M.N.; Kuehl, L. [Technische Univ. Braunschweig (Germany)

    1998-06-01

    Integral energy concepts for housing estates require an early cooperation between architects, planners, and specialist engineers on the basis of a holistic planning approach. This is how future-oriented, sustainable concepts evolve which do justice to the multifarious requirements on the integral energy system of a housing estate. The present paper elucidates different approaches to optimising the energy efficiency of buildings such as the implementation of low-energy house concepts, building site and architectural planning, and detailed planning of heat insulation concepts, ventilation and air tightness concepts, and adapted heating systems. The solarisation of development plans has an influence on the arrangement of buildings, which are now planned to give the greatest possible passive and active solar energy gains. The authors also describe solar-assisted district heating systems for housing estates. [Deutsch] Integrale Energiekonzepte fuer Wohnsiedlungen erfordern die fruehe Zusammenarbeit von Architekten, Planern und Fachingenieuren im Rahmen einer ganzheitlichen Planung. So entstehen zukunftsweisende und tragfaehige Konzepte, die den vielschichtigen Anforderungen des Gesamtenergiesystems ``Wohnsiedlung`` gerecht werden. Im Folgenden wird die energetische Optimierung von Gebaeuden wie die Umsetzung von Niedrigenergiehaus-Konzepten, Standort und Gebaeudeplanung sowie Detailplanung in Bezug auf das Waermedaemmkonzept, Lueftungs-/Dichtheitskonzept und auf angepasste Waermeversorgungssysteme erl autert. Die Solarisierung von Bebauungsplaenen beeinflusste Anordnung der Gebaeude hinsichtlich der Nutzung passivsolarer Gewinne sowie des Einsatzes von Systemen der aktiven Solarenergienutzung. Solarunterstuetzte Nahwaermenetze fuer Wohnsiedlungen werden ebenfalls beschrieben.

  20. Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment

    International Nuclear Information System (INIS)

    Facci, Andrea L.; Sánchez, David; Jannelli, Elio; Ubertini, Stefano

    2015-01-01

    Highlights: • The trigenerative-CAES concept is introduced. • The thermodynamic feasibility of the trigenerative-CAES is assessed. • The effects of the relevant parameter on the system performances are dissected. • Technological issues on the trigenerative-CAES are highlighted. - Abstract: Energy storage is a cutting edge front for renewable and sustainable energy research. In fact, a massive exploitation of intermittent renewable sources, such as wind and sun, requires the introduction of effective mechanical energy storage systems. In this paper we introduce the concept of a trigenerative energy storage based on a compressed air system. The plant in study is a simplified design of the adiabatic compressed air energy storage and accumulates mechanical and thermal (both hot and cold) energy at the same time. We envisage the possibility to realize a relatively small size trigenerative compressed air energy storage to be placed close to the energy demand, according to the distributed generation paradigm. Here, we describe the plant concept and we identify all the relevant parameters influencing its thermodynamic behavior. Their effects are dissected through an accurate thermodynamic model. The most relevant technological issues, such as the guidelines for a proper choice of the compressor, expander and heat exchangers are also addressed. Our results show that T-CAES may have an interesting potential as a distributed system that combines electricity storage with heat and cooling energy production. We also show that the performances are significantly influenced by some operating and design parameters, whose feasibility in real applications must be considered.

  1. The concept of energy security: Beyond the four As

    International Nuclear Information System (INIS)

    Cherp, Aleh; Jewell, Jessica

    2014-01-01

    Energy security studies have expanded from their classic beginnings following the 1970s oil crises to encompass various energy sectors and increasingly diverse issues. This viewpoint contributes to the re-examination of the meaning of energy security that has accompanied this expansion. Our starting point is that energy security is an instance of security in general and thus any concept of it should address three questions: “Security for whom?”, “Security for which values?” and “Security from what threats?” We examine an influential approach – the ‘four As of energy security’ (availability, accessibility, affordability, and acceptability) and related literature of energy security – to show it does not address these questions. We subsequently summarize recent insights which propose a different concept of energy security as ‘low vulnerability of vital energy systems’. This approach opens the road for detailed exploration of vulnerabilities as a combination of exposure to risks and resilience and of the links between vital energy systems and critical social functions. The examination of energy security framed by this concept involves several scientific disciplines and provides a useful platform for scholarly analysis and policy learning. - Highlights: • Energy security should be conceptualized as an instance of security in general. • 4As of energy security and related approaches do not address security questions. • We define energy security as low vulnerability of vital energy systems (VES). • VES support critical social functions and can be drawn sectorally or geographically. • Vulnerability is a combination of exposure to risks and resilience capacities

  2. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C. [Building America Research Alliance (BARA), Kent, WA (United States)

    2014-12-01

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

  3. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Chen Liewen

    2009-01-01

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  4. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Brown, Richard; Homan, Gregory

    2008-11-17

    Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, we present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.

  5. The STAR beam energy scan phase II physics and upgrades

    Czech Academy of Sciences Publication Activity Database

    Yang, C.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert

    2017-01-01

    Roč. 967, č. 11 (2017), s. 800-803 ISSN 0375-9474 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * BES-II * detector upgrade * QCD phase diagram * physics oppotrunity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.916, year: 2016

  6. Theater of Memory against a Background of Stars: A Generation Starship Concept between Fiction and Reality

    Science.gov (United States)

    Caroti, Simone

    2009-03-01

    The concept of the generation starship constitutes a feasible response to the serious travel-time restrictions that the light-speed limit imposes upon human exploration of deep space-``feasible'' in the sense that it could be realized within a reasonably short time span, given our present state of technological advancement. It was Tsiolkovsky, the Russian pioneer of space flight, who first conceptualized the generation starship. In his 1928 paper, The Future of Earth and Mankind, Tsiolkovsky imagines the creation of a fleet of ``Noah's Arks,'' self-sufficient, man-made worldlets that would travel to a distant star system over a period of hundreds or thousands of years, while the crew onboard simply live out their lives maintaining and piloting the ships, and have children whom they teach the necessary skills to do the same once they are gone. Their distant descendants, tens or hundreds of generations in the future, will complete the voyage when the ships finally arrive at their appointed destination. Since Tsiolkovsky's time, science and science fiction have leapfrogged each other in an attempt to imagine what the conditions and consequences of such a venture could be. For example: how could one maintain a stable society throughout such a long period of time-and what sort of governing body should operate during the voyage? How would the composition and number of the crew influence the danger of genetic drift or decay? How might the ship-born generations retain their commitment to the goals of the culture(s) that first built and then equipped the ship back on Earth, when Earth itself has become less than a memory to them? How will space change them, both biologically and psychologically? Is it possible to imaginatively explore the impact of imponderable, unexpected factors-a shipboard emergency, a previously unobserved physical phenomenon, a paradigm-changing discovery? This paper explores the evolution of the generation starship concept between 1940 and 1970, and

  7. Imprint of the symmetry energy on the inner crust and strangeness content of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Providencia, Constanca; Chiacchiera, Silvia; Grill, Fabrizio; Rabhi, Aziz; Vidana, Isaac [University of Coimbra, Centro de Fisica Computacional, Department of Physics, Coimbra (Portugal); Avancini, Sidney S.; Menezes, Debora P. [Universidade Federal de Santa Catarina, Departamento de Fisica, SC - CP. 476, Florianopolis (Brazil); Cavagnoli, Rafael [Universidade Federal de Pelotas, Departamento de Fisica, CP 354, Pelotas/SC (Brazil); Ducoin, Camille; Margueron, Jerome [Universite Claude Bernard Lyon 1, Institut de Physique Nucleaire de Lyon, Villeurbanne (France)

    2014-02-15

    In this work we study the effect of the symmetry energy on several properties of neutron stars. First, we discuss its effect on the density, proton fraction and pressure of the neutron star crust-core transition. We show that whereas the first two quantities present a clear correlation with the slope parameter L of the symmetry energy, no satisfactory correlation is seen between the transition pressure and L. However, a linear combination of the slope and curvature parameters at ρ = 0.1 fm{sup -3} is well correlated with the transition pressure. In the second part we analyze the effect of the symmetry energy on the pasta phase. It is shown that the size of the pasta clusters, number of nucleons and the cluster proton fraction depend on the density dependence of the symmetry energy: a small L gives rise to larger clusters. The influence of the equation of state at subsaturation densities on the extension of the inner crust of the neutron star is also discussed. Finally, the effect of the density dependence of the symmetry energy on the strangeness content of neutron stars is studied in the last part of the work. It is found that charged (neutral) hyperons appear at smaller (larger) densities for smaller values of the slope parameter L. A linear correlation between the radius and the strangeness content of a star with a fixed mass is also found. (orig.)

  8. Full PWA Report: An Assessment of Energy, Waste, and Productivity Improvements for North Star Steel Iowa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-25

    North Star Steel's Wilton, Iowa plant (NSSI) was awarded a subcontract through a competitive process to use Department of Energy/OIT funding to examine potential processes and technologies that could save energy, reduce waste, and increase productivity.

  9. Savings estimates for the Energy Star(registered trademark) voluntary labeling program

    International Nuclear Information System (INIS)

    Webber, Carrie A.; Brown, Richard E.; Koomey, Jonathan G.

    2000-01-01

    ENERGY STAR7 is a voluntary labeling program designed to identify and promote energy-efficient products. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present estimates of the energy, dollar and carbon savings already achieved by the program and provide savings forecasts for several market penetration scenarios for the period 2001 to 2010. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emissions by electricity generators

  10. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  11. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  12. Designing an energy planning concept for enhancing the dissemination of renewable energy technologies in developing countries

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Lund, Søren

    2014-01-01

    This paper stresses the need for adapting a sustainable energy planning concept, which can support the implementation of renewable energy in developing countries; exemplified by a Vietnamese case. Many developing countries heavily rely on fossil fuel resources and will face energy supply security...... countries, while relevant policies, tools and plans etc. simultaneously are being deployed, enhancing the framework conditions for renewable energy implementation...

  13. Renewable energy. Sustainable concepts for the energy change. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Wengenmayr, Roland; Buehrke, Thomas (eds.)

    2013-02-01

    In the years since the publication of the first edition of this book, the world has undergone drastic changes in terms of energy sources. This is reflected in the expansion of this second edition from 20 to 26 chapters. The most dramatic occurrence was the Tsunami which struck Japan in March of 2011 and set off a reactor catastrophe at the nuclear power plants in Fukushima. On the other hand fossil fuel technology drives the climate change to a threatening level. So, renewable energy sources are essential for the 21st century. The increasing number of wind power plants, solar collectors and photovoltaic installations demonstrates perceptibly that many innovations for tapping renewable energy sources have matured: very few other technologies have developed so dynamically in the past years. Nearly all the chapters were written by professionals in the respective fields. That makes this book an especially valuable and reliable source of information. The second edition is extended by several new chapters such as tidal power stations, the Desertec project, thermography of buildings and more. Furthermore, the critical debate about ?current first generation ''bio-''fuels is carefully reflected, and the book presents promising solutions that do not trade in food for fuel.

  14. Marketing conception interaction between power system and electric energy loads

    International Nuclear Information System (INIS)

    Bagiev, G.L.; Shneerova, G.V.; Taratin, V.A.; Barykin, E.E.; Zajtsev, O.V.

    1993-01-01

    New concept of functioning fuel-power complex, based on the marketing system is, is presented in brief form. This system includes demand management program, working policy program, active energy-saving policy program and advertisment-service organization program. Methods for realization of demand management and working policy programs are considered

  15. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  16. Basic concepts in dosimetry. A critical analysis of the concepts of ionizing radiation and energy imparted

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1978-01-01

    The concepts of ionizing radiation and energy imparted defined by the ICRU in 1971 (Radiation Quantities and Units, Report 19, International Commission on Radiation Units and Measurements, Washington, D.C., 1971) are critically analyzed. It is found that the definitions become more consistent by changing them at two points. Charged particles with insufficient kinetic energy to ionize by collision but which are capable of initiating nuclear and elementary particle transformations are suggested to be classified as ionizing particles. In addition, the expressions ''the energy released'' or the ''energy expended'' in a nuclear or elementary particle transformation are suggested to be specified as ''the change in rest-mass energy of nuclei and elementary particles.'' Then the ionization caused by, for instance, nuclear reactions contributes to the energy imparted and the Q-value of an excitation or deexcitation of the electron structure, regarded as an elementary particle transformation, is zero

  17. Concept for Specific Lines of Business, Energy Saving Tourism

    International Nuclear Information System (INIS)

    Jilek, W.

    1998-01-01

    In the spirit of the objectives of the Energy Plan 1995 in order to make more efficient use of energy and thus to reduce energy requirements, to promote the use of renewable energies, and to attach maximum importance to the ecological compatibility of the energy systems, among other project the provincial government of Styria is pursuing the option of consulting small and medium-sized enterprises in a target manner. Three years after being launched, this Ecological Company Consulting scheme for various lines of business is now producing successful results, demonstrating that energy saving, business profit and ecology can go hand in hand by example of numerous pilot projects. Trade-specific concepts have been elaborated for foodstuffs, carpenters and car repair and sales firms, bakeries and hairdressers and, most recently, for tourist industry business /hotels, bars, restaurants, etc.). The province of Styria, represented by the Energy Commissioner and the department of waste management, is co-operating closely in the Ecological Company Consulting scheme with the Styrian Chamber of Commerce and the Economy Promotion Institute (Wirtschaftsfoerderungsinstitut). In several cases, other provinces, the Federal Ministry of Environmental, Youth and Family Affairs, and the Federal Chamber of Commerce have adopted the results of this co-operation, while in some cases subsidy schemes are linked to these trade-specific concepts. In the course of the scheme, the aim is to investigate energy requirements, saving potentials and questions of waste management. (author)

  18. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  19. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  20. Measuring improvement in energy efficiency of the US cement industry with the ENERGY STAR Energy Performance Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.; Zhang, G. [Department of Economics, Duke University, Box 90097, Durham, NC 27708 (United States)

    2013-02-15

    The lack of a system for benchmarking industrial plant energy efficiency represents a major obstacle to improving efficiency. While estimates are sometimes available for specific technologies, the efficiency of one plant versus another could only be captured by benchmarking the energy efficiency of the whole plant and not by looking at its components. This paper presents an approach used by ENERGY STAR to implement manufacturing plant energy benchmarking for the cement industry. Using plant-level data and statistical analysis, we control for factors that influence energy use that are not efficiency, per se. What remains is an estimate of the distribution of energy use that is not accounted for by these factors, i.e., intra-plant energy efficiency. By comparing two separate analyses conducted at different points in time, we can see how this distribution has changed. While aggregate data can be used to estimate an average rate of improvement in terms of total industry energy use and production, such an estimate would be misleading as it may give the impression that all plants have made the same improvements. The picture that emerges from our plant-level statistical analysis is more subtle; the most energy-intensive plants have closed or been completely replaced and poor performing plants have made efficiency gains, reducing the gap between themselves and the top performers, whom have changed only slightly. Our estimate is a 13 % change in total source energy, equivalent to an annual reduction of 5.4 billion/kg of energy-related carbon dioxide emissions.

  1. Managing Your Energy; An Energy Star Guide for Identifying Energy Savings in Manufacturing Plants

    NARCIS (Netherlands)

    Worrell, E.; Angelini, T.; Masanet, E.

    2010-01-01

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce

  2. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  3. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  4. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  5. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  6. Measuring energy-saving retrofits: Experiences from the Texas LoanSTAR program

    Energy Technology Data Exchange (ETDEWEB)

    Haberl, J.S.; Reddy, T.A.; Claridge, D.E.; Turner, W.D.; O`Neal, D.L.; Heffington, W.M. [Texas A and M Univ., College Station, TX (United States). Energy Systems Lab.

    1996-02-01

    In 1988 the Governor`s Energy Management Center of Texas received approval from the US Department of Energy to establish a $98.6 million state-wide retrofit demonstration revolving loan program to fund energy-conserving retrofits in state, public school, and local government buildings. As part of this program, a first-of-its-kind, statewide Monitoring and Analysis Program (MAP) was established to verify energy and dollar savings of the retrofits, reduce energy costs by identifying operational and maintenance improvements, improve retrofit selection in future rounds of the LoanSTAR program, and initiate a data base of energy use in institutional and commercial buildings located in Texas. This report discusses the LoanSTAR MAP with an emphasis on the process of acquiring and analyzing data to measure savings from energy conservation retrofits when budgets are a constraint. This report includes a discussion of the program structure, basic measurement techniques, data archiving and handling, data reporting and analysis, and includes selected examples from LoanSTAR agencies. A summary of the program results for the first two years of monitoring is also included.

  7. Diagnosing alternative conceptions of Fermi energy among undergraduate students

    International Nuclear Information System (INIS)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-01-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (ε F ). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper. (paper)

  8. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.

  9. Nonparametric regression using the concept of minimum energy

    International Nuclear Information System (INIS)

    Williams, Mike

    2011-01-01

    It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.

  10. Book Review: "Inside Stars. A Theory of the Internal Constitution of Stars, and the Sources of Stellar Energy According to General Relativity" (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2014-01-01

    Full Text Available This book provides a general relativistic theory of the internal constitution of liquid stars. It is a solid contribution to our understanding of stellar structure from a general relativistic perspective. It raises new ideas on the constitution of stars and planetary systems, and proposes a new approach to stellar structure an d stellar energy generation which is bound to help us better understand stellar astrophysics.

  11. On the structure of critical energy levels for the cubic focusing NLS on star graphs

    International Nuclear Information System (INIS)

    Adami, Riccardo; Noja, Diego; Cacciapuoti, Claudio; Finco, Domenico

    2012-01-01

    We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L 2 -norm. We moreover show that the only stationary state with prescribed L 2 -norm is indeed a saddle point. (fast track communication)

  12. Spectral energy distributions of T Tauri stars - disk flaring and limits on accretion

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution. 85 references

  13. Nuclear fission: the tarnished star of our energy future

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The use of fission nuclear energy to fuel commercial electricity-generating facilities, once considered the answer to the world's energy dilemma, is facing serious financial problems and reduced demand. Although the technology to handle the necessary functions exists, construction errors and delays, extensive cost overruns, equipment malfunctions, operator errors, continual regulation and design changes, and concern about long-term wastes and their effects on the environment and human health are plaguing the industry. Research and development efforts continue worldwide to improve the technology in the areas of use and waste handling. Many people express the belief that nuclear fission is necessary to fill the void being created by the decline in availability of fossil fuels. This may be true without extensive efforts in conservation and the use of other energy forms. 26 references, 13 figures

  14. SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS

    International Nuclear Information System (INIS)

    Le Blanc, Thompson S.; Stassun, Keivan G.; Covey, Kevin R.

    2011-01-01

    Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these 'disk-locking' theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the

  15. Regular Generalized Star Star closed sets in Bitopological Spaces

    OpenAIRE

    K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar

    2011-01-01

    The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

  16. Star/galaxy separation at faint magnitudes: Application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M.T.; et al.

    2013-06-21

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the Gravitational Weak Lensing and Large Scale Structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by Point Spread Function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use Principal Component Analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multi-parameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12% for galaxies, at i-magnitude fainter than 23.

  17. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M. T.; Abdalla, F. B.; Lahav, O.; Kirk, D.; Sevilla, I.; Bertin, E.; Rowe, B. T. P.; Annis, J.; Busha, M. T.; Da Costa, L. N.; Frieman, J. A.; Gaztanaga, E.; Jarvis, M.; Lin, H.; Percival, W. J.; Santiago, B. X.; Sabiu, C. G.; Wechsler, R. H.; Wolz, L.; Yanny, B.

    2015-04-14

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23.

  18. Law on the peaceful uses of nuclear energy: key concepts

    International Nuclear Information System (INIS)

    Pompignan, D. de

    2005-01-01

    The key concepts which ought to be included in legislation governing the peaceful uses of nuclear energy can be divided into two categories depending on whether they derive from the fundamental principles of nuclear law or reflect categories of general law. Their inclusion results in compliance with a shared obligation when they derive from a binding international instrument. It also permits the transposition into law of broader nuclear concepts and principles, and the more specific characteristics of a general nuclear law, which is to lay down priorities. When the resulting classification is tested in reality, we can see that it is difficult to measure the effectiveness of the two concept categories inasmuch as this depends not only on quantifiable and controllable legal elements but also on non-legal behavioural factors, an obvious example of which is safety culture. Once the difficulties of defining a legal framework for nuclear activities and selecting the key concepts to guide them are known, the inclusion of a concept in a general nuclear law is determined by national legal and ethical considerations. Thus, a general nuclear law should indicate the way in which the legal principles which reflect various prevailing ethical imperatives with regard to the environment, participation, and public interest, are applicable to the development of the peaceful uses of nuclear energy, having regard to the national specificities of each country and the particular nature of these activities. This means that there is a need to find original legal solutions reconciling the constraints of a specific law with the requirements of the ordinary law, i.e. the key concepts deriving from the principles of nuclear law. Given the possible reluctance of lawmakers to commit themselves for the future by formulating detailed provisions valid over the long term, it has been suggested that a code of good practice for the nuclear industry should be introduced which would go beyond the

  19. E2 = Energy concept x final storage [+ the law?

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    The world is changing all the time, opinions and evaluations assume new shapes. It is the function of the law to ensure reliability and confidence by its very continuity. However, it is not only the revisions of the law which are subject to the zeitgeist; also the interpretations and applications of the law are not exempt from current trends of thought. The coalition agreement signed by the CDU/CSU and FDP parties on October 26, 2009 announced an energy concept encompassing life extension of nuclear power plants and a continued exploration of the Gorleben salt dome as a repository for high-level waste producting heat. The Deutsche Umwelthilfe (DUH) tries to prove in a legal opinion that an extension of nuclear power plant life was illegal and unconstitutional because the problem of the back end of the fuel cycle was not likely to be solved in a foreseeable time. Continuing exploration of the Gorleben salt dome is based on mining law. The agency responsible for filing an application under the German Atomic Energy Act is the Federal Office for Radiation Protection (BfS). In Germany, the final storage issue has always been an area of violent political debate. Given the strategic purpose of the DUH legal opinion as a tool furthering opt-out of the use of nuclear power, several points are presented and discussed in this article which were overlooked in that opinion. The equation, 'energy concept x final storage =..?', seems to be open today. The law can support results. Existing legal regulations especially about the nuclear power sector must be used as starting points for new ideas: The existence of legal norms is to ensure reliability and confidence. Consequently, changes in the law must be prepared very thoroughly and weighed comprehensively. In current thinking, after all, transparency is part of political action, especially so in defining and implementing goals in topics such as the energy concept and final storage. Yet, unnecessary delays would not be justified

  20. Embedding Sustainability and Renewable Energy Concepts into Undergraduate Curriculum

    Science.gov (United States)

    Belu, R.; Cioca, L.

    2017-12-01

    Human society is facing an uncertain future due to the present unsustainable use of natural resources and the growing imbalance with our natural environment. Creation of a sustainable society is a complex multi-disciplinary and multi-stage project, believed to dominate our century, requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions. Sustainable development means technological progress meeting the present needs without compromising future generation ability to meet its needs and aspirations. It has four aspects: environment, technology, economy, and societal organizations. Students are often taught to deal with technological developments and economic analysis to assess the process or product viability, but are not fully familiar with sustainability and optimization of technology development benefits and the environment. Schools in many disciplines are working to include sustainability concepts into their curricula. Teaching sustainability and renewable energy has become an essential feature today higher education. Sustainable and green design is about designs recognizing the constraints of the natural resource uses and the environment. It applies to all of engineering and science areas, as all systems interact with the environment in complex and important ways. Our project goals are to provide students with multiple and comprehensive exposures to sustainability and renewable energy concepts, facilitating the development of passion and skills to integrate them into practice. The expected outcomes include an increased social responsibility; development of innovative thinking skills; understanding of sustainability issues, and increasing student interests in the engineering and science programs. The project aims to incorporate sustainability and renewable energy concepts into our undergraduate curricula, employing the existing course resources, and developing new courses and laboratory experiments

  1. Neutron stars as X-ray burst sources. II. Burst energy histograms and why they burst

    International Nuclear Information System (INIS)

    Baan, W.A.

    1979-01-01

    In this work we explore some of the implications of a model for X-ray burst sources where bursts are caused by Kruskal-Schwarzschild instabilities at the magnetopause of an accreting and rotating neutron star. A number of simplifying assumptions are made in order to test the model using observed burst-energy histograms for the rapid burster MXB 1730--335. The predicted histograms have a correct general shape, but it appears that other effects are important as well, and that mode competition, for instance, may suppress the histograms at high burst energies. An explanation is ventured for the enhancement in the histogram at the highest burst energies, which produces the bimodal shape in high accretion rate histograms. Quantitative criteria are given for deciding when accreting neutron stars are steady sources or burst sources, and these criteria are tested using the X-ray pulsars

  2. Energy transport in radially accreting white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.M.

    1986-10-01

    Some of the non-thermal energy transport processes which may be present in a white dwarf accretion column are examined and it is determined whether these could in any way contribute to a resolution of the soft X-ray puzzle. The first two Chapters of this Thesis constitute a review of the observations and proposed models for white dwarf accretion columns. In Chapter 3 we show that in Kuijpers and Pringle's original bombardment model of white dwarf accretion columns, in which the energy of the accreting material is deposited uniformly into a static atmosphere which then radiates the energy away as optically thin bremsstrahlung/line radiation, an incorrect Coulomb collisional timescale was used. In Chapter 4 we extend the calculations of Chapter 3 to include the effect of cyclotron radiation. It is concluded that a cyclotron cooled bombardment solution for a white dwarf accretion column may exist. We extend this calculation to derive a simple piecewise uniform temperature structure for such an accretion column, incorporating the effect of thermal conduction. In Chaper 5 we examine two of the non thermal emission mechanisms that might be present in white dwarf accretion columns:- non thermal Lyman-{alpha} emission and non thermal inverse bremsstrahlung emission. It is shown that neither would actually be sufficiently large to be detectable. In Chapter 6 some possible extensions to the work presented are suggested. (author).

  3. A Model for Infusing Energy Concepts into Vocational Education Programs. Solar Energy Curriculum Guide.

    Science.gov (United States)

    Delta Vocational Technical School, Marked Tree, AR.

    This solar energy curriculum guide is designed to assist teachers in infusing energy concepts into vocational education programs. It consists of 31 competency-based instructional units organized into 10 sections. Covered in the sections are the following topics: related instructions (history and development; human relations; general safety;…

  4. Energy policy. Technical developments, political strategies, and concepts of action regarding renewable energy sources and rational energy use

    International Nuclear Information System (INIS)

    Brauch, H.G.

    1997-01-01

    This interdisciplinary study book deals with problems from the history of energy, energy sytems, energy engineering, and the potential of renewable energy sources: hydro and wind power, biomass, geothermal energy, photovoltaics and solar thermal conversion; the improvement of boundary conditions for their transfer to market; concepts of action and project funding preferences of the EU, USA and Japan in this sector; relevant activities of the federal German government and proposals by non-governmental players in the field as well as strategies for rational energy use; methods for building an energy consensus and criteria for valuating energy systems; concepts of action and proposals for extending solar energy use in the Mediterranean and Afrika, as well as political factors governing the market introduction and export promotion of renewable energy technologies in this triad: the USA, Japan, and the European Union. Seven of the papers contained in the book are individually recorded. (orig./RHM). 76 figs., 100 tabs [de

  5. U. S. EPA voluntary programs and the oil and gas industry : Natural Gas STAR and Energy STAR Buildings Partnership

    International Nuclear Information System (INIS)

    Gunnung, P.

    2000-01-01

    The structure of two EPA programs directed towards wasted energy in buildings, reducing emissions, increasing energy efficiency and maximizing profits are described. The programs are based on a partnership approach between EPA and participants, and involve elements of plans and performance benchmarks, an integrated approach and communications and demonstration of successful initiatives. EPA provides planning and technical support in the form of a website, software tools, manuals, electronic sources and a purchasing tool kit. The Energy STAR Building Partnership has over 3,000 participants, and can boast of a cumulative saving of over $ 1.4 billion in energy bills and carbon dioxide emission reduction of 44.1 billion pounds, resulting from efficiency upgrades. The Natural Gas Partnership between the EPA and the oil and natural gas industry to cost effectively reduce methane emissions from the production, transmission, and distribution of natural gas also has had a number of successful initiatives such as replacement or retrofit of high bleed pneumatic devices, installation of flash tank separators on glycol dehydrators and other partner-reported projects such as replacement of wet seals with dry seals on compressors and connecting glycol pump to vapour recovery unit. As a results of these and other initiatives, annual methane emission was reduced by 22.2 bcf in 1998 as opposed to 3.4 bcf prior to the beginning of the program in 1993. Approximately 67 per cent of all reductions can be attributed to partner innovation. Overall assessment is that the program is innovative, achieves both economic and environmental goals, facilitates government and industry cooperation and is living proof that non-regulatory, cooperative programs work

  6. Energy and supply concepts. Pt. 3. Energie- und Versorgungskonzepte. T. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziejczyk, K

    1989-01-01

    Part three deals with the classification of energy and supply concepts (primary and secondary energy sources, energy conversion processes). A discussion of classification criteria (4 criteria, different process levels) is followed by a description of process and energy flows (flowsheet showing the energy flow of an interconnected system combining electric power/steam/heat supplies and refrigeration), a presentation of concrete energy and supply concepts (flow sheet, selection and evaluation criteria, situation and process analysis, cost-benefit analysis, use of computers, system value analysis), approaches and solutions (decisions). The complex task of finding appropriate supply solutions is found to be depending on the knowledge, creativity, and methodical skill of those in charge. (HWJ).

  7. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  8. The energy inside the concept of the sustainable development

    International Nuclear Information System (INIS)

    Szauer, Maria Teresa

    1999-01-01

    The intimately bound of two thematic basic conceptual schemes are shown: The climatic change and the paper of the energy inside the concept of sustainable development. It is presented a description of the green house effect, their causes and consequences. They are analyzed, making emphasis in the differences among the countries of the north and of the south, the consumption of natural resources, the population's growth, and the deforestation like main causes of the climatic change. Lastly is discussed the international negotiations related with the topic

  9. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)

  10. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-04-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases

  11. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  12. Proposal on concept of security of energy supply with nuclear energy

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Yamada, Eiji

    2009-01-01

    Security of energy supply (SoS) was a major concern for OECD governments in the early 1970s. Since then, successive oil crises, volatility of hydrocarbon prices, as well as terrorist risks and natural disasters, have brought the issue back to the centre stage of policy agendas. SoS concept has been proposed which is defined by time frame and space frame as well. Wide meaning SoS consists of narrow meaning SoS of short-term energy crisis, which is the traditional concept, and long-term global energy problem, which has become important recently. Three models have been proposed here for evaluating SoS. A method to estimate energy security level in a quantitative manner by comparing with various measures has been also proposed, in which nuclear energy contribution onto SoS can be further measured. (author)

  13. Massive stars and the energy balance of the ISM: I. The imapct of an isolated 60 M star

    Science.gov (United States)

    Yorke, H. W.; Freyer, T.; Hensler, G.

    2002-01-01

    We present results of numerical simulations carried out with a 2D radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M star.

  14. Praxeological analysis of the teaching conditions of the energy concept

    Directory of Open Access Journals (Sweden)

    Mehmet Altan Kurnaz

    2010-12-01

    Full Text Available Since there is disagreement with regard to a single definition of energy in the literature, knowing how a discipline introducesenergy, because of the direct effects of teaching conditions on students’ learning, maintains its importance. From this point ofview, the objective of this research is to determine the teaching conditions with regard to energy of a discipline in a universityin Turkey. In order to achieve this, an institutional analysis was conducted based on the Praxeological Approach. Severalimportant results were obtained from the study such as the fact that the teaching of energy processes at the year 1 level in aTurkish University is performed from a restricted perspective, using an operational approach. The results of this studyemphasize the need for an interdisciplinary approach and multiple representations, including conceptual activities as a meansof introducing energy concepts. As a general recommendation, it is also recommended that the analysis of the interactionbetween teaching and learning conditions may be useful for the development of a new approach with regard to energyconcepts.

  15. Water-energy-food nexus: concepts, questions and methodologies

    Science.gov (United States)

    Li, Y.; Chen, X.; Ding, W.; Zhang, C.; Fu, G.

    2017-12-01

    The term of water-energy -food nexus has gained increasing attention in the research and policy making communities as the security of water, energy and food becomes severe under changing environment. Ignorance of their closely interlinkages accompanied by their availability and service may result in unforeseeable, adverse consequences. This paper comprehensively reviews the state-of-the-art in the field of water-energy-food, with a focus on concepts, research questions and methodologies. First, two types of nexus definition are compared and discussed to understand the essence of nexus research issues. Then, three kinds of nexus research questions are presented, including internal relationship analysis, external impact analysis, and evaluation of the nexus system. Five nexus modelling approaches are discussed in terms of their advantages, disadvantages and application, with an aim to identify research gaps in current nexus methods. Finally, future research areas and challenges are discussed, including system boundary, data uncertainty and modelling, underlying mechanism of nexus issues and system performance evaluation. This study helps bring research efforts together to address the challenging questions in the nexus and develop the consensus on building resilient water, energy and food systems.

  16. Nuclear Statistical Equilibrium for compact stars: modelling the nuclear energy functional

    International Nuclear Information System (INIS)

    Aymard, Francois

    2015-01-01

    The core collapse supernova is one of the most powerful known phenomena in the universe. It results from the explosion of very massive stars after they have burnt all their fuel. The hot compact remnant, the so-called proto-neutron star, cools down to become an inert catalyzed neutron star. The dynamics and structure of compact stars, that is core collapse supernovae, proto-neutron stars and neutron stars, are still not fully understood and are currently under active research, in association with astrophysical observations and nuclear experiments. One of the key components for modelling compact stars concerns the Equation of State. The task of computing a complete realistic consistent Equation of State for all such stars is challenging because a wide range of densities, proton fractions and temperatures is spanned. This thesis deals with the microscopic modelling of the structure and internal composition of baryonic matter with nucleonic degrees of freedom in compact stars, in order to obtain a realistic unified Equation of State. In particular, we are interested in a formalism which can be applied both at sub-saturation and super-saturation densities, and which gives in the zero temperature limit results compatible with the microscopic Hartree-Fock-Bogoliubov theory with modern realistic effective interactions constrained on experimental nuclear data. For this purpose, we present, for sub-saturated matter, a Nuclear Statistical Equilibrium model which corresponds to a statistical superposition of finite configurations, the so-called Wigner-Seitz cells. Each cell contains a nucleus, or cluster, embedded in a homogeneous electron gas as well as a homogeneous neutron and proton gas. Within each cell, we investigate the different components of the nuclear energy of clusters in interaction with gases. The use of the nuclear mean-field theory for the description of both the clusters and the nucleon gas allows a theoretical consistency with the treatment at saturation

  17. To teach the concept of energy; Enseignement de l`energie

    Energy Technology Data Exchange (ETDEWEB)

    Besson, G. [Lycee Louis Aragon, 69 - Givors (France); Clavel, Ch. [Lycee Condorcet, 69 - Saint-Priest (France); Gaidioz, P. [Lycee Edouard Branly, 69 - Lyon (France); Tiberghien, A. [CNRS UMR GRIC, equipe COAST Ecole Normale Superieure, 69 - Lyon (France)

    1998-04-01

    This article presents the work made by a team of sciences teachers and pedagogy experts to explain the concept of energy to a grammar-school audience. Energy can be another way to interpret a phenomenon: an electric circuit can be studied in terms of electrokinetics but also from a point of view of energy as a system interacting with its surroundings.The necessity to define the main actors of the energy interpretation: energy tank, transformers and receptors comes naturally. The conservation of energy is a powerful tool to draw relations and links between macroscopic parameters such as voltage, intensity or temperature. The notion of power appears as a rate of energy transfer. Some examples of practical works about the energetic interpretations of different systems are given. (A.C.) 5 refs.

  18. Low Density Symmetry Energy Effects and the Neutron Star Crust Properties

    International Nuclear Information System (INIS)

    Kubis, S.; Alvarez-Castillo, D.E.; Porebska, J.

    2010-01-01

    The form of the nuclear symmetry energy E s around saturation point density leads to a different crust-core transition point in the neutron star and affects the crust properties. We show that the knowledge of E s close to the saturation point is not sufficient to determine the position of the transition point and the very low density behaviour is required. We also claim that crust properties are strongly influenced by the very high density behaviour of E s , so in order to conclude about the form of low density part of the symmetry energy from astrophysical data one must isolate properly the high density part. (authors)

  19. Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts

    Directory of Open Access Journals (Sweden)

    Vikram C. Patil

    2018-01-01

    Full Text Available Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.

  20. Constraints on the symmetry energy from observational probes of the neutron star crust

    International Nuclear Information System (INIS)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An; Murphy, Kyleah; Wen, De-Hua

    2014-01-01

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  1. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    Science.gov (United States)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  2. Constraints on the symmetry energy from observational probes of the neutron star crust

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Murphy, Kyleah [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Umpqua Community College, Roseburg, Oregon (United States); Wen, De-Hua [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); South China University of Technology, Department of Physics, Guangzhou (China)

    2014-02-15

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  3. Ocean thermal energy: concept and resources, history and perspectives

    International Nuclear Information System (INIS)

    Nihous, Gerard

    2015-10-01

    Two articles address the possibility of exploiting a higher than 20 degrees temperature difference between ocean surfaces and 1 km deep waters to produce electricity. The first article describes the operation principle in closed cycle and briefly presents the open cycle approach. The global energetic assessment is discussed. The author analyses available thermal resources in relationship with the main ocean streams. He outlines that the design of an ocean thermal energy project requires the acquisition and knowledge of a lot of data, modelling and simulations. In the second article, the author notices that past experiments highlighted the difficulties of implementation of the concept. He notably evokes works performed by Georges Claude during the 1920's, projects elaborated at the end of the 20. century, the realisation of a mini OTEC (Ocean Thermal Energy Conversion) station in Hawaii, the OTEC-1 project, a Japanese project in Nauru, the test of a suspended cold water duct, the net power producing experiment in the USA. Perspectives and costs are finally briefly discussed, and recent and promising projects briefly evoked (notably that by DCNS and Akuo Energy in Martinique)

  4. Development of concepts for low-cost energy storage assemblies for annual cycle energy system applications

    Science.gov (United States)

    Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.

    1981-10-01

    Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.

  5. Solar Energy: Energy Conservation and Passive Design Concepts: Student Material. First Edition.

    Science.gov (United States)

    Younger, Charles; Orsak, Charles G., Jr.

    Designed for student use in "Energy Conservation and Passive Design Concepts," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, bibliographies, and illustrations for seven course modules. The manual, which corresponds to an instructor guide for the same course, covers the…

  6. Energy and technology for our life: Concept, execution, results

    International Nuclear Information System (INIS)

    Morell, Frank W.

    1989-01-01

    The VDI is a technological-scientific association, with almost 100 000 members it is the biggest in Europe. Its aim is to supply all professional engineers with 'state of the art' information. Its organisatory mode is decisive for the success of the task at hand: non-aligned as far as economic interests are concerned, unsalaried and with statutory consensus requirement it offers its services not only to members but indeed to all engineers, no matter wether they are still undergoing professional training or are already in full employment. The main services for this target group are: conferences, congresses, symposia, workshops; VDI guidelines and an individual membership service. The range of VDI tasks includes practically all spheres of technology and hence also nuclear energy. This presentation deals with tree points: Concept of the campaign wenergy and technology for our life, the main points of the measures taken between 1983 and 1987; and the results achieved, verified by demoscopic surveys

  7. Energy and technology for our life: Concept, execution, results

    Energy Technology Data Exchange (ETDEWEB)

    Morell, Frank W

    1989-07-01

    The VDI is a technological-scientific association, with almost 100 000 members it is the biggest in Europe. Its aim is to supply all professional engineers with 'state of the art' information. Its organisatory mode is decisive for the success of the task at hand: non-aligned as far as economic interests are concerned, unsalaried and with statutory consensus requirement it offers its services not only to members but indeed to all engineers, no matter wether they are still undergoing professional training or are already in full employment. The main services for this target group are: conferences, congresses, symposia, workshops; VDI guidelines and an individual membership service. The range of VDI tasks includes practically all spheres of technology and hence also nuclear energy. This presentation deals with tree points: Concept of the campaign wenergy and technology for our life, the main points of the measures taken between 1983 and 1987; and the results achieved, verified by demoscopic surveys.

  8. Suggestion of Design Evaluation Plan based on Star Life Cycle to introduce the Information Minimalism Concept of KOREA Nuclear Plant

    Science.gov (United States)

    Jang, Gwi-sook; Lee, Seung-min; Park, Gee-yong

    2018-01-01

    The design of Korea Nuclear Power Plant (NPP) main control rooms (MCR) has been changed to be fully digitalized. Five or six display devices are assigned to each operator in NPP MCR to provide the information of safety parameter and plant status, and various control functions by connecting computerized control devices. Under this circumstance, the distributed displays can induce a dispersion of the operators' attention and increase the workload while conducting monitoring and control tasks efficiently. In addition, to support human operators to reduce their workload and increase the performance, the concepts of the ecological interface design (EID) and the operator-centered design were applied to the design HMI display. However these designs are applied to a limited set of screens and did not differ largely from the traditional HMI design in that the layout of the information is somewhere similar to P&IDs. In this paper, we propose a design evaluation plan based on star life cycle to introduce the information minimalism concept for designing an HMI display.

  9. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

    2007-07-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

  10. Novel concept of nonimaging single reflection solar energy concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovsky, D.

    2004-07-01

    Many solar applications require temperatures higher than those that can be achieved by common flat-plate collectors. Temperatures over 100 C are necessary e.g. for industrial process heat. Such temperatures can be obtained by means of solar energy concentrators. Advantages of concentrating the solar radiation can bring in addition to higher temperatures also decrease in heat losses and material savings due to smaller size of absorber, if taking into account that costs for material absorber per square meter can be possibly higher than costs for e.g. concentrating mirrors. On the other hand, using the concentration, two other kinds of losses will raise: losses of diffuse radiation and optical losses. There exist a variety of solar energy concentrators for different purposes. For lowtemperature applications, inexpensive concentrators of diffuse radiation can be used. For these concentrators, acceptance angle A defines the ability to concentrate the diffuse radiation and also its concentration factor C. To this class of concentrators belongs e.g. nonimaging types like CPC (Compound Parabolic Concentrator), V-trough types, cylindrical concentrators etc. This paper deals with development of a new type of concentrator, novel concept of which is based on functionality of CPC by means of flat mirrors, primarily designed for needs of SME's (Small and Medium Enterprises). The CLON project is being ellaborated under the 5th Framework Programme of the EU. (orig.)

  11. Chamber technology concepts for inertial fusion energy: Three recent examples

    International Nuclear Information System (INIS)

    Meier, W.R.; Moir, R.W.; Abdou, M.A.

    1997-01-01

    The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed

  12. Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry

    Science.gov (United States)

    Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.

    2014-01-01

    Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…

  13. Energy Provisions of the ICC-700, LEED for Homes, and ENERGY STAR Mapped to the 2009 IECC

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Michelle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Robin S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kora, Angela R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makela, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makela, Erin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-05-01

    This document provides the results of a comparison of building energy efficient elements of the ICC-700 National Green Building Standard, LEED for Homes, and ENERGY STAR versions 2, 2.5, and 3.0 to the 2009 International Energy Conservation Code (2009 IECC). This comparison will provide a tool for states and local municipalities as they consider adoption of these programs. The comparison is presented in a series of appendices. The first appendix provides a summary chart that visually represents the comprehensive comparison of the programs to the 2009 IECC topic areas. Next there are a series of individual tables (one appendix for each program) that include the specific program mapping to the 2009 IECC elements with comments that briefly discuss how well the elements mapped. Finally, a comprehensive table is included that shows all five of the programs mapped to the 2009 IECC elements to allow a detailed comparison.

  14. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    Science.gov (United States)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  15. Similarity solutions for explosions in radiating stars with time-dependent energy and idealized magnetic field

    International Nuclear Information System (INIS)

    Verma, G.B.; Vishwakarma, J.P.; Sharan, V.

    1983-01-01

    A stellar model in which density in the undisturbed conducting-gas medium is assumed to obey a power law is considered. Similarity solutions for central explosion in radiating stars have been obtained under the assumption of isothermal-shock conditions. For the existence of self-similar character, it has been assumed that both radiation pressure and energy are negligible. The results of numerical calculations for different models are illustrated through graphs. Moreover, a comparative study has been made between the results in ordinary gasdynamics and those obtained in magnetogasdynamics

  16. Energy generation in convective shells of low mass, low metallicity stars

    International Nuclear Information System (INIS)

    Bazan, G.

    1989-01-01

    We report on the non-negligible energy generation from the 13 C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10 4 L circle-dot are generated within the thermal pulse convective shell by the combination of the 13 C(α, n) 16 O rate and the sum of the Y(Z,A)(n,γ)Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the 13 C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs

  17. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  18. Boston in Top 25 of EPA’s List of Cities with the Most Energy Star Certified Buildings

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has announced its tenth annual Top Cities list, which ranks the 25 U.S. metropolitan areas with the most Energy Star certified buildings and superior energy performance in the preceding calendar year.

  19. Symmetry energy and neutron star properties in the saturated Nambu–Jona-Lasinio model

    Directory of Open Access Journals (Sweden)

    Si-Na Wei

    2016-12-01

    Full Text Available In this work, we adopt the Nambu–Jona-Lasinio (NJL model that ensures the nuclear matter saturation properties to study the density dependence of the symmetry energy. With the interactions constrained by the chiral symmetry, the symmetry energy shows novel characters different from those in conventional mean-field models. First, the negative symmetry energy at high densities that is absent in relativistic mean-field (RMF models can be obtained in the RMF approximation by introducing a chiral isovector–vector interaction, although it would be ruled out by the neutron star (NS stability. Second, with the inclusion of the isovector–scalar interaction the symmetry energy exhibits a general softening at high densities even for the large slope parameter of the symmetry energy. The NS properties obtained in the present NJL model can be in accord with the observations. The NS maximum mass obtained with various isovector–scalar couplings and momentum cutoffs is well above the 2M⊙, and the NS radius obtained well meets the limits extracted from recent measurements. In particular, the significant reduction of the canonical NS radius occurs with the moderate decrease of the slope of the symmetry energy.

  20. Analysis of Illinois Home Performance with ENERGY STAR(R) Measure Packages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  1. Transverse energy measurement in Au + Au collisions by the STAR experiment

    International Nuclear Information System (INIS)

    Sahoo, R.

    2011-01-01

    Transverse energy (E T ) has been measured with both of its components, namely hadronic (E T had ) and electromagnetic (E T em ) in a common phase space at mid-rapidity for 62.4 GeV Au+Au collisions by the STAR experiment. E T production with centrality and √S NN is studied with similar measurements from SPS to RHIC and is compared with a final state gluon saturation model (EKRT). The most striking feature is the observation of a nearly constant value of E T /N ch ∼ 0.8 GeV from AGS, SPS to RHIC. The initial energy density estimated by the boost-invariant Bjorken hydrodynamic model, is well above the critical density for a deconfined matter of quarks and gluons predicted by lattice QCD calculations. (author)

  2. Constraints on the symmetry energy from neutron star equation of state

    CERN Document Server

    Miyazaki, K

    2006-01-01

    We develop an equation of state (EOS) for neutron star (NS) matter, which forbids the direct URCA cooling and satisfies the recent information on the mass and the radius, simultaneously. At sub-saturation densities, the symmetry energy of the EOS is well described by a function E_{sym}(\\rho)=31.6(\\rho/\\rho_0)^{\\gamma} with 0.70\\leq\\gamma\\leq0.77. This constraint on the density dependence of the symmetry energy is much severer than that obtained from the analysis of the isospin diffusion date in heavy-ion collisions. Consequently, we can obtain the valuable information on nuclear matter from the astrophysical observations of NSs.

  3. Spectral energy distribution analysis of class I and class II FU Orionis stars

    Energy Technology Data Exchange (ETDEWEB)

    Gramajo, Luciana V.; Gómez, Mercedes [Observatorio Astronómico, Universidad Nacional de Córdoba, Argentina, Laprida 854, 5000 Córdoba (Argentina); Rodón, Javier A., E-mail: luciana@oac.uncor.edu, E-mail: mercedes@oac.uncor.edu, E-mail: jrodon@eso.org [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile)

    2014-06-01

    FU Orionis stars (FUors) are eruptive pre-main sequence objects thought to represent quasi-periodic or recurring stages of enhanced accretion during the low-mass star-forming process. We characterize the sample of known and candidate FUors in a homogeneous and consistent way, deriving stellar and circumstellar parameters for each object. We emphasize the analysis in those parameters that are supposed to vary during the FUor stage. We modeled the spectral energy distributions of 24 of the 26 currently known FUors, using the radiative transfer code of Whitney et al. We compare our models with those obtained by Robitaille et al. for Taurus class II and I sources in quiescence periods by calculating the cumulative distribution of the different parameters. FUors have more massive disks: we find that ∼80% of the disks in FUors are more massive than any Taurus class II and I sources in the sample. Median values for the disk mass accretion rates are ∼10{sup –7} M {sub ☉} yr{sup –1} versus ∼10{sup –5} M {sub ☉} yr{sup –1} for standard young stellar objects (YSOs) and FUors, respectively. While the distributions of envelope mass accretion rates for class I FUors and standard class I objects are similar, FUors, on average, have higher envelope mass accretion rates than standard class II and class I sources. Most FUors (∼70%) have envelope mass accretion rates above 10{sup –7} M {sub ☉} yr{sup –1}. In contrast, 60% of the classical YSO sample has an accretion rate below this value. Our results support the current scenario in which changes experimented by the circumstellar disk explain the observed properties of these stars. However, the increase in the disk mass accretion rate is smaller than theoretically predicted, although in good agreement with previous determinations.

  4. Energy Management in Four and Five Star Hotels in Algarve (Portugal

    Directory of Open Access Journals (Sweden)

    Joana Mendes

    2014-07-01

    Full Text Available Tourism is the sector of the global economy that has grown faster, in such way that the United Nations World Tourism Organization (UNWTO predicts a global average annual growth between 1995 and 2020, around 4.1%. This growth should contribute to a sustainable development and, be accompanied by environmental awareness of all stakeholders, and strategies of change pointing towards the preservation of environment, so as not to endanger the natural resources of future generations. Energy Management in tourism is the central theme of this research. The setting was 4 and 5 star hotels in Algarve, the most important tourist destination of Portugal. The main objectives of the study were to assess the current state of energy management in those hotels, understand the policies and strategies followed to optimize energy management, and analyze best practices. Results show a higher level of implementation of practices directly related to the optimization of energy than those related to reducing environmental impacts. In general, respondents consider that energy management is part of the concerns of those responsible for the hotels, the level of implementation of good practices in this area is high (78% and that both employees and tourists attach great importance to this issue.

  5. NuSTAR discovery of a luminosity dependent cyclotron line energy in Vela X-1

    Energy Technology Data Exchange (ETDEWEB)

    Fürst, Felix; Grefenstette, Brian W.; Harrison, Fiona; Madsen, Kristin K.; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Pottschmidt, Katja [Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Wilms, Jörn [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Miller, Jon M. [Department of Astronomy, The University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States)

    2014-01-10

    We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux levels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of L {sub x} ∼ 3 × 10{sup 36} erg s{sup –1}. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.

  6. CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.; Miyasaka, Hiromasa; Forster, Karl; Fuerst, Felix; Rana, Vikram; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Markwardt, Craig B. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); An, Hongjun [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Kitaguchi, Takao [RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bhalerao, Varun [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boggs, Steve; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektronvej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, NY 10027 (United States); Perri, Matteo; Puccetti, Simonetta [ASI Science Data Center, via Galileo Galilei, I-00044, Frascati (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2015-09-15

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ∼10% for all instruments with respect to NuSTAR.

  7. Star formation relations and CO spectral line energy distributions across the J-ladder and redshift

    Energy Technology Data Exchange (ETDEWEB)

    Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Leonidaki, I.; Xilouris, E. M. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece); Weiß, A.; Henkel, C. [Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Zhang, Z.-Y. [UK Astronomy Technology Centre, Science and Technology Facilities Council, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Van der Werf, P.; Meijerink, R. [Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden (Netherlands); Aalto, S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Observatory, 43994 Onsala (Sweden); Armus, L.; Díaz-Santos, T. [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Evans, A. S. [Astronomy Department, University of Virginia Charlottesville, VA 22904 (United States); Fischer, J. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); González-Alfonso, E. [Universidad de Alcala de Henares, Departamento de Fśica, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Harris, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Naylor, D. A. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada); Smith, H. A. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Spaans, M., E-mail: t.greve@ucl.ac.uk [Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); and others

    2014-10-20

    We present FIR [50-300 μm]–CO luminosity relations (i.e., log L{sub FIR}=αlog L{sub CO}{sup ′}+β) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z ≤ 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs; L {sub IR[8-1000} {sub μm]} > 10{sup 11} L {sub ☉}) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR–CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR–CO luminosity relations (i.e., α ≅ 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (β ∼ 2). In the simplest physical scenario, this is expected from the (also) linear FIR–(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (∼100 K) and dense (>10{sup 4} cm{sup –3}) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for

  8. THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Nordon, R.; Lutz, D.; Genzel, R.; Berta, S.; Wuyts, S.; Magnelli, B.; Foerster Schreiber, N. M.; Poglitsch, A.; Popesso, P. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, 85741 Garching (Germany); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, ESA, Villanueva de al Canada, 28691 Madrid (Spain); Andreani, P. [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Aussel, H.; Daddi, E. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat.709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Bongiovanni, A.; Cepa, J.; Perez Garcia, A. M. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Cimatti, A. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Fadda, D. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Lagache, G. [Institut d' Astrophysique Spatiale (IAS), Bat 121, Universite de Paris XI, 91450 Orsay Cedex (France); Maiolino, R., E-mail: nordon@mpe.mpg.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone (Italy); and others

    2012-02-01

    We combine Herschel-Photodetector Array Camera and Spectrometer (PACS) data from the PACS Evolutionary Probe (PEP) program with Spitzer 24 {mu}m and 16 {mu}m photometry and ultra deep Infrared Spectrograph (IRS) mid-infrared spectra to measure the mid- to far-infrared spectral energy distribution (SED) of 0.7 < z < 2.5 normal star-forming galaxies (SFGs) around the main sequence (the redshift-dependent relation of star formation rate (SFR) and stellar mass). Our very deep data confirm from individual far-infrared detections that z {approx} 2 SFRs are overestimated if based on 24 {mu}m fluxes and SED templates that are calibrated via local trends with luminosity. Galaxies with similar ratios of rest-frame {nu}L{sub {nu}}(8) to 8-1000 {mu}m infrared luminosity (LIR) tend to lie along lines of constant offset from the main sequence. We explore the relation between SED shape and offset in specific star formation rate (SSFR) from the redshift-dependent main sequence. Main-sequence galaxies tend to have a similar {nu}L{sub {nu}}(8)/LIR regardless of LIR and redshift, up to z {approx} 2.5, and {nu}L{sub {nu}}(8)/LIR decreases with increasing offset above the main sequence in a consistent way at the studied redshifts. We provide a redshift-independent calibration of SED templates in the range of 8-60 {mu}m as a function of {Delta}log(SSFR) offset from the main sequence. Redshift dependency enters only through the evolution of the main sequence with time. Ultra deep IRS spectra match these SED trends well and verify that they are mostly due to a change in ratio of polycyclic aromatic hydrocarbon (PAH) to LIR rather than continua of hidden active galactic nuclei (AGNs). Alternatively, we discuss the dependence of {nu}L{sub {nu}}(8)/LIR on LIR. The same {nu}L{sub {nu}}(8)/LIR is reached at increasingly higher LIR at higher redshift, with shifts relative to local by 0.5 and 0.8 dex in log(LIR) at redshifts z {approx} 1 and z {approx} 2. Corresponding SED template calibrations

  9. Sustainable Design and Renewable Energy Concepts in Practice

    Science.gov (United States)

    Maxwell, Lawrence

    2009-07-01

    The energy use of residential and non-residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability, energy consumption, environment impacts, and the potential for climate change.

  10. Concepts for fabrication of inertial fusion energy targets

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, A. (Arthur), Jr.; Hoffer, J. K. (James K.); Gobby, P. L. (Peter L.); Steckle, W. P. (Warren P.), Jr.; Goodin, D. T. (Daniel T.); Besenbruch, G. E. (Gottfried E.); Schultz, K. R. (Kenneth R.)

    2001-01-01

    Future inertial fusion energy (IFE) power plants will have a Target Fabrication Facility (TFF) that must produce approximately 500,000 targets per day. To achieve a relatively low cost of electricity, the cost to produce these targets will need to be less than approximately $0.25 per target. In this paper the status on the development of concepts for a TFF to produce targets for a heavy ion fusion (HIF) reactor, such as HYLIFE II, and a laser direct drive fusion reactor such as Sombrero, is discussed. The baseline target that is produced in the HIF TFF is similar to the close-coupled indirect drive target designed by Callahan-Miller and Tabak at Lawrence Livermore Laboratory. This target consists of a cryogenic hohlraum that is made of a metal case and a variety of metal foams and metal-doped organic foams. The target contains a DT-filled CH capsule. The baseline direct drive target is the design developed by Bodner and coworkers at Naval Research Laboratory. HIF targets can be filled with DT before or after assembly of the capsule into the hohlraum. Assembly of targets before filling allows assembly operations to be done at room temperature, but tritium inventories are much larger due to the large volume that the hohlraum occupies in the fill system. Assembly of targets cold after filling allows substantial reduction in tritium inventory, but this requires assembly of targets at cryogenic temperature. A model being developed to evaluate the tritium inventories associated with each of the assembly and fill options indicates that filling targets before assembling the capsule into the hohlraum, filling at temperatures as high as possible, and reducing dead-volumes in the fill system as much as possible offers the potential to reduce tritium inventories to acceptable levels. Use of enhanced DT ice layering techniques, such as infrared layering can reduce tritium inventories significantly by reducing the layering time and therefore the number of capsules being layered

  11. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    Directory of Open Access Journals (Sweden)

    He Xiao-Tao

    2016-01-01

    Full Text Available A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope L of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope L or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  12. The spectral energy distributions of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Renxin

    2013-03-01

    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.

  13. A concept of cartographic support for alternative energy

    Directory of Open Access Journals (Sweden)

    Олена Агапова

    2016-10-01

    Internet services. The article presents a list of maps for alternative energy in Ukraine and the algorithm of their compilation. The regional cartographic products system comprises a series of alternative energy resources maps (wind, solar, small hydro, biomass and geothermal energy; map series of natural, social, economic, technical and environmental conditions and factors that affect the placement of objects belonging to different branches of alternative energy; a series of maps showing the level of alternative energy development in Ukraine, including an inventory of existing in Ukraine thermal and power plants that use alternative energy sources, as well as enterprises for the production of alternative fuels. In addition, the cartographic system includes a recommendation and forecast maps showing perspective regions of alternative energy industries development and projected production of energy from alternative sources.

  14. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.

    Science.gov (United States)

    Lee, Soobum; Youn, Byeng D

    2011-03-01

    This paper presents an advanced design concept for a piezoelectric energy harvesting (EH), referred to as multimodal EH skin. This EH design facilitates the use of multimodal vibration and enhances power harvesting efficiency. The multimodal EH skin is an extension of our previous work, EH skin, which was an innovative design paradigm for a piezoelectric energy harvester: a vibrating skin structure and an additional thin piezoelectric layer in one device. A computational (finite element) model of the multilayered assembly - the vibrating skin structure and piezoelectric layer - is constructed and the optimal topology and/or shape of the piezoelectric layer is found for maximum power generation from multiple vibration modes. A design rationale for the multimodal EH skin was proposed: designing a piezoelectric material distribution and external resistors. In the material design step, the piezoelectric material is segmented by inflection lines from multiple vibration modes of interests to minimize voltage cancellation. The inflection lines are detected using the voltage phase. In the external resistor design step, the resistor values are found for each segment to maximize power output. The presented design concept, which can be applied to any engineering system with multimodal harmonic-vibrating skins, was applied to two case studies: an aircraft skin and a power transformer panel. The excellent performance of multimodal EH skin was demonstrated, showing larger power generation than EH skin without segmentation or unimodal EH skin.

  15. The France and the stars energy; La France et l'energie des etoiles

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, S.; Pomeau, Y.; Treiner, J

    2004-10-15

    This paper discusses the project ITER International Thermonuclear Experimental Reactor. It shows that the nuclear fusion is not the solution to energy supply problems and the ITER project do not solve two main problems of the nuclear fusion, for an industrial application: the material behavior under high irradiation and the massive production of tritium. (A.L.B.)

  16. Energy optimization for upstream data transfer in 802.15.4 beacon-enabled star formulation

    Science.gov (United States)

    Liu, Hua; Krishnamachari, Bhaskar

    2008-08-01

    Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption.

  17. On the Concept of Energy: Eclecticism and Rationality

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2014-01-01

    In the theory of heat of the first half of the nineteenth century, heat was a substance. Mayer and Joule contradicted this thesis but developed different concepts of heat. Heat was a force for Mayer and a motion for Joule. Both Mayer and Joule determined the mechanical equivalent of heat. This result was, however, justified in accordance with…

  18. Diagnosing Alternative Conceptions of Fermi Energy among Undergraduate Students

    Science.gov (United States)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-01-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher…

  19. Concept of the Interactive Platform for Real Time Energy Consumption Analysis in the Complex Urban Environment

    Directory of Open Access Journals (Sweden)

    Ales Podgornik

    2015-03-01

    Full Text Available This paper presents a concept of interactive and comprehensive platform based on advanced metering infrastructure for exchanging information on energy consumption and consequently on energy efficiency in urban and industrial environment which can serve as powerful tool for monitoring of progress in transition toward low carbon society. Proposed concept aims at supporting energy utilities in optimizing energy performance of both supply and demand side aspect of their work and have a potential to fill the gap and help in harmonization of interests between the energy utilities, energy service providers, local energy agencies and citizens. The proposed concept should be realized as a platform with the modular architecture, allowing future expansion of user’s portfolio and inventory management (new energy efficiency measures, technologies, different industries, urban districts and regions.

  20. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  2. Designing sustainable energy landscapes : concepts, principles and procedures

    NARCIS (Netherlands)

    Stremke, S.

    2010-01-01

    The depletion of fossil fuels, in combination with climate change, necessitates a transition to sustainable energy systems. Such systems are characterized by a decreased energy demand and an increase in the use of renewables. The objective of this dissertation is to advance the planning and design

  3. Design Concepts for Optimum Energy Use in HVAC Systems.

    Science.gov (United States)

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  4. HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff; Harvey, Paul; Green, Joel D.

    2016-01-01

    Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R  > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R  > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μ m infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a min  ∼ 3 μ m, although a min is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10 −5  ⩽  L / L ⊙  ⩽ 2 × 10 −4 , consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

  5. HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Dodson-Robinson, Sarah E. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Su, Kate Y. L. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bryden, Geoff [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harvey, Paul; Green, Joel D., E-mail: sdr@udel.edu [Astronomy Department, University of Texas, 2515 Speedway Drive C1400, Austin, TX 78712 (United States)

    2016-12-20

    Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R  > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R  > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μ m infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a {sub min} ∼ 3 μ m, although a {sub min} is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10{sup −5} ⩽  L / L {sub ⊙} ⩽ 2 × 10{sup −4}, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

  6. A New Hybrid Bathroom System Based on Energy Saving Concept

    Directory of Open Access Journals (Sweden)

    Cui Bo-wen

    2016-01-01

    Full Text Available Based on the characteristics of hot water supply in bathroom, this article proposes a new hybrid energy hot water supply system. The programmable logic controller(PLC as the master controller was adopted in this system, which could automatically detect and storage main thermal physical of the system, such as temperature, water level, solar radiation intensity, power consumption and so on. The active thermal utilization technology of solar energy, air-source heat pump technology, solar energy intensive natural ventilation technology and low temperature hot water floor radiant heating technology were organically integrated in this system, which has the advantages of energy conservation and environment protection, high automation, safe and reliable operation, etc. At the same time, it can make good use of electric power cost between on-peak and off-peak, and promote the optimal allocation of power resources and reduce the cost, which can achieve the goal of intelligent control and energy saving.

  7. Some new conceptions in the approach to harnessing tidal energy

    Science.gov (United States)

    Gorlov, A. M.

    A method of converting ocean tide energy into compressed air energy for subsequent conversion to electrical and other forms of industrial energy is presented. The tidal energy is converted to compressed air energy by means of specialized chambers which are put on the ocean bed. Ocean water from the dammed region passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. The compressed air can be expanded through high speed compact gas turbines or any type of reciprocating engine. The flexible reinforced plastic barrier should be substantially cheaper than a conventional rigid dam and can be designed so that by means of special floats it becomes a self-supported and self-regulated weightless structural system which can dam a large shallow space of ocean without having to be connected to special bays.

  8. The Concept of a New Wave Energy Converter - the CECO

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Rosa Santos

    2014-06-01

    The proof of concept of this patented WEC was carried out at the Hydraulics Laboratory of the Faculty of Engineering of the University of Porto, on a geometrical scale of 1:20. The paper presents some results of those tests and analyses the CECO response for different wave conditions and modes of operation (power take-off damping level and WEC inclination. Two different techniques were used to evaluate the power absorbed. The analysis is based on the measured motion, velocity and acceleration time series, the mean absorbed power and corresponding relative capture widths. The potential of this new concept was confirmed, as relative capture widths of up to 30% were obtained. In addition, these results are expected to improve after optimizing some components of this WEC. Figure 1. Representation of CECO (a and its mode of operation: (b upward motion - the wave crest passes by the LMM; (c downward motion - the wave trough passes by LMM.

  9. Efficient, equitable and sustainable energy policy in a small open economy: Concepts and assessments

    International Nuclear Information System (INIS)

    Chang, Youngho; Fang, Zheng

    2017-01-01

    This study aims to develop three broadly defined concepts of designing and evaluating energy policy of a small open economy, namely, efficiency, equity, and sustainability which are applied to Singapore. By analysing the historical energy and economic data and examining energy policies and programs implemented, this study finds that (1) energy intensity improves over time and three strategies employed to improve energy efficiency - tariffs, deregulation and setting energy standards - are found to have some positive effects. (2) A utility rebate programme is implemented and revised continuously to achieve equity in energy consumption across Singapore households. (3) By the weak concept of sustainability, Singapore is considered marginally sustainable. Institutional, technological and market-based approaches are being implemented to increase energy efficiency, improve energy equity and secure sustainability. - Highlights: • Three concepts of designing and evaluating energy policy are developed. • Efficiency, equity and sustainability are the three concepts. • Three strategies are identified in improving energy efficiency. • A utility rebate programme is to achieve equity in energy consumption across households. • Institutional and market-based approaches are to secure sustainable energy supply.

  10. China's conception of energy security : sources and international impacts

    International Nuclear Information System (INIS)

    Constantin, C.

    2005-01-01

    The unique challenges and opportunities associated with China's rapid economic growth were discussed with reference to the potential risk of political disruption or destabilizing international markets. The author notes that two common mistakes are typically made when assessing the evolution of China's energy policy. The first is that China's future path is assimilated with that of developed countries, thereby dismissing evidence that might point toward a different relationship with energy. Second, analysts tend to focus on the external expression of China's energy needs, its oil imports, while overlooking other energy-related issues such as insufficient electricity supplies or environmental degradation. The author argues that Chinese leadership is redefining its understanding of what constitutes energy security for the country. This report assesses the international impacts of such a redefinition along with the international aspects of a business-as-usual scenario in which China pursues its traditional model of energy security. It was emphasized that two different views of energy security lead to different sets of challenges and opportunities for western governments and businesses. 101 refs., 2 figs

  11. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  12. Energy harvesting concepts for small electric unmanned systems

    Science.gov (United States)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  14. Architectural design and energy performance; Conception architecturale et performance energetique

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, (ADEME), 06 - Valbonne (France); Pouget, A. [Bureau Etude Thermique, 75 - Paris (France); Sesolis, B. [TRIBU, 75 - Paris (France)] [and others

    2000-07-01

    This day was organized around the energy performance of the architecture in three parts. A first time dealt with the design of new buildings and private houses. Simulation tools for the energy optimization and practice of design are discussed. The second part was devoted to the new 2000 regulation with an open discussion on the regulatory costs. The last part forecasted the evolution until 2015 taking into account the french program of fight against the greenhouse effect, the limitation of the air conditioning consumption and the definition of a quality label concerning the energy performances. (A.L.B.)

  15. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    Science.gov (United States)

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  16. Functionally graded biomimetic energy absorption concept development for transportation systems.

    Science.gov (United States)

    2014-02-01

    Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...

  17. Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Krastev, Plamen G.

    2009-01-01

    The eigenfrequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an equation of state (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy E sym (ρ) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigenfrequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the w II -mode is found to exist only for neutron stars having a compactness of M/R≥0.1078 independent of the EOS used.

  18. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    Science.gov (United States)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  20. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  1. An Examination of Cross Sectional Change in Student's Metaphorical Perceptions towards Heat, Temperature and Energy Concepts

    Science.gov (United States)

    Celik, Harun

    2016-01-01

    In science teaching, metaphors are important tools for understanding meaningful learning and conceptual formation by the help of daily life language. This study aims to evaluate how the concepts of heat, temperature and energy are perceived by students in secondary school science classes and how the perceptions of these concepts vary in terms of…

  2. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  3. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    International Nuclear Information System (INIS)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    Research highlights: → In conventional buildings thermal mass is a permanent building characteristic. → Permanent thermal mass concepts are not optimal in all operational conditions. → We propose a concept that combines the benefits of low and high thermal mass. → Building simulation shows the concept is able to reduce the energy demand with 35%. → Furthermore, the concept increases the performance robustness of the building. -- Abstract: In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass by applying hybrid adaptable thermal storage (HATS) systems and materials to a lightweight building. The HATS concept increases building performance and the robustness to changing user behavior, seasonal variations and future climate changes. Building performance simulation is used to investigate the potential of the novel concept for reducing heating energy demand and increasing thermal comfort. Simulation results of a case study in the Netherlands show that the optimal quantity of the thermal mass is sensitive to the change of seasons. This implies that the building performance will benefit from implementing HATS. Furthermore, the potential of HATS is quantified using a simplified HATS model. Calculations show heating energy demand reductions of up to 35% and increased thermal comfort compared to conventional thermal mass concepts.

  4. Compilation of Energy Efficient Concepts in Advanced Aircraft Design and Operations. Volume 1. Technical report

    National Research Council Canada - National Science Library

    Clyman, Milton

    1980-01-01

    .... The search addressed the technologies necessary to support next generation (IOC 1990+) air vehicle design and operation concepts that will reduce the requirement for natural petroleum-derived energy...

  5. Early conceptions of the liberation and exploitation of atomic energy

    International Nuclear Information System (INIS)

    Peterson, Alf.

    1990-01-01

    In this report the early ideas about the use of nuclear energy are reviewed and compared with the historic development. The social responsibility of scientists is also discussed in this context. Since the development of nuclear reactors historically was closely connected to the nuclear weapons program in the US, there is also a review on this latter project. (107 refs.) (L.E.)

  6. Synergies for a Wave-Wind Energy Concept

    DEFF Research Database (Denmark)

    Pérez-Collazo, Carlos; Jakobsen, Morten Møller; Chozas, Julia Fernandez

    2013-01-01

    , this work outlines the risks and challenges that arise when combining these energies. To some extent WECs increase the uncertainty of the project, leading to a higher project cost and an increase the associated financial risk. In third place three case studies are proposed to illustrate different...

  7. Energy management control concepts with preview for hybrid commercial vehicles

    NARCIS (Netherlands)

    Reeven, van V.; Huisman, R.G.M.; Pesgens, M.F.M.; Koffrie, R.

    2010-01-01

    In a Hybrid Electric Vehicle (HEV), the main task of an Energy Management Strategy (EMS) is to determine the power-split of the total power demand into a power requests to the internal combustion engine and the electro motor. In this work, real-time implementable previewing strategies (utilizing

  8. Intelligent Energy concepts in executive education for oil & gas professionals

    NARCIS (Netherlands)

    Currie, P.K.; Bos, C.F.M.; Berkhout, A.J.; Weijermars, R.

    2010-01-01

    The Intelligent Energy vision is particularly relevant to mid-career professionals with strong management potential. As aspiring asset or service managers, this group has a strong need to improve their analytic and integrative skills, and adopt the holistic view of the industry which characterises

  9. Consumer-oriented Sustainable Energy Concepts; Consumentgerichte Duurzame Energieconcepten

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, H.J. [Universiteit Twente UT, Enschede (Netherlands)

    2009-10-15

    A study on the willingness of potential buyers of newly built houses to invest in energy efficient systems in order to realize a sustainable dwelling [Dutch] Een onder zoek naar de bereidheid van potentiele kopers van nieuwbouw woningen tot het investeren in energetische systemen om te komen tot een duurzame woning.

  10. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jun [University of Denver; Gao, Wenzhong [University of Denver; Zheng, Xinhu [University of Minnesota; Yang, Liuqing [Colorado State University; Hao, Jun [University of Denver; Dai, Xiaoxiao [University of Denver

    2017-09-01

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logic and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  12. Energy Concept Understanding of High School Students: A Cross-Grade Study

    Science.gov (United States)

    Takaoglu, Zeynep Baskan

    2018-01-01

    Energy is a difficult concept to be understood by students of all levels. Thus, the aim of the study is to determine how high school students at different levels perceive the energy and related concepts. In line with this purpose, 173 students in total of which 57 ones of the 9th grade, 94 ones of the 10th grade and 22 ones of the 11th grade…

  13. ENERGY CONCEPT ALIVE. NEW APPROACH IN THE FIGHT AGAINST CANCER

    Directory of Open Access Journals (Sweden)

    V. S. Shchukin

    2015-10-01

    Full Text Available New approach to the problem of struggle with malignant tumors based on the suggested by the authors energetic concept of living matter considering a human organism as an open non-self-organizing biological system that is the part of organism of a higher level of organization - Biosphere, and that is under full control of geophysical factors - first of all electromagnetic field of the Earth and composition of atmospheric air is set forth. The mentioned factors fatefully determine length of life - specific and individual - of any living organism, including human being. On the basis of the set forth approach a new means of prevention and removal from the human organism of malignant tumors was suggested.

  14. Ultraviolet energy distributions and the temperatures of peculiar B and A stars

    International Nuclear Information System (INIS)

    Adelman, S.J.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1985-01-01

    Color temperatures have been estimated by comparing ultraviolet observations of HgMn and magnetic Ap stars with those of normal stars. Ultraviolet data from the OAO-2, ANS, TD-1, and IUE satellites generally give similar results. The values for the normal stars were derived from comparison of fluxes predicted by solar-composition fully line-blanketed model atmospheres with optical region spectrophotometry. The ultraviolet temperatures of the HgMn stars cover a narrower temperature range than do their optical region values. Magnetic Ap stars with similar optical region temperatures can show substantial differences in their ultraviolet color temperatures. This may result from magnetic field configuration and abundance differences. 27 references

  15. Dependence of absolute magnitudes (energies) of flares on the cluster age containing flare stars

    International Nuclear Information System (INIS)

    Parsamyan, Eh.S.

    1976-01-01

    Dependences between Δmsub(u) and msub(u) are given for the Orion, NGC 7000, Pleiades and Praesepe aggregations. Maximum absolute values of flares have been calculated for stars with different luminosities. It has been shown that the values of flares can be limited by a straight line which gives the representation on the distribution of maximum values of amplitudes for the stars with different luminosities in an aggregation. Presented are k and m 0 parameters characterizing the lines fot the Orion, NGC 7000, Pleiades and Praesepe aggregation and their age T dependence. From the dependence between k (angular coefficient of straight lines) and lgT for the aggregation with known T the age of those aggregation involving a great amount of flaring stars can be found. The age of flaring stars in the neighbourhood of the Sun has been determined. The age of UV Ceti has been shown by an order to exceed that of the rest stars

  16. Biomass energy projects in Central and Eastern Europe. General information, favorable concepts and financing possibilities

    International Nuclear Information System (INIS)

    Ellenbroek, R.; Ballard-Tremeer, G.; Koeks, R.; Venendaal, R.

    2000-08-01

    The purpose of this guide is to provide information on the possibilities to invest and carry out biomass energy projects in Central and Eastern Europe. In the first part of the guide background information is given on countries in Central and Eastern Europe, focusing on bio-energy. A few cases are presented to illustrate different biomass energy concepts. Based on economic calculations an indication is given of the feasibility of those concepts. Also the most relevant sources of information are listed. In the second part an overview is given of Dutch, European and international financial tools that can be used in biomass energy projects in Central and Eastern Europe

  17. Star Formation in High Pressure, High Energy Density Environments: Laboratory Experiments of ISM Dust Analogs

    International Nuclear Information System (INIS)

    Breugel, W. van; Bajt, S.; Bradley, J.; Bringa, E.; Dai, Z.; Felter, T.; Graham, G.; Kucheyev, S.; Torres, D.; Tielens, A.; Baragiola, R.; Dukes, C.; Loeffler, M.

    2005-01-01

    Dust grains control the chemistry and cooling, and thus the gravitational collapse of interstellar clouds. Energetic particles, shocks and ionizing radiation can have a profound influence on the structure, lifetime and chemical reactivity of the dust, and therefore on the star formation efficiency. This would be especially important in forming galaxies, which exhibit powerful starburst (supernovae) and AGN (active galactic nucleus) activity. How dust properties are affected in such environments may be crucial for a proper understanding of galaxy formation and evolution. The authors present the results of experiments at LLNL which show that irradiation of the interstellar medium (ISM) dust analog forsterite (Mg 2 SiO 4 ) with swift heavy ions (10 MeV Xe) and a large electronic energy deposition amorphizes its crystalline structure, without changing its chemical composition. From the data they predict that silicate grains in the ISM, even in dense and cold giant molecular clouds, can be amorphized by heavy cosmic rays (CR's). This might provide an explanation for the observed absence of crystalline dust in the ISM clouds of the Milky Way galaxy. This processing of dust by CR's would be even more important in forming galaxies and galaxies with active black holes

  18. Energy summit Hessen. Implementation concept of the state government Hessen; Hessischer Energiegipfel. Umsetzungskonzept der Hessischen Landesregierung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    By means of the concept under consideration, the state government of Hessen (Federal Republic of Germany) has pursued the possible and realistic course for the implementation of the targets of the energy summit. The main aspects of this contribution are the implementation of the energy policy of Hessen into the European and national framework; Status quo of the energy consumption in Hessen; Areas of action and measures of the state government of Hessen; Actors of the energy policy turnaround; Monitoring.

  19. Power performance measurements on Wave Star in Nissum Bredning. Final report; Wave energy converter; Effektmaalinger paa Wave Star i Nissum Bredning. Afsluttende rapport

    Energy Technology Data Exchange (ETDEWEB)

    Frigaard, P.; Lykke Andersen, T.

    2009-04-15

    The Wave Star test machine in Nissum Bredning was put in continuous operation on 24 July 2006. Over the past 2 1/2 years the produced power was measured continuously and with only minor interruptions. The measurements cover operation for all seasons in a very changeable climate. There is thus gaining operational experience under different wave conditions. In the period the machine has been running with a simple form of control and Power Take Off system (PTO), which form the background for effect measurements with the existing control strategy. Calculations have shown that the use of more advanced forms of control can increase the efficiency of Wave Star significantly. New control systems are therefore still under development with the primary objective to increase performance from the wave energy plant. To test and develop the methods, a new mini-hydraulic station with associated second generation PTO was developed and constructed for testing in Nissum Bredning. The mini-hydraulic station is coupled to a single float, while the other machine's 39 floats are still connected to the existing PTO system. As the existing PTO system can be applied to the 39 floats simultaneously with the new PTO used on 1 float, effect can be measured on the two systems simultaneously. The first tentative experiments with the new second generation PTO seem very promising. During the first measurements made in March 2009 the new system achieved an average yield of 3.1 times the average output from a float on the existing machine. In the coming period more experiments will be performed with the mini-hydraulic station to test the new PTO in various sea conditions. Since the mini-hydraulic station can simulate various forms of control, they also will be tested under real wave conditions in Nissum Bredning. The effect optimization should continue to be subject to a greater targeted effort, as improvements in this area can increase energy production and thus reduce the kWh cost of energy

  20. Institutional options for rural energy access: Exploring the concept of the multifunctional platform in West Africa

    DEFF Research Database (Denmark)

    Nygaard, Ivan

    2010-01-01

    The concept of the multifunctional platform for rural energy access has increasingly been supported by donors in five West African countries since 1994. While it is often referred to as a highly successful concept, recent reviews and interviews with local stakeholders in Mali and Burkina Faso...... in the dominant discourse of development, and how including concerns, such as poverty alleviation, gender equity, local democracy, decentralisation and the environment, have attracted donors outside the energy sector. The paper thus argues that, while the integration of multiple technical functions, preconceived...... practical programmes provides an argument for building development aid on existing structures instead of inventing new complicated concepts and approaches....

  1. D-mu-A new concept in industrial low-energy electron dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Miller, Arne; Sharpe, Peter

    2010-01-01

    , resulting in difficulties in providing traceable dose measurements using reference dosimeters. In order to overcome these problems a new concept is introduced of correcting all measured doses to the average dose in the first micrometer—Dμ. We have applied this concept to dose measurements with dosimeters...... of different thickness at two electron accelerators operating over a range of energies. The uncertainties of the dose measurements were evaluated, and it was shown that the dose in terms of Dμ was the same at each energy for all dosimeters within the measurement uncertainty. Using the concept of Dμ...

  2. Life and death of the stars

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    This volume is devoted to one of the fascinating things about stars: how they evolve as they age. This evolution is different for stars of different masses. How stars end their lives when their supply of energy is exhausted also depends on their masses. Interestingly, astronomers conjectured about the ultimate fate of the stars even before the details of their evolution became clear. Part I of this book gives an account of the remarkable predictions made during the 1920s and 1930s concerning the ultimate fate of stars. Since much of this development hinged on quantum physics that emerged during this time, a detailed introduction to the relevant physics is included in the book. Part II is a summary of the life history of stars. This discussion is divided into three parts: low-mass stars, like our Sun, intermediate-mass stars, and massive stars. Many of the concepts of contemporary astrophysics were built on the foundation erected by Subrahmanyan Chandrasekhar in the 1930s. This book, written during his birth c...

  3. Differentiation of energy concepts through speech and gesture in interaction

    Science.gov (United States)

    Close, Hunter G.; Scherr, Rachel E.

    2012-02-01

    Through microanalysis of speech and gesture in one interaction between learners (in a course on energy for in-service teachers), we observe coherent states of conceptual differentiation of different learners. We observe that the interaction among learners across different states of differentiation is not in itself sufficient to accomplish differentiation; however, the real-time receptivity of the learners to conceptually relevant details in each other's actions suggests that future instruction that focuses explicitly on such actions and their meaning in context may assist differentiation.

  4. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  5. High-energy test of proton radiography concepts

    International Nuclear Information System (INIS)

    Amann, J.F.; Atencio, L.G.; Espinoza, C.J.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this work was to demonstrate the use of high energy protons to produce radiographs of heavy metal test objects. The authors executed a proof-of-principle experiment using GeV proton beams available at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). The experiment produced proton radiographs of a suitably dense, unclassified test object. The experiment tested capabilities in data collection, image reconstruction, and hydro-code simulation and validated models of high-energy proton radiography. A lens was designed using existing quadrupole magnets, constructed on the A1 beam line of the AGS and used to image 10-GeV protons. The results include: (1) images made with an integrating detector, (2) measurements of the background and measurements of the resolution functions, and (3) forward model fits to the transmission data. In all cases the results agree with initial estimates and provide strong support for the utility of proton radiography as a new hydrotest diagnostic

  6. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  7. Assessing magnetic torques and energy fluxes in close-in star-planet systems

    OpenAIRE

    Strugarek, A

    2016-01-01

    Planets in close-in orbit interact with the magnetized wind of their hosting star. This magnetic interaction was proposed to be a source for enhanced emissions in the chromosphere of the star, and to participate in setting the migration time-scale of the close-in planet. The efficiency of the magnetic interaction is know to depend on the magnetic properties of the host star, of the planet, and on the magnetic topology of the interaction. We use a global, three-dimensional numerical model of c...

  8. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  9. Energy concept, mathematics and dubious expectations; Energiekonzept, Mathematik und zweifelhafte Erwartungen

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, Knut

    2013-01-15

    The German federal government has laid down 30 quantitative goals in its energy concept and in doing so has determined the road to Germany's future energy supply system. One target which will be decisive for the success or failure of the energy turnaround, little discussed though it may be, is for Germany to lower its use of primary energy by 50% in the time from 2008 to 2050. In order to achieve this and other goals the federal government is pursuing a policy for a ''state-programmed energy supply''. The implications of this policy can easily be derived by performing some basic as well as more intricate calculations on the figures given in the energy concept. On doing so one finds that the energy concept has decided on the fate of every single energy carrier. It also becomes clear that rising energy prices will not only be a consequence but in fact a prerequisite for the success of the energy turnaround. This article advocates an energy policy that will permit changes of course if new facts and figures should so demand without departing from its overarching goals.

  10. Effects of the nuclear symmetry energy on gravitational waves from the axial W-modes of isolated neutron stars

    International Nuclear Information System (INIS)

    Wen, Dehua; Li, Baoan; Krastev, P.G.

    2010-01-01

    The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy E sym (ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations. (author)

  11. Assessment of Students' Scientific and Alternative Conceptions of Energy and Momentum Using Concentration Analysis

    Science.gov (United States)

    Dega, Bekele Gashe; Govender, Nadaraj

    2016-01-01

    This study compares the scientific and alternative conceptions of energy and momentum of university first-year science students in Ethiopia and the US. Written data were collected using the Energy and Momentum Conceptual Survey developed by Singh and Rosengrant. The Concentration Analysis statistical method was used for analysing the Ethiopian…

  12. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  13. Determination of Factors Related to Students' Understandings of Heat, Temperature and Internal Energy Concepts

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2018-01-01

    The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…

  14. UV-luminous, star-forming hosts of z ˜ 2 reddened quasars in the Dark Energy Survey

    Science.gov (United States)

    Wethers, C. F.; Banerji, M.; Hewett, P. C.; Lemon, C. A.; McMahon, R. G.; Reed, S. L.; Shen, Y.; Abdalla, F. B.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; CarrascoKind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.

    2018-04-01

    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B - V)QSO ≳ 0.5; Lbol > 1046 erg s-1] broad-line quasars at 1.5 VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr-1, with an average SFRUV = 130 ± 95 M⊙ yr-1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.

  15. THE COOLING OF THE CASSIOPEIA A NEUTRON STAR AS A PROBE OF THE NUCLEAR SYMMETRY ENERGY AND NUCLEAR PASTA

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Li, Bao-An [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States); Murphy, Kyleah [Umpqua Community College, Roseburg, OR 97470 (United States)

    2013-12-10

    X-ray observations of the neutron star (NS) in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of ≈2%-5.5%. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent NS crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy L of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal ''nuclear pasta''. Modeling cooling over a conservative range of NS masses and envelope compositions, we find L ≲ 70 MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of M ≳ 1.65 M {sub ☉}, the constraint becomes more restrictive 35 ≲ L ≲ 55 MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when L ≲ 45 MeV, taking all masses into consideration, corresponding to NS radii ≲ 11 km.

  16. Scenarios for an energy policy concept of the German Government

    International Nuclear Information System (INIS)

    Nagl, Stephan; Fuersch, Michaela; Paulus, Moritz; Richter, Jan; Trueby, Johannes; Lindenberger, Dietmar

    2010-01-01

    In this article we demonstrate how challenging greenhouse gas reduction targets of up to 95% until 2050 can be achieved in the German electricity sector. In the analysis, we focus on the main requirements to reach such challenging targets. To account for interdependencies between the electricity market and the rest of the economy, different models were used to account for feedback loops with all other sectors. We include scenarios with different runtimes and retrofit costs for existing nuclear plants to determine the effects of a prolongation of nuclear power plants in Germany. Key findings for the electricity sector include the importance of a European-wide coordinated electricity grid extension and the exploitation of regional comparative cost effects for renewable sites. Due to political restrictions, nuclear energy will not be available in Germany in 2050. However, the nuclear life time extension has a positive impact on end consumer electricity prices as well as economic growth in the medium term, if retrofit costs do not exceed certain limits. (orig.)

  17. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  18. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE–NEUTRON-STAR BINARIES

    International Nuclear Information System (INIS)

    McWilliams, Sean T.; Levin, Janna

    2011-01-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  19. ENERGY STAR and Green Buildings--Using ENERGY STAR Resources for Green Building Rating Systems: LEED[R], Green Globes[R] and CHPS

    Science.gov (United States)

    Utebay, Kudret

    2011-01-01

    Every building, from the smallest school to the tallest skyscraper, uses energy. This energy is most often generated by burning fossil fuels, which releases greenhouse gases into the atmosphere and contributes to climate change. Existing commercial buildings offer a significant opportunity for low-cost, immediate emissions and energy cost…

  20. Investigation and analysis on the energy consumption of starred hotel buildings in Hainan Province, the tropical region of China

    International Nuclear Information System (INIS)

    Lu, Shilei; Wei, Shasha; Zhang, Ke; Kong, Xiangfei; Wu, Wei

    2013-01-01

    Highlights: • Normalization energy utilization indicators regression model is established. • Total and subentry normalization energy utilization indicators have been obtained and reported. • Found the key points in influencing hotels’ total and subentry energy consumption. • Discussed the best selection of building envelops to reduce the hotels’ energy consumption. - Abstract: This paper reported a study of energy consumption of 27 starred hotels in Hainan Province. Total and subentry energy consumption indicators were defined to indicate the building energy efficiency after collecting the building basic information and energy consumption of these hotels. Eighteen potential independent significant factors were selected to analyze energy utilization indicators (EUIs) and the climate adjusted energy utilization indicators (EUI clt ) were calculated by using the degree-day method. Then, multiple regression analysis between EUI clt and continuous scale factors was applied to establish the normalization EUI data model and results indicated that the electricity percentage, number of guestrooms and equivalent guestrooms are the key points influencing total energy efficiency of hotels. Lastly, on the basis of multi-factor analysis of variance (ANOVA) between the EUI norm and categorical factors of the sampled hotel buildings, double glazing window is the significant factor that influences the total unit energy consumption greatly

  1. Application of Energy Window Concept in Doppler Broadening of {sup 238}U Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Khassnov, Azamat; Choi, Soo Young; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Currently, the NJOY code is used for construction and Doppler broadening of microscopic cross sections. There exist several methods or formalisms to produce microscopic cross sections and there are also different methods of Doppler broadening. In this paper, Multi-Level Breit-Wigner (MLBW) formalism and the Psi method are used for generation and Doppler broadening of the resonance cross section. Accuracy of the energy window concept applied MLBW (EW MLBW) Doppler broadened cross section was compared with that of the cross section generated by conventional MLBW (Con MLBW) formalism for {sup 2}38U isotope using MATLAB. The conventional method requires Doppler broadening of all resonances, including resonances far from the target energy point, which do not change much with respect to the temperature change. The energy window concept makes Doppler broadening possible with a smaller number of resonances neighboring to the energy point we are interested in, and just adds up 0 K temperature cross sections of other resonances. Multi-level Breit-Wigner formalism and the Doppler broadening method were used to construct microscopic cross sections of {sup 238}U at different temperatures. The energy window concept was applied only for the 1st resonance energy region (4.5∼11.2 eV). The energy window concept demonstrates high competitiveness because the relative differences were less than 0.0016% for all types of cross sections. The advantage of the energy window concept is that the number of resonances broadened for every energy point is significantly reduced, which allows a reduction of computation time by almost 45 % of Doppler broadening time of the cross section generation at temperatures higher than 0 K.

  2. Simulating the formation and evolution of galaxies: multi-phase description of the interstellar medium, star formation, and energy feedback

    Science.gov (United States)

    Merlin, E.; Chiosi, C.

    2007-10-01

    Context: Modelling the gaseous component of the interstellar medium (ISM) by Smoothed Particles Hydrodynamics in N-Body simulations (NB-TSPH) is still very crude when compared to the complex real situation. In the real ISM, many different and almost physically decoupled components (phases) coexist for long periods of time, and since they spread over wide ranges of density and temperature, they cannot be correctly represented by a unique continuous fluid. This would influence star formation which is thought to take place in clumps of cold, dense, molecular clouds, embedded in a warmer, neutral medium, that are almost freely moving throughout the tenuous hot ISM. Therefore, assuming that star formation is simply related to the gas content without specifying the component in which this is both observed and expected to occur may not be physically sound. Aims: We consider a multi-phase representation of the ISM in NB-TSPH simulations of galaxy formation and evolution with particular attention to the case of early-type galaxies. Methods: Cold gas clouds are described by the so-called sticky particles algorithm. They can freely move throughout the hot ISM medium; stars form within these clouds and the mass exchange among the three baryonic phases (hot gas, cold clouds, stars) is governed by radiative and Compton cooling and energy feedback by supernova (SN) explosions, stellar winds, and UV radiation. We also consider thermal conduction, cloud-cloud collisions, and chemical enrichment. Results: Our model agrees with and improves upon previous studies on the same subject. The results for the star formation rate agree with recent observational data on early-type galaxies. Conclusions: These models lend further support to the revised monolithic scheme of galaxy formation, which has recently been strengthened by high redshift data leading to the so-called downsizing and top-down scenarios.

  3. New life styles to accompany the transition. Energy and territories: Toward the concept 'Energy 2.0' with local authorities

    International Nuclear Information System (INIS)

    Magnin, Gerard

    2011-01-01

    There has never really been a policy for heating, which represents 40 % of needs, even though a policy has existed for a long time now for electricity, which represents only 20 %. The latter has overdetermined the country's total energy system, thus leading to a national, centralized approach focused on macro-level quantitative needs in energy and on a single product. In contrast, a local, decentralized, more qualitative approach should focus on needs in relation to heating as well as electricity and on tapping local energy potentials, including saving energy. The concept of 'energy subsidiarity' is proposed. In its general acceptation, 'subsidiarity' implies that the search for solutions be conducted as closely as possible to the problems to be solved. In relation to energy, it implies systematically mobilizing locally available energy potentials

  4. Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering

    OpenAIRE

    Dincer, Ibrahim; Cengel, Yunus A.

    2001-01-01

    Abstract: Energy, entropy and exergy concepts come from thermodynamics and are applicable to all fields of science and engineering. Therefore, this article intends to provide background for better understanding of these concepts and their differences among various classes of life support systems with a diverse coverage. It also covers the basic principles, general definitions and practical applications and implications. Some illustrative examples are presented to highlight the importance of t...

  5. A Guided Re-invention Path Towards a More Versatile Concept of Energy Conservation For Secondary School Students

    NARCIS (Netherlands)

    Logman, P.S.W.M.; Kaper, W.H.; Ellermeijer, A.L.; Taşar, M.F.

    2014-01-01

    Traditionally the concept of energy conservation is introduced as an undisputable physical law that helps us describe many processes. However the usefulness and the validity of the concept of energy conservation evades many students. We intend to make the concept more useful and less abstract to

  6. Renewable energy for sustainable urban development: Redefining the concept of energisation

    International Nuclear Information System (INIS)

    Nissing, Christian; Blottnitz, Harro von

    2010-01-01

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development.

  7. Renewable energy for sustainable urban development: Redefining the concept of energisation

    Energy Technology Data Exchange (ETDEWEB)

    Nissing, Christian [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); Blottnitz, Harro von, E-mail: Harro.vonBlottnitz@uct.ac.z [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); African Centre for Cities, University of Cape Town (South Africa)

    2010-05-15

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development.

  8. Renewable energy for sustainable urban development. Redefining the concept of energisation

    Energy Technology Data Exchange (ETDEWEB)

    Nissing, Christian [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); Von Blottnitz, Harro [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); African Centre for Cities, University of Cape Town (South Africa)

    2010-05-15

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development. (author)

  9. Possibilities of saving energy by using intelligent star-delta switches; Energiesparmoeglichkeiten mit intelligenten Stern-Dreieckschaltern

    Energy Technology Data Exchange (ETDEWEB)

    Gloor, R.

    2006-07-01

    This final report published by the Swiss Federal Office of Energy (SFOE) presents the results of a study made on so-called intelligent switches that switch an induction motor automatically into star configuration when at low load and, when higher loading returns, back again into the delta configuration. The results of theoretical calculations and measurements made in practice are discussed. The results are presented for various application areas including hydraulics, dynamic converters and standard applications. Also, the use of switches in applications such as wood-cutters, transport systems and stone-crushers are looked at. The results are discussed and the possible risks involved in the use of star-delta switches are looked at. Conclusions are drawn on their use from the economical point of view.

  10. The Swiss Federal Energy Research Concept for the Years 2000-2003

    International Nuclear Information System (INIS)

    1999-05-01

    The Swiss Federal Energy Research Concept provides details within the framework set by the Swiss Parliament and the Swiss Federal Council (Government). It maps out how publicly supported research shall be used to achieve politically decided energy goals. Information is provided on the manner in which energy education, research and technology developments will be supported during the period from 2000-2003. The Concept facilitates coordination among federal and cantonal decision makers as well as municipal authorities. Swiss energy research is dedicated to sustainable development, including the massive reduction of CO 2 emissions. This is also implicit in the concept of the '2000 W society'. A two-pronged approach strives to reduce pollution by energy systems and increase system efficiencies. Technical progress is buttressed by socio-economic measures. Priorities for publicly funded energy research have been set in the context of long-term perspectives, harmonized with European and worldwide goals. Swiss energy research must be high-level research and this requires adequate means being made available to assure both quality and continuity. It is important that the attractiveness and competitiveness of Switzerland as a home for science and technology be maintained, indeed strengthened. It has been proved worldwide that energy research needs public funding. Particularly favored is application oriented research, including pilot and demonstration projects. (author)

  11. The Swiss Federal Energy Research Concept for the Years 2000-2003

    International Nuclear Information System (INIS)

    1999-05-01

    The Swiss Federal Energy Research Concept provides details within the framework set by the Swiss Parliament and the Swiss Federal Council (Government). It maps out how publicly supported research shall be used to achieve politically decided energy goals. Information is provided on the manner in which energy education, research and technology developments will be supported during the period from 2000-2003. The concept facilitates coordination among federal and cantonal decision makers as well as municipal authorities. Swiss energy research is dedicated to sustainable development, including the massive reduction of CO 2 emissions. This is also implicit in the concept of the '2000 W society'. A two-pronged approach strives to reduce pollution by energy systems and increase system efficiencies. Technical progress is buttressed by socio-economic measures. Priorities for publicly funded energy research have been set in the context of long-term perspectives, harmonized with European and worldwide goals. Swiss energy research must be high-level research and this requires adequate means being made available to assure both quality and continuity. It is important that the attractiveness and competitiveness of Switzerland as a home for science and technology be maintained, indeed strengthened. It has been proved worldwide that energy research needs public funding. Particularly favored is application oriented research, including pilot and demonstration projects. (author)

  12. Toward a low-energy development concept for the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Heierli, U

    1976-02-01

    The author discusses the perspectives of development concepts after the energy crisis, which caused a considerable rise in energy prices, including prices of fertilizers and other energy-intensive products, and shattered the dream of the ''industrialization of the whole world.'' He outlines approaches--for the sake of both greater efficiency in terms of input-output ratio of energy in different technologies and more equality, which cannot be achieved by energy-intensive development strategies--to a low-energy development strategy, which, of course, also implies a reduction of energy consumption in highly industrialized countries. The accent in low-energy development strategies has to be on decentralization so as to check urbanization and the consequent infrastructural demand, especially relating to transportation, and ecological disequilibrium.

  13. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  14. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    International Nuclear Information System (INIS)

    1990-01-01

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee's review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues

  15. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  16. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  17. Energy concepts for self-supplying communities based on local and renewable energy sources

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    The reduction of GHG emissions in buildings is a focus area of national energy policies, because buildings are responsible for a major share of energy consumption. Policies to increase the share of renewable energies and energy efficiency measures are implemented at local scale. Municipalities......, as responsible entities for physical planning, can hold a key role in transforming energy systems towards carbon-neutrality, based on renewable energies. The implementation should be approached at community scale, which has advantages compared to only focusing on buildings or cities. But community energy...... planning can be a complex and time-consuming process. Many municipalities hesitate to initiate such a process, because of missing guidelines and uncertainty about possible energy potentials. Case studies help to understand applied methodologies and could show available energy potentials in different local...

  18. Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2014-01-01

    Highlights: • Proved exergy method is not adequate to optimize frequency-dependent energy conversion. • Exergy concept is modified to facilitate the thermoeconomic optimization of photocell. • The exergy of arbitrary radiation is used for a practical purpose. • The utility of the concept is illustrated using pragmatic examples. - Abstract: Providing the radiation within the acceptable (responsive) frequency range(s) is a common method to increase the efficiency of the frequency-dependent energy conversion systems, such as photovoltaic and nano-scale rectenna. Appropriately designed auxiliary items such as spectrally selective thermal emitters, optical filters, and lenses are used for this purpose. However any energy conversion method that utilizes auxiliary components to increase the efficiency of a system has to justify the potential cost incurred by those auxiliary components through the economic gain emerging from the increased system efficiency. Therefore much effort should be devoted to design innovative systems, effectively integrating the auxiliary items and to optimize the system with economic considerations. Exergy is the widely used method to design and optimize conventional energy conversion systems. Although the exergy concept is used to analyze photovoltaic systems, it has not been used effectively to design and optimize such systems. In this manuscript, we present a modified exergy method in order to effectively design and economically optimize frequency-dependent energy conversion systems. Also, we illustrate the utility of this concept using examples of thermophotovoltaic, Photovoltaic/Thermal and concentrated solar photovoltaic

  19. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  20. The Concept of EV’s Intelligent Integrated Station and Its Energy Flow

    OpenAIRE

    Da Xie; Haoxiang Chu; Yupu Lu; Chenghong Gu; Furong Li; Yu Zhang

    2015-01-01

    The increasing number of electric vehicles (EVs) connected to existing distribution networks as time-variant loads cause significant distortions in line current and voltage. A novel EV's intelligent integrated station (IIS) making full use of retired batteries is introduced in this paper to offer a potential solution for accommodating the charging demand of EVs. It proposes the concept of generalized energy in IIS, based on the energy/power flow between IIS and EVs, and between IIS and the po...

  1. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    International Nuclear Information System (INIS)

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development

  2. Energy concepts for self-supplying communities based on local and renewable energy sources

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    The reduction of GHG emissions in buildings is a focus area of national energy policies, because buildings are responsible for a major share of energy consumption. Policies to increase the share of renewable energies and energy efficiency measures are implemented at local scale. Municipalities...... that virtually allow a heating energy and electricity supply fully based on local, renewable energy resources. The most feasible and cost-efficient variant is the use of local food production waste in a CHP plant feeding a district heating grid. The overall aim is to show that a self-sufficient heat......- and electricity supply of typical urban communities is possible and can be implemented in a cost-efficient way, if the energy planning is done systematically and in coherence with urban planning....

  3. Teaching Energy Concepts by Working on Themes of Cultural and Environmental Value

    Science.gov (United States)

    Besson, Ugo; De Ambrosis, Anna

    2014-01-01

    Energy is a central topic in physics and a key concept for understanding the physical, biological and technological worlds. It is a complex topic with multiple connections with different areas of science and with social, environmental and philosophical issues. In this paper we discuss some aspects of the teaching and learning of the energy…

  4. Energy, the subtle concept the discovery of Feynman's blocks from Leibniz to Einstein

    CERN Document Server

    Coopersmith, Jennifer

    2015-01-01

    This title explains the idea of energy by tracing the story of its discovery, from Galileo through to Einstein. It explains the physics using the minimum of mathematics, presenting both a gripping historical narrative and a fascinating introduction to an elusive physical concept.

  5. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  6. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  7. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  8. Offshore wind energy storage concept for cost-of-rated-power savings

    International Nuclear Information System (INIS)

    Qin, Chao; Saunders, Gordon; Loth, Eric

    2017-01-01

    Highlights: •Investigated CAES + HPT system concept for offshore wind energy; •Validated cost model for offshore wind farm including CAPEX and OPEX items; •Quantified cost-of-rated-power savings associated with CAES + HPT concept; •Estimated savings of 21.6% with CAES + HPT for a sample $2.92 billion project. -- Abstract: The size and number of off-shore wind turbines over the next decade is expected to rapidly increase due to the high wind energy potential and the ability of such farms to provide utility-scale energy. In this future, inexpensive and efficient on-site wind energy storage can be critical to address short-time (hourly) mismatches between wind supply and energy demand. This study investigates a compressed air energy storage (CAES) and hydraulic power transmission (HPT) system concept. To assess cost impact, the NREL Cost and Scaling Model was modified to improve accuracy and robustness for offshore wind farms with large turbines. Special attention was paid to the support structure, installation, electrical interface and connections, land leasing, and operations and maintenance cost items as well as specific increased/reduced costs reductions associated with CAES + HPT systems. This cost model was validated and applied to a sample $2.92 billion project Virginia Offshore case It was found that adaption of CAES + HPT can lead to a substantial savings of 21.6% of this 20-year lifetime cost by dramatically reducing capital and operating cost of the generator and power transmission components. However, there are several additional variables that can impact the off-shore energy policy and planning for this new CAES + HPT concept. Furthermore, these cost-savings are only first-order estimates based on linear mass-cost relationships, and thus detailed engineering and economic analysis are recommended.

  9. Energy technology of tomorrow. Strategies and concepts. Conference contributions; Energietechnik von morgen. Strategien und Konzepte. Konferenzbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the meeting 'Energy technology of tomorrow - Strategies and concepts' at 12th June, 2007 in Nuremberg (Federal Republic of Germany) the following lectures were held: (1) Cluster energy technology (Klaus Hassmann); (2) Dimension of future energy supply - prognoses/strategies/concepts (Ludger Mohrbach); (3) Future technologies for a CO{sub 2} reduced energy supply (Helmut Tschaffon); (4) Energy research - New specific targets and results (Hartmut Spliethoff); (5) Technological progress for future power plants at RWE (Frank Schwending); (6) Future potential of the generation of syngas with different energy sources (Sebastian Muschelknautz); (7) Innovations in plant engineering - on the way to a CO{sub 2} free power plant (Tobias Jockenhoevel); (8) Solar thermal power plants - status and prospects (Robert Piltz-Paal); (9) Perspectives of the generation of liquid hydrocarbons using nuclear energy (Kurt Kugeler); (10) Application of the MPG gasification technology in the refining of Canadian tar sands (Matthias Mueller-Hagedorn); (11) Perspectives for a sustainable supply with energy carriers (Ulrich Balfanz).

  10. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  11. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  12. Description of occupant behaviour in building energy simulation: state-of-art and concepts for improvements

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano Paolo

    2011-01-01

    of basic assumptions that affect the results. Therefore, the calculated energy performance may differ significantly from the real energy consumption. One of the key reasons is the current inability to properly model occupant behaviour and to quantify the associated uncertainties in building performance...... predictions. By consequence, a better description of parameters related to occupant behaviour is highly required. In this paper, the state of art in occupant behaviour modelling within energy simulation tools is analysed and some concepts related to possible improvements of simulation tools are proposed...

  13. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  14. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  15. Integral energy concepts for office and residential buildings; Integrale Energiekonzepte fuer Buero- und Wohngebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Velten, W.

    1998-06-01

    It has been confirmed by practical project experience that integral energy concepts are an excellent basis for the construction of energy-efficient buildings. In the extreme case buildings can even be self-sufficient in their energy supply. Uniting the responsibility for the overall energy and technology concept in the hands of a single contractor can help reduce frictional losses between those involved in the planning as well costs. A good example of this is the use of a simulation calculation for the prescribed demonstration of proper heat insulation. The presented projects show that it is possible to construct ecologically answerable buildings at attractively low costs. The presented concepts appear particularly convincing from the viewpoint of long-term maintenance of value and user-specific advantages such as agreeable working conditions. [Deutsch] Die konkreten Projekterfahrungen bestaetigen, dass durch integrale Energiekonzepte sowohl im Verwaltungs- als auch im Wohnungsbau hervorragende Voraussetzungen fuer energiesparende Gebaeude geschaffen werden koennen. Im Extremfall kann sogar eine autarke Energieversorgung erreicht werden. Durch Zusammenfassung der Gesamtverantwortung fuer das Energie- und Technikkonzept in einer Hand koennen Reibungsverluste zwischen den Planungsbeteiligten reduziert und Kosten gesenkt werden. Ein Beispiel hierfuer ist die Verbindung des vorgeschriebenen Waermeschutznachweises mit einer fuer alle Beteiligten wesentlich aussagekraeftigeren Simulationsrechnung. Die vorgestellten Projekte zeigen, dass oekologisch sinnvolle Gebaeude auch zu oekonomisch attraktiven Kosten erstellt werden koennen, wobei insbesondere der Aspekt des langfristigen Werterhalts und die nutzerspezifischen Vorteile, z.B. durch angenehmere Arbeitsbedingungen, fuer die vorgestellten Konzepte spricht. (orig.)

  16. Dμ-A new concept in industrial low-energy electron dosimetry

    International Nuclear Information System (INIS)

    Helt-Hansen, Jakob; Miller, Arne; Sharpe, Peter; Laurell, Bengt; Weiss, Doug; Pageau, Gary

    2010-01-01

    Irradiation with low-energy electrons (100-300 keV) results in dose gradients across the thickness of the dosimeters that are typically used for dose measurement at these energies. This leads to different doses being measured with different thickness dosimeters irradiated at the same electron beam, resulting in difficulties in providing traceable dose measurements using reference dosimeters. In order to overcome these problems a new concept is introduced of correcting all measured doses to the average dose in the first micrometer-D μ . We have applied this concept to dose measurements with dosimeters of different thickness at two electron accelerators operating over a range of energies. The uncertainties of the dose measurements were evaluated, and it was shown that the dose in terms of D μ was the same at each energy for all dosimeters within the measurement uncertainty. Using the concept of D μ it is therefore possible to calibrate and measure doses from low-energy electron irradiations with measurement traceability to national standards.

  17. Barriers and opportunities in realising sustainable energy concepts--an analysis of two Swiss case studies

    International Nuclear Information System (INIS)

    Pohl, Christian; Gisler, Priska

    2003-01-01

    What assists and what hinders sustainable energy use in being put into effect? Two case studies of sustainable energy concepts--the Zurich Solarstromboerse, where electricity can be purchased that is produced by solar panels, and the Swiss CO 2 -law, a consensus oriented implementation of the Kyoto-protocol--were analysed in order to investigate this question. In both case studies the unfolding of the sustainable energy concepts is reconstructed as a process starting with an abstract idea moving to a concrete realisation. This process passes through a series of different social worlds and is, in turn, affected by them. These social worlds are e.g. those of the concerned scientists, the professional investors, energy suppliers or governmental agencies. The case studies reveal three neuralgic challenges that have to be met when a concept advances from idea to realisation through the social worlds: Firstly, the translation between social worlds changes the content of the idea. Secondly, the way each social world looks at things (socially) constructs best solutions to problems and hides others. Thirdly, the actual dynamics of the social world within which it is finally implemented must be adopted by the idea. In order to integrate these neuralgic points, scientists as well as other inventors have to retain responsibility for their sustainable energy ideas and are requested to follow them through the social worlds in order to critically survey and eventually influence their 'content in flux'

  18. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    Science.gov (United States)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  19. Student ability to apply the concepts of work and energy to extended systems

    Science.gov (United States)

    Lindsey, Beth A.; Heron, Paula R. L.; Shaffer, Peter S.

    2009-11-01

    We report results from an investigation of student ability to apply the concepts of work and energy to situations in which the internal structure of a system cannot be ignored, that is, the system cannot be treated as a particle. Students in introductory calculus-based physics courses were asked written and online questions after relevant instruction by lectures, textbook, and laboratory. Several difficulties were identified. Some related to student ability to calculate the work done on a system. Failure to associate work with the change in energy of a system was also widespread. The results have implications for instruction that aims for a rigorous treatment of energy concepts that is consistent with the first law of thermodynamics. The findings are guiding the development of two tutorials to supplement instruction.

  20. Carbon Stars T. Lloyd Evans

    Indian Academy of Sciences (India)

    that the features used in estimating luminosities of ordinary giant stars are just those whose abundance ... This difference between the spectral energy distributions (SEDs) of CH stars and the. J stars, which belong to .... that the first group was binaries, as for the CH stars of the solar vicinity, while those of the second group ...

  1. Institutional options for rural energy access: Exploring the concept of the multifunctional platform in West Africa

    International Nuclear Information System (INIS)

    Nygaard, Ivan

    2010-01-01

    The concept of the multifunctional platform for rural energy access has increasingly been supported by donors in five West African countries since 1994. While it is often referred to as a highly successful concept, recent reviews and interviews with local stakeholders in Mali and Burkina Faso indicate that the high aspirations to be found in project descriptions and early evaluations are only partly reflected in activities on the ground. This paper illustrates how the multipurpose aspects of the platform have made the concept a nexus of potential achievements that are highly valued in the dominant discourse of development, and how including concerns, such as poverty alleviation, gender equity, local democracy, decentralisation and the environment, have attracted donors outside the energy sector. The paper thus argues that, while the integration of multiple technical functions, preconceived organisational set-ups and local fuel production have in fact had limited or even adverse effects on the outcome of the multifunctional platform programme, these virtues have proved essential in presenting the concept at the policy level. This analysis of the dilemma between mobilizing funding and implementing practical programmes provides an argument for building development aid on existing structures instead of inventing new complicated concepts and approaches.

  2. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Pfafferott, Jens; Sesana, Marta Maria

    2013-01-01

    Highlights: • Impact of five cooling technologies are simulated in six European climate zones with Trnsys 17. • The ventilation strategies reduce the cooling energy need even in South Europe climate. • Constant ventilation controller can lead to a poor cooling performance. • Comparing radiant strategies with air conditioning scenario, the energy saving is predicted to within 5–35%. - Abstract: Energy consumption for cooling is growing dramatically. In the last years, electricity peak consumption grew significantly, switching from winter to summer in many EU countries. This is endangering the stability of electricity grids. This article outlines a comprehensive analysis of an office building performances in terms of energy consumption and thermal comfort (in accordance with static – ISO 7730:2005 – and adaptive thermal comfort criteria – EN 15251:2007 –) related to different cooling concepts in six different European climate zones. The work is based on a series of dynamic simulations carried out in the Trnsys 17 environment for a typical office building. The simulation study was accomplished for five cooling technologies: natural ventilation (NV), mechanical night ventilation (MV), fan-coils (FC), suspended ceiling panels (SCP), and concrete core conditioning (CCC) applied in Stockholm, Hamburg, Stuttgart, Milan, Rome, and Palermo. Under this premise, the authors propose a methodology for the evaluation of the cooling concepts taking into account both, thermal comfort and energy consumption

  3. Concept of energy policy toward the 21st century; 21 seiki wo mezasu energy seisaku no yomikata

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, T. [The Institute of Energy Economics, Tokyo (Japan)

    1994-10-01

    The present report mainly explained the new concept of `long-term energy supply and demand prospects` for Japan`s energy policy. The most important point for the energy planning is the stable growth of economy. Having the trade problem, Japan needs a high growth rate of economy. In the latest revision, it is estimated to be annually 3% on average. In the global environment problem, Japan is to fix the CO2 emission per populational person at its level of 1990. The elastic modules of energy consumption came to be controlled to 0.3 with an excessive expectance of energy saving to satisfy the contradictory premise. As important political measures, the nuclear energy is most highly expected next to the energy saving. In Japan, its share will be 50% at the highest. As a conclusion, oil, natural gas and coal will be important energy resources as before. The environment tax and carbon tax are conceptually to control the consumption by heightening the oil price. The easing of regulation aims at lowering it to its worldwide level, which yields a contradictory debate.

  4. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Østergaard, Dorte Skaarup; Yang, Xiaochen

    2017-01-01

    renewable energy systems. This study compares three alternative concepts for DH temperature level: Low temperature (55/25 °C), Ultra-low temperature with electric boosting (45/25 °C), and Ultra-low temperature with heat pump boosting (35/20 °C) taking into account the grid losses, production efficiencies......District heating (DH) systems are important components in an energy efficient heat supply. With increasing amounts of renewable energy, the foundation for DH is changing and the approach to its planning will have to change. Reduced temperatures of DH are proposed as a solution to adapt it to future...... and building requirements. The scenarios are modelled and analysed in the analysis tool EnergyPLAN and compared on primary energy supply and socioeconomic costs. The results show that the low temperature solution (55/25°C) has the lowest costs, reducing the total costs by about 100 M€/year in 2050....

  5. Concepts, tools/methods, and practices of water-energy-food NEXUS

    Science.gov (United States)

    Endo, A.; Tsurita, I.; Orencio, P. M.; Taniguchi, M.

    2014-12-01

    The needs to consider the NEXUS on food and water were emphasized in international dialogues and publications around the end of the 20th century. In fact, in 1983, the United Nations University already launched a Food-Energy Nexus Programme to fill the gaps between the issues of food and energy. The term "NEXUS" to link water, food, and trade was also used in the World Bank during 1990s. The idea of NEXUS is likely to have further developed under the discussion of "virtual water" and "water footprints". With experiencing several international discussions such as Kyoto World Water Forum 2003, scholars and practitioners around the globe acknowledged the need to include energy for the pillars of NEXUS. Finally, the importance of three NEXUS pillars, "water, energy, and food" was officially announced in the BONN 2011 NEXUS Conference, which is a turning point of NEXUS idea in the international community , in order to contribute to the United Nations Conference on Sustainable Development (Rio+20) in 2012 that highlighted the concept of "green economy". The concept of NEXUS is becoming a requisite to achieve sustainable development due to the global concerns embedded in society, economy, and environment. The concept stresses to promote the cooperation with the sectors such as water, energy, food, and climate change since these complex global issues are dependent and inter-connected, which can no longer be solved by the sectorial approaches. The NEXUS practices are currently shared among different stakeholders through various modes including literatures, conferences, workshops, and research projects. However, since the NEXUS practices are not led by a particular organization, its concept, theory, policy, tools, methods, and applications are diverse and incoherent. In terms of tools/methods, the potential of integrated modeling approach is introduced to avoid pressures and to promote interactions among water, energy and food. This paper explores the concepts, tools

  6. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    Science.gov (United States)

    2015-12-17

    other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...excellent agreement with experimental findings. The energy filtering has been applied to single-electron transport and clear Coulomb staircases and... Coulomb oscillations have been demonstrated at room temperature. A new architecture of energy-filtered cold electron transistors has been designed and

  7. Concepts for dynamic modelling of energy-related flows in manufacturing

    International Nuclear Information System (INIS)

    Wright, A.J.; Oates, M.R.; Greenough, R.

    2013-01-01

    Highlights: ► Modelling of the thermal flows in factories and processes is usually separate. ► We propose a set of key features for an integrated thermal model. ► Such models can be used to improve the efficiency of manufacturing processes. - Abstract: Industry uses around one third of the world’s energy, and accounts for about 40% of global carbon dioxide emissions. There is increasing economic and social pressure to improve efficiency and create closed-loop industrial systems, in which energy efficiency plays a key role. This paper describes some of the key concepts involved in modelling the energy flows in manufacturing, both for the building services and the industrial processes. Detailed dynamic energy simulation of buildings is well established and routinely used, working on a time series basis – but current tools are inadequate to model the energy flows of many industrial processes. There are also well-established models of manufacturing flows, used to optimise production efficiency, but typically not modelling energy, and usually representing production and material flows as event-driven processes. The THERM project has developed new software tools to model energy-related and other utility flows in manufacturing, incorporating these into existing thermal models of factory buildings. This makes it possible to map out the whole energy system, and hence to test efficiency measures, to understand the effect of processes on building energy use, to investigate recycling of heat or cooling into other processes or building conditioning, and so on. The paper describes some of the key concepts and modelling approaches involved in developing these models, and gives examples of some real processes modelled in factories. It concludes that such models are entirely feasible and potentially very useful, although to develop a tool which comprehensively models both energy and manufacturing flows would be a major undertaking

  8. Municipal energy concepts. A service task for electric utility companies; Kommunale Energiekonzepte. Eine Dienstleistungsaufgabe fuer Energieversorgungsuntemehmen

    Energy Technology Data Exchange (ETDEWEB)

    Just, W. [Stadtwerke Gelsenkirchen GmbH (Germany)

    1994-11-01

    The article explains to what extent suitable measures can be realized and supported in a municipality with municipal energy concepts or even climate protection concepts. The target is to attain with limited financial means the most favourable economic and ecological effects in the municipality or in the region. Many electric utilities have in the last years forced the realization of energy conservation measures and have become energy service companies. With their expert knowledge they are ideal partners for politics, public adminstration and citizens. They have the best qualificatons for the development and realization of municipal concepts. In many cases it shows that with detailed studies the target can be quicker and more effectively attained as with extensive, time-consuming and expensive studies which are not particularly realization-oriented. The report is to give examples which might be helpful for the development of a concept. (orig./UA) [Deutsch] Der Beitrag erlaeutert, inwieweit umfangreiche kommunale Energiekonzepte oder sogar Klimaschutzkonzepte geeignete Massnahmen in der Kommune realisieren und foerdern koennen. Ziel sollte sein, mit begrenztem Mitteleinsatz die oekonomisch-oekologisch groessten Effekte in der Kommune bzw. in der Region zu erzielen. Viele Energie-Versorgungsunternehmen haben in den letzten Jahren die Realisierung von Energieparmassnahmen vorangetrieben und sich zu Energie-Dienstleistungsunternehmen entwickelt. Mit ihrer Sachkompetenz sind sie der ideale Partner fuer Politik, oeffentliche Verwaltung und Buerger/innen. Sie bringen die besten Voraussetzungen mit bei der Erarbeitung und Umsetzung von kommunalen Konzepten. Vielfach zeigt sich, dass Detailkonzepte schneller und wirkungsvoller zum Ziel fuehren, als umfachreiche, zeitaufwendige und teure Studien, die wenig umsetzungsorientiert sind. Die nachfolgenden Ausfuehrungen sind als Beispiele gedacht. Sie koennen Anregungen fuer die Erstellung eines Konzeptes vermitteln. (orig./UA)

  9. Sustainability of utility-scale solar energy – critical ecological concepts

    Science.gov (United States)

    Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.

    2017-01-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  10. New HTGR plant concept with inherently safe features aimed at small energy users needs

    International Nuclear Information System (INIS)

    McDonald, C.F.; Silady, F.S.; Shenoy, A.S.

    1982-01-01

    A small high-temperature gas-cooled reactor (HTGR) concept is proposed which could provide the energy needs for certain sectors of industrialized nations and the developing countries. The key to the economic success for small reactors, which have potential benefits for special markets, lies in altering the traditional scaling laws. Toward this goal, a small HTGR concept embodying passive decay heat removal features is currently being evaluated. This paper emphasizes the safety-related aspects of a small HTGR. The proposed small reactor concept is new and still in the design development stage, and a significant effort must be expended to establish a design which is technically and economically feasible and will meet the increasingly demanding safety and licensing goals for reactors of the future

  11. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  12. Röntgen spheres around active stars

    Science.gov (United States)

    Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista

    2018-01-01

    X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.

  13. A New Energy-Based Structural Design Optimization Concept under Seismic Actions

    Directory of Open Access Journals (Sweden)

    George Papazafeiropoulos

    2017-07-01

    Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.

  14. Full-service concept for energy efficient renovation of single-family houses

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Tommerup, Henrik M.; Svendsen, Svend

    2011-01-01

    the solutions. Such one-stop-shops in the form of full-service providers of energy efficient renovation of single-family house are missing in the Nordic countries, although this service is vital to open up the market. As part of the Nordic research project `SuccesFamilies´ with the purpose to change...... houses. A one-stop-shop in the form of a full-service concept could be seen as a possibility to make it easy for the homeowner to comply with possible future requirements to realize far-reaching energy savings in connection with extensive renovations, provided that the building sector offers...... includes an ideal full-service concept and technical renovation solutions targeted to different types of single-family houses....

  15. The European single market of energy faced with conventional supply safety concepts

    International Nuclear Information System (INIS)

    Belyi, A.

    2004-01-01

    By analysing the context of the creation of the Single Energy Market, this article tries to understand the logic behind the coexistence of two energy safety concepts: (1) the financial gains of international trading; (2) the protection against supply shortage risks using domestic self-sufficiency policies. Both concepts are based on an informative context conditioned by the two crises, which mainly impact the security perceptions of today: the oil crisis in the seventies and the Californian crisis in 2001. They are based on opposite factors: anti-market behaviour in the first case and excessive competition in the second case. The nature of liberalization, of the relation-ship with non-EU producing countries and the perception of the dangers are inherent to such an informative context. (author)

  16. Photoelectric effect experiment for understanding the concept of quantization of radiation energy

    Directory of Open Access Journals (Sweden)

    Yeimy Gerardine Berrios Saavedra

    2016-09-01

    Full Text Available This study forms part of research on the teaching of physics. The question that directed it was: How a proposed classroom, based on the photoelectric effect experiment helps pres-service teachers of physics of the Universidad Pedagógica Nacional to expand their understanding of the concept of quantization energy of radiation? The construction of the theoretical framework developed on the one hand, with scientific ideas about the quantization of energy, and moreover, with the educational proposals of teaching for understanding. This pedagogical approach was guided by the investigative gaze of the study methodology based on design, taking as main element the use of learning tools such as the task to Predict, Experiment and Explain (PEE. It was found that these tasks fomented the initial understandings of students about the concept, while they enriched and transformed progressively their models and scientific ideas, promoting aspects of scientific work in developing curiosity, imagination and motivation.

  17. CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT z ∼ 2

    International Nuclear Information System (INIS)

    Wang Tao; Gu Qiusheng; Huang Jiasheng; Fang Guanwen; Fazio, G. G.; Faber, S. M.; McGrath, Elizabeth J.; Kocevski, Dale; Wuyts, Stijn; Yan Haojing; Dekel, Avishai; Guo Yicheng; Ferguson, Henry C.; Grogin, Norman; Lotz, Jennifer M.; Lucas, Ray A.; Koekemoer, A. M.; Weiner, Benjamin; Hathi, Nimish P.; Kong Xu

    2012-01-01

    We present a study on spectral energy distributions, morphologies, and star formation for an IRAC-selected extremely red object sample in the GOODS Chandra Deep Field-South. This work was enabled by new HST/WFC3 near-IR imaging from the CANDELS survey as well as the deepest available X-ray data from Chandra 4 Ms observations. This sample consists of 133 objects with the 3.6 μm limiting magnitude of [3.6] = 21.5 and is approximately complete for galaxies with M * > 10 11 M ☉ at 1.5 ≤ z ≤ 2.5. We classify this sample into two types, quiescent and star-forming galaxies (SFGs), in the observed infrared color-color ([3.6]–[24] versus K – [3.6]) diagram. The further morphological study of this sample shows a consistent result with the observed color classification. The classified quiescent galaxies are bulge dominated and SFGs in the sample have disk or irregular morphologies. Our observed infrared color classification is also consistent with the rest-frame color (U – V versus V – J) classification. We also found that quiescent and SFGs are well separated in the nonparametric morphology parameter (Gini versus M 20 ) diagram measuring their concentration and clumpiness: quiescent galaxies have a Gini coefficient higher than 0.58 and SFGs have a Gini coefficient lower than 0.58. We argue that the star formation quenching process must lead to or be accompanied by the increasing galaxy concentration. One prominent morphological feature of this sample is that disks are commonly seen in this massive galaxy sample at 1.5 ≤ z ≤ 2.5: 30% of quiescent galaxies and 70% of SFGs with M * > 10 11 M ☉ have disks in their rest-frame optical morphologies. The prevalence of these extended, relatively undisturbed disks challenges the merging scenario as the main mode of massive galaxy formation.

  18. A low-cost hybrid drivetrain concept based on compressed air energy storage

    International Nuclear Information System (INIS)

    Brown, T.L.; Atluri, V.P.; Schmiedeler, J.P.

    2014-01-01

    Highlights: • A new pneumatic hybrid concept is introduced. • A proof-of-concept prototype system is built and tested. • The experimental system has a round-trip efficiency of just under 10%. • A thermodynamics model is used to predict the performance of modified designs. • An efficiency of nearly 50% is possible with reasonable design changes. - Abstract: This paper introduces a new low-cost hybrid drivetrain concept based on compressed air energy storage. In contrast to most contemporary approaches to pneumatic hybridization, which require modification to the primary power plant, this concept is based on a stand-alone pneumatic system that could be readily integrated with existing vehicles. The pneumatic system consists of an air tank and a compressor–expander that is coupled to the rest of the drivetrain via an infinitely variable transmission. Rather than incorporating more expensive technologies such as variable valve timing or a variable compression ratio compressor, a fixed valve system consisting of a rotary valve and passive check valves is optimized to operate efficiently over a range of tank pressures. The feasibility of this approach is established by thermodynamic modeling and the construction of a proof-of-concept prototype, which is also used to fine tune model parameters. While the proof-of-concept system shows a round trip efficiency of just under 10%, modeling shows that a round trip efficiency of 26% is possible with a revised design. If waste heat from the engine is used to maintain an elevated tank temperature, efficiencies of nearly 50% may be possible, indicating that the concept could be effective for practical hybridization of passenger vehicles

  19. Nuclear energy. An introduction to the concepts, systems, and applications of nuclear processes. 3. ed.

    International Nuclear Information System (INIS)

    Murray, R.L.

    1988-01-01

    An overview of nuclear energy and its uses is given, aimed at nuclear engineers, plant designers and radiation physicists. The three parts deal with the basic concepts, nuclear systems (including particle accelerators, radiation detectors, breeder reactors and fusion reactors) and nuclear energy and man. This latter section includes chapters on the history of nuclear energy, effects of radiation, isotopes, reactor safety, nuclear propulsion, radiation protection, radioactive waste disposal, laws and regulations economics and nuclear explosions. The final chapter looks to the future of nuclear energy. Each of the 27 chapters has a brief summary and exercises at the end. The appendices give selected references, conversion factors and atomic and nuclear data. (U.K.)

  20. Discrete lattice plane broken bond interfacial energy calculations and the use of the dividing surface concept

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    2003-01-01

    The concept of the dividing surface has been extensively used to define the relationships between thermodynamic quantities at the interface between two phases; it is also useful in calculations of interfacial energy (γ). However, in the original formulation, the two phases are continuum phases, the atomistic nature of the interface was not considered. It is, therefore, useful to examine the use of the dividing surface in the context of atomistic interfacial energy calculations. The case of a planar fcc:hcp interface is considered and the dividing surface positions which are useful in atomistic interfacial energy calculations are stated, one position equates γ to the excess internal energy, the other position allows us to use the Gibbs adsorption equation. An example of a calculation using the convenient dividing surface positions is presented

  1. The economic concept of the elasticity and their incidence in the Colombian energy market

    International Nuclear Information System (INIS)

    Perez Bedoya, Edigson

    1996-01-01

    The topic that is presented denotes a singular importance mainly for those who have to planning and to project the energetic sector. The Colombian energy basket has been increased, from this perspective and now the development and the taking of decisions cannot manage in isolate form, the reason of the report, more than ever it incorporates the concept of economic elasticity. This is not more than the compass that allows decanting, if the variations of the prices in the energy basket will have (x) or (y) result in the final consumer. The elasticity finally measures the reactions that from the offer and demand of energy can be unchained by a certain stimulus politics in the energy market

  2. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)], E-mail: zhxpmark@hotmail.com; Yang Jiakuan; Wang Jinbo; Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries.

  3. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Yang, Jiakuan; Wang, Jinbo; Xiao, Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries. (author)

  4. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    International Nuclear Information System (INIS)

    Zhou Xinping; Yang Jiakuan; Wang Jinbo; Xiao Bo

    2009-01-01

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries

  5. Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2016-05-01

    Full Text Available This paper proposes a novel control topology which enables the setup of a low cost analog system leading to the implementation of a modular energy conversion system. The modular concept is based on hybrid renewable energy (solar and wind and uses high voltage inverters already available on the market. An important feature of the proposed topology is a permanently active current loop, which assures short circuit protection and simplifies the control loops compensation. The innovative analogue solution of the control structure is based on a dedicated integrated circuit (IC for power factor correction (PFC circuits, used in a new configuration, to assure an efficient inverter start-up. The energy conversion system (control structure and maximum power point tracking algorithm is simulated using a new macromodel-based concept, which reduces the usual computational burden of the simulator and achieves high processing speed. The proposed novel system is presented in this article from concept, through the design and implementation stages, is verified through simulation and is validated by experimental results.

  6. Inquiries about awareness and knowledge of children and pupils on the concept related with atomic energy

    International Nuclear Information System (INIS)

    Atobe, Kozo; Kobayashi, T.; Matukawa, Tokuo; Honda, Makoto; Awata, Takaaki; Fukuoka, Noboru; Okada, Moritami

    2001-01-01

    There is almost no chance to learn about the words (atomic energy), (radioactivity) and (radiation) in the middle and/or high school educations in Japan, because physics is one of the options in the high school curriculum, and 80-90% of students do not like to choose physics. This inquires aim to know the level of their knowledge on energy resources, atomic energy, radioactivity, radiation, and information sources on their related knowledge. Inquiries are made for the middle and high school students in Tokushima and Tsuruga. There are coal power plants in Tokushima, while atomic power plants in Tsuruga. Fossils energy gets the highest points in Tokushima, while Atomic energy gets the highest points in Tsuruga for a present-day energy source. Solar energy sources get the highest point as a promising 21st century energy source in both prefectures, especially for female students. Radioactivity reminds them of words atomic bomb, disease, injury, and harmful, those give very negative images. Radiation reminds them of words roentgen, radiation therapy, x-ray, and hospital use, those designate a sort of plus-image. More than 50 to 60% of them obtained their knowledge from mass media, particularly, television. In addition, less than a few % of them can give any scientific description about these words. As a whole, authors can say that the students have got a certain concept for these words from information of mass media. Meanwhile the school education has approximately no effect on the formation of their concept. Authors are giving some advises and recommendations for the school education and mass media in Japan. (Y. Tanaka)

  7. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  8. The spectrophotometric investigation of 4 parent stars

    International Nuclear Information System (INIS)

    Tereshchenko, V.M.

    2005-01-01

    The absolute energy distribution in spectra of four parent stars was obtained. The synthetic color indexes for the investigated stars were calculated. They were used for determination of the fundamental parameters of the parent stars: effective temperatures and metallicities. (author)

  9. Recent results on event-by-event fluctuations from the RHIC Beam Energy Scan program in the STAR experiment

    International Nuclear Information System (INIS)

    Sahoo, Nihar Ranjan

    2014-01-01

    Event-by-event fluctuations of global observables in relativistic heavy-ion collisions are studied as probes for the QCD phase transition and as tools to search for critical phenomena near the phase boundary. Dynamical fluctuations in mean transverse momentum, identified particle ratios and conserved quantities (such as net-charge, net-baryon) are expected to provide signatures of a de-confined state of matter. Non-monotonic behavior in the higher-moments of conserved quantities as a function of beam energy and collision centrality are proposed as signatures of the QCD critical point. To study the QCD phase transition and locate the critical point, the STAR experiment at RHIC has collected a large amount of data for Au+Au collisions from √S_N_N = 7.7 - 200 GeV in the RHIC Beam Energy Scan (BES) program. We present the recent beam energy scan results on dynamical fluctuations of particle ratios and two-particle transverse momentum correlations at mid-rapidity. Higher-moments of the net-charge and net-proton multiplicity distributions as a function of beam energy will be presented. We give a summary of what has been learnt so far and future prospectives for the BES-II program.

  10. Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems

    Science.gov (United States)

    Eltamaly, Ali M.; Mohamed, Mohamed A.; Al-Saud, M. S.; Alolah, Abdulrahman I.

    2017-10-01

    Optimal sizing of hybrid renewable energy systems (HRES) to satisfy load requirements with the highest reliability and lowest cost is a crucial step in building HRESs to supply electricity to remote areas. Applying smart grid concepts such as load management can reduce the size of HRES components and reduce the cost of generated energy considerably. In this article, sizing of HRES is carried out by dividing the load into high- and low-priority parts. The proposed system is formed by a photovoltaic array, wind turbines, batteries, fuel cells and a diesel generator as a back-up energy source. A smart particle swarm optimization (PSO) algorithm using MATLAB is introduced to determine the optimal size of the HRES. The simulation was carried out with and without division of the load to compare these concepts. HOMER software was also used to simulate the proposed system without dividing the loads to verify the results obtained from the proposed PSO algorithm. The results show that the percentage of division of the load is inversely proportional to the cost of the generated energy.

  11. The Integral Fast Reactor concept: Today's hope for tomorrow's electrical energy needs

    International Nuclear Information System (INIS)

    Dwight, C.C.; Phipps, R.D.

    1989-01-01

    Acid rain and the greenhouse effect are getting more attention as their impacts on the environment become evident around the world. Substantial evidence indicates that fossil fuel combustion for electrical energy production activities is a key cause of those problems. A change in electrical energy production policy is essential to a stable, healthy environment. That change is inevitable, it's just a matter of when and at what cost. Vision now, instead of reaction later, both in technological development and public perception, will help to limit the costs of change. The Integral Fast Reactor (IFR) is a visionary concept developed by Argonne National Laboratory that involves electrical energy production through fissioning of heavy metals by fast neutrons in a reactor cooled by liquid sodium. Physical characteristics of the coolant and fuel give the reactor impressive characteristics of inherent and passive safety. Spent fuel is pyrochemically reprocessed and returned to the reactor in the IFR's closed fuel cycle. Advantages in waste management are realized, and the reactor has the potential for breeding, i.e., producing as much or more fuel than it uses. This paper describes the IFR concept and shows how it is today's hope for tomorrow's electrical energy needs. 14 refs., 1 fig., 1 tab

  12. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.

    Science.gov (United States)

    Ferrell, C L; Oltjen, J W

    2008-10-01

    Development of nutritional energetics can be traced to the 1400s. Lavoisier established relationships among O(2) use, CO(2) production and heat production in the late 1700s, and the laws of thermodynamics and law of Hess were discovered during the 1840s. Those discoveries established the fundamental bases for nutritional energetics and enabled the fundamental entity ME = retained energy + heat energy to be established. Objectives became: 1) to establish relationships between gas exchange and heat energy, 2) to devise bases for evaluation of foods that could be related to energy expenditures, and 3) to establish causes of energy expenditures. From these endeavors, the basic concepts of energy partitioning by animals were developed, ultimately resulting in the development of feeding systems based on NE concepts. The California Net Energy System, developed for finishing beef cattle, was the first to be based on retained energy as determined by comparative slaughter and the first to use 2 NE values (NE(m) and NE(g)) to describe feed and animal requirements. The system has been broadened conceptually to encompass life cycle energy requirements of beef cattle and modified by the inclusion of numerous adjustments to address factors known to affect energy requirements and value of feed to meet those needs. The current NE system remains useful but is empirical and static in nature and thus fails to capture the dynamics of energy utilization by diverse animals as they respond to changing environmental conditions. Consequently, efforts were initiated to develop dynamic simulation models that captured the underlying biology and thus were sensitive to variable genetic and environmental conditions. Development of a series of models has been described to show examples of the conceptual evolution of dynamic, mechanistic models and their applications. Generally with each new system, advances in prediction accuracy came about by adding new terms to conceptually validated models

  13. Cooling concept with energy storage for ICT; Koelconcept met energieopslag voor ICT

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wilt, P. [Compertius, Amsterdam (Netherlands)

    2009-12-15

    Renewable energy concepts with energy storage in the soil are not only about technique. To ensure successful implementation of energy storage in the soil for various branches cooperation needs to be sought with parties who know specific branches very well. In addition to the technical aspects, it is at least as important that the needs and working methods of a market segment are thoroughly known to ensure optimal linkage of source systems to the systems and operational processes of the client. [Dutch] Bij ontwikkelde duurzame energieconcepten met inzet van energieopslag in de bodem gaat het niet alleen om techniek, Om energieopslag in de bodem voor verschillende branches met succes in te zetten, is samenwerking nodig met partijen die een specifieke branche goed kennen. Naast de techniek is het minstens zo belangrijk ook de behoeftes en werkwijzen van een marktsegment door en door te kennen, om bronsystemen zo optimaal te koppelen aan de systemen en bedrijfsprocessen van de klant.

  14. Feasibility study on application of new concept of environmental assessment to nuclear energy

    International Nuclear Information System (INIS)

    Lee, Young Eal; Lee, Kun Jai

    2000-01-01

    The existing environmental assessments of nuclear energy are focused on the two kinds of issues such as prevention of green house gas emission and radiological impact assessment. So, the comparative assessment of the other resources such as fossil fuels has been the main part and this result has been the side of nuclear power as the clean energy resource. However, now is when to develop the methodology that approaches to environmental assessment of energy in terms of the various environmental categories. Life Cycle Assessment (LCA) would be the effective environmental assessment tool, which is able to meet the necessity mentioned above. Also classification of the radiological impact and calculation of the environmental impact from the radioactive substances are indispensable as long as the nuclear energy is considered in the application of LCA for the utilization of energy in the industry. However, direct introduction of LCA to the nuclear energy is difficult more or less due to the absence of the methodology for the radiological impact assessment within the LCA framework. Therefore, this study suggests the new concept of environmental assessment. Also current status of development for the classification factor of radiological impact is introduced and investigates the feasibility of application of it to nuclear power generation system

  15. The Concept of EV’s Intelligent Integrated Station and Its Energy Flow

    Directory of Open Access Journals (Sweden)

    Da Xie

    2015-05-01

    Full Text Available The increasing number of electric vehicles (EVs connected to existing distribution networks as time-variant loads cause significant distortions in line current and voltage. A novel EV’s intelligent integrated station (IIS making full use of retired batteries is introduced in this paper to offer a potential solution for accommodating the charging demand of EVs. It proposes the concept of generalized energy in IIS, based on the energy/power flow between IIS and EVs, and between IIS and the power grid, to systematically evaluate the energy capacity of IIS. In order to derive a unique and satisfactory operation mode, information from both the grid (in terms of load level and IIS (in terms of its energy capacity and EVs battery charging/exchanging requests is merged. Then, based on the generalized energy of different systems, a novel charging/discharging control strategy is presented and whereby the operating status of the grid and energy capacity of IIS are monitored to make reasonable operation plans for IIS. Simulation results suggest that the proposed IIS offers peak load shifting when EV battery charging/exchanging requests are satisfied compared to existing charging stations.

  16. New Concept for Assessment of Tidal Current Energy in Jiangsu Coast, China

    Directory of Open Access Journals (Sweden)

    Ji-Sheng Zhang

    2013-01-01

    Full Text Available Tidal current energy has attracted more and more attentions of coastal engineers in recent years, mainly due to its advantages of low environmental impact, long-term predictability, and large energy potential. In this study, a two-dimensional hydrodynamic model is applied to predict the distribution of mean density of tidal current energy and to determine a suitable site for energy exploitation in Jiangsu Coast. The simulation results including water elevation and tidal current (speed and direction were validated with measured data, showing a reasonable agreement. Then, the model was used to evaluate the distribution of mean density of tidal current energy during springtide and neap tide in Jiangsu Coast. Considering the discontinuous performance of tidal current turbine, a new concept for assessing tidal current energy is introduced with three parameters: total operating time, dispersion of operating time, and mean operating time of tidal current turbine. The operating efficiency of tidal current turbine at three locations around radial submarine sand ridges was taken as examples for comparison, determining suitable sites for development of tidal current farm.

  17. Research based ecological concepts of energy management for the Baltic States in transition

    International Nuclear Information System (INIS)

    Kapala, J.; Michna, J.; Ekmanis, Yu.; Zeltinsh, N.

    1998-01-01

    The methodological concept outlined in the paper concerns ecological aspects of energy management and efficiency. Based on this concept, some common principles were elaborated that can be applied not only of the centralised planned economy but also to free market conditions. To improve these principles, co-ordination contacts have been established between representatives from Central and Eastern Europe - on one hand and those from USA, Great Britain and Germany - on the other, thus forming basis for further investigations. Wide expert knowledge has been accumulated due to exchange of information, which allows improving efficiency of investigation into management in the field of energetics and environmental control. Basing on the methodology of criteria analysis, adaption to changes in politics and economy in different countries as well as elucidation of environmental and social issues have become possible. (author)

  18. Higher moments of net kaon multiplicity distributions at RHIC energies for the search of QCD Critical Point at STAR

    Directory of Open Access Journals (Sweden)

    Sarkar Amal

    2013-11-01

    Full Text Available In this paper we report the measurements of the various moments mean (M, standard deviation (σ skewness (S and kurtosis (κ of the net-Kaon multiplicity distribution at midrapidity from Au+Au collisions at √sNN = 7.7 to 200 GeV in the STAR experiment at RHIC in an effort to locate the critical point in the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as also to the correlation length of the system. A non-monotonic behavior of these variable indicate the presence of the critical point. In this work we also present the moments products Sσ, κσ2 of net-Kaon multiplicity distribution as a function of collision centrality and energies. The energy and the centrality dependence of higher moments of net-Kaons and their products have been compared with it0s Poisson expectation and with simulations from AMPT which does not include the critical point. From the measurement at all seven available beam energies, we find no evidence for a critical point in the QCD phase diagram for √sNN below 200 GeV.

  19. Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    Science.gov (United States)

    Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.

    1986-01-01

    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.

  20. Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Ioan Aschilean

    2018-05-01

    Full Text Available Bio-organic greenhouses that are based on alternative resources for producing heat and electricity stand out as an efficient option for the sustainable development of agriculture, thus ensuring good growth and development of plants in all seasons, especially during the cold season. Greenhouses can be used with maximum efficiency in various agricultural lands, providing ideal conditions of temperature and humidity for short-term plant growing, thereby increasing the local production of fruit and vegetables. This paper presents the development of a durable greenhouse concept that is based on complex energy system integrating fuel cells and solar panels. Approaching this innovative concept encountered a major problem in terms of local implementation of this type of greenhouses because of the difficulty in providing electrical and thermal energy from conventional sources to ensure an optimal climate for plant growing. The project result consists in the design and implementation of a sustainable greenhouse energy system that is based on fuel cells and solar panels.

  1. Energy policy in Baden-Wuerttemberg. Short version of the energy concept for 2020; Energiepolitik in Baden-Wuerttemberg. Kurzfassung des Energiekonzepts 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    The realisation of an energy supply that is safe, economically efficient and environmentally friendly presupposes committed, non-judgemental cooperation between the economy, the public at large and the political realm. For this purpose the state government of Baden Wuerttemberg has summarised the key points of what constitutes a sustainable energy policy in its ''Energy concept for Baden-Wuerttemberg until 2020'', which was passed by the state cabinet on 27 July 2009. The present brochure is a short version of this energy concept. Its purpose is to inform the public at large about the principles of Baden-Wuerttemberg's energy policy.

  2. Illustrating the use of concepts from the discipline of policy studies in energy research : An explorative literature review

    NARCIS (Netherlands)

    Hoppe, T.; Coenen, Frans; van den Berg, Maya

    2016-01-01

    With the increasing challenges the energy sector faces, energy policy strategies and instruments are becoming ever more relevant. The discipline of policy studies might offer relevant concepts to enrich multidisciplinary energy research. The main research question of this article is: How can

  3. Illustrating the use of concepts from the discipline of policy studies in energy research: An explorative literature review

    NARCIS (Netherlands)

    Hoppe, Thomas; Coenen, Franciscus H.J.M.; van den Berg, Maya Marieke

    2016-01-01

    With the increasing challenges the energy sector faces, energy policy strategies and instruments are becoming ever more relevant. The discipline of policy studies might offer relevant concepts to enrich multidisciplinary energy research. The main research question of this article is: How can policy

  4. Least-cost planning as a concept of control. New economic strategies for the rational use of electric energy

    International Nuclear Information System (INIS)

    Leprich, U.

    1994-01-01

    In the face of imminent climate change, reform concepts that are based on energy conservation are bound to prevail over other approaches. One such concept is that of Least Cost Planning (LCP). LCP aims at an unbiased choice among the options on the supply side (power plants, networks) and those on the demand side (energy conservation and substitution programmes). While today LCP is often discussed in a rather abbreviated sense as a concept for corporate strategies of power supply companies, the present paper develops it as a new concept for public control of power supply companies. An example of US American practice is analysed to determine to what extent the concept of LCP is compatible, in principle and practice, with a control system over power supply companies. This is used to develop elements for the reform of the German control system which would provide the economic dimension to the power supply companies' task of efficient energy utilisation. (orig.) [de

  5. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles

    International Nuclear Information System (INIS)

    Henchoz, Samuel; Buchter, Florian; Favrat, Daniel; Morandin, Matteo; Mercangöz, Mehmet

    2012-01-01

    Large scale energy storage may play an increasingly important role in the power generation and distribution sector, especially when large shares of renewable energies will have to be integrated into the electrical grid. Pumped-hydro is the only large scale storage technology that has been widely used. However the spread of this technology is limited by geographic constraints. In the present work, a particular implementation of a storage concept based on thermodynamic cycles, invented by ABB Switzerland ltd. Corporate Research, has been analysed thermoeconomically. A variant using solar thermal collectors is presented. It benefits from the synergy between daily variations in solar irradiance and in electricity demand. This results in an effective increase of the electric energy storage efficiency. A steady state multi-objective optimization of a 50 MW plant was done; minimizing the investment costs and maximizing the energy storage efficiency. Several types of cold storage substances have been implemented in the formulation and two different types of solar collector were investigated. A storage efficiency of 57% at a cost of 1200 USD/kW was calculated for an optimized plant using solar energy. Finally, a computation of the behaviour of the plant along the year showed a yearly availability of 84.4%. -- Highlights: ► A variant of electric energy storage based on thermodynamic cycles is presented. ► It uses solar collectors to improve the energy storage efficiency. ► An optimization minimizing capital cost and maximizing energy storage efficiency, was carried out. ► Capital costs lie between 982 and 3192 USD/kW and efficiency between 43.8% and 84.4%.

  6. Constructing qualitative energy concepts in a formal educational context with 6 – 7 year old students

    Directory of Open Access Journals (Sweden)

    DIMITRIS KOLIOPOULOS

    2011-07-01

    Full Text Available The research presented in this paper is a preliminary empirical study of primary school children’s ability to construct a qualitative explanatory model for the ‘energy’ concept. The research results are particularly encouraging since it seems that 6-7 year old children are able, following a relevant teaching intervention, to utilize a linear causal reasoning and construct a preliminary energy model. Through the use of this model, the children are able to describe natural phenomena, such as the lighting of a lamp or the movement of a small motor using a battery or a photovoltaic cell.

  7. Program for Plasma-Based Concepts for Future High Energy Accelerators

    International Nuclear Information System (INIS)

    Katsouleas, Thomas C.; Muggli, Patric

    2003-01-01

    OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period

  8. International Conference on Future Energy Concepts, 3rd, London, England, January 27-30, 1981, Proceedings

    Science.gov (United States)

    Electric cars are considered along with questions regarding solar energy as alternative or complementary energy concept, aspects of high temperature heat storage, wind turbine response and system integration, the development of the coal fired combined cycle and gas turbine cycle for power generation, the performance characteristics of a variable speed heat pump, and the economics of satellite solar power system operation. Attention is also given to the generation and transmission of electricity from wave energy schemes, the effect of building construction on the value of solar radiation to reduce heat needs, the performance optimization of photovoltaic converters using a microprocessor, power transmission from offshore wind generation systems, and the properties of the polyol fuel cell. Other subjects explored are related to the performance of a Wells turbine for use in a wave energy system, the combustion of low-grade fuels in a fluidized bed, coal gasification for combined cycle power generation, the cost of power recovery from waste heat, and energy from biomass.

  9. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Dickinson, Mark [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Altieri, Bruno; Coia, Daniela [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Buat, Veronique [Laboratoire d' Astrophysique de Marseille (LAM), Universite d' Aix-Marseille, CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Dannerbauer, Helmut, E-mail: kirkpatr@astro.umass.edu [Institut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  10. CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Wang Tao; Gu Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Huang Jiasheng; Fang Guanwen; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Faber, S. M.; McGrath, Elizabeth J.; Kocevski, Dale [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Wuyts, Stijn [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Guo Yicheng [Astronomy Department, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003 (United States); Ferguson, Henry C.; Grogin, Norman; Lotz, Jennifer M.; Lucas, Ray A.; Koekemoer, A. M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Weiner, Benjamin [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hathi, Nimish P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Kong Xu, E-mail: taowang@nju.edu.cn [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2012-06-20

    We present a study on spectral energy distributions, morphologies, and star formation for an IRAC-selected extremely red object sample in the GOODS Chandra Deep Field-South. This work was enabled by new HST/WFC3 near-IR imaging from the CANDELS survey as well as the deepest available X-ray data from Chandra 4 Ms observations. This sample consists of 133 objects with the 3.6 {mu}m limiting magnitude of [3.6] = 21.5 and is approximately complete for galaxies with M{sub *} > 10{sup 11} M{sub Sun} at 1.5 {<=} z {<=} 2.5. We classify this sample into two types, quiescent and star-forming galaxies (SFGs), in the observed infrared color-color ([3.6]-[24] versus K - [3.6]) diagram. The further morphological study of this sample shows a consistent result with the observed color classification. The classified quiescent galaxies are bulge dominated and SFGs in the sample have disk or irregular morphologies. Our observed infrared color classification is also consistent with the rest-frame color (U - V versus V - J) classification. We also found that quiescent and SFGs are well separated in the nonparametric morphology parameter (Gini versus M{sub 20}) diagram measuring their concentration and clumpiness: quiescent galaxies have a Gini coefficient higher than 0.58 and SFGs have a Gini coefficient lower than 0.58. We argue that the star formation quenching process must lead to or be accompanied by the increasing galaxy concentration. One prominent morphological feature of this sample is that disks are commonly seen in this massive galaxy sample at 1.5 {<=} z {<=} 2.5: 30% of quiescent galaxies and 70% of SFGs with M{sub *} > 10{sup 11} M{sub Sun} have disks in their rest-frame optical morphologies. The prevalence of these extended, relatively undisturbed disks challenges the merging scenario as the main mode of massive galaxy formation.

  11. Healing, Mental Energy in the Physics Classroom: Energy Conceptions and Trust in Complementary and Alternative Medicine in Grade 10-12 Students

    Science.gov (United States)

    Svedholm, Annika M.; Lindeman, Marjaana

    2013-03-01

    Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused conceptions (OCC) were associated with trust in complementary and alternative medicine (CAM), and independent of scientifically valid conceptions. Substance-based energy conceptions followed the correlational pattern of OCC, rather than scientific conceptions. OCC and CAM decreased both during the regular school physics curriculum and after a lesson targeted at the ontological confusions. OCC and CAM were slightly less common among students with high actively open-minded thinking, low trust in intuition and high need for cognition. The findings are discussed in relation to the goals of scientific education.

  12. Accelerator technology for Los Alamos nuclear-waste-transmutation and energy-production concepts

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Jameson, R.A.; Schriber, S.O.

    1991-01-01

    Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-MeV, 140-mA cw conventional copper linac could destroy the accumulated 99 Tc and 129 I at the DOE's Hanford site within 30 years. A high-efficiency 1200-MeV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWe electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base. 9 refs., 5 figs., 4 tabs

  13. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejon, J.

    2002-01-01

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  14. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejo, J.

    2001-01-01

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  15. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2.

    Science.gov (United States)

    Scapa, Erez F; Pocai, Alessandro; Wu, Michele K; Gutierrez-Juarez, Roger; Glenz, Lauren; Kanno, Keishi; Li, Hua; Biddinger, Sudha; Jelicks, Linda A; Rossetti, Luciano; Cohen, David E

    2008-07-01

    Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is a highly specific intracellular lipid binding protein with accentuated expression in oxidative tissues. Here we show that decreased plasma concentrations of glucose and free fatty acids in fasting PC-TP-deficient (Pctp(-/-)) mice are attributable to increased hepatic insulin sensitivity. In hyperinsulinemic-euglycemic clamp studies, Pctp(-/-) mice exhibited profound reductions in hepatic glucose production, gluconeogenesis, glycogenolysis, and glucose cycling. These changes were explained in part by the lack of PC-TP expression in liver per se and in part by marked alterations in body fat composition. Reduced respiratory quotients in Pctp(-/-) mice were indicative of preferential fatty acid utilization for energy production in oxidative tissues. In the setting of decreased hepatic fatty acid synthesis, increased clearance rates of dietary triglycerides and increased hepatic triglyceride production rates reflected higher turnover in Pctp(-/-) mice. Collectively, these data support a key biological role for PC-TP in the regulation of energy substrate utilization.

  16. National Roadmaps for promotion of very low-energy house concepts

    Energy Technology Data Exchange (ETDEWEB)

    Buvik, Karin

    2012-07-01

    This report is meant to contribute to the preparation of National Energy Efficiency Action Plans (NEEAPs), which are tools supporting the implementation of energy efficiency improvement policies. The NEEAPs are considered one of the cornerstones of the Energy End-use Efficiency and Energy Services Directive. Previous publications from the NorthPass project report from studies of existing concepts and building standards in the participating countries, and analyses of main challenges in aiming to increase the market share of very low-energy houses. In this report a short overview of the current situation is given, and measures are proposed to support the implementation of the nearly Zero-Energy Building level, as described in the recast of the Energy Performance of Building Directive. Necessary steps towards a successful implementation will vary within the participating countries; involving technological, financial and policy implications in various degrees. The eight North European countries, participating in the NorthPass project, have similarities and differences. The four Nordic countries have several similarities regarding market penetration of very low-energy houses, as well as activities implemented by the authorities. Poland and the Baltic States have similarities in terms of market situation which is different from the Nordic countries. In the Nordic countries, the path towards the EU 2020 targets has, to a large extent, been chosen, focusing on step by step tightening of building codes, financial incentives and training of actors in the building sector. A discussion is going on about how to affect changes in customers' preferences, which would lead to a growing demand for very low-energy residential buildings. The situation in Poland and the Baltic countries is more problematic, as only few very low energy houses have been built so far. However, a growing interest in energy savings seems to arise, as the energy consumption is considerably high and the

  17. SECOND1. Security concept for DER (Distributed Energy Resources). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Secure communication is becoming increasingly more relevant in a power system where there is a high impact of distributed energy resources (DER). The purpose of this project has been to analyse and develop a proof of concept implementation for a security concept that can be used in a power system with a high degree of decentralized production and with many actors (BRP, DSO, TSO, utilities, retailers) in an unbundled market. One way to maintain flexibility in the communication system for the power grid is to assign access roles to specific operations and not just to a network or server. Security then becomes a matter of verification, namely that an applicant holds a role with privileges to perform the action applied for. The SECOND1 project has investigated various forms of role based access control (RBAC) as well as the underlying security mechanism identification and verification of the actor identity. The project analysed the needs for communication between energy operators and match these needs with a design for secure role based access control. (LN)

  18. Equivalent Energy Density concept: A preliminary reexamination of a technique for equating thermal loads

    International Nuclear Information System (INIS)

    Ryder, E.E.

    1992-08-01

    Historical and projected inventories of spent fuel from commercial light-water nuclear reactors exhibit diverse decay characteristics and ages. This report summarizes a preliminary reexamination of a method for determining equivalent thermal loads for the range of spent fuel expected at a potential underground repository. The method, known at the Equivalent Energy Density (EED) concept, bases its equivalence criteria on the assumption that a given waste will produce worst-case thermomechanical effects equal to worst-case thermomechanical effects produced by a baseline waste, provided that the thermal energy deposited in the host rock over a specified deposition period is the same for both waste descriptions. To test this assumption, temperature histories at representative locations within the host rock were calculated using layouts defined by the EED concept and four deposition periods (20, 50, 100, and 300 years). It was found that the peak temperatures at near-field locations were best matched by the shorter deposition periods of 20 and 50 years. However, due to the sensitivity of the near-field environment to short-term canister-to-canister interactions, caution,should be used when choosing a near-field deposition period. At the location chosen to represent the far-field, a 300-year deposition period provided reasonable correspondence of peak temperature responses for all waste descriptions examined

  19. Crash Test of an MD-500 Helicopter with a Deployable Energy Absorber Concept

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Kellas, Sotiris

    2010-01-01

    On December 2, 2009, a full scale crash test was successfully conducted of a MD-500 helicopter at the NASA Langley Research Center Landing and Impact Research Facility . The purpose of this test was to evaluate a novel composite honeycomb deployable energy absorbing (DEA) concept for attenuation of structural and crew loads during helicopter crashes under realistic crash conditions. The DEA concept is an alternative to external airbags, and absorbs impact energy through crushing. In the test, the helicopter impacted the concrete surface with 11.83 m/s (38.8 ft/s) horizontal, 7.80 m/s (25.6 ft/s) vertical and 0.15 m/s (0.5 ft/s) lateral velocities; corresponding to a resultant velocity of 14.2 m/s (46.5 ft/s). The airframe and skid gear were instrumented with accelerometers and strain gages to determine structural integrity and load attenuation, while the skin of the airframe was covered with targets for use by photogrammetry to record gross vehicle motion before, during, and after the impact. Along with the collection of airframe data, one Hybrid III 50th percentile anthropomorphic test device (ATD), two Hybrid II 50th percentile ATDs and a specialized human surrogate torso model (HSTM) occupant were seated in the airframe and instrumented for the collection of occupant loads. Resultant occupant data showed that by using the DEA, the loads on the Hybrid II and Hybrid III ATDs were in the Low Risk regime for the injury criteria, while structural data showed the airframe retained its structural integrity post crash. Preliminary results show that the DEA is a viable concept for the attenuation of impact loads.

  20. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    Science.gov (United States)

    Malkani, Arvin P.

    2012-01-01

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is…

  1. Golf-course and funnel energy landscapes: Protein folding concepts in martensites

    Science.gov (United States)

    Shankaraiah, N.

    2017-06-01

    We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work.

  2. Concept and design of charged particle optics using energy Fourier plane collimation

    Science.gov (United States)

    Yang, Guojun; Wei, Tao; Zhang, Zhuo; He, Xiaozhong; Zhang, Xiaoding; Li, Yiding; Shi, Jinshui

    2014-09-01

    Charged particle radiography has become a promising new approach in the field of transmission radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it possible for thick objects to get significantly improved transmission radiography. Currently, the conventional charged particle radiography only uses the information of the flux attenuation and the angular scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of the incident particles introduced by ionizations throughout the object limits the spatial resolution of the image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is also expected on a cyclotron at the Institute of Fluid Physics, CAEP.

  3. Concept and design of charged particle optics using energy Fourier plane collimation

    Directory of Open Access Journals (Sweden)

    Guojun Yang

    2014-09-01

    Full Text Available Charged particle radiography has become a promising new approach in the field of transmission radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it possible for thick objects to get significantly improved transmission radiography. Currently, the conventional charged particle radiography only uses the information of the flux attenuation and the angular scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of the incident particles introduced by ionizations throughout the object limits the spatial resolution of the image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is also expected on a cyclotron at the Institute of Fluid Physics, CAEP.

  4. EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Hannah, Iain G.; Wright, Paul J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota—Twin Cities, Minneapolis, MN 55455 (United States); Saint-Hilaire, Pascal; Hudson, Hugh S.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Grefenstette, Brian W.; Harrison, Fiona A. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque, NM (United States); Smith, David M.; Marsh, Andrew J. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-20

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  5. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    Science.gov (United States)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  6. Lessons that non-scientists can teach us about the concept of energy: a human-centred approach

    Science.gov (United States)

    Leggett, Monica

    2003-03-01

    Energy is not only a core concept in physics but also a major issue in our post-Kyoto world. When using a constructivist approach to teaching, we need to be aware of students' preconceptions. A palette of alternative frameworks, which includes those used by adults within the community, can facilitate this. An exploration of energy issues with non-scientists within the community has generated some relevant insights. Participants' concepts of energy were multifaceted. Most had a strong personal component, but also social, technical and cosmic dimensions. Although many participants were uncomfortable with the terms `renewable' and `sustainable', they clearly articulated the social and technical requirements for a shift away from current fossil fuel dependency. However, the law of conservation of energy, a core belief of physicists, appeared to be totally absent from their concept of energy.

  7. The fluorine destruction in stars: First experimental study of the 19F(p,α)16O reaction at astrophysical energies

    International Nuclear Information System (INIS)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.

    2012-01-01

    The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E cm ∼ 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the 2 H( 19 F,α 16 O)n reaction. The TH measurement of the α 0 channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  8. Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The 'flexy-energy' concept

    International Nuclear Information System (INIS)

    Azoumah, Y.; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, P.

    2011-01-01

    Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original 'flexy-energy' concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage. - Research highlights: → Design and load management Optimization are big concerns for hybrid systems. → Hybrid solar PV/Diesel is economically viable for remote areas and environmental friendly. → 'Flexy-energy' concept is a flexible hybrid solar PV/diesel/biomass suitable for remote areas. → 'Flexy-energy' concept is a flexible hybrid solar PV/diesel/biomass suitable for remote areas.

  9. Spectrophotometry of carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, R.K.; Karapetyan, M.S.; Nersisyan, S.E.

    1986-01-01

    The results are given of the spectrophotometric investigation of 56 carbon stars in the spectral range from 4000 to 6800 A with resolution 3 A. The observed energy distributions of these stars are determined relative to the flux at the wavelength /sub 0/ = 5556; they are presented in the form of graphs. The energy distributions have been obtained for the first time for 35 stars. Variation in the line Ba II 4554 A has been found in the spectra of St Cam, UU Aur, and RV Mon. Large changes have taken place in the spectra of RT UMa and SS Vir. It is noted that the spectra of carbon stars have a depression, this being situated in different spectral regions for individual groups of stars.

  10. AgSTAR

    Science.gov (United States)

    AgSTAR promotes biogas recovery projects, which generate renewable energy and other beneficial products from the anaerobic digestion of livestock manure and organic wastes while decreasing greenhouse gas emissions from the agriculture sector.

  11. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  12. Energy distributions in a diesel engine using low heat rejection (LHR) concepts

    International Nuclear Information System (INIS)

    Li, Tingting; Caton, Jerald A.; Jacobs, Timothy J.

    2016-01-01

    Highlights: • Altering coolant temperature was employed to devise low heat rejection concept. • The energy distributions at different engine coolant temperatures were analyzed. • Raising coolant temperature yields improvements in fuel conversion efficiency. • The exhaust energy is highly sensitive to the variations in exhaust temperature. • Effects of coolant temperature on mechanical efficiency were examined. - Abstract: The energy balance analysis is recognized as a useful method for aiding the characterization of the performance and efficiency of internal combustion (IC) engines. Approximately one-third of the total fuel energy is converted to useful work in a conventional IC engine, whereas the major part of the energy input is rejected to the exhaust gas and the cooling system. The idea of a low heat rejection (LHR) engine (also called “adiabatic engine”) was extensively developed in the 1980s due to its potential in improving engine thermal efficiency via reducing the heat losses. In this study, the LHR operating condition is implemented by increasing the engine coolant temperature (ECT). Experimentally, the engine is overcooled to low ECTs and then increased to 100 °C in an effort to get trend-wise behavior without exceeding safe ECTs. The study then uses an engine simulation of the conventional multi-cylinder, four-stroke, 1.9 L diesel engine operating at 1500 rpm to examine the five cases having different ECTs. A comparison between experimental and simulation results show the effects of ECT on fuel conversion efficiency. The results demonstrate that increasing ECT yields slight improvements in net indicated fuel conversion efficiency, with larger improvements observed in brake fuel conversion efficiency.

  13. Current and future competitiveness of renewable energy carriers - Conceptions about competitiveness

    International Nuclear Information System (INIS)

    Lundgren, K.

    1998-01-01

    The dissertation draws attention to the fact that in the world today 80% of the resources that are used are limited - non renewable energy carriers - and because of the long time between planning and doing (carrying out) within the energy sector, it is worthwhile from the long-term perspective to steer early on towards more sustainable solutions, such as renewable energy carriers. The State and the market have begun to adjust to concepts such as 'competitiveness', which can be viewed as containing both feasibility and legitimacy aspects - the state through different regulations and environmental taxes and environmental fees, and actors on the market that marginally produce/choose renewable energy carriers. The overlying methodology in the dissertation is an actor's viewpoint. This viewpoint brings forth, in turn, two different views, the analytical and the interpretative. The dissertation presents different stances within the energy sector: commercial production logic, commercial sustainability logic, and the socio-economic sustainability logic. By drawing one's attention to how one has the possibility to create (enact) his own reality, it is possible to highlight how organisations can increase their competitiveness by being conscious of their own view and others, logic, which in turn forms their views about competitiveness, which in turn determines which projects will materialize. Enterprises and individuals create a description of reality together through a dialectic process, i.e. by developing an environmental management system that contains elements of environmental auditing, environmental performance indicators, and environmental labelling, which 'reveal' the production conditions that lie behind the actualization of the final product. An example is the product, 'green' electricity, which, in spite of the fact that the final product - electricity - is identical irrespective of the production method, just at the moment can be sold at different prices according

  14. Games That Teach Concepts Around the Nexus of Energy, Water, and Climate

    Science.gov (United States)

    Mayhew, M. A.; Hall, M.; Balaban, S.

    2013-12-01

    Three manifestations of the extreme amplification of the human population--exploding worldwide demand for energy, increasing exploitation of and competition for water resources, and alteration of the planet's climate--are tightly intertwined. All processes for generating energy require consumption of water, for some processes enormous quantities. It takes water to get energy. The inverse is also true: it takes energy to get water. It takes energy to move water from where it is stored to where it is needed. Burning fossil fuels for energy has increased greenhouse gasses in the atmosphere, resulting in increases in the average temperature of the Earth. But the response of the climate system is exceedingly complex. Changes in atmospheric circulation due to global warming are altering weather patterns and changing the distribution of water on the planet. Climate-related weather events alter availability of water and impact energy supply and demand. This is the nexus of energy, water, and climate. We have created two lively card games that convey the nexus concepts. They have been extensively play-tested with groups from middle school to adult; they have been found to be both educational and fun. A distinguished advisory committee, including representatives of the national labs, has insured the scientific accuracy of the games. In the first game, Thirst For Power, each player is the governor of a region; a GOAL card specifies the amount of General and Transportation energy needed for the region, achieved via ENERGY SOURCE cards. WATER cards are used as currency for obtaining energy sources. Each energy source has an associated 'environmental impact' penalty, meaning greenhouse gas emissions, but also other things like water and air pollution. ACTION cards (TECHNOLOGY, POLICY, AND CLIMATE) act much like 'Chance' cards in Monopoly to change the course of the game. The first player to achieve energy goals without exceeding an environmental impact limit for the region wins

  15. Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-12-15

    Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developed an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In

  16. A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    Directory of Open Access Journals (Sweden)

    Fábio T. Brito

    2011-01-01

    Full Text Available The present paper describes experiences of the use of monitoring and data acquisition systems (DAS and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems.

  17. Mathematical Challenges to Secondary School Students in a Guided Reinvention Teaching-Learning Strategy towards the Concept of Energy Conservation

    NARCIS (Netherlands)

    Logman, P.S.W.M.; Kaper, W.H.; Ellermeijer, A.L.; Taşar, M.F.

    2014-01-01

    Guiding sixteen-year-old students to rediscover the concept of energy conservation may be done in three distinct learning steps. First, we have chosen for the students to reinvent what we call partial laws of energy conservation (e.g. Σm∙g∙h = k1). Secondly, the students are asked to combine these

  18. NEW OPTICAL/ULTRAVIOLET COUNTERPARTS AND THE SPECTRAL ENERGY DISTRIBUTIONS OF NEARBY, THERMALLY EMITTING, ISOLATED NEUTRON STARS

    International Nuclear Information System (INIS)

    Kaplan, D. L.; Kamble, A.; Van Kerkwijk, M. H.; Ho, W. C. G.

    2011-01-01

    We present Hubble Space Telescope optical and ultraviolet photometry for five nearby, thermally emitting neutron stars. With these measurements, all seven such objects have confirmed optical and ultraviolet counterparts. Combining our data with archival space-based photometry, we present spectral energy distributions for all sources and measure the 'optical excess': the factor by which the measured photometry exceeds that extrapolated from X-ray spectra. We find that the majority have optical and ultraviolet fluxes that are inconsistent with that expected from thermal (Rayleigh-Jeans) emission, exhibiting more flux at longer wavelengths. We also find that most objects have optical excesses between 5 and 12, but that one object (RX J2143.0+0654) exceeds the X-ray extrapolation by a factor of more than 50 at 5000 A, and that this is robust to uncertainties in the X-ray spectra and absorption. We consider explanations for this ranging from atmospheric effects, magnetospheric emission, and resonant scattering, but find that none is satisfactory.

  19. Second Annual Transformative Vertical Flight Concepts Workshop: Enabling New Flight Concepts Through Novel Propulsion and Energy Architectures

    Science.gov (United States)

    Dudley, Michael R. (Editor); Duffy, Michael; Hirschberg, Michael; Moore, Mark; German, Brian; Goodrich, Ken; Gunnarson, Tom; Petermaier,Korbinian; Stoll, Alex; Fredericks, Bill; hide

    2015-01-01

    On August 3rd and 4th, 2015, a workshop was held at the NASA Ames Research Center, located at the Moffett Federal Airfield in California to explore the aviation communities interest in Transformative Vertical Flight (TVF) Concepts. The Workshop was sponsored by the AHS International (AHS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), and hosted by the NASA Aeronautics Research Institute (NARI). This second annual workshop built on the success and enthusiasm generated by the first TVF Workshop held in Washington, DC in August of 2014. The previous Workshop identified the existence of a multi-disciplinary community interested in this topic and established a consensus among the participants that opportunities to establish further collaborations in this area are warranted. The desire to conduct a series of annual workshops augmented by online virtual technical seminars to strengthen the TVF community and continue planning for advocacy and collaboration was a direct outcome of the first Workshop. The second Workshop organizers focused on four desired action-oriented outcomes. The first was to establish and document common stakeholder needs and areas of potential collaborations. This includes advocacy strategies to encourage the future success of unconventional vertiport capable flight concept solutions that are enabled by emerging technologies. The second was to assemble a community that can collaborate on new conceptual design and analysis tools to permit novel configuration paths with far greater multi-disciplinary coupling (i.e., aero-propulsive-control) to be investigated. The third was to establish a community to develop and deploy regulatory guidelines. This community would have the potential to initiate formation of an American Society for Testing and Materials (ASTM) F44 Committee Subgroup for the development of consensus-based certification standards for General Aviation scale vertiport

  20. NuSTAR discovery of a luminosity dependent cyclotron line energy in Vela X-1

    DEFF Research Database (Denmark)

    Fuerst, Felix; Pottschmidt, Katja; Wilms, Joern

    2014-01-01

    of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of Lx ~ 3x10^36 erg/s. Besides the prominent...... of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable...

  1. New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars

    CERN Document Server

    Mottola, Emil

    2010-01-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degrees of freedom in the extended effective field theory of gravity generated by the trace anomaly of massless quantum fields in curved space. The origin of these conformal scalar degrees of freedom as massless poles in two-particle intermediate states of anomalous amplitudes in flat space is exposed. At event horizons the conformal anomaly scalar degrees of freedom can have macroscopically large effects on the geometry, potentially removing the classical event horizon of black hole and cosmological spacetimes, replacing them with a quantum boundary layer where the effective value of the gravitational vacuum energy density can change. In the effective theory, the cosmological term becomes a dynamical condensate, whose value depends upon boundary conditions near the horizon. In the conformal phase where the anomaly induced fluctutations dominate, and the conden...

  2. Modeling and control in Nissum. Technical report; Wave energy converter Wave Star

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, E.V.

    2009-09-15

    The purpose of this report is to give a deeper theoretical understanding of the achieved results of the performance tests described in another report. It is documented that the 2nd generation of PTO (Power Take-Off) is able to absorb significantly more energy than the existing PTO. 1) A linear dynamic model of the PTO in Nissum is derived and analogies to the electrical circuits are drawn. 2) A deeper mathematical and physical insight on the control strategy with the 2nd generation of PTO is given. 3) The 2nd generation of PTO is equivalent to create a resistive load which matches the intrinsic resistance of the system (resistance matching). 4) The performed simulations agree with the experiments realized in the actual performance tests where it is concluded that 2nd generation of PTO has a higher performance. (LN)

  3. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts.

    Science.gov (United States)

    Hernández Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2010-12-01

    Bioflocculation of grey water was tested with a lab-scale membrane bioreactor in order to concentrate the COD. Three concentration factors were tested based on the ratio of sludge retention time (SRT) and hydraulic retention time (HRT): 3, 8 and 12. COD concentration factor was up to 7.1, achieving a final concentration of 7.2 g COD L(-1). Large fractions of suspended COD were recovered in the concentrate (57%, 81% and 82% at SRT/HRT ratios of 3, 8 and 12, respectively) indicating a strong bioflocculation of grey water. A maximum of 11% of COD mineralization of grey water was measured at the longest SRT tested (1 d). The integration of bioflocculation of grey water in decentralized sanitation concepts may increase the overall production of methane by 73%, based on the biogas produced by black water only. Therefore, bioflocculation is a promising grey water pre-treatment step for energy recovery within decentralized sanitation concepts. 2010 Elsevier Ltd. All rights reserved.

  4. Healing, Mental Energy in the Physics Classroom: Energy Conceptions and Trust in Complementary and Alternative Medicine in Grade 10-12 Students

    Science.gov (United States)

    Svedholm, Annika M.; Lindeman, Marjaana

    2013-01-01

    Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused…

  5. Facing global environmental change. Environmental, human, energy, food, health and water security concepts

    Energy Technology Data Exchange (ETDEWEB)

    Brauch, Hans Guenter [Freie Univ. Berlin (Germany). Dept. of Political and Social Sciences; United Nations Univ., Bonn (DE). Inst. for Environment and Human Security (UNU-EHS); AFES-Press, Mosbach (Germany); Oswald Spring, Ursula [National Univ. of Mexico (UNAM), Cuernavaca, MOR (MX). Centro Regional de Investigaciones Multidiscipinarias (CRIM); United Nations Univ., Bonn (DE). Inst. for Environment and Human Security (UNU-EHS); Grin, John [Amsterdam Univ. (Netherlands). Amsterdam School for Social Science Research; Mesjasz, Czeslaw [Cracow Univ. of Economics (Poland). Faculty of Management; Kameri-Mbote, Patricia [Nairobi Univ. (Kenya). School of Law; International Environmental Law Research Centre, Nairobi (Kenya); Behera, Navnita Chadha [Jamia Millia Islamia Univ., New Delhi (India). Nelson Mandela Center for Peace and Conflict Resolution; Chourou, Bechir [Tunis-Carthage Univ., Hammam-Chatt (Tunisia); Krummenacher, Heinz (eds.) [swisspeace, Bern (Switzerland). FAST International

    2009-07-01

    This policy-focused, global and multidisciplinary security handbook on Facing Global Environmental Change addresses new security threats of the 21st century posed by climate change, desertification, water stress, population growth and urbanization. These security dangers and concerns lead to migration, crises and conflicts. They are on the agenda of the UN, OECD, OSCE, NATO and EU. In 100 chapters, 132 authors from 49 countries analyze the global debate on environmental, human and gender, energy, food, livelihood, health and water security concepts and policy problems. In 10 parts they discuss the context and the securitization of global environmental change and of extreme natural and societal outcomes. They suggest a new research programme to move from knowledge to action, from reactive to proactive policies and to explore the opportunities of environ-mental cooperation for a new peace policy. (orig.)

  6. On the concept of sloped motion for free-floating wave energy converters.

    Science.gov (United States)

    Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume

    2015-10-08

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.

  7. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    Science.gov (United States)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  8. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  9. Volume 42, Issue5 (May 2005)Articles in the Current Issue:Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database

    Science.gov (United States)

    Liu, Xiufeng; McKeough, Anne

    2005-05-01

    The aim of this study was to develop a model of students' energy concept development. Applying Case's (1985, 1992) structural theory of cognitive development, we hypothesized that students' concept of energy undergoes a series of transitions, corresponding to systematic increases in working memory capacity. The US national sample from the Third International Mathematics and Science Study (TIMSS) database was used to test our hypothesis. Items relevant to the energy concept in the TIMSS test booklets for three populations were identified. Item difficulty from Rasch modeling was used to test the hypothesized developmental sequence, and percentage of students' correct responses was used to test the correspondence between students' age/grade level and level of the energy concepts. The analysis supported our hypothesized sequence of energy concept development and suggested mixed effects of maturation and schooling on energy concept development. Further, the results suggest that curriculum and instruction design take into consideration the developmental progression of students' concept of energy.

  10. Monitoring the High-Energy Radiation Environment of Exoplanets Around Low-mass Stars with SPARCS (Star-Planet Activity Research CubeSat)

    Science.gov (United States)

    Shkolnik, Evgenya L.; Ardila, David; Barman, Travis; Beasley, Matthew; Bowman, Judd D.; Gorjian, Varoujan; Jacobs, Daniel; Jewell, April; Llama, Joe; Meadows, Victoria; Nikzad, Shouleh; Scowen, Paul; Swain, Mark; Zellem, Robert

    2018-01-01

    Roughly seventy-five billion M dwarfs in our galaxy host at least one small planet in the habitable zone (HZ). The stellar ultraviolet (UV) radiation from M dwarfs is strong and highly variable, and impacts planetary atmospheric loss, composition and habitability. These effects are amplified by the extreme proximity of their HZs (0.1–0.4 AU). Knowing the UV environments of M dwarf planets will be crucial to understanding their atmospheric composition and a key parameter in discriminating between biological and abiotic sources for observed biosignatures. The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M stars in the far-UV and near-UV, measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. For each target, SPARCS will observe continuously over at least one complete stellar rotation (5 - 45 days). SPARCS will also advance UV detector technology by flying high quantum efficiency, UV-optimized detectors developed at JPL. These Delta-doped detectors have a long history of deployment demonstrating greater than five times the quantum efficiency of the detectors used by GALEX. SPARCS will pave the way for their application in missions like LUVOIR or HabEx, including interim UV-capable missions. SPARCS will also be capable of ‘target-of-opportunity’ UV observations for the rocky planets in M dwarf HZs soon to be discovered by NASA’s TESS mission, providing the needed UV context for the first habitable planets that JWST will characterize.Acknowledgements: Funding for SPARCS is provided by NASA’s Astrophysics Research and Analysis program, NNH16ZDA001N.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  12. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  13. Triangle bracing system to reduce the vibration level of cooling tower – case study in PT Star Energy Geothermal (Wayang Windu) Ltd – Indonesia

    OpenAIRE

    Effendi Tri Bahtiar; Naresworo Nugroho; Dede Hermawan; Wilis Wirawan; Khuschandra

    2018-01-01

    Periodical control and measurement revealed that vibration level of motor and gearbox which was supported by Cooling Tower Unit 1 at PT Star Energy Geothermal (Wayang Windu) Ltd was significantly increasing since 2013. The vibration was not caused by machinery component failure, but induced by resonance of process flow. Decreasing stiffness of cooling tower structure was suspected causing the increasing vibration level. The physical, chemical, and mechanical properties of wood was deteriorate...

  14. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  15. ENTNEA: A concept for enhancing regional atomic energy cooperation for securing nuclear transparency in northeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. T. [Korea Institute for Defence Analyses, Seoul (Korea)

    2000-11-01

    Nuclear energy continues to be a strong and growing component of economic development in Northeast Asia. A broad range of nuclear energy systems already exists across the region and vigorous growth is projected. Associated with these capabilities and plans are various concerns about operational safety, environmental protection, and accumulation of spent fuel and other nuclear materials. We consider cooperative measures that might address these concerns. The confidence building measures suggested here center on the sharing of information to lessen concerns about nuclear activities or to solve technical problems. These activities are encompassed by an Enhanced Nuclear Transparency in Northeast Asia (ENTNEA) concept that would be composed of near-term, information-sharing activities and an eventual regional institution. The near-term activities would address specific concerns and build a tradition of cooperation; examples include radiation measurements for public safety and emergency response, demonstration of safe operations at facilities and in transportation, and material security in the back end of the fuel cycle. Linkages to existing efforts and organizations would be sought to maximize the benefits of cooperation. In the longer term, the new cooperative tradition might evolve into an ENTNEA institution. In institutional form, ENTNEA could combine the near-term activities and new cooperative activities, which might require an institutional basis, for the mutual benefit and security of regional parties. 28 refs., 23 figs., 5 tabs. (Author)

  16. Survey of Beamed Energy Propulsion Concepts by the MSFC Space Environmental Effects Team

    Science.gov (United States)

    Gray, P. A.; Nehls, M. K.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This will be a survey paper of work that was performed by the Space Environmental Effects Team at NASA's Marshall Space Flight Center in the area of laser energy propulsion concepts. Two types of laser energy propulsion techniques were investigated. The first was ablative propulsion, which used a pulsed ruby laser impacting on single layer coatings and films. The purpose of this investigation was to determine the laser power density that produced an optimum coupling coefficient for each type of material tested. A commercial off-the-shelf multi-layer film was also investigated for possible applications in ablative micro-thrusters, and its optimum coupling coefficient was determined. The second type of study measured the purely photonic force provided by a 300W CW YAG laser. In initial studies, the photon force resulting from the momentum of incident photons was measured directly using a vacuum compatible microbalance and these results were compared to theory. Follow-on work used the same CW laser to excite a stable optical cavity for the purpose of amplifying the available force from incident photons.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  18. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  19. Monitoring the High-Energy Radiation Environment of Exoplanets around Lowmass Stars with SPARCS (Star-Planet Activity Research CubeSat)

    Science.gov (United States)

    Shkolnik, Evgenya

    Seventy-five billion M dwarfs in our galaxy host at least one small planet in the habitable zone (HZ). The stellar ultraviolet (UV) radiation from M dwarfs is strong and highly variable, and impacts planetary atmospheric loss, composition and habitability. These effects are amplified by the extreme proximity of their HZs (0.1–0.4 AU). JWST will characterize HZ M dwarf planets and attempt the first spectroscopic search for life beyond the Solar System. Knowing the UV environments of M dwarf planets will be crucial to understanding their atmospheric composition and a key parameter in discriminating between biological and abiotic sources for observed biosignatures. The UV flux emitted during the super-luminous premain sequence phase of M stars drives water loss and photochemical O2 buildup for terrestrial planets within the HZ. This phase can persist for up to a billion years for the lowest mass M stars. Afterwards, UV-driven photochemistry during the main sequence phase strongly affects a planet’s atmosphere, could limit the planet’s potential for habitability, and may confuse studies of habitability by creating false chemical biosignatures. Our proposed CubeSat observatory will be the first mission to provide the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. These measurements are crucial to interpreting observations of planetary atmospheres around low-mass stars. Mission: The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to monitoring 25 M stars in two UV bands: SPARCS far-UV (S- FUV: 153–171 nm) and SPARCS near-UV (S-NUV: 260– 300 nm). For each target, SPARCS will observe continuously between one and three complete stellar rotations (4–45 days) over a mission lifetime of 2 years. A UV characterization survey of M dwarfs, the most common of planet hosts, is a perfect experiment for a CubeSat: - UV astronomy cannot be done from the ground because of Earth’s atmospheric absorption

  20. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    Energy Technology Data Exchange (ETDEWEB)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  1. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    International Nuclear Information System (INIS)

    Bonnin, Anne; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  5. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  7. FACTORS AFFECTING TEACHING THE CONCEPT of RENEWABLE ENERGY in TECHNOLOGY ASSISTED ENVIRONMENTS AND DESIGNING PROCESSES in THE DISTANCE EDUCATION MODEL

    Directory of Open Access Journals (Sweden)

    A. Seda YUCEL

    2007-01-01

    Full Text Available The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating renewable energy awareness, the factors thought to affect such awareness should be determined. Knowing these factors would facilitate finding out what to take into account in creating renewable energy awareness. In this study, certain factors thought to affect the development of renewable energy awareness were investigated. The awareness was created through a technology-assisted renewable energy module and assessed using a renewable energy assessment tool. The effects of the students’ self-directed learning readiness with Guglielmino (1977, inner-individual orientation, and anxiety orientation on the awareness were examined. These three factors were found to have significant effects on renewable energy, which was developed through technology utilization. In addition, based on the finding that delivering the subject of renewable energy in technology assisted environments is more effective, the criteria that should be taken into consideration in transforming this subject into a design model that is more suitable for distance education were identified.

  8. Shark, new motor design concept for energy saving applied to switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Tataru Kjaer, A.M.

    2005-07-01

    The aim of this thesis is to document and promote a relatively new concept of designing electrical machine with improved efficiency, without using more or better material. The concept, called Shark, consists in replacing the cylindrical air gap by a non-linear shape obtained by translating specific geometrical pattern on the longitudinal axis of the electrical machine. This shape modification increases the air gap area and thus the energy conversion, taking place in the machine. Whilst other methods of improving the efficiency consider the use of more and/or better magnetic material and/or optimisation of the magnetic circuit of the radial cross-section of the machine, the proposed method makes use of the longitudinal cross-section of the machine. In spite of a few reports claiming the improvement of the efficiency by applying the optimisation of the longitudinal cross-section, none analysis of various air gap shapes and of their influence on the magnetic performance has been reported. Due to a simple geometry, the Switched Reluctance Machine has been selected for demonstration of the Shark principle. Initially, linear and finite element analyses are considered. They provide the basic knowledge of the manner in which various Shark air gap, having different dimensions, influence the energy conversion in the machine. The saturation mechanisms, specific to each Shark profile are analysed and optimum Shark profile and its dimensions are selected for implementation in a demonstration machine. Due to the lack of quick analysis tools, an analytical model of the Shark Switched Reluctance Machine is also proposed in this thesis. This model is conceived by modifying one of the existing models of cylindrical air gap Switched Reluctance Machines, such as to account for the presence of the Shark profiles in the air gap. The calculations are verified by measurement on two demonstration machines, having cylindrical and Shark air gaps. The measurement proved the theory right and

  9. Energy Gap in the Aetiology of Body Weight Gain and Obesity: A Challenging Concept with a Complex Evaluation and Pitfalls

    Directory of Open Access Journals (Sweden)

    Yves Schutz

    2014-01-01

    Full Text Available The concept of energy gap(s is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s can be estimated by at least two methods, i.e. i assessment by longitudinal overfeeding studies, imposing (by design an initial positive energy imbalance gap; ii retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both is clouded by a high level of uncertainty.

  10. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2007-01-01

    Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

  11. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    Science.gov (United States)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z energy distributions (SEDs) to a variety of model templates in the literature, we identify the major sources of their infrared energy output, in multiple redshift bins between 0 solar masses per year down to z = 0.5. This discovery challenges the accepted belief that BCGs should only passively evolve through a series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  12. Engaging with ENERGY STAR[R]: How to Increase Student Involvement in Your Energy Management Plan Energy Efficiency in K-12 Schools

    Science.gov (United States)

    Grene, Hanna

    2011-01-01

    It is no secret that school budgets are growing smaller, forcing districts to make tough financial choices. Building operating costs drain a massive portion of most districts' budgets. As such, energy efficiency is a powerful tool to cut short- and long-term operating costs, and reductions in energy use. The U.S. Environmental Protection Agency's…

  13. Concept for energy and climate protection for Asslar, Leun, Solms and Wetzlar. Final Report; Energie- und Klimaschutzkonzept fuer Asslar, Leun, Solms und Wetzlar. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-27

    The contribution under consideration reports on the concept for energy and climate protection for the German towns Asslar, Leun, Solms and Wetzlar. An energy balance sheet was created for the time period between 1990 and 2011. From this, the CO{sub 2} emission were calculated. Based on these data, the author of this contribution describes an extrapolated trend up to the year 2022 under consideration of demographic and economic forecasts as well as known legal regulations. Two scenarios are developed in order to show how the energy conservation as well as power generation from renewable energy sources significantly can be increased compared with trend levels.

  14. Evaluation of the basic concepts of approaches for the coexistence of nuclear energy and people/local community

    International Nuclear Information System (INIS)

    Kondo, Shunsuke; Kuroki, Shinichi; Nakagiri, Yuko

    2007-01-01

    In November 2007, the Policy Evaluation Committee compiled the report, which evaluated the basic concepts of approaches to the coexistence of nuclear energy and people/local community, specified in the Framework for Nuclear Energy Policy. The report states that the 'concerned administrative bodies are carrying out measures related to the coexistence of nuclear energy and people/local communities in line with these basic concept' and summarizes fifteen proposals conductive to the betterment and improvement of these measures, which were classified as 1) secure transparency and promotion of mutual understanding with the public, 2) development and enrichment of learning opportunities and public participation, 3) relationship between the government and local governments and 4) coexistence with local residents. The Japan Atomic Energy Commission (JAEC) considers this report to be reasonable. This article presented an overview of this activity. (T. Tanaka)

  15. Concept of passive safe small reactor for distributed energy supply system

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Nakajima, Nobuya; Sawada, Ken-ichi; Yoritsune, Tsutomu; Shimada, Shoichiro; Nakano, Yoshihiro; Yonomoto, Taisuke; Takahashi, Hiroki

    2003-01-01

    This paper presents a concept of a Passive Safe Small Reactor for Distributed energy supply system (PSRD). The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down. To comply with a severe operation condition of PSRD, material of the ball bearing with graphite retainer has been selected by test. For improvement of economy, simplification of the reactor system and long operation of the core are achieved. Optimization of core design concerning the burnable poison ensures the burn-up of 28 GWd/t for low enriched UO 2 fuel rods. (author)

  16. Study on aerodynamics characteristics an urban concept car for energy-efficient race

    Science.gov (United States)

    Ambarita, H.; Siregar, M. R.; Kawai, H.

    2018-03-01

    "Horas Mesin USU" is a prototype of urban concept vehicle designed by University of Sumatera Utara to participate in the energy-efficient competition. This paper deals with a numerical study on aerodynamic characteristics of the Horas Mesin USU. The numerical analyses are carried out by solving the governing equations using CFD FLUENT commercial code. The turbulent flow is closed using k-epsilon turbulence model. In the results, pathline, velocity vector and pressure distribution are plotted. By using the pressure distributions, drag and lift coefficients are calculated. In order to make a comparison, the aerodynamic characteristics of the present design are compared with commercial city car Ford-Fiesta. The averaged drag coefficients of Horas Mesin USU and Ford-Fiesta are 0.24320 and 0.29598, respectively. On the other hand, the averaged lift coefficients of the Horas Mesin USU and Ford-Fiesta are 0.03192202 and 0.09485621, respectively. This fact suggests that Ford-Fiesta has a better aerodynamic performance in comparison with Horas Mesin USU. The flow field analysis shows that there are many modifications can be proposed to improve the aerodynamic performance of the Horas Mesin USU. It is suggested to perform further analysis to improve the aerodynamic performance of Horas Mesin USU.

  17. Comparative Analysis of Conventional Electronic and OZ Concept Displays for Aircraft Energy Management

    Science.gov (United States)

    Baker, Erik Reese

    A repeated-measures, within-subjects design was conducted on 58 participant pilots to assess mean differences on energy management situation awareness response time and response accuracy between a conventional electronic aircraft display, a primary flight display (PFD), and an ecological interface design aircraft display, the OZ concept display. Participants were associated with a small Midwestern aviation university, including student pilots, flight instructors, and faculty with piloting experience. Testing consisted of observing 15 static screenshots of each cockpit display type and then selecting applicable responses from 27 standardized responses for each screen. A paired samples t-test was computed comparing accuracy and response time for the two displays. There was no significant difference in means between PFD Response Time and OZ Response Time. On average, mean PFD Accuracy was significantly higher than mean OZ Accuracy (MDiff = 13.17, SDDiff = 20.96), t(57) = 4.78, p performance differences were not operationally remarkable. There was no significant correlation between PFD Response Time and PFD Accuracy, but there was a significant correlation between OZ Response Time and OZ Accuracy, r (58) = .353, p performing as well as experienced professional pilots on dynamic flight tasks with the OZ display. A demographic questionnaire and a feedback survey were included in the trial. An equivalent three-quarters majority of participants rated the PFD as "easy" and the OZ as "confusing", yet performance accuracy and response times between the two displays were not operationally different.

  18. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals

    International Nuclear Information System (INIS)

    Cherubini, Francesco

    2010-01-01

    A great fraction of worldwide energy carriers and material products come from fossil fuel refinery. Because of the on-going price increase of fossil resources, their uncertain availability, and their environmental concerns, the feasibility of oil exploitation is predicted to decrease in the near future. Therefore, alternative solutions able to mitigate climate change and reduce the consumption of fossil fuels should be promoted. The replacement of oil with biomass as raw material for fuel and chemical production is an interesting option and is the driving force for the development of biorefinery complexes. In biorefinery, almost all the types of biomass feedstocks can be converted to different classes of biofuels and biochemicals through jointly applied conversion technologies. This paper provides a description of the emerging biorefinery concept, in comparison with the current oil refinery. The focus is on the state of the art in biofuel and biochemical production, as well as discussion of the most important biomass feedstocks, conversion technologies and final products. Through the integration of green chemistry into biorefineries, and the use of low environmental impact technologies, future sustainable production chains of biofuels and high value chemicals from biomass can be established. The aim of this bio-industry is to be competitive in the market and lead to the progressive replacement of oil refinery products. (author)

  19. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    Science.gov (United States)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  20. STAR-H2: a battery-type lead-cooled fast reactor for hydrogen manufacture in a sustainable hierarchical hub-spoke energy infrastructure

    International Nuclear Information System (INIS)

    Wade, D.C.; Doctor, R. D.; Peddicord, K.L.

    2003-01-01

    The Secure Transportable Autonomous Reactor for Hydrogen production STAR-H2 is designed to fit into a sustainable global, mid-21st century hierarchical hub-spoke nuclear energy supply architecture based on nuclear fuel, hydrogen, and electricity energy carriers and having favorable energy security, ecological and nonproliferation features. It will produce hydrogen, oxygen and potable water to service cities and their surrounding regions under an assumed electrical generation network based on fuel cells and microturbines and an assumed transportation sector using hydrogen fueled vehicles. STAR-H2 is a long refueling interval (Battery) turnkey heat supply reactor intended for production of hydrogen by thermochemical water cracking. The reactor is a Pb-cooled, mixed U-TRU-Nitride-fueled, fast spectrum reactor delivering 400 MW th of heat at 800degC core outlet temperature. The primary coolant circulates by natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation and for rail shippability of the vessel. An intermediate low pressure He loop carries the heat to a Ca-Br thermochemical water cracking cycle for the manufacture of H 2 (and O 2 ). The water cracking cycle rejects heat at 550degC and that heat is used in a supercritical CO 2 Brayton cycle turbogenerator to provide hotel load electricity. A thermal desalinisation plant receives discharge heat at 125degC from the Brayton cycle and the brine provides for ultimate heat rejection from the cascaded thermodynamic cycles. The modified UT-3 cycle used in STAR-H2, called the Ca-Br cycle, operates at atmospheric pressure and 750-725degC, uses solid/gas separation steps and achieves about 44% efficiency. Unlike UT-3, it employs a single-stage HBr-dissociation step based on a plasma chemistry technique operating near ambient conditions. The STAR-H2 power plant will operate on a 20 year refueling interval

  1. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  2. Concepts of the First Law of Thermodynamic and of Energy. As analysis methods of energetic system operation

    International Nuclear Information System (INIS)

    Hernandez, L.F.

    1998-01-01

    The technologies developed from 1973 on rational use, conservation and efficiency in the use of energy updated in a framework of sustain ability energetic and environment protection, it has not taken into account the concepts of quality of energy within of any energetic system (Source - Technology - Final Use), neither the favorable economic and technical implications of adopting the concepts of the Exergy and of exegetic efficiency, derivatives from the Second Law of the Thermodynamic, those which should be included as methods in the environmental and economic technical evaluations of an energetic system. This article presents the basic development of the concepts referenced from the Zero Law of the Thermodynamic, illustrating with examples the advantages to incorporate them as valuation and comparison parameters

  3. Improving literacy around energy-related issues: The need for a better understanding of the concepts behind energy intake and expenditure among adolescents and their parents

    OpenAIRE

    Nelson, Melissa C.; Lytle, Leslie A.; Pasch, Keryn E.

    2009-01-01

    Despite the need for effective obesity prevention strategies, little research is currently available to assess adolescents’ knowledge around basic concepts of energy intake, expenditure and balance. Using data from 349 adolescent-caregiver pairs (recruited from Minneapolis/St. Paul metro region, MN, 2006-2007), cross-sectional linear regression was used to assess adolescent and parental knowledge related to energy intake and expenditure as a predictor of adolescent weight-related behaviors an...

  4. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  5. The potential of lightweight low-energy houses with hybrid adaptable thermal storage : comparing the performance of promising concepts

    NARCIS (Netherlands)

    Hoes, P.; Hensen, J.L.M.

    2016-01-01

    The international community set clear goals regarding the reduction of CO2 emissions and energy demand in the built environment. This drives research and building practice to search for solutions and new building concepts that contribute to achieving these goals. The work presented in this paper

  6. Energy Saving Fonds and guarantee of efficiency. An integrative concept for the implemention of the European energy efficiency regulation. Brief study; Energiesparfonds und Effizienzgarantie. Ein integratives Konzept zur Umsetzung der europaeischen Energieeffizienz-Richtlinie. Kurzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, Martin; Brischke, Lars-Arvid

    2013-04-15

    The authors of the contribution under consideration report on Energy Saving Fonds and guarantee of efficiency as an integrative concept for the implementation of the European Energy Efficiency Directive. The authors sum up thirteen thesis for this energy efficiency strategy.

  7. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  8. Energy conservation in urban areas in the framework of a sustainable transportation concept

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, M.

    2001-07-01

    study. In addition, two commercial software programs are used: (1) a computer-aided transport planning called 'VISUM' established at the PTV Systems Software and Constructing GmbH Karlsruhe-Germany, and (2) a computer-aided interactive system called 'DYNAMIS' established at the Institute for Transportation, Railways Construction and Operation of Hannover University, Hannover-Germany. Moreover and for the aim of assisting the developing countries to produce energy and emission models, the German-Swiss emissions model 'Handbuch der Emissionsfaktoren des Strassenverkehrs 1999' is studied, explained and examined. Also, a new approach was developed, within the framework of this study, 'Push-down and Push-up' with the aim of sustainable energy consumption in the transport sector. Finally, the application illustrates the technical, environmental, and economical benefits of the sustainable transport concept. (orig.) [German] Unsere Lebensqualitaet haengt in grossem Masse vom Verkehr ab. Verkehr ermoeglicht eine individuelle Freiheit und Unabhaengigkeit fuer den Transport von Personen und Guetern in modern entwickelten Wirtschaftssystemen. Allerdings treten durch den Verkehr auch eine Vielzahl von unerwnschten Nebenwirkungen auf. Der Verkehrssektor ist einer der groessten Energieverbraucher (hauptsaechlich fossiler Brennstoffe). Die entstehenden Emissionen fuehren sowohl zu negativen lokalen Beeintraechtigungen der Gesundheit wie auch zu einer Erhoehung der CO{sub 2}-Konzentrationen weltweit, die eine entscheidende Rolle fuer das Klima der Erde spielen. Zudem ist der Verkehrssektor weiterhin verantwortlich fuer eine Reihe gesellschaftlicher Probleme, wie beispielsweise Flaechenverbrauch und Verkehrssicherheit. Die steigende Motorisierung in einer bestehendem staedtischen Infrastruktur ist heutzutage nicht nachhaltig. Petroleumtreibstoffe, von denen heute noch fast alle Verkehrssysteme abhaengig sind, sind nicht erneuerbar. Zusammenfassend

  9. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner...... was to form a package of measures for an energy performance improvement in the building based on the Total Concept method. This paper presents results from recently analyzed data on two renovated Danish buildings according to the rules of “Total Concept” method. According to the estimation done based...

  10. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa

    2018-01-01

    electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from...... positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area...

  11. Dual-mode, high energy utilization system concept for mars missions

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ∼1-5 kW e for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and I sp >35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kW e prototype are presented and discussed to illustrate the operation and design principles of the proposed system

  12. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2010-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  13. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  14. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  15. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa; Vogel, Jörg; Madsen, Henrik Tækker; Hélix-Nielsen, Claus; Jansen, Jes la Cour; Jönsson, Karin

    2018-02-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct MF and FO, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.

  16. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  17. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2001-01-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  18. Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality

    Science.gov (United States)

    Monthus, Cécile

    2015-06-01

    We consider M  ⩾  2 pure or random quantum Ising chains of N spins when they are coupled via a single star junction at their origins or when they are coupled via two star junctions at the their two ends leading to the watermelon geometry. The energy gap is studied via a sequential self-dual real-space renormalization procedure that can be explicitly solved in terms of Kesten variables containing the initial couplings and and the initial transverse fields. In the pure case at criticality, the gap is found to decay as a power-law {ΔM}\\propto {{N}-z(M)} with the dynamical exponent z(M)=\\frac{M}{2} for the single star junction (the case M   =   2 corresponds to z   =   1 for a single chain with free boundary conditions) and z(M)   =   M  -  1 for the watermelon (the case M   =   2 corresponds to z   =   1 for a single chain with periodic boundary conditions). In the random case at criticality, the gap follows the Infinite Disorder Fixed Point scaling \\ln {ΔM}=-{{N}\\psi}g with the same activated exponent \\psi =\\frac{1}{2} as the single chain corresponding to M   =   2, and where g is an O(1) random positive variable, whose distribution depends upon the number M of chains and upon the geometry (star or watermelon).

  19. Relativistic model for anisotropic strange stars

    Science.gov (United States)

    Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2017-12-01

    In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.

  20. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S. [INFN-LNS, Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, Texas (United States); University of Catania and INFN-LNS, Catania (Italy); and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.