WorldWideScience

Sample records for energy spectra

  1. Design energy spectra for Turkey

    OpenAIRE

    López Almansa, Francisco; Yazgan, Ahmet Utku; Benavent Climent, Amadeo

    2012-01-01

    This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be re...

  2. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  3. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  4. Temperatures of fragment kinetic energy spectra

    International Nuclear Information System (INIS)

    Bauer, W.

    1995-01-01

    Multifragmentation reactions without large compression in the initial state (proton-induced reactions, reverse kinematics, projectile fragmentation) are examined, and it is verified quantitatively that the high temperatures obtained from fragment kinetic energy spectra and lower temperatures obtained from observables such as level population or isotope ratios can be understood in a common framework

  5. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-01-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, α, of the energy spectrum, E(k) ∼ k -α , and the total spectral energy, W = ∫E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of α and W as A = 10 b (αW) c , with b = -7.92 ± 0.58 and c = 1.85 ± 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  6. Perturbative description of inclusive energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    1996-03-01

    The recent LEP-1.5 data of charged particle inclusive energy spectra are analyzed within the analytical QCD approach based on modified leading log approximation plus local parton hadron duality. The shape, the position of the maximum and the cumulant moments of the inclusive energy spectrum are well described within this model. The sensitivity of the results to the running of the coupling is pointed out. A scaling law for the one-particle invariant density E dn/d{sup 3}p at small momenta is observed, consistently with the predictions of colour coherence in soft gluon bremsstrahlung. (orig.).

  7. Perturbative description of inclusive energy spectra

    International Nuclear Information System (INIS)

    Lupia, S.

    1996-01-01

    The recent LEP-1.5 data of charged particle inclusive energy spectra are analyzed within the analytical QCD approach based on modified leading log approximation plus local parton hadron duality. The shape, the position of the maximum and the cumulant moments of the inclusive energy spectrum are well described within this model. The sensitivity of the results to the running of the coupling is pointed out. A scaling law for the one-particle invariant density E dn/d 3 p at small momenta is observed, consistently with the predictions of colour coherence in soft gluon bremsstrahlung. (orig.)

  8. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1976-07-01

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  9. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  10. Study on Properties of Energy Spectra of the Molecular Crystals

    Science.gov (United States)

    Pang, Xiao-Feng; Chen, Xiang-Rong

    The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..

  11. Program package for processing energy spectra of gamma radiation

    International Nuclear Information System (INIS)

    Stejskalova, E.

    1985-01-01

    A library of programs for processing energy spectra of nuclear radiation using an ICL 4-72 computer is described. The library is available at the computer centre of the Prague universities and bears the acronym JADSPE. The programs perform the computation of positions, areas and half-widths of lines in the energy spectrum of the radiation, they give a graphic representation of the course of energy spectra on the printer and on the CALCOMP recorder; they also perform the addition or subtraction of energy spectra with possible aligning of the beginnings or ends of the spectra or of maximums of chosen lines. A model function in the form of a symmetric Gaussian function is used for the computation of parameters of spectral lines, and the variation of the background with energy is assumed to be linear. (author)

  12. Revealing low-energy part of the beta spectra

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2002-01-01

    An effective method is proposed to separate electronic noise from the beta-particle spectra revealing lower energy part of the spectra. The available methods for reducing the noise problem cut the noise along with the low-energy part of the beta spectra by using a discriminator. Our setup eliminates this undesirable effect by shifting the noise toward the lowest energy scale leaving the low-energy part of spectra undisturbed. We achieved this noise-pulse-separation by treating the noise as a pulse so that we can exploit the application of the pulse-shape analyzer equipment used for pulse shape identification of particles and rejection of defective pulses. To the best of our knowledge this method of the noise separation is a novel approach

  13. Energy spectra of hadrons and leptons in the atmosphere

    International Nuclear Information System (INIS)

    Butkevich, A.V.; Dedenko, L.G.; Zheleznykh, I.M.; Kiryushkin, V.P.; Sobolevskij, N.M.

    1982-01-01

    Differential energy spectra of hadrons were calculated in the energy range of 10 11 -10 15 eV in the Earth atmosphere at depths of 60, 260, 690 and 1000 gxcm -2 . The Nickolski spectrum has the best agreement with experiment at a depth of 60 gxcm -2 . At high depths the Grigorov spectrum is less intensive, and the Nickolski and Rayan spectra agree with experiment without errors. Calculations of low energy neutrino fluxes in the atmospehere are given. Total fluxes of muon and electron neutrinos at neutrino energies Esub(γ) -2 xs -1 , correspondingly

  14. Energy spectra of odd nuclei in the generalized model

    Directory of Open Access Journals (Sweden)

    I. O. Korzh

    2015-04-01

    Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.

  15. Bench mark spectra for high-energy neutron dosimetry

    International Nuclear Information System (INIS)

    Dierckx, R.

    1986-01-01

    To monitor radiation damage experiments, activation detectors are commonly used. The precision of the results obtained by the multiple foil analysis is largely increased by the intercalibration in bench-mark spectra. This technique is already used in dosimetry measurements for fission reactors. To produce neutron spectra similar to fusion reactor and high-energy high-intensity neutron sources (d-Li or spallation), accelerators can be used. Some possible solutions as p-Be and d-D 2 O neutron sources, useful as bench-mark spectra are described. (author)

  16. Neural Network Analysis of LEAP Energy Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Robert E

    2002-09-10

    The Laser Electron Acceleration Project (LEAP) group has been conducting a proof of principle experiment on the acceleration of electrons with a pair of crossed laser beams. To date there has been no experimental verification of electron acceleration with crossed laser beams in a dielectric loaded vacuum, although the energy profile of an accelerated electron bunch has been well described by theory. The experiment is subject to unavoidable time dependent fluctuations in the independent variables. Changes in the experimental parameters can dramatically alter the beam profile incident near the focal plane of a high-resolution spectrometer located downstream from the accelerator cell. Neural networks (NNs) appear to provide an ideal tool for the positive determination of an acceleration event, being adaptable and able to handle highly complex nonlinear problems. Typical NNs under such conditions require a training set consisting of a representative data set along with ''answers'' which have been determined to be consistent with the variable state of the experimental parameters. A strategy of pattern recognition with respect to the status of independent variables can be employed to determine the signature characteristics of a laser perturbed electron bunch. Data cuts representing characteristics that were thought to be distinctive to accelerated beam profile images were implemented in the algorithm employed. Statistical analysis of the results of data cuts made on the energy profile images from the experiment is presented, as well as conclusions drawn from the results of this analysis. Finally, a discussion of future directions to be taken in this work is given including the orientation towards on-line, real-time analysis.

  17. Electronic energy spectra in antiferromagnetic media with broken reciprocity

    International Nuclear Information System (INIS)

    Vitebsky, I.; Edelkind, J.; Bogachek, E.N.; Scherbakov, A.G.; Landman, U.

    1997-01-01

    Electronic energy spectra var-epsilon(q) of antiferromagnetically ordered media may display nonreciprocity; that is, the energies corresponding to Bloch states with wave numbers q and -q may be different. In this paper a simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antiferromagnetically ordered crystals as well as periodical layered structures. copyright 1997 The American Physical Society

  18. WSEAT Shock Testing Margin Assessment Using Energy Spectra Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sisemore, Carl; Babuska, Vit; Booher, Jason

    2018-02-01

    Several programs at Sandia National Laboratories have adopted energy spectra as a metric to relate the severity of mechanical insults to structural capacity. The purpose being to gain insight into the system's capability, reliability, and to quantify the ultimate margin between the normal operating envelope and the likely system failure point -- a system margin assessment. The fundamental concern with the use of energy metrics was that the applicability domain and implementation details were not completely defined for many problems of interest. The goal of this WSEAT project was to examine that domain of applicability and work out the necessary implementation details. The goal of this project was to provide experimental validation for the energy spectra based methods in the context of margin assessment as they relate to shock environments. The extensive test results concluded that failure predictions using energy methods did not agree with failure predictions using S-N data. As a result, a modification to the energy methods was developed following the form of Basquin's equation to incorporate the power law exponent for fatigue damage. This update to the energy-based framework brings the energy based metrics into agreement with experimental data and historical S-N data.

  19. Two-proton energy spectra of 12O nucleus

    International Nuclear Information System (INIS)

    Teruya, N.

    2010-01-01

    Full text: The two-proton radioactivity has attracted stimulating discussion concerning the competing mechanisms for the decay process. Some nuclei (like 45 Fe, 41 Ni and 54 Zn are considered as genuine ground-state two-proton emitter because the only possibility is the simultaneous channel, but others nuclei (as 12 O) can also have the sequential decay, in this case, the energy levels of the intermediary one-proton emitter nuclei plays an important role to the competition with the simultaneous decay mode. In this work we have calculated the energy spectra of 12 O, including ground state and excited states up to 5 MeV of energy, and the two-proton energy difference spectrum for the ground state decay. Our preliminary results estimates the energy peak and width of resonant excited states and contributions of simultaneous and sequential channels for ground state decay. The calculation method is based on the statistical analysis for two-proton decaying modes presented in previous work. For events generated by sequential channels, the energy levels of intermediary 11 N nucleus can dominate the first proton emission, depending on the proximity between the ground states of both nuclei, 11 N and 12 O , in particular, if the ground state of 11 N is broad and its energy is far away from that of 12 O, the sequential decay occurs via the tail of the ground state of 11 O. The decay of 12 O resonant ground state and higher energy excited resonances are investigated through the analysis of the experimental data for the two-proton emission process. The two proton decay spectra have been considered in a statistical calculation framework, by using the decay energy distribution and taken into account the intermediate states of 11 N resonant structures for the sequential channels. For simultaneous decay channel we construct a symmetric distribution similarly to Goldansky's proposition in Nucl. Phys. A19, 482 (1960). (author)

  20. The high energy X-ray spectra of supernova remnants

    Science.gov (United States)

    Pravdo, S. H.; Nugent, J. J.

    The results of fitting an ionization-nonequilibrium (INE) model to the high-energy (above 5-keV) X-ray spectra of the young supernova remnants Cas A and Tycho are presented. As an additional constraint, the models must simultaneously fit lower-energy, higher-resolution data. For Cas A, a single INE component cannot adequately reproduce the features for the entire X-ray spectrum because the ionization structure of iron ions responsible for the K emission is inconsistent with that of the ions responsible for the lower-energy lines, and the flux of the highest-energy X-rays is underestimated. The iron K line and the high-energy continuum could arise from the same INE component, but the identification of this component with either the blast wave or the ejecta in the standard model is difficult. In Tycho, the high-energy data rule out a class of models for the lower-energy data which have too large a continuum contribution.

  1. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Antonsson, E. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Physikalische und Theoretische Chemie Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany); Neville, J. J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2 (Canada); Miron, C., E-mail: Catalin.Miron@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure - Nuclear Physics (ELI-NP), ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  2. Determination of the low energy spectra in the superstring theory

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    1990-01-01

    There is one solution to the superstring theory in 10 dimensions (SO(32) ou E8xE8) but in a 4-dimensions space, there are plenty of solutions, so a classification is necessary. The author has used a formulation named fermionic, where the solution is easy to build and he has developed a program in terms of formal calculation (REDUCE). In a first time, this program verifies the constraints induced by the modular invariance and then reproduces the low energy spectra

  3. Neutron dose and energy spectra measurements at Savannah River Plant

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers, 3 He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs

  4. Neutron energy spectra calculations in the low power research reactor

    International Nuclear Information System (INIS)

    Omar, H.; Khattab, K.; Ghazi, N.

    2011-01-01

    The neutron energy spectra have been calculated in the fuel region, inner and outer irradiation sites of the zero power research reactor using the MCNP-4C code and the combination of the WIMS-D/4 transport code for generation of group constants and the three-dimensional CITATION diffusion code for core analysis calculations. The neutron energy spectrum has been divided into three regions and compared with the proposed empirical correlations. The calculated thermal and fast neutron fluxes in the low power research reactor MNSR inner and outer irradiation sites have been compared with the measured results. Better agreements have been noticed between the calculated and measured results using the MCNP code than those obtained by the CITATION code. (author)

  5. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  6. The determination of neutron energy spectra of radioisotope sources

    International Nuclear Information System (INIS)

    Lutkin, J.E.

    1975-08-01

    The neutron energy spectrum of a 241 Am-Be radioisotope neutron source has been determined by use of a time of flight neutron spectrometer; this spectrometer not being subject to the same uncertainties as a scintillation spectrometer. Neutron spectra have been determined using a scintillation spectrometer with which the effects of instrumental uncertainties, particularly the pulse shape discrimination have been assessed. In the course of the development of the time flight spectrometer a zero crossover pulse shape discrimination system was developed in order to reduce the unwanted background. Using this system a quantitative survey of pulse shape discrimination with experimental and commercial liquid and plastic organic scintillators were carried out. In addition the pulse shape discrimination properties of inorganic scintillators were also examined. (author)

  7. 78 FR 35658 - Spectra Energy Corp., Application for a New or Amended Presidential Permit

    Science.gov (United States)

    2013-06-13

    ... Express into a limited liability corporation, Express Holdings (USA), LLC. Spectra plans to assign 40% of...-traded master limited partnership. Spectra Energy has control over Spectra Energy Partners, LP; it indirectly owns 58% of the ownership interests in the limited partnership and also indirectly owns 100% of...

  8. Energy-loss spectra of charged particles in the presence of charge exchange: Addendum on 6Li spectra

    International Nuclear Information System (INIS)

    Glazov, Lev; Sigmund, Peter

    2000-01-01

    Charge-dependent energy-loss spectra for swift Li ions penetrating thin carbon foils have been evaluated theoretically. As in our earlier study on He ions we reproduce the main features in experimental data by Ogawa and coworkers, but calculated spectra are narrower than measured, mainly because of limited experimental resolution. Comments are made on a theoretical study by Balashov and coworkers who analysed the same experimental data but arrived at very different conclusions

  9. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  10. Energy spectra variations of high energy electrons in magnetic storms observed by ARASE and HIMAWARI

    Science.gov (United States)

    Takashima, T.; Higashio, N.; Mitani, T.; Nagatsuma, T.; Yoshizumi, M.

    2017-12-01

    The ARASE spacecraft was launched in December 20, 2016 to investigate mechanisms for acceleration and loss of relativistic electrons in the radiation belts during space storms. The six particle instruments with wide energy range (a few eV to 10MeV) are onboard the ARASE spacecraft. Especially, two particle instruments, HEP and XEP observe high energy electron with energy range from 70keV to over 10Mev. Those instruments observed several geomagnetic storms caused by coronal hole high speed streams or coronal mass ejections from March in 2017. The relativistic electrons in the outer radiation belt were disappeared/increased and their energy spectra were changed dynamically in some storms observed by XEP/HEP onboard the ARASE spacecraft. In the same time, SEDA-e with energy range 200keV-4.5MeV for electron on board the HIMAWARI-8, Japanese weather satellite on GEO, observed increase of relativistic electron in different local time. We will report on energy spectra variations of high energy electrons including calibrations of differential flux between XEP and HEP and discuss comparisons with energy spectra between ARAE and HIMAWARI that observed each storm in different local time.

  11. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    Science.gov (United States)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  12. Initial electron energy spectra in water irradiated by photons with energies to 1 GeV

    International Nuclear Information System (INIS)

    Todo, A.S.; Hiromoto, G.; Turner, J.E.; Hamm, R.N.; Wright, H.A.

    1984-02-01

    This work was undertaken to provide basic physical data for use in the dosimetry of high-energy photons. Present and future sources of such photons are described, and the relevant literature is reviewed and summarized. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. Tables of initial electron and positron energies are presented for monoenergetic photons undergoing single interactions in water. Photon energies to 1 GeV are treated. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. (Continuous spectra can also be used directly in PHOEL-3.) The conditions under whch first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical cases. 31 references, 4 figures, 18 tables

  13. Targeted Modification of Neutron Energy Spectra for National Security Applications

    Science.gov (United States)

    Bevins, James Edward

    with the current sample doping approach and applied neutron spectral shaping to design an ETA that can create realistic synthetic fission and activation products and improve technical nuclear forensics outcomes. However, the ETA presented in this research represents more than a stand alone point design with a limited scope and application. It is proof of a concept and the product of a unique capability that has a wide range of potential applications. This research demonstrates that the concept of neutron spectral shaping can be used to engineer complex neutron spectra within the confines of physics. There are many possible applications that could benefit from the ability to generate custom energy neutron spectra that fall outside of current sources and methods. The ETA is the product of a general-purpose optimization algorithm, Gnowee, and design framework, Coeus, which enables the use of Gnowee for complex nuclear design problems. Through Gnowee and Coeus, new ETA neutronics designs can be generated in days, not months or years, with a drastic reduction in the research effort required to do so. (Abstract shortened by ProQuest.).

  14. Dante-unfolding code for energy spectra evaluation

    International Nuclear Information System (INIS)

    Petilli, M.

    1979-01-01

    The code DANTE, using the last square method in unfolding for dosimetry purpose, solves the neutron spectra evaluation problem starting by activity measurements. The code DANTE introduced for the first time the correlation between available data by mean of flux and activity variance-covariance matrices and the error propagation. In the present report the solution method is detailed described

  15. Proposal of energy spectra for earthquake resistant design based on turkish registers

    OpenAIRE

    Yazgan, Ahmet Utku

    2012-01-01

    This work proposes design energy spectra in terms of an equivalent velocity, intended for regions with design peak acceleration 0.3 g or higher. These spectra have been derived through linear and nonlinear dynamic analyses on a number of Turkish selected strong ground motion records. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; conversely, in the short period ...

  16. Eigenvalue-dependent neutron energy spectra: Definitions, analyses, and applications

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Ronen, Y.; Shayer, Z.; Wagschal, J.J.; Yeivin, Y.

    1982-01-01

    A general qualitative analysis of spectral effects that arise from solving the kappa-, α-, γ-, and sigma-eigenvalue formulations of the neutron transport equation for nuclear systems that deviate (to first order) from criticality is presented. Hierarchies of neutron spectra softness are established and expressed concisely in terms of the newly introduced spatialdependent local spectral indices for the core and for the reflector. It is shown that each hierarchy is preserved, regardless of the nature of the specific physical mechanism that cause the system to deviate from criticality. Qualitative conclusions regarding the general behavior of the spectrum-dependent integral spectral indices and ICRs corresponding to the kappa-, α-, γ-, and sigma-eigenvalue formalisms are also presented. By defining spectral indices separately for the core and for the reflector, it is possible to account for the characteristics of neutron spectra in both the core and the reflector. The distinctions between the spectra in the core and in the reflector could not have been accounted for by using a single type of spectral index (e.g., a spectral index for the entire system or a spectral index solely for the core)

  17. Proton and alpha evaporation spectra in low energy 12C and 16O ...

    Indian Academy of Sciences (India)

    75 MeV. The spectra are compared with the statistical model calculations. The shapes of the calculated spectra are in agreement with experimental data except for the alpha spectrum in the 12C+93Nb reaction at 40 MeV. The observed evaporation bump is at ~2. MeV lower energy compared to the calculated one.

  18. Proton and alpha evaporation spectra in low energy 12 C and 16 O ...

    Indian Academy of Sciences (India)

    The spectra are compared with the statistical model calculations. The shapes of the calculated spectra are in agreement with experimental data except for the alpha spectrum in the 12C+93Nb reaction at 40 MeV. The observed evaporation bump is at ∼ 2 MeV lower energy compared to the calculated one. This discrepancy ...

  19. The energy spectra of anomalous oxygen at the time of two successive solar minima

    CERN Document Server

    Kondratyeva, M A; Tretyakova, S P; Zhuravlev, D A

    1999-01-01

    The energy spectra of anomalous oxygen have been determined from nuclear track detectors exposed aboard the Earth-orbiting satellites at altitudes ranging from approx 250-400 km in two consecutive solar minimum periods of 1986-1987 and 1994-1995 with opposite polarity of the solar magnetic field. A comparison of the spectra shows no contradiction to current drift models.

  20. Derivation of electron and photon energy spectra from electron beam central axis depth dose curves

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)]. E-mail: jun@reyes.stanford.edu; Jiang, Steve B.; Pawlicki, Todd; Li Jinsheng; Ma, C.M. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2001-05-01

    A method for deriving the electron and photon energy spectra from electron beam central axis percentage depth dose (PDD) curves has been investigated. The PDD curves of 6, 12 and 20 MeV electron beams obtained from the Monte Carlo full phase space simulations of the Varian linear accelerator treatment head have been used to test the method. We have employed a 'random creep' algorithm to determine the energy spectra of electrons and photons in a clinical electron beam. The fitted electron and photon energy spectra have been compared with the corresponding spectra obtained from the Monte Carlo full phase space simulations. Our fitted energy spectra are in good agreement with the Monte Carlo simulated spectra in terms of peak location, peak width, amplitude and smoothness of the spectrum. In addition, the derived depth dose curves of head-generated photons agree well in both shape and amplitude with those calculated using the full phase space data. The central axis depth dose curves and dose profiles at various depths have been compared using an automated electron beam commissioning procedure. The comparison has demonstrated that our method is capable of deriving the energy spectra for the Varian accelerator electron beams investigated. We have implemented this method in the electron beam commissioning procedure for Monte Carlo electron beam dose calculations. (author)

  1. Energy band dispersion in photoemission spectra of argon clusters

    International Nuclear Information System (INIS)

    Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.

    2011-01-01

    Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.

  2. Neutron energy spectra from the thick target 9Be(d,n)10B reaction

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1976-12-01

    The energy spectrum of neutrons emitted when deuterons impinge on a thick beryllium target has been measured using an NE213 scintillation detector and the time-of-flight technique. Spectra were measured at angles of 0, 30, 45, 60, 90, 120 and 150 0 for deuteron energies of 1.4, 1.8, 2.3 and 2.8 MeV. Tables are presented of these angle-dependent energy spectra, the angle-integrated energy dependent yeidls, and the total neutron yield as a function of deuteron energy. (author)

  3. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    Science.gov (United States)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  4. Measurement and analysis of leakage neutron energy spectra around the Kinki University Reactor, UTR-KINKI

    CERN Document Server

    Ogawa, Y; Sagawa, H; Tsujimoto, T

    2002-01-01

    The highly sensitive cylindrical multi-moderator type neutron spectrometer was constructed for measurement of low level environmental neutrons. This neutron spectrometer was applied for the determination of leakage neutron energy spectra around the Kinki University Reactor. The analysis of the leakage neutron energy spectra was performed by MCNP Monte Carlo code. From the obtained results, the agreement between the MCNP predictions and the experimentally determined values is fairly good, which indicates the MCNP model is correctly simulating the UTR-KINKI.

  5. Isobar excitations and low energy spectra of light nuclei

    International Nuclear Information System (INIS)

    Czerski, P.

    1984-01-01

    The aim of this investigation is to study the possible influence of inner excitations of nucleons into the Δ(3,3)-resonance on the low lying spectra of light nuclei like 12 C and 16 O. Before we can study the effect of such exotic configurations one has to perform a reliable investigation within the normal nuclear model, which is based on a microscopic theory. This is achieved by performing RPA (Random Phase Approximation) calculations using a realistic residual interaction derived from the Brueckner G-matrix. An efficient parametrisation of the residual interaction is introduced and the reliability of the more phenomenological parametrisations which are generally used is discussed. Within such realistic calculations, the isobar effects are small. (orig.) [de

  6. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  7. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  8. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  9. Contribution of recently measured nuclear data to reactor antineutrino energy spectra predictions

    Directory of Open Access Journals (Sweden)

    Fallot M.

    2013-12-01

    Full Text Available This paper attempts to summarize the actual problematic of reactor antineutrino energy spectra in the frame of fundamental and applied neutrino physics. Nuclear physics is an important ingredient of reactor antineutrino experiments. These experiments are motivated by neutrino oscillations, i.e. the measure of the θ13 mixing angle. In 2011, after a new computation of the reactor antineutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, a deficit of reactor antineutrinos measured by short baseline experiments was pointed out. This is called the “reactor anomaly”, a new puzzle in the neutrino physics area. Since then, numerous new experimental neutrino projects have emerged. In parallel, computations of the antineutrino spectra independant from the ILL data would be desirable. One possibility is the use of the summation method, summing all the contributions of the fission product beta decay branches that can be found in nuclear databases. Studies have shown that in order to obtain reliable summation antineutrino energy spectra, new nuclear physics measurements of selected fission product beta decay properties are required. In these proceedings, we will present the computation methods of reactor antineutrino energy spectra and the impact of recent beta decay measurements on summation method spectra. The link of these nuclear physics studies with short baseline line oscillation search will be drawn and new neutrino physics projects at research reactors will be briefly presented.

  10. Energy spectra of fast neutrons by nuclear emulsion method

    International Nuclear Information System (INIS)

    Quaresma, A.A.

    1977-01-01

    An experimental method which uses nuclear emulsion plates to determine the energy spectrum of fission neutrons is described. By using this technique, we have obtained the energy distribution of neutrons from spontaneous fission of Cf 2 5 2 . The results are in good agreement with whose obtained previously by others authors who have used different detection techniques, and they are consistent with a Maxwellian distribution as expected by Weisskopf's nuclear evaporation theory. (author)

  11. Energy dependence of isotopic spectra from spallation residues

    International Nuclear Information System (INIS)

    Audouin, L.

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to β decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  12. Quasar energy distributions. I. Soft X-ray spectra of quasars

    International Nuclear Information System (INIS)

    Wilkes, B.J.; Elvis, M.

    1987-01-01

    As the initial stage of a study of quasar energy distributions (QEDs), Einstein IPC spectra of 24 quasars are presented. These are combined with previously reported IPC spectra to form a sample of 33 quasars with well-determined soft X-ray slopes. A correlation analysis shows that radio loudness, rather than redshift or luminosity, is fundamentally related to the X-ray slope. This correlation is not followed by higher energy spectra of active galaxies. Two components are required to explain both sets of results. The best-fit column densities are systematically smaller than the Galactic values. The same effect is not present in a sample of BL Lac objects, implying that the effect is intrinsic to the quasars and is caused by a low-energy turnup in the quasar spectra. 74 references

  13. Measurement of time-dependent fast neutron energy spectra in a depleted uranium assembly

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-10-01

    Time-dependent neutron energy spectra in the range 0.6 to 6.4 MeV have been measured in a depleted uranium assembly. By selecting windows in the time range 0.9 to 82 ns after the beam pulse, it was possible to observe the change of the neutron energy distributions from spectra of predominantly 4 to 6 MeV neutrons to spectra composed almost entirely of fission neutrons. The measured spectra were compared to a Monte Carlo calculation of the experiment using the ENDF/B-IV data file. At times and energies at which the calculation predicted a fission spectrum, the experiment agreed with the calculation, confirming the accuracy of the neutron spectroscopy system. However, the presence of discrepancies at other times and energies suggested that there are significant inconsistencies in the inelastic cross sections in the 1 to 6 MeV range. The time response generated concurrently with the energy spectra was compared to the Monte Carlo calculation. From this comparison, and from examination of time spectra measured by other workers using 235 U and 237 Np fission detectors, it would appear that there are discrepancies in the ENDF/B-IV cross sections below 1 MeV. The predicted decay rates were too low below and too high above 0.8 MeV

  14. Energy fluxes and spectra for turbulent and laminar flows

    KAUST Repository

    Verma, Mahendra K.

    2017-05-14

    Two well-known turbulence models to describe the inertial and dissipative ranges simultaneously are by Pao~[Phys. Fluids {\\\\bf 8}, 1063 (1965)] and Pope~[{\\\\em Turbulent Flows.} Cambridge University Press, 2000]. In this paper, we compute energy spectrum $E(k)$ and energy flux $\\\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k)$ and $\\\\Pi(k)$ to be of the form $\\\\exp(-k)$, and verify the model predictions using numerical simulations. The shell-to-shell energy transfers for the turbulent flows are {\\\\em forward and local} for both inertial and dissipative range, but those for the laminar flows are {\\\\em forward and nonlocal}.

  15. Energy fluxes and spectra for turbulent and laminar flows

    KAUST Repository

    Verma, Mahendra K.; Kumar, Abhishek; Kumar, Praveen; Barman, Satyajit; Chatterjee, Anando G.; Samtaney, Ravi

    2017-01-01

    spectrum $E(k)$ and energy flux $\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k

  16. The sub-bandgap energy loss satellites in the RIXS spectra of beryllium compounds

    International Nuclear Information System (INIS)

    Kuusik, I.; Kaeaembre, T.; Kooser, K.; Pustovarov, V.; Ivanov, V.; Kukk, E.; Kikas, A.

    2011-01-01

    Research highlights: → Be 1s RIXS spectra have been measured in Be containing crystals phenakite and chrysoberyl. → A strong energy loss sideband to the elastic scattering peak similar to BeO is found in both minerals. → Additionally the Si 2p RIXS spectra of phenakite also show a strong energy loss sideband to the elastic scattering peak. → The energy loss shoulder appears to result from lattice relaxation in the absorption site. - Abstract: Resonant X-ray inelastic scattering spectra have been measured in BeO, phenakite (Be 2 SiO 4 ) and chrysoberyl (BeAl 2 O 4 ) with the excitation energy near the beryllium K edge. The RIXS spectra excited in the vicinity of the Be 1s core resonance show two principal features: the scattering on a valence excitation (which at higher excitation energies verges into the characteristic K α emission), and a remarkably strong energy loss sideband to the elastic scattering peak. The energy loss shoulder appears to result from lattice relaxation in the absorption site. The comparison of the RIXS spectra of phenakite, chrysoberyl and BeO shows that the strength of the low energy sideband differs greatly; it is strongest in BeO and weakest in phenakite. The Si 2p RIXS spectra of phenakite also display a similar strong sub-bandgap energy loss tail. To gain further insight to this process, transitions in a system with a single vibrational mode have been modelled. The phonon relaxation has been simulated empirically by 'smearing' the photoabsortion-populated vibrational levels with lower levels. This simple model is able to qualitatively explain this wide energy loss shoulder.

  17. The sub-bandgap energy loss satellites in the RIXS spectra of beryllium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kuusik, I., E-mail: ivar@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kaeaembre, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kooser, K. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Department of Physics and Astronomy, University of Turku, Turku (Finland); Pustovarov, V.; Ivanov, V. [Ural State Technical University-UPI, Yekaterinburg (Russian Federation); Kukk, E. [Department of Physics and Astronomy, University of Turku, Turku (Finland); Kikas, A. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2011-07-15

    Research highlights: {yields} Be 1s RIXS spectra have been measured in Be containing crystals phenakite and chrysoberyl. {yields} A strong energy loss sideband to the elastic scattering peak similar to BeO is found in both minerals. {yields} Additionally the Si 2p RIXS spectra of phenakite also show a strong energy loss sideband to the elastic scattering peak. {yields} The energy loss shoulder appears to result from lattice relaxation in the absorption site. - Abstract: Resonant X-ray inelastic scattering spectra have been measured in BeO, phenakite (Be{sub 2}SiO{sub 4}) and chrysoberyl (BeAl{sub 2}O{sub 4}) with the excitation energy near the beryllium K edge. The RIXS spectra excited in the vicinity of the Be 1s core resonance show two principal features: the scattering on a valence excitation (which at higher excitation energies verges into the characteristic K{sub {alpha}} emission), and a remarkably strong energy loss sideband to the elastic scattering peak. The energy loss shoulder appears to result from lattice relaxation in the absorption site. The comparison of the RIXS spectra of phenakite, chrysoberyl and BeO shows that the strength of the low energy sideband differs greatly; it is strongest in BeO and weakest in phenakite. The Si 2p RIXS spectra of phenakite also display a similar strong sub-bandgap energy loss tail. To gain further insight to this process, transitions in a system with a single vibrational mode have been modelled. The phonon relaxation has been simulated empirically by 'smearing' the photoabsortion-populated vibrational levels with lower levels. This simple model is able to qualitatively explain this wide energy loss shoulder.

  18. Constrained energy minimization applied to apparent reflectance and single-scattering albedo spectra: a comparison

    Science.gov (United States)

    Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.

    1996-11-01

    Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.

  19. Energy spectra from coupled electron-photon slowing down

    International Nuclear Information System (INIS)

    Beck, H.L.

    1976-08-01

    A coupled electron-photon slowing down calculation for determining electron and photon track length in uniform homogeneous media is described. The method also provides fluxes for uniformly distributed isotropic sources. Source energies ranging from 10 keV to over 10 GeV are allowed and all major interactions are treated. The calculational technique and related cross sections are described in detail and sample calculations are discussed. A listing of the Fortran IV computer code used for the calculations is also included. 4 tables, 7 figures, 16 references

  20. High energy spectra on Fe-based unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Pranab Kumar; Baumann, Danny; Schlegel, Ronny; Beck, Robert; Hess, Christian [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden, 01171 Dresden (Germany); Wurmehl, Sabine; Buechner, Bernd [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden, 01171 Dresden (Germany); Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany); Wolf, Thomas [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, Postfach 3640, D-76021 Karlsruhe (Germany)

    2015-07-01

    We have performed low-temperature scanning tunneling microscopy and spectroscopy on LiFeAs, Co doped NaFeAs and FeSe superconductors. The spectroscopy data routinely reveal important aspects of the electronic structure both very close to the Fermi level, i.e. the superconducting gap, and distinct features at higher energies. The latter appear in occupied states roughly between -0.3 eV and -0.5 eV in these materials, and allow specific comparison with ARPES band structure data.

  1. Measurements of time dependent energy spectra of neutrons in a small graphite assembly

    International Nuclear Information System (INIS)

    Fujita, Yoshiaki; Sakamoto, Shigeyasu; Aizawa, Otohiko; Takahashi, Akito; Sumita, Kenji.

    1975-01-01

    The time-dependent energy spectra of neutrons have been measured in a small 30x30x30 cm 3 graphite assembly by means of the linac-chopper method, with a view to establishing experimental evidence that there is no asymptotic spectrum in such a small assembly, and in order to study the non-asymptotic behavior of neutrons. The arrangement of a polyethylene pre-moderator adjacent to the assembly made the measurements possible with the improvement obtained thereby of the neutron counting statistics. It was indicated from calculation that the presence of the pre-moderator had little effect - at least above the Bragg cut-off energy - on the evolution in time of the energy spectra of neutrons in the graphite assembly. The experimental results indicated very probable disappearance of asymptotic spectra, and revealed significant enhancement of trapping at Bragg energies with the lapse of time. This is consistent with the results of pulsed neutron experiments in small assemblies conducted by Takahashi et al., and falls in line with de Saussure's approximation. The spectra in the graphite assembly showed significant space dependence, the spectra becoming harder with increasing distance from the pre-moderator. This hardening may be attributed to the relatively faster propagation of higher energy neutrons. (auth.)

  2. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  3. FITPULS: a code for obtaining analytic fits to aggregate fission-product decay-energy spectra

    International Nuclear Information System (INIS)

    LaBauve, R.J.; George, D.C.; England, T.R.

    1980-03-01

    The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from 235 U irradiated with a pulse (10 -4 s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables

  4. Calculation of quantum-mechanical system energy spectra using path integrals

    International Nuclear Information System (INIS)

    Evseev, A.M.; Dmitriev, V.P.

    1977-01-01

    A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O

  5. Measurements of energy spectra of fast electrons from PF-1000 in the upstream and downstream directions

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, R.; Czaus, K.; Skladnik-Sadowska, E.; Malinowski, K.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Karpinski, L.; Paduch, M.; Scholz, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 01-497 Warsaw (Poland); Kubes, P. [Czech Technical University (CVUT), 166-27 Prague, (Czech Republic)

    2011-07-01

    The paper describes measurements of energy spectra of electrons emitted in the upstream direction along the symmetry-axis of the PF-1000 facility, operated with the deuterium filling at 21 kV, 290 kJ. The measurements were performed with a magnetic analyzer. The same analyzer was used to measure also electron beams emitted in along the symmetry-axis in the downstream direction. The recorded spectra showed that the electron-beams emitted in the upstream direction have energies in the range from about 40 keV to about 800 keV, while those in the downstream direction have energies in the range from about 60 keV to about 200 keV. These spectra confirm that in the PF (Plasma Focus) plasma column there appear strong local fields accelerating charged particles in different directions. This document is composed of a paper and a poster. (authors)

  6. Energy Spectra of Abundant Cosmic-ray Nuclei in Sources, According to the ATIC Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Panov, A. D.; Sokolskaya, N. V.; Zatsepin, V. I., E-mail: panov@dec1.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, 119991 (Russian Federation)

    2017-03-01

    One of the main results of the ATIC (Advanced Thin Ionization Calorimeter) experiment is a collection of energy spectra of abundant cosmic-ray nuclei: protons, He, C, O, Ne, Mg, Si, and Fe measured in terms of energy per particle in the energy range from 50 GeV to tens of teraelectronvolts. In this paper, the ATIC energy spectra of abundant primary nuclei are back-propagated to the spectra in sources in terms of magnetic rigidity using a leaky-box approximation of three different GALPROP-based diffusion models of propagation that fit the latest B/C data of the AMS-02 experiment. It is shown that the results of a comparison of the slopes of the spectra in sources are weakly model dependent; therefore the differences of spectral indices are reliable data. A regular growth of the steepness of spectra in sources in the range of magnetic rigidity of 50–1350 GV is found for a charge range from helium to iron. This conclusion is statistically reliable with significance better than 3.2 standard deviations. The results are discussed and compared to the data of other modern experiments.

  7. Neutron energy spectra produced by α-bombardment of light elements in thick targets

    International Nuclear Information System (INIS)

    Jacobs, G.J.H.

    1982-01-01

    The aim of the work, presented in this thesis, is to determine energy spectra of neutrons produced by α-particle bombardment of thick targets containing light elements. These spectra are required for nuclear waste management. The set-up of the neutron spectrometer is described, and its calibration discussed. Absolute efficiencies were determined at various neutron energies, using monoenergetic neutrons produced with the Van de Graaff accelerator in pulsed mode. The additional calibration of the neutron spectrometer as proton-recoil spectrometer was carried out primarily for future applications in measurements where no pulsed neutron source is available or the neutron flux density is too low. The basis for an accurate uncertainty analysis is made by the determination of the covariance matrix for the uncertainties in the efficiencies. The determination of the neutron energy spectra from time-of-flight and from proton-recoil measurements is described. A comparison of the results obtained from the two different types of measurements is made. The experimentally determined spectra were compared with spectra calculated from stopping powers and theoretically determined cross sections. These cross sections were calculated from optical model parameters and level parameters using the Hauser-Feshbach formalism. Measurements were carried out on thick targets of silicon, aluminium, magnesium, carbon, boron nitride, calcium fluoride, aluminium oxide, silicon oxide and uranium oxide at four different α-particle energies. (Auth.)

  8. Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and GaN

    CERN Document Server

    Jones, R; Gutiérrez-Sosa, A; Bangert, U; Heggie, M I; Blumenau, A T; Frauenheim, T; Briddon, P R

    2002-01-01

    First-principles calculations of electron energy loss (EEL) spectra for bulk GaN and diamond are compared with experimental spectra acquired with a scanning tunnelling electron microscope offering ultra-high-energy resolution in low-loss energy spectroscopy. The theoretical bulk low-loss EEL spectra, in the E sub g to 10 eV range, are in good agreement with experimental data. Spatially resolved spectra from dislocated regions in both materials are distinct from bulk spectra. The main effects are, however, confined to energy losses lying above the band edge. The calculated spectra for low-energy dislocations in diamond are consistent with the experimental observations, but difficulties remain in understanding the spectra of threading dislocations in GaN.

  9. Inclusive spectra of mesons with large transverse momenta in proton-nuclear collisions at high energies

    International Nuclear Information System (INIS)

    Lykasov, G.I.; Sherkhonov, B.Kh.

    1982-01-01

    Basing on the proposed earlier quark model of hadron-nucleus processes with large transverse momenta psub(perpendicular) the spectra of π +- , K +- meson production with large psub(perpendicular) in proton-nucleus collisions at high energies are calculated. The performed comparison of their dependence of the nucleus-target atomic number A with experimental data shows a good agreement. Theoretical and experimental ratios of inclusive spectra of K +- and π +- mesons in the are compared. Results of calculations show a rather good description of experimental data on large psub(perpendicular) meson production at high energies

  10. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  11. Studies of cluster X-ray sources. Energy spectra for the Perseus, Virgo, and Coma clusters

    International Nuclear Information System (INIS)

    Kellogg, E.; Baldwin, J.R.; Koch, D.

    1975-01-01

    We present the final Uhuru X-ray differential-energy spectra for the Perseus, Virgo, and Coma clusters of galaxies. The power-law and isothermal bremsstrahlung model forms, both with a low-energy cutoff, are given. For bremsstrahlung, the energy-dependent Gaunt factor is calculated by an improved method. The spectra, best fits to the Uhuru 2-10 keV data, are also compared with other observations of these sources in the energy range 0.1-100 keV. For Perseus, the data above 20 keV favor the bremsstrahlung fit marginally. For Virgo, the data of Catura et al. between 0.25 and 1.0 keV clearly favor the bremsstrahlung curve. For Coma, the weakest of the three sources, the data are less precise, but there is some evidence for a low-energy turnover or cutoff. The implications of such a cutoff are discussed briefly

  12. Optimization and energy spectra of x-ray to be used for imaging

    International Nuclear Information System (INIS)

    Nakamori, Nobuyuki; Kanamori, Hitoshi

    1979-01-01

    The relations of the spectra of X-ray used for diagnosis to the absorbed dose of patients and X-ray information are now being investigated by a number of investigators. Here the problems and the trends of the investigations at present are described. Advent of semiconductor detectors has improved the accuracy of measuring X-ray spectra very rapidly. However, since the semiconductor detectors themselves utilize X-ray photon absorption, calibration curves must be prepared for obtaining the true X-ray spectra. Though there are methods of theoretically determining X-ray spectra, no definite theoretical formula is found. Thus, the derivation of an empirical equation based on measured data would be the most fundamental problem. Interactions in an object and the change of X-ray spectra are described on the case of monochromatic and continuous X-ray irradiation. As mentioned above, beam hardening occurs when X-ray enters a matter deep, because the interactions between X-ray and the matter depend upon the photon energy. There are a few methods for correcting the variation of CT (computed tomography) number due to beam hardening. However, prior to this, there are two methods of representing continuous X-ray with single energy, and the unification of the methods or a new way of defining X-ray quality is needed. It has been and is always desirable that monochromatic X-ray source becomes to be useable, and various methods are proposed. (Wakatsuki, Y.)

  13. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  14. Radiation spectra of high-energy electrons in monocrystals of various thickness and orientation

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Agan'yants, A.O.; Akopov, N.Z.; Vartanov, Yu.A.; Vartapetyan, G.A.; Lebedev, A.N.; Mirzoyan, R.M.; Taroyan, S.P.; Danagulyan, S.S.

    1982-01-01

    Yield of photons with energies 20-200 MeV at motion of the 4.7 GeV electron beam in parallel to the axis of a diamond crystal exceeds substantially the corresponding yield from a disoriented target. A similarity is observed in the radiation spectra within the crystal thickness range of 100- 610 mkm. The radiation yield is suppressed at certain energies of the γ quanta [ru

  15. Energy spectra and asymmetry of charged particle emission in the muon minus capture by nuclei

    International Nuclear Information System (INIS)

    Balandin, M.P.; Grebenyuk, V.M.; Sinov, V.G.; Konin, A.D.

    1978-01-01

    Energy spectra of separated-by-mass single-charged particles at the capture of 130 MeV negative muons by carbon, oxygen, magnesium and sulphur have been measured. The experimental results are compared with the theoretical calculations at the assumption of preequilibrium decay of collective states described by the hydrodynamical model. The measurement of asymmetry of charged particle emission in sulphur and megnesium was carried out by hte method of muon spin precession in a magnetic field. Theoretical curves describe correctly the exponential spectra character, but the yields obtained are 2-3 times less than the experimental results

  16. Quark-gluon structure of the pomeron and the rise of inclusive spectra at high energies

    International Nuclear Information System (INIS)

    Kaidalov, A.V.

    1982-01-01

    The topological expansion and the nodel of a colour tube are used for the calculation of inclusive hadronic spectra in the central region. The higher-order terms of the 1/Nsub(f)-expansion, which correspond to the contribution of the poliperipheral diagrams are taken into account. It is shown that the intrinsic motion of quarks inside colliding hadrons leads to the rise of inclusive spectra with energy in the central region. The model gives a good quantitative description of the effects observed recently at the CERN SPS Collider

  17. Electron spectra resulting from autoionization in low-energy Li+ + He collisions

    International Nuclear Information System (INIS)

    Yagishita, A.; Wakiya, K.; Takayanagi, T.; Suzuki, H.; Koike, F.

    1979-09-01

    Spectra of electrons ejected from doubly excited states of helium have been extensively measured at several observation angles fro impact with lithium ions at energies lower than 5 KeV. ''Molecular-autoionization'' spectra have been found at forward observation angles, and analyzed in terms of the Gerber-Niehaus theory with modification. The spectral shapes of atomic-autoionization peaks have been discussed in relation to both the Barker-Berry effect and the Doppler effect. Excitation cross sections of autoionizing states have been determined by a new method that uses simultaneous impact of ions and electrons. (author)

  18. Energy spectra of neutrons accompanying the emission fission of 238U

    International Nuclear Information System (INIS)

    Smirenkin, G.N.; Lovchikova, G.N.; Trufanov, A.M.; Svirin, M.I.; Polyakov, A.V.; Vinogradov, V.A.; Dmitriev, V.D.; Boykov, G.S.

    1996-01-01

    The spectra of fission neutrons emitted from 238U are measured for the first time by the time-of-flight method at incident-neutron energies of 16.0 and 17.7 MeV. Analysis of the neutron spectra shows that experimental results at incident-neutron energies of 14.7, 16.0, and 17.7 MeV (above the threshold of chance fission) differ significantly from those obtained at a neutron energy of 2.9 MeV (below the threshold of chance fission). Owing to the prefission emission of neutrons, the observed spectra of neutrons from emission fission exhibit a characteristic growth of the neutron yield in both hard and soft sections of the spectrum of secondary neutrons. This growth manifests itself as a step in the first case and as a rise in the second case, where it results in a noticeable excess of neutrons over the statistical-model predictions for E<2 MeV. The first feature in the spectra of neutrons from emission fission can be associated with the nonequilibrium decay of an excited fissile nucleus. On the contrary, the origin of the second feature has yet to be clarified. Additional measurements of angular distributions of secondary neutrons may prove helpful in this respect

  19. Energy spectra and charge composition of galactic cosmic rays measured in ATIC-2 experiment

    International Nuclear Information System (INIS)

    Zatsepin, V.I.; Bat'kov, K.E.; Bashindzhagyan, G.L.

    2004-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon experiment is intended for measuring the energy spectra of the galactic cosmic rays with the individual resolution by the charge from protons to iron within the energy range from 50 GeV up to 100 TeV. The silicon detector matrix, making it possible to solve on the inverse current by means of the detector charge high segmentation, was applied for the first time in the high-energy cosmic rays for the charge measurement. The ATIC completed two successful flights in the Antarctica since 28.12.2000 up to 13.01.2001 (the ATIC-1 test flight) and since 29.12.2002 up to 18.01.2003 (the ATIC-2 scientific flight). The current state of the analysis of the spectra, measured in the ATIC-2 scientific flight, are presented in this work and the obtained results are compared with the model forecasts results [ru

  20. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  1. The effect of work function changes on secondary ion energy spectra

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1983-01-01

    The effect of work function changes on experimental secondary ion energy spectra is discussed. In agreement with theory the measured ion intensities frequently exhibit an exponential work function dependence. However, the predicted velocity dependence is only observed at fairly high secondary ion energies. In the absence of a velocity dependence of the degree of ionization measured shifts of energy spectra reflect work function changes directly. Various instrumental problems are shown to aggravate a detailed comparison between experiment and theory. Significant artefacts must be expected if the extraction field is of the order of or less than the lateral field induced by a work function difference between the bombarded spot and the surrounding sample surface. (Auth.)

  2. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method

  3. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-01-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field

  4. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongqi [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Brandenburg, Axel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Sokoloff, D. D., E-mail: hzhang@bao.ac.cn [Department of Physics, Moscow University, 119992 Moscow (Russian Federation)

    2016-03-10

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  5. Trajectory resolved analysis of LEIS energy spectra: Neutralization and surface structure

    International Nuclear Information System (INIS)

    Beikler, Robert; Taglauer, Edmund

    2001-01-01

    For a quantitative evaluation of low-energy ion scattering (LEIS) data with respect to surface composition and structure a detailed analysis of the energy spectra is required. This includes the identification of multiple scattering processes and the determination of ion survival probabilities. We analyzed scattered ion energy spectra by using the computer code MARLOWE for which we developed a new analysis routine that allows to record energy distributions in dependence of the number of projectile-target atom collisions, in dependence of the distance of closest approach, or in dependence of the scattering crystalline layer. This procedure also permits the determination of ion survival probabilities by applying simple collision-dependent neutralization models. Experimental energy spectra for various projectile (He + , Ne + , Na + ) and target (transition metals, oxides) combinations are well reproduced and quantitative results for ion survival probabilities are obtained. These are largely in agreement with results obtained for bimetallic crystal surfaces obtained in a different way. Such MARLOWE calculations are also useful for the identification of structure relevant processes. This is shown exemplarily for the reconstructed Au(1 1 0) surface including a possibility to determine the (1x2)→(1x1) transition temperature

  6. Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model

    International Nuclear Information System (INIS)

    Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.

    1979-01-01

    The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de

  7. Peculiarities of approximation for reactor neutron energy spectra during computerized simulation of radiation defects

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Stusik, G.; Omarbekova, Zh.

    2001-01-01

    Peculiarities of approximation for reactor neutron energy spectra during radiation defects computerized simulation were discussed. Approximation of neutron spectra N(E) was carried out by N(E)=α·exp(-β·E)·sh(γ·E) formula (1), where α, β, γ - approximation coefficients. In the capacity of operating reactor data experimental data on 235 U and 239 Pu were applied. The algorithm was designed, and acting soft ware for spectra parameters calculation was developed. The following values of approximation parameters were obtained: α=80.8; β=0.935;γ=2.04 (for uranium and plutonium these coefficients are less distinguishing). Then with use of formula 1 and α, β, γ coefficients the approximation curves were constructed. These curves satisfactorily describe existing experimental data and allowing to use its for radiation defects simulation in the reactor materials

  8. Bumping structure of initial energy density distributions and peculiarities of pion spectra in A + A collisions

    International Nuclear Information System (INIS)

    Borysova, M.S.

    2012-01-01

    The effect of a fluctuating bumping structure of the initial conditions on spectra and the collective evolution of matter created in heavy-ion collisions in the frameworks of the Hydro-Kinetic Model is investigated. As motivated by the glasma-flux-tube scenario, the initial conditions are modeled by the set of four high energy-density tube-like fluctuations with longitudinally homogeneous structure within some space-rapidity region in a boost-invariant 2D geometry. It was found that the presence of transversally bumping tube-like fluctuations in initial conditions strongly affects the hydrodynamic evolution and leads to emergence of conspicuous structures in the calculated pion spectra. It was observed that the 4 tube initial configuration generates a four-peak structure in the final azimuthal distributions of one-particle spectra.

  9. Measurement of charge and energy spectra of heavy nuclei aboard Cosmos-936 artificial Earth satellite

    International Nuclear Information System (INIS)

    Dashin, S.A.; Marennyy, A.M.; Gertsen, G.P.

    1982-07-01

    Charge and energy spectra of heavy charged particles were measured. Measurements were performed by a package of dielectric track detectors mounted behind the shield of 60-80 kg m to the minus second power thick. The charge of nuclei was determined from the complete track length. A group of 1915 tracks of nuclei with Z 6 in the energy range 100-450 MeV/nuclon were identified. The differential charge spectrum of nuclei with 6 Z 28 and the energy spectrum of nuclei of the iron group were built

  10. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, Mitsuo, E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Rauhala, Eero [Department of Physics, University of Helsinki (Finland)

    2015-10-01

    Backscattering spectra for {sup 4}He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50–100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp ({sup 4}He, {sup 12}C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  11. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    International Nuclear Information System (INIS)

    Zheng, Y.; Brion, C.E.; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E.; Chakravorty, S.J.; Davidson, E.R.; Sgamellotti, A.; von Niessen, W.

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green's function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs

  12. Monte Carlo calculations of neutron and gamm-ray energy spectra for fusion-reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1983-08-01

    Neutron and gamma-ray spectra resulting from the interactions of approx. 14-MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree within 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra is also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE

  13. Atmospheric proton and deuterium energy spectra determination with the MASS2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A.; Finetti, N. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    The energy spectra of atmospheric-secondary protons and deuterium nuclei have been measured during the September 23, 1991, balloon flight of the NMSU/Wizard - MASS2 instrument. The apparatus was launched from Fort Sumner, New Mexico. The geomagnetic cutoff at the launch site is about 4.5 GV/c. The instrument was flown for 9.8 hours at an altitude of over 100,000 feet. Particles detected below the geomagnetic cutoff have been produced mainly by the interactions of the primary cosmic rays with the atmosphere. The measurement of cosmic ray energy spectra below the geomagnetic cutoff provide direct insights into the particle production mechanism and allows comparison to atmospheric cascade calculations.

  14. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Pappas, D.S.; Wysocki, F.J.; Furnstahl, R.J.

    1982-08-01

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 10 14 cm -3 ) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  15. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    International Nuclear Information System (INIS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-01-01

    We report first-principles GW–Bethe–Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G 0 W 0 ) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet–triplet splitting, and electron–hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron–hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges. (paper)

  16. Calculated microdose spectra for intermediate energy neutrons (1 to 100 keV)

    International Nuclear Information System (INIS)

    Al-Affan, I.A.M.; Watt, D.E.

    1983-01-01

    Basic formulae for calculation of energy deposition events due to insiders, starters, stoppers and crossers, using the continuous slowing down approximation have been modified to allow for the enhanced energy deposition in spherical volumes due to elastic scattering interactions which reduce the penetration depth of the charged particle recoils. Energy deposition spectra have been obtained for energies of 1, 10, 50, 100 keV in 0.2 μm and 1 μm tissue-equivalent spheres. From these, frequency and dose distributions in lineal energy and in specific energy density have been calculated. Also calculated for different neutron energies are values of zeta, the energy average of event size, as a function of the diameter of the sensitive site. The structure of the energy event distributions can be interpreted in terms of the basic physics. The effect of the modifications to the basic formulae is to increase the number of energy deposition events due to insiders and to decrease the number of starters, stoppers and crossers. The degree of the effect increases with decreasing neutron energy, increasing sphere size, and the change is most significant for low energy deposition events. (author)

  17. Calculated microdose spectra for intermediate energy neutrons (1 to 100 keV)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Affan, I.A.M.; Watt, D.E. (Dundee Univ. (UK). Dept. of Medical Biophysics); Colautti, P.; Talpo, G. (Laboratori Nazionali dell' Infn, 35020, Legnaro (Padova) (Italy))

    1983-01-01

    Basic formulae for calculation of energy deposition events due to insiders, starters, stoppers and crossers, using the continuous slowing down approximation have been modified to allow for the enhanced energy deposition in spherical volumes due to elastic scattering interactions which reduce the penetration depth of the charged particle recoils. Energy deposition spectra have been obtained for energies of 1, 10, 50, 100 keV in 0.2 ..mu..m and 1 ..mu..m tissue-equivalent spheres. From these, frequency and dose distributions in lineal energy and in specific energy density have been calculated. Also calculated for different neutron energies are values of zeta, the energy average of event size, as a function of the diameter of the sensitive site. The structure of the energy event distributions can be interpreted in terms of the basic physics. The effect of the modifications to the basic formulae is to increase the number of energy deposition events due to insiders and to decrease the number of starters, stoppers and crossers. The degree of the effect increases with decreasing neutron energy, increasing sphere size, and the change is most significant for low energy deposition events.

  18. Neutron flux density and secondary-particle energy spectra at the 184-inch synchrocyclotron medical facility

    International Nuclear Information System (INIS)

    Smith, A.R.; Schimmerling, W.; Henson, A.M.; Kanstein, L.L.; McCaslin, J.B.; Stephens, L.D.; Thomas, R.H.; Ozawa, J.; Yeater, F.W.

    1978-07-01

    Helium ions, with an energy of 920 MeV, produced by the 184-inch synchrocyclotron of the Lawrence Berkeley Laboratory are now being used in a pilot series to determine their efficacy in the treatment of tumors of large volume. The techniques for production of the large uniform radiation fields required for these treatments involve the use of beam-limiting collimators and energy degraders. Interaction of the primary beam with these beam components produces secondary charged particles and neutrons. The sources of neutron production in the beam transport system of the alpha-particle beam have been identified and their magnitudes have been determined. Measurements with activation detectors and pulse counters of differing energy responses have been used to determine secondary particle spectra at various locations on the patient table. These spectra are compared to a calculation of neutron production based on best estimates derived from published cross sections. Agreement between the calculated spectra and those derived from experimental measurements is obtained (at the 10 to 20% level) when the presence of charged particles is taken into account. The adsorbed dose in soft tissue is not very sensitive to the shape of the incident neutron energy spectrum, and the values obtained from unfolding the experimental measurements agree with the values obtained from the calculated spectra within the estimated uncertainty of +-25%. These values are about 3 x 10 -3 rad on the beam axis and about 1 x 10 -3 rad at 20 cm or more from the beam axis, per rad deposited by the incident alpha-particle beam. Estimates of upper limit dose to the lens of the eye and red bone marrow are approximately 10 rad and approximately 1 rad, respectively, for a typical treatment plan. The absorbed dose to the lens of the eye is thus well below the threshold value for cataractogenesis estimated for fission neutrons. An upper limit for the risk of leukemia is estimated to be approximately 0.04%

  19. Modeling of X-ray images and energy spectra produced by stepping lightning leaders

    OpenAIRE

    Xu , Wei; Marshall , Robert A.; Celestin , Sébastien; Pasko , Victor P.

    2017-01-01

    International audience; Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as woul...

  20. Independent component analysis: A new possibility for analysing series of electron energy loss spectra

    International Nuclear Information System (INIS)

    Bonnet, Nogl; Nuzillard, Danielle

    2005-01-01

    A complementary approach is proposed for analysing series of electron energy-loss spectra that can be recorded with the spectrum-line technique, across an interface for instance. This approach, called blind source separation (BSS) or independent component analysis (ICA), complements two existing methods: the spatial difference approach and multivariate statistical analysis. The principle of the technique is presented and illustrations are given through one simulated example and one real example

  1. Optical properties and energy spectra of donors in Gasub(x)Insub(1-x)P

    International Nuclear Information System (INIS)

    Berndt, V.; Kopylov, A.A.; Pikhtin, A.N.

    1977-01-01

    Impurity optical absorption is studied in n-Gasub(x)Insub(1-x)P for compositions with indirect band structure. For the first time the photoionization bands of shallow donor centers have been observed in semiconductor solid solutions. Analysis of spectra has shown the electron transitions to excited states of donor to contribute considerably to absorption. A simple theoretical model is presented to explain the shift of ionization energy of silicon donor and the variation in shape of the impurity absorption band

  2. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    Science.gov (United States)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection

  3. Measurement of crosstalk contamination in dual isotope imaging by means of energy spectra and images

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Tsuji, Akinori; Ohyama, Yoichi; Nabeshima, Mitsuko; Kira, Tomohiro; Nakashima, Rumi; Tomiguchi, Seiji; Takahashi, Mutsumasa; Matsumoto, Masanori.

    1994-01-01

    The purpose of this study was to estimate the value of crosstalk contamination ratio (CTR) by analyzing energy spectra and scintigraphic images using a phantom and three radionuclides of 201 Tl, 99m Tc and 123 I. A 2 cm x 2 cm plate source filled with single radionuclide was placed in a water tank and its depth changed from 0 cm to 10 cm. Energy spectra and planar images were obtained using a gamma camera with either a low-energy (150 keV) or a medium-energy (200 keV) collimator. The value of CTR was calculated for two combinations : 1) 201 Tl and 99m Tc and 2) 201 Tl and 123 I. The energy window width at a photopeak was 20% for each radionuclide. The data were analyzed in two regions: a region where primary photons were mainly included in (region 1, 2 cm x 2 cm) and a region where both primary and scattered photons were included in (region 2, 10 cm x 10 cm). The results from analyses of the images showed that the CTR of Tl/Tc and Tl/I (0.064-0.101) were almost equal to those of Tc/Tl and I/Tl (0.056-0.148) for the region 1, but the CTR of Tl/Tc and Tl/I (0.212-0.381) were 2 times greater than those of Tc/Tl and I/Tl (0.092-0.172) for the region 2. Furthermore, these results showed good agreement between the CTR by energy spectra and those by images. For imaging with 123 I the medium-energy collimator had less blur than the low-energy collimator, in particular for the smaller source-to-collimator distance. In conclusion, the crosstalk contamination in dual-isotope study affects quantification of two radionuclides' activities. Our results are useful to evaluate images acquired using the dual-isotope technique and develop a new correction method for such crosstalk contamination by analyzing the energy spectra and images obtained. (author)

  4. Development of a BaF2 scintillation spectrometer for evaluation of photon energy spectra in workplaces around nuclear facilities

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Yoshimoto, Taka-aki; Kobayashi, Katsuhei; Akiyoshi, Tsunekazu; Tsujimoto, Tadashi; Nakashima, Yoshiyuki; Oda, Keiji.

    1997-01-01

    A BaF 2 scintillation spectrometer has been constructed for the determination of photon energy spectra in workplaces around nuclear facilities. Energy absorption spectra by the BaF 2 detector were calculated with the EGS4 Monte Carlo code in the energy region from 0.1 to 100 MeV and a response matrix of the spectrometer was obtained from the energy absorption spectra, of which the energy resolutions were modified to fit to the experimental results. With the irradiation experiments using neutron-capture gamma rays and those from radioactive sources, it became clear that photon energy spectra can be evaluated within an error of about 10% in the energy region 0.1 MeV to a few tens of megaelectronvolts. (author)

  5. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  6. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    International Nuclear Information System (INIS)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-01-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided

  7. High-energy kink in the single-particle spectra of cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Cojocaru, S. [Dipartimento di Fisica ' E. R. Caianiello' and C.N.I.S.M., Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy); Institute of Applied Physics, Chisinau 2028 (Moldova, Republic of); Citro, R. [Dipartimento di Fisica ' E. R. Caianiello' and C.N.I.S.M., Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy)], E-mail: citro@sa.infn.it; Marinaro, M. [Dipartimento di Fisica ' E. R. Caianiello' and C.N.I.S.M., Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy); I.I.A.S.S., Via G. Pellegrino, n. 19 84019 Vietri sul Mare (Italy)

    2008-04-01

    Within a phenomenological model where electrons are coupled to a bosonic mode in a generic form of damped oscillator, we analyze the high-energy kink recently observed in ARPES experiments on cuprates. It is shown that the model allows to describe the main anomalous features found in experiments, such as the broad incoherent spectral weight, the 'waterfall dispersion', its doping and temperature dependence. In contrast to the low-energy kink, presence of significant damping is required to account for the anomalies. The 'bosonic mode' is related to the incoherent excitation peak observed in optical conductivity spectra of cuprates.

  8. High-energy kink in the single-particle spectra of cuprates

    International Nuclear Information System (INIS)

    Cojocaru, S.; Citro, R.; Marinaro, M.

    2008-01-01

    Within a phenomenological model where electrons are coupled to a bosonic mode in a generic form of damped oscillator, we analyze the high-energy kink recently observed in ARPES experiments on cuprates. It is shown that the model allows to describe the main anomalous features found in experiments, such as the broad incoherent spectral weight, the 'waterfall dispersion', its doping and temperature dependence. In contrast to the low-energy kink, presence of significant damping is required to account for the anomalies. The 'bosonic mode' is related to the incoherent excitation peak observed in optical conductivity spectra of cuprates

  9. Bibliography on atomic energy levels and spectra. Special pub., Jul 1971--Jun 1975

    International Nuclear Information System (INIS)

    Hagan, L.

    1977-01-01

    This is the first supplement to the NBS Special Publication 363, 'Bibliography on Atomic Energy Levels and Spectra, July 1968 through June 1971,' and it covers the most recent literature from July 1971 through June 1975. It contains approximately 2150 references classified by subject for individual atoms and atomic ions. A number index identifies the references. An author index is included. References included contain data on energy levels, classified lines, wavelengths, Zeeman effect, Stark effect, hyperfine structure, isotope shift, ionization potentials, or theory which gives results for specific atoms or atomic ions

  10. Transverse energy distribution, charged particle multiplicities and spectra in 16O-nucleus collisions

    International Nuclear Information System (INIS)

    Sunier, J.W.

    1987-01-01

    The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4π calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on 16 O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for 16 O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs

  11. Proton energy spectra during ground level enhancements as measured by EPHIN aboard SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Heber, Bernd; Kuehl, Patrick; Klassen, Andreas; Dresing, Nina [Christian-Albrechts-Universitaet zu Kiel, 24118 Kiel (Germany); Gomez-Herrero, Raul [Universidad de Alcala (Spain)

    2016-07-01

    Ground Level Enhancements (GLEs) are solar energetic particle (SEP) events that are recorded by ground-based instrumentation. The energy of the particles is so high that they produce secondary particles in the Earth's atmosphere, i.e. protons and neutrons, which are detected as sudden increases in cosmic ray intensities measured by e.g. neutron monitors. Since the launch of SOHO in December 1995 the neutron monitor network recorded 16 GLEs. The Electron Proton Helium INstrument on board SOHO has been designed to measure protons and helium up to 53 MeV/nucleon as well as electrons up to 8.3 MeV. Above these energies, particles penetrate all detector elements and thus, a separation between different particle species becomes more complicated. Recently we developed a method that allows deriving the energy spectrum for penetrating protons up to more than 1 GeV. In this contribution we present the proton energy spectra and time profiles of above mentioned GLEs and compare them to previous measurements. Although there are differences of up to a factor two the overall shape of the energy spectra agree surprisingly well. Thus it has been demonstrated that EPHIN measurements are a valuable tool for understanding GLE.

  12. Precise Wavelengths and Energy Levels for the Spectra of Cr I, Mn I, and Mn III, and Branching Fractions for the Spectra of Fe II and Cr II

    Science.gov (United States)

    Nave, Gillian

    I propose to measure wavelengths and energy levels for the spectra of Cr I, Mn I, and Mn III covering the wavelength range 80 nm to 5500 nm, and oscillator strengths for Fe II and Cr II in the region 120 nm to 2500 nm. I shall also produce intensity calibrated atlases and linelists of the iron-neon and chromium-neon hollow cathode lamps that can be compared with astrophysical spectra. The spectra will be obtained from archival data from spectrometers at NIST and Kitt Peak National Observatory and additional experimental observations as necessary from Fourier transform (FT) and grating spectrometers at NIST. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. The radiometric calibration of the spectra will be improved in order to reduce the uncertainty of measured oscillator strengths in the near UV region and extend the wavelength range of these measurements down to 120 nm. These will complement and support the measurements of lifetimes and branching fractions by J. E. Lawler in the near UV region. An intensive effort by NIST and Imperial College London that was partly funded by previous NASA awards has resulted in comprehensive analyses of the spectra of Fe II, Cr II and Cu II, with similar analyses of Mn II, Ni II, and Sc II underway. The species included in this proposal will complete the analysis of the first two ionization stages of the elements titanium through nickel using the same techniques, and add the spectrum of Mn III - one of the most important doubly-ionized elements. The elements Cr I and Mn I give large numbers of spectral lines in spectra of cool stars and important absorption lines in the interstellar medium. The spectrum of Mn III is important in chemically peculiar stars and can often only be studied in the UV region. Analyses of many stellar spectra depend on comprehensive analyses of iron-group elements and are hampered by incomplete spectroscopic data. As a result of many decades of work by the group at the

  13. Alpha-particle energy spectra measured at forward angles in heavy-ion-induced reactions

    International Nuclear Information System (INIS)

    Borcea, C.; Cierlic, E.; Kalpakchieva, R.; Oganessian, Yu.Ts.; Penionzhkevich, Yu.E.

    1980-01-01

    Energy spectra have been measured for α-particles emitted in the bombardment of 159 Tb, 181 Ta, 197 Au, and 232 Th nuclei by 20 Ne, 22 Ne, and 40 Ar projectiles. The reaction products emitted in the angular range (0+-2)deg relative to the beam direction were analyzed using a magnetic spectrometer and detected by means of a semiconductor ΔE-E telescope. It was found that in all cases the experimentally measured maximum α-particle energy almost amounts to the maximum possible value calculated from the reaction energy balance for a two-body exit channel. A correlation was found between the measured absolute cross section in different target-projectile combinations and the α-particle binding energy in the target nuclei. On the basis of the obtained results a conclusion has been drawn that the α-particles are emitted in the early stage of the reaction

  14. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  15. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  16. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Aatrokoski, J.; Lähteenmäki, A.; Lavonen, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz......, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase...... of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data...

  17. Equivalent half-value thickness and mean energies of filtered X-ray bremsstrahlung spectra

    International Nuclear Information System (INIS)

    Seelentag, W.W.; Panzer, W.

    1980-01-01

    X-ray beam qualities are often conveniently described by half-value thicknesses (in connection with tube voltage and filtration). Aluminium and copper are commonly used as half-value thickness materials, and either material may be used in a large intermediate energy range. Data comparisons frequently require conversions from values in Al to values in Cu. Equivalent half-value thicknesses for polychromatic radiations depend on the shapes of the spectra, but spectrometry is too expensive for routine application. Half-value thicknesses in both Al and Cu have been determined for some 250 spectra (tube potentials 10 to 300 kV). The results are tabulated, and these results together with a nomogram enable conversion with an accuracy of better than +- 5% in most cases. (UK)

  18. Use of orthonormal polynomial expansion method to the description of the energy spectra of biological liquids

    International Nuclear Information System (INIS)

    Bogdanova, N.B.; Todorov, S.T.; Ososkov, G.A.

    2015-01-01

    Orthonormal polynomial expansion method (OPEM) is applied to the data obtained by the method of energy spectra to the liquid of the biomass of wheat in the case when herbicides are used. Since the biomass of a biological object contains liquid composed mainly of water, the method of water spectra is applicable to this case as well. For comparison, the similar data obtained from control sample consisting of wheat liquid without the application of herbicides are shown. The total variance OPEM is involved including errors in both dependent and independent variables. Special criteria are used for evaluating the optimal polynomial degree and the number of iterations. The presented numerical results show good agreement with the experimental data. The developed analysis frame is of interest for future analysis in theoretical ecology.

  19. Simulations of the Fe K α Energy Spectra from Gravitationally Microlensed Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Krawczynski, H. [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, CB 1105, St. Louis, MO 63130 (United States); Chartas, G., E-mail: krawcz@wustl.edu [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)

    2017-07-10

    The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131−1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K α emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K α line emission. In this paper, we combine detailed simulations of the emission of Fe K α photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. The simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131−1231 can only be reproduced for black hole inclinations exceeding 70° and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K α quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases.

  20. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  1. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    Science.gov (United States)

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  2. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  3. Experiments on studying solar cosmic radiation nuclear composition and energy spectra on the Prognoz-9 sattelite

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Gordeev, Yu.P.; Denisov, Yu.I.; Kolesov, G.Ya; Podorol'skij, A.N.; Nikitin, B.A.

    1986-01-01

    Performances of the SKI-1 device installed on board the artificial satellite of the Earth ''Prognoz-9'' and intended for measurements of a nuclear component of solar cosmic radiation are considered. The device permits to determine intensites of proton fluxes in the 10-30, 30-60, 60-90 and 90-120 MeV energy ranges and nuclei with charges z=1-30 and the following energies: 5-20 MeV for 1 H and 4 He nuclei, 10-26 MeV for C nuclei, 12-42 MeV for O nuclei, 23-80 MeV for Fe nuclei. The SKI-1 comprises two similar telescopes. The telescope includes 4 silicon semiconducting detectors. Energy spectra of solar cosmic radiation and data characterizing time dependence of their intensity are given

  4. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  5. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    Science.gov (United States)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-07-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.

  6. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters

    International Nuclear Information System (INIS)

    Ahmad, Q.R.; Bullard, T.V.; Cox, G.A.; Duba, C.A.; Formaggio, J.A.; Germani, J.V.; Hamian, A.A.; Hazama, R.; Heeger, K.M.; Howe, M.; Kazkaz, K.; Manor, J.; Meijer Drees, R.; Orrell, J.L.; Schaffer, K.K.; Smith, M.W.E.; Steiger, T.D.; Stonehill, L.C.; Allen, R.C.; Buehler, G.

    2002-01-01

    The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8 B spectrum, the night minus day rate is 14.0%±6.3% +1.5 -1.4 % of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the ν e asymmetry is found to be 7.0%±4.9% +1.3 -1.2 % . A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution

  7. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Bolotin, Kirill I; Shi, Su-Fei

    2008-01-01

    We form single-electron transistors from individual chemically synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are......, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are nonmagnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling....

  8. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies

  9. Photon energy dependent intensity variations observed in Auger spectra of free argon clusters

    International Nuclear Information System (INIS)

    Lundwall, M; Lindblad, A; Bergersen, H; Rander, T; Oehrwall, G; Tchaplyguine, M; Peredkov, S; Svensson, S; Bjoerneholm, O

    2006-01-01

    Photon energy dependent intensity variations are experimentally observed in the L 2,3 M 2,3 M 2,3 Auger spectra of argon clusters. Two cluster sizes are examined in the present study. Extrinsic scattering effects, both elastic and inelastic, involving the photoelectron are discussed and suggested as the explanation of the variations in the Auger signal. The atoms in the first few coordination shells surrounding the core-ionized atom are proposed to be the main targets for the scattering processes

  10. Characteristic electron energy loss spectra in SiC buried layers formed by C+ implantation into crystalline silicon

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Kwok, R.W.M.

    1998-01-01

    SiC buried layers were synthesized by a metal vapor vacuum arc ion source, with C + ions implanted into crystalline Si substrates. According to X-ray photoelectron spectroscopy, the characteristic electron energy loss spectra of the SiC buried layers were studied. It was found that the characteristic electron energy loss spectra depend on the profiles of the carbon content, and correlate well with the order of the buried layers

  11. The cyclopropene radical cation: Rovibrational level structure at low energies from high-resolution photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vasilatou, K.; Michaud, J. M.; Baykusheva, D.; Grassi, G.; Merkt, F. [Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich (Switzerland)

    2014-08-14

    The cyclopropene radical cation (c-C{sub 3}H{sub 4}{sup +}) is an important but poorly characterized three-membered-ring hydrocarbon. We report on a measurement of the high-resolution photoelectron and photoionization spectra of cyclopropene and several deuterated isotopomers, from which we have determined the rovibrational energy level structure of the X{sup ~+} {sup 2}B{sub 2} ground electronic state of c-C{sub 3}H{sub 4}{sup +} at low energies for the first time. The synthesis of the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, so that the photoelectron spectra of deuterated samples are superpositions of the spectra of several isotopomers. The rotationally resolved spectra indicate a C{sub 2v}-symmetric R{sub 0} structure for the ground electronic state of c-C{sub 3}H{sub 4}{sup +}. Two vibrational modes of c-C{sub 3}H{sub 4}{sup +} are found to have vibrational wave numbers below 300 cm{sup −1}, which is surprising for such a small cyclic hydrocarbon. The analysis of the isotopic shifts of the vibrational levels enabled the assignment of the lowest-frequency mode (fundamental wave number of ≈110 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to the CH{sub 2} torsional mode (ν{sub 8}{sup +}, A{sub 2} symmetry) and of the second-lowest-frequency mode (≈210 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to a mode combining a CH out-of-plane with a CH{sub 2} rocking motion (ν{sub 15}{sup +}, B{sub 2} symmetry). The potential energy along the CH{sub 2} torsional coordinate is flat near the equilibrium structure and leads to a pronounced anharmonicity.

  12. Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance

    International Nuclear Information System (INIS)

    Takada, Masahiro; Bridle, Sarah

    2007-01-01

    Several dark energy experiments are available from a single large-area imaging survey and may be combined to improve cosmological parameter constraints and/or test inherent systematics. Two promising experiments are cosmic shear power spectra and counts of galaxy clusters. However, the two experiments probe the same cosmic mass density field in large-scale structure, therefore the combination may be less powerful than first thought. We investigate the cross-covariance between the cosmic shear power spectra and the cluster counts based on the halo model approach, where the cross-covariance arises from the three-point correlations of the underlying mass density field. Fully taking into account the cross-covariance, as well as non-Gaussian errors on the lensing power spectrum covariance, we find a significant cross-correlation between the lensing power spectrum signals at multipoles l∼10 3 and the cluster counts containing halos with masses M∼>10 14 M o-dot . Including the cross-covariance for the combined measurement degrades and in some cases improves the total signal-to-noise (S/N) ratios up to ∼±20% relative to when the two are independent. For cosmological parameter determination, the cross-covariance has a smaller effect as a result of working in a multi-dimensional parameter space, implying that the two observables can be considered independent to a good approximation. We also discuss the fact that cluster count experiments using lensing-selected mass peaks could be more complementary to cosmic shear tomography than mass-selected cluster counts of the corresponding mass threshold. Using lensing selected clusters with a realistic usable detection threshold ((S/N) cluster ∼6 for a ground-based survey), the uncertainty on each dark energy parameter may be roughly halved by the combined experiments, relative to using the power spectra alone

  13. Energy spectra of vibron and cluster models in molecular and nuclear systems

    Science.gov (United States)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  14. Systematics of gamma-ray energy spectra for classification of workplaces around a nuclear facility

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Tsujimoto, Tadashi; Katsurayama, Kousuke

    1988-01-01

    Radiation dosimetry in workplaces has been carried out both for assurance of the doses complying with the acceptable values and for improvement of protection methods to minimise detriments of the exposed population. This means that it is very important not only to determine dosimetric quantities in workplaces but also to know features of radiation levels because information for radiation protection can often be derived from the radiometric quantities. Classification of workplaces based on the feature of gamma-ray energy spectra is one of the practical ways to realise radiation protection being taken into consideration of the radiometric quantities. Furthermore, demarcation of workplaces based on these radiometric quantities may be effective for improvement of radiation protection practice such as estimation of radiation doses, designing of radiation shields and other activities. From these points of view, gamma-ray energy spectra have been determined in various workplaces in nuclear facilities, and systematics of gamma-ray fields were tried for classification of workplaces on the basis of the feature appeared in health physical quantities such as effective dose equivalents and responses of dosemeters

  15. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    Science.gov (United States)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  16. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  17. Energy spectra and E2 transition rates of 124—130Ba

    Science.gov (United States)

    Sabri, H.; Seidi, M.

    2016-10-01

    In this paper, we have studied the energy spectra and B(E2) values of 124—130Ba isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes. We have used a transitional interacting Boson model (IBM), Hamiltonian which is based on affine SU(1,1) Lie algebra in the both IBM-1 and 2 versions and also the Catastrophe theory in combination with a coherent state formalism to generate energy surfaces and determine the exact values of control parameters. Our results for control parameters suggest a combination of U(5) and SO(6) dynamical symmetries in this isotopic chain. Also, the theoretical predictions can be rather well reproduce the experimental counterparts, when the control parameter is approached to the SO(6) limit.

  18. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al+ ion

    International Nuclear Information System (INIS)

    Kim, Dae-Soung; Kim, Young Soon

    2008-01-01

    In the present work, we report the photoionization cross sections of the Al + ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s 21 S and exited states 3s3p 1,3 P, 3s3d 1,3 D and 3s4s 1,3 S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al + ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s 21 S and 3s3p 3 P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation

  19. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-10-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory.

  20. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-01-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory. (author)

  1. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    Science.gov (United States)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  2. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    Science.gov (United States)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  3. Coda-derived source spectra, moment magnitudes and energy-moment scaling in the western Alps

    Science.gov (United States)

    Morasca, P.; Mayeda, K.; Malagnini, L.; Walter, William R.

    2005-01-01

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. for events ranging between MW~ 1.0 and ~5.0. Path corrections for consecutive narrow frequency bands ranging between 0.3 and 25.0 Hz were included using a simple 1-D model for five three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0 Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne cm by using independent moment magnitudes from long-period waveform modelling for three moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0 Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to fmax, as well as to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (i) we derived stable estimates of seismic moment, M0, (and hence MW) as well as radiated S-wave energy, (ES), from waveforms recorded by as few as one station, for events that were too small to be waveform modelled (i.e. events less than MW~ 3.5); (ii) the source spectra were used to derive an equivalent local magnitude, ML(coda), that is in excellent agreement with the network averaged values using direct S waves; (iii) scaled energy, , where ER, the radiated seismic energy, is comparable to results from other tectonically active regions (e.g. western USA, Japan) and supports the idea that there is a fundamental

  4. Determination of fast neutrons energy spectra by Monte-Carlo Method

    International Nuclear Information System (INIS)

    Chetaine, A.

    1986-01-01

    Two computation codes based on the Monte-Carlo method are established for studying the spectrometry of neutrons with 14 Mev as initial energy. The spectra are determined, on one hand, around a neutron generator Ti-T target and, on the other hand, in a big paraffin cylinder. One code allows to determine the spectrum of neutrons irradiating the sample at various distances from the Ti-T target versus accelerator parameters: high voltage, atomic or molecular nature of deuterons beam, target thickness and materials surrounding the target. The other code determines neutron spectra at various positions inside and outside the 30 x 30 cm paraffin cylinder. The validity of the procedure used in these codes is verified by determining the spectrum of neutrons crossing a big surface, using the procedure in question and using direct simulation method. The biasing procedure used in the two codes permits to have results with good statistics from a reduced number of drawings. 70 figs.; 62 refs.; 1 tab. (author)

  5. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    Science.gov (United States)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  6. Spatial structure of kinetic energy spectra in LES simulations of flow in an offshore wind farm

    Science.gov (United States)

    Fruh, Wolf-Gerrit; Creech, Angus

    2017-04-01

    The evolution of wind turbine and wind farm wakes was investigated numerically for the case of Lillgrund wind farm consisting of a tightly packed array of 48 turbines. The simulations for a number of wind directions at a free wind speed of just under the rated wind speed in a neutrally stable atmosphere were carried out using Large-Eddy Simulations with the adaptive Finite-Element CFD solver Fluidity. The results were interpolated from the irregularly spaced mesh nodes onto a regular grid with comparable spatial resolution at horizontal slices at various heights. To investigate the development of the wake as the flow evolves through the array, spectra of the kinetic energy in sections perpendicular to the wind directions within the wake and to the sides of the array were calculated. This paper will present the key features and spectral slopes of the flow as a function of downstream distance from the front turbine through and beyond the array. The main focus will be on the modification of the spectra as the flow crosses a row of turbines followed by its decay in the run-up to the next row, but we will also present to wake decay of the wind farm wake downstream of the array.

  7. Coordinated observations of electron energy spectra and electrostatic cyclotron waves during diffuse auroras

    International Nuclear Information System (INIS)

    Fontaine, D.; Perraut, S.; Cornilleau-Wehrlin, N.; Aparicio, B.; Bosqued, J.M.; Rodgers, D.

    1986-01-01

    An auroral precipitation event lasting several hours in the dusk sector on June 2, 1982 is studied in conjunction with three instruments: the EISCAT European Incoherent Scatter radar based in Scandinavia, the GEOS-2 European geostationary spacecraft, and the ARCAD-3 French-Soviet polar spacecraft. Electron energy spectra between about 1 and 10 keV, computed from EISCAT measurements, were in agreement, during a diffuse aurora period, with direct observations onboard ARCAD-3, and also with the plasma sheet component (3-10 keV) measured onboard GEOS-2 and available at large pitch-angles. This last comparison suggested the quasi-isotropy of equatorial electron fluxes. The electrostatic electron cyclotron harmonic waves, also observed onboard GEOS-2, were not found to be intense enough to cause by themselves the strong pitch-angle diffusion of electrons of a few keV

  8. Tensor decompositions for the analysis of atomic resolution electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Spiegelberg, Jakob; Rusz, Ján [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Pelckmans, Kristiaan [Department of Information Technology, Uppsala University, Box 337, S-751 05 Uppsala (Sweden)

    2017-04-15

    A selection of tensor decomposition techniques is presented for the detection of weak signals in electron energy loss spectroscopy (EELS) data. The focus of the analysis lies on the correct representation of the simulated spatial structure. An analysis scheme for EEL spectra combining two-dimensional and n-way decomposition methods is proposed. In particular, the performance of robust principal component analysis (ROBPCA), Tucker Decompositions using orthogonality constraints (Multilinear Singular Value Decomposition (MLSVD)) and Tucker decomposition without imposed constraints, canonical polyadic decomposition (CPD) and block term decompositions (BTD) on synthetic as well as experimental data is examined. - Highlights: • A scheme for compression and analysis of EELS or EDX data is proposed. • Several tensor decomposition techniques are presented for BSS on hyperspectral data. • Robust PCA and MLSVD are discussed for denoising of raw data.

  9. Simulation of the energy spectra of original versus recombined H2+ molecular ions transmitted through thin foils

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.; Garcia-Molina, Rafael

    2004-01-01

    This work presents the results of computer simulations for the energy spectra of original versus recombined H 2 + molecular ions transmitted through thin amorphous carbon foils, for a broad range of incident energies. A detailed description of the projectile motion through the target has been done, including nuclear scattering and Coulomb repulsion as well as electronic self-retarding and wake forces; the two latter are calculated in the dielectric formalism framework. Differences in the energy spectra of recombined and original transmitted H 2 + molecular ions clearly appear in the simulations, in agreement with the available experimental data. Our simulation code also differentiates the contributions due to original and to recombined H 2 + molecular ions when the energy spectra contain both contributions, a feature that could be used for experimental purposes in estimating the ratio between the number of original and recombined H 2 + molecular ions transmitted through thin foils

  10. DLTS spectra of silicon diodes with p+-n-junction irradiated with high energy krypton ions

    Directory of Open Access Journals (Sweden)

    Nikolai A. Poklonski

    2016-06-01

    Full Text Available p+-n-Diodes have been studied. The diodes were manufactured on wafers (thickness 460 μm, (111 plane of uniformly phosphorus doped float-zone-grown single-crystal silicon. The resistivity of silicon was 90 Ω cm and the phosphorus concentration was 5×1013 cm−3. The diodes were irradiated with 250 MeV krypton ions. The irradiation fluence was 108 cm−2. Deep-level transient spectroscopy (DLTS was used to examine the defects induced by high energy krypton ion implantation. The DLTS spectra were recorded at a frequency of 1 MHz in the 78–290 K temperature range. The capacity-voltage characteristics have been measured at a reverse bias voltage from 0 to −19 V at a frequency of 1 MHz. We show that the main irradiation-induced defects are A-centers and divacancies. The behavior of DLTS spectra in the 150–260 K temperature range depends essentially on the emission voltage Ue. The variation of Ue allows us to separate the contributions of different defects into the DLTS spectrum in the 150–260 K temperature range. We show that, in addition to A-centers and divacancies, irradiation produces multivacancy complexes with the energy level Et = Ec−(0.5±0.02 eV and an electron capture cross section of ~4×10–13 cm2.

  11. Study of soft X-ray energy spectra from gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Zou Xiaobing; Wang Xinxin; Zhang Guixin; Han Min; Luo Chengmu

    2006-01-01

    A ROSS-FILTER-PIN spectrometer in the spectral range of 0.28 keV-1.56 keV was developed to study the soft X-ray radiation emitted from gas-puff Z-pinch plasma. It is composed of five channels covering the energy interval of interest without gaps. Soft X-ray spectral energy cuts were determined by the L absorption edges of selected filter elements (K absorption edges being used for light filter elements), and the optimum thickness of filter material was designed using computer code. To minimize the residual sensitivity outside the sensitivity range of each channel, element of the first filter was added into the second filter of all the Ross pair. To diminish the area of each filter, PIN detector with small sensitive area of 1 mm 2 was adopted for the spectrometer. A filter with small area is easy to fabricate and would be helpful to withstand the Z-pinch discharge shock wave. With this ROSS-FILTER-PIN spectrometer, the energy spectra of soft X-ray from a small gas-puff Z-pinch were investigated, and the correlation between the soft X-ray yield and the plasma implosion state was also studied. (authors)

  12. Dynamical and many-body correlation effects in the kinetic energy spectra of isotopes produced in nuclear multifragmentation

    Science.gov (United States)

    Souza, S. R.; Donangelo, R.; Lynch, W. G.; Tsang, M. B.

    2018-03-01

    The properties of the kinetic energy spectra of light isotopes produced in the breakup of a nuclear source and during the de-excitation of its products are examined. The initial stage, at which the hot fragments are created, is modeled by the statistical multifragmentation model, whereas the Weisskopf-Ewing evaporation treatment is adopted to describe the subsequent fragment de-excitation, as they follow their classical trajectories dictated by the Coulomb repulsion among them. The energy spectra obtained are compared to available experimental data. The influence of the fusion cross section entering into the evaporation treatment is investigated and its influence on the qualitative aspects of the energy spectra turns out to be small. Although these aspects can be fairly well described by the model, the underlying physics associated with the quantitative discrepancies remains to be understood.

  13. Electron correlation effects in the (e,2e) valence separation energy spectra of krypton

    International Nuclear Information System (INIS)

    Fuss, I.; Glass, R.; McCarthy, I.E.; Minchinton, A.; Weigold, E.

    1981-04-01

    Separation energy spectra and momentum distributions for the valence orbitals of krypton have been obtained at a total electron energy of 1200eV using (e,2e) spectroscopy with symmetric kinematics. The spectroscopic strength of the 4s orbital is found to be significantly split among ion states ranging into the continuum, whereas the spectroscopic strength of the 4p ground state transition is found to be essentially unity. The momentum distributions for the 4p -1 and 4s -1 transitions are well described by the corresponding Hartree-Fock ground state orbital momentum distributions. A number of configuration interaction calculations using predominantly the 4s4p 6 and 4s 2 4p 4 4d ( 2 Ssub(1/2)) configurations, have been carried out for the main 4s - 1 ion eigenstates. The results, although confirming severe splitting of the 4s -1 spectroscopic strength, over-estimate the 4s4p 6 component of the lowest 2 S level in the ion. The data provides a sensitive test of the variational determination of the parameters of pseudostates representing configurations not treated explicitly

  14. Nuclear composition and energy spectra in the 1969 April 12 solar-particle event.

    Science.gov (United States)

    Bertsch, D. L.; Fichtel, C. E.; Reames, D. V.

    1972-01-01

    Measurement of the charge composition for several of the multicharged nuclei and the energy spectra for hydrogen, helium, and medium (6 less than or equal to Z less than or equal to 9) nuclei in the Apr. 12, 1969, solar-particle event. The energy/nucleon spectral shape of the medium nuclei was again the same as that of the helium nuclei, and the ratio of these two species was consistent with the present best average of 58 plus or minus 5. By combining the results obtained here with previous work, improved estimates of the Ne/O and Mg/O values of 0.16 plus or minus 0.03 and 0.056 plus or minus 0.014, respectively, were obtained. Silicon and sulfur abundances relative to O were determined to be 0.208 plus or minus 0.008 plus or minus 0.006, respectively, and 85% confidence upper limits for Ar and Ca relative to O of 0.017 and 0.010 were obtained. Previously, these last four nuclei had only been listed as a group.

  15. Attached flow structure and streamwise energy spectra in a turbulent boundary layer

    Science.gov (United States)

    Srinath, S.; Vassilicos, J. C.; Cuvier, C.; Laval, J.-P.; Stanislas, M.; Foucaut, J.-M.

    2018-05-01

    On the basis of (i) particle image velocimetry data of a turbulent boundary layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that the scalings of the streamwise energy spectrum E11(kx) in a wave-number range directly affected by the wall are determined by wall-attached eddies but are not given by the Townsend-Perry attached eddy model's prediction of these spectra, at least at the Reynolds numbers Reτ considered here which are between 103 and 104. Instead, we find E11(kx) ˜kx-1 -p where p varies smoothly with distance to the wall from negative values in the buffer layer to positive values in the inertial layer. The exponent p characterizes the turbulence levels inside wall-attached streaky structures conditional on the length of these structures. A particular consequence is that the skin friction velocity is not sufficient to scale E11(kx) for wave numbers directly affected by the wall.

  16. Analysis of cavity effect on space- and time-dependent fast and thermal neutron energy spectra

    International Nuclear Information System (INIS)

    Kudo, Katsuhisa; Narita, Masakuni; Ozawa, Yasutomo.

    1975-01-01

    The effects of the presence of a central cavity on the space- and time-dependent neutron energy spectra in both thermal and fast neutron systems are analyzed theoretically with use made of the multi-group one-dimensional time-dependent Ssub(n) method. The thermal neutron field is also analyzed for the case of a fundamental time eigenvalue problem with the time-dependent P 1 approximation. The cavity radius is variable, and the system radius for graphite is 120 cm and for the other materials 7 cm. From the analysis of the time-dependent Ssub(n) calculations in the non-multiplying systems of polythene, light water and graphite, cavity heating is the dominant effect for the slowing-down spectrum in the initial period following fast neutron burst, and when the slowing-down spectrum comes into the thermal energy region, cavity heating shifts to cavity cooling. In the multiplying system of 235 U, cavity cooling also takes place as the spectrum approaches equilibrium after the fast neutron burst is injected. The mechanism of cavity cooling is explained analytically for the case of thermal neutron field to illustrate its physical aspects, using the time-dependent P 1 approximation. An example is given for the case of light water. (auth.)

  17. Construction of Hamiltonians by supervised learning of energy and entanglement spectra

    Science.gov (United States)

    Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki

    2018-02-01

    Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.

  18. Atmospheric fluxes and energy spectra of positive and negative muons from Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Vulpescu, B.; Brancus, I.M.; Badea, A.F.; Duma, M.; Bozdog, H.; Petru, M.; Rebel, H.; Weintz, J.; Mathes, H.J.; Haungs, A.; Roth, M.

    1999-01-01

    Cosmic ray muons observed with detectors placed at the ground level originate from the decay of mesons produced by interactions of high energy cosmic ray primaries with air nuclei, mainly due to the decay of charged pions and kaons, processes which lead also to the production of atmospheric neutrinos. Prompted by recent accurate measurements of the charge ratio of atmospheric muons, the flux and energy spectra of positive and negative muons have been studied on the basis of Monte-Carlo simulations (CORSIKA) of the EAS development, using the GHEISHA and VENUS model as generators. The results have been analysed and compared with data under the aspect of their sensitivity to details of the hadronic interaction, in particular in the 3 GeV/n - 20 TeV/n region. The muon charge ratio proves to be a sensitive test quantity for the production model and propagation and it exhibits peculiar features at low energies (< 1 GeV). Results are shown, from magnetic spectrometer experiments in the difficult region of low momenta as well as the precise values obtained with the WILLI detector by observing the lifetime of negative muons stopped in material. The CORSIKA predictions on the charge ratio show a drop below 1 for very low muon momentum and needs further experimental investigations. The EAST-WEST effect is characteristic for low muon momenta and is well reproduced by simulations. The WILLI detector is planned to be developed in a new configuration, being able to investigate with high accuracy the muon charge ratio at different zenithal and azimuthal directions. (authors)

  19. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    International Nuclear Information System (INIS)

    Kroc, T.K.

    2009-01-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  20. Finite temperature effects on the X-ray absorption spectra of energy related materials

    Science.gov (United States)

    Pascal, Tod; Prendergast, David

    2014-03-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.

  1. Differential flux measurement of atmospheric pion, muon, electron and positron energy spectra at balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Finetti, N. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Stephens, S.A. [Tata Institute of Fundamental Researc, Bombay (International Commission on Radiation Units and Measurements); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ. Las Cruces, NM (United States). Particle Astrophysics Lab.

    1995-09-01

    The fluxes of atmospheric electrons, positrons, positive and negative muons and negative pions have been determined using the NMSU Wizard-MASS2 balloons-borne instrument. The instrument was launched from Fort Sumner, New Mexico, (geomagnetic cut-off about 4.5 GV/c) on september 23, 1991. The flight lasted 9.8 hours and remained above 100.000 ft. Muons and negative pions were observed and their momenta were determined. Since these particles are not a part of the primary component, the measurement of their fluxes provides information regarding production and propagation of secondary particles in the atmosphere. Similarly, observations of electrons and positrons well below the geomagnetic cut-off provides insight into electromagnetic cascade processes in the upper atmosphere. In addition, the determination of the energy spectra of rare particles such as positrons can be used for background subtraction for cosmic ray experiments gathering data below a few g/cm{sup 2} of overlying atmosphere.

  2. Modeling of X-ray Images and Energy Spectra Produced by Stepping Lightning Leaders

    Science.gov (United States)

    Xu, Wei; Marshall, Robert A.; Celestin, Sebastien; Pasko, Victor P.

    2017-11-01

    Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as would be detected by TERA and directly compare with the observational data during event MSE 10-01. The good agreement obtained between TERA measurements and theoretical calculations supports the mechanism of X-ray production by thermal runaway electrons during the negative corona flash stage of stepping lightning leaders. Modeling results also suggest that measurements of X-ray bursts can be used to estimate the approximate range of potential drop of lightning leaders. Moreover, the X-ray images produced during the leader stepping process in natural negative CG discharges, including both the evolution and morphological features, are theoretically quantified. We show that the compact emission pattern as recently observed in X-ray images is likely produced by X-rays originating from the source region, and the diffuse emission pattern can be explained by the Compton scattering effects.

  3. Theoretical investigation of the energy spectra of the oxygen isoelectronic sequences taking into account relativistic corrections

    International Nuclear Information System (INIS)

    Bogdanovich, P.O.; Shadzhyuvene, S.D.; Boruta, I.I.; Rudzikas, Z.B.

    1976-01-01

    A method for calculating energy spectra of atoms and ions having complex electron configurations is developed which takes into account relativistic corrections of the order of magnitude of the square of the structure constant. The corrections included are caused by the dependence of the electron mass on velocity; by orbit-orbit interaction; by contact interaction and by spin-orbit interaction. The method described is realized in the form of universal algorithms and programs which are written in the Fortran 4 in the BESM-6 version. Examples are given of calculating the ground ls 2 2s 2 2p 6 configuration and two excited ls 2 2s 2 2p 3 3s and ls 2 2s2p 5 ones of the isoelectronic oxygen series, both with and without taking into account the relativistic corrections. The value of the nuclear charge varies from Z=8 to Z=80. The contribution of relativistic corrections increases with Z. The effect of relativistic corrections on the distance between the centers of gravity of ground and excited configurations increases with Z. The comparison of the results obtained with experimental data is made

  4. Hadronic energy spectra from nuclear collisions: Effects from collective transverse flow and the phase transition to quark matter

    International Nuclear Information System (INIS)

    Heinz, U.

    1988-11-01

    I give an overview of the processes determining the shape of energy spectra of hadrons emitted in relativistic nuclear collisions, and discuss how one can extract from them information on the presence of collective transverse flow and on the transition to quark-gluon matter in such collisions. 6 refs., 3 figs

  5. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.

    Science.gov (United States)

    Platten, David John

    2014-06-01

    Existing data used to calculate the barrier transmission of scattered radiation from computed tomography (CT) are based on primary beam CT energy spectra. This study uses the EGSnrc Monte Carlo system and Epp user code to determine the energy spectra of CT scatter from four different primary CT beams passing through an ICRP 110 male reference phantom. Each scatter spectrum was used as a broad-beam x-ray source in transmission simulations through seventeen thicknesses of lead (0.00-3.50 mm). A fit of transmission data to lead thickness was performed to obtain α, β and γ parameters for each spectrum. The mean energy of the scatter spectra were up to 12.3 keV lower than that of the primary spectrum. For 120 kVp scatter beams the transmission through lead was at least 50% less than predicted by existing data for thicknesses of 1.5 mm and greater; at least 30% less transmission was seen for 140 kVp scatter beams. This work has shown that the mean energy and half-value layer of CT scatter spectra are lower than those of the corresponding primary beam. The transmission of CT scatter radiation through lead is lower than that calculated with currently available data. Using the data from this work will result in less lead shielding being required for CT scanner installations.

  6. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    Science.gov (United States)

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  7. Unusual features of proton and α-spectra from low-energy heavy-ion ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 1. Unusual features ... Keywords. Proton and α-spectra; heavy-ion reaction; broad structures; nuclear level density. ... The broad structures in the -spectra cannot be fully explained within the statistical model even with the enhanced level density. In this case ...

  8. Testing electric field models using ring current ion energy spectra from the Equator-S ion composition (ESIC instrument

    Directory of Open Access Journals (Sweden)

    L. M. Kistler

    Full Text Available During the main and early recovery phase of a geomagnetic storm on February 18, 1998, the Equator-S ion composition instrument (ESIC observed spectral features which typically represent the differences in loss along the drift path in the energy range (5–15 keV/e where the drift changes from being E × B dominated to being gradient and curvature drift dominated. We compare the expected energy spectra modeled using a Volland-Stern electric field and a Weimer electric field, assuming charge exchange along the drift path, with the observed energy spectra for H+ and O+. We find that using the Weimer electric field gives much better agreement with the spectral features, and with the observed losses. Neither model, however, accurately predicts the energies of the observed minima.

    Key words. Magnetospheric physics (energetic particles trapped; plasma convection; storms and substorms

  9. Derivation of the radial profile of ion temperature from the measured energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S

    1980-01-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The measured ion temperature obtained from the only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The actual ion temperature profile is derived from all observed energy spectra by the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. The reflection coefficient is adjusted so that the calculated ion temperature profile should be the best fit for the ion temperatures measured by the Doppler broadening of the visible lines He II 4686 A and H-alpha at the relevant radial positions.

  10. Derivation of the radial profile of ion temperature from the 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1980-01-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The ''measured'' ion temperature obtained from only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The ''actual'' ion temperature profile is derived from all observed energy spectra by using the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. In this numerical analysis, the reflection coefficient is adjusted so that the above calculated ion temperature profile should be best fit for the ion temperatures measured by the Doppler broadening of the visible lines HeII 4686 A and H sub(α) at the relevant radial positions. (author)

  11. Derivation of the radial profile of ion temperature from the 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The ''measured'' ion temperature obtained from only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The ''actual'' ion temperature profile is derived from all observed energy spectra by using the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. In this numerical analysis, the reflection coefficient is adjusted so that the above calculated ion temperature profile should be best fit for the ion temperatures measured by the Doppler broadening of the visible lines HeII 4686 A and H sub(..cap alpha..) at the relevant radial positions.

  12. 1012 - 1015 eV interaction deduced from energy spectra of gamma-ray and hadrons at airplane altitude

    International Nuclear Information System (INIS)

    Takahashi, Yoshiyuki

    1978-01-01

    The present paper deals with the latest results of the spectral measurements of high energy cosmic ray performed on an airplane with an emulsion chamber. The hadronic component together with the gamma-ray component were observed in the region of gamma energy not smaller than 30 GeV and gamma energy sum not larger than 40 TeV. It was observed that the integral spectra of hadronic showers showed less steep power than those obtained at mountain stations. On the other hand, the integral spectra of gamma-ray in the energy region from 40 GeV to 40 TeV showed steeper power than those of hadronic component. The zenith angle distributions of hadrons and gamma-ray were inspected, and it was confirmed that the observed distributions were well reproduced by the theoretical curves with the appropriate attenuation length. (Yoshimori, M.)

  13. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    Science.gov (United States)

    Fletcher, J. B.; McGarr, A.

    2011-08-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f-2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω-2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  14. Portable instrument for measuring neutron energy spectra and neutron dose in a mixed n-γ field

    International Nuclear Information System (INIS)

    Daniels, C. J.; Silberberg, J. L.

    1980-01-01

    A portable high-speed neutron spectrometer consists of an organic scintillator, a true zero-crossing pulse shape discriminator, a 1 MHZ conversion-rate multichannel analyzer, an 8-bit microcomputer, and appropriate displays. The device can be used to measure neutron energy spectra and kerma rate in intense n- gamma radiation fields in which the neutron energy is from 5 to 15 MEV

  15. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.

    Science.gov (United States)

    Zhang, Du; Su, Neil Qiang; Yang, Weitao

    2017-07-20

    The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.

  16. Order statistics and energy-ordered histograms: an analytical approach to continuum gamma-ray spectra

    International Nuclear Information System (INIS)

    Urrego, J.P.; Cristancho, F.

    2001-01-01

    Full text: Fusion-evaporation heavy ion collisions have enable us to explore new regions of phase space E - I, particularly high spin and excitation energy regions, where level densities are so high that modern detectors are unable to resolve individual gamma-ray transitions and consequently the resulting spectrum is continuous and undoubtedly contains a lot of new physics. In spite of that, very few experiments have been designed to extract conclusions about behavior of nuclei in continuum, thus in order to obtain a continuum spectroscopy it is necessary to apply to numerical simulations. In this sense GAMBLE a Monte Carlo based code- is a powerful tool that with some modifications allows us to test a new method to analyze the outcome of experiments focused on the properties of phase space regions in nuclear continuum: The use of Energy-Ordered Spectra (EOS) . Let's suppose that in a experiment is collected all gamma radiation emitted by a specific nucleus in a fixed intrinsic excitation energy range and that the different EOS are constructed. Although it has been shown that comparisons between such EOS and Monte Carlo simulations give information about the level density and the strength function their interpretation is not too clear because the large number of input values needed in a code like GAMBLE. On the other hand, if we could have an analytical description of EOS, the understanding of the underlying physics would be more simple because one could control exactly the involved variables and eventually simulation would be unnecessary. Promissory advances in that direction come from mathematical theory of Order Statistics (OS) In this work it is described the modified code GAMBLE and some simulated EOS for 170 Hf are shown. The simulations are made with different formulations for both level density (Fermi Gas at constant and variable temperature) and gamma strength function (GDR, single particle). Further it is described in detail how OS are employed in the

  17. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Jonas, David M.

    2018-02-01

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a

  18. Use of the foil activation method with arbitrary trial functions to determine neutron energy spectra

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-01-01

    Neutron Spectra have been measured by the foil activation method in thirteen different environments in and around the Sandia Pulsed Reactor (SPR-III), the White Sands Missile Range FBR, and the Annular Core Research Reactor (ACRR). The unfolded spectra were obtained by using the SANDII code in a manner which was not dependent on the initial trial. This altered technique is, therefore, better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial functions

  19. High-energy X-ray spectra of Cygnus XR-1 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1979-01-01

    X-ray spectra of Cygnus XR-1 were measured with the scintillation spectrometer aboard the OSO 8 satellite during a period of one-and-one-half to three weeks in each of the years from 1975 to 1977. Typical spectra of the source between 15 and 250 keV are presented and the spectra are found to be well represented by a single power-law expression whose photon number spectral index is different for the two intensity states that were considered. The observed pivoting effect is consistent with two-temperature accretion disk models of the X-ray emitting region.

  20. Statistical theory for calculating energy spectra of β-delayed neutrons

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Moeller, Peter; Wilson, William B.

    2008-01-01

    Theoretical β-delayed neutron spectra are calculated based on the Quasi-particle Random Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after β-decay to the granddaughter residual are more accurately calculated than previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra reasonably agree with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors. (authors)

  1. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra for Applications in Solar Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jessen, Wilko [German Aerospace Center (DLR); Wilbert, Stefan [German Aerospace Center (DLR); Gueymard, Christian A. [Solar Consulting Services; Polo, Jesus [CIEMAT; Bian, Zeqiang [China Meteorological Administration; Driesse, Anton [Photovoltaic Performance Labs; Marzo, Aitor [University of Antofagasta; Armstrong, Peter [Masdar Institute of Science & Technology; Vignola, Frank [University of Oregon; Ramirez, Lourdes [CIEMAT

    2018-04-01

    Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of this ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches

  2. Observation of luminescent spectra in low energy ion-neutral collisions. Progress report, June 1, 1976--May 31, 1978

    International Nuclear Information System (INIS)

    Leventhal, J.J.

    1978-01-01

    The experiments reported provide detailed information on the fundamental nature of energy transfer processes in ion-molecule or atom-molecule collisions. By combining ion beam techniques with emission spectroscopy, data are obtained which directly lead to internal energy state distributions of atomic and molecular products of these collisions. Data are in the form of emission spectra from nascent energetically excited species formed in the energy transfer process. Changes in the collision-produced spectra as a function of beam kinetic energy yield information on the extent of energy conversion (kinetic → internal) in the collision process. Some of the specific energy transfer processes studied are applicable to the problem of achieving inverted energy level populations in high pressure gas lasers. Also discussed are experiments designed to test theoretical models which predict product energy partitioning in molecular collisions. Because experimentally determined energy state distributions deviate substantially from the predicted distributions it is concluded that additional theoretical work is needed. A simple model was developed which qualitatively reproduces the important features of the data. This model, which is considerably more general than those previously available is outlined and briefly discussed

  3. Conformation of antifreeze glycoproteins as determined from conformational energy calculations and fully assigned proton NMR spectra

    International Nuclear Information System (INIS)

    Bush, C.A.; Rao, B.N.N.

    1986-01-01

    The 1 H NMR spectra of AFGP's ranging in molecular weight from 2600 to 30,000 Daltons isolated from several different species of polar fish have been measured. The spectrum of AFGP 1-4 from Pagothenia borchgrevinki with an average of 30 repeating subunits has a single resonance for each proton of the glycotripeptide repeating unit, (ala-[gal-(β-1→3) galNAc-(α--O-]thr-ala)/sub n/. Its 1 H NMR spectrum including resonances of the amide protons has been completely assigned. Coupling constants and nuclear Overhauser enhancements (n.O.e.) between protons on distant residues imply conformational order. The 2600 dalton molecular weight glycopeptides (AFGP-8) have pro in place of ala at certain specific points in the sequence and AFGP-8R of Eleginus gracilis has arg in place of one thr. The resonances of pro and arg were assigned by decoupling. The resonances of the carboxy and amino terminals have distinct chemical shifts and were assigned in AFGP-8 of Boreogadus saida by titration. n.O.e. between α--protons and amide protons of the adjacent residue (sequential n.O.e.) were used in assignments of additional resonances and to assign the distinctive resonances of thr followed by pro. Conformational energy calculations on the repeating glycotripeptide subunit of AFGP show that the α--glucosidic linkage has a fixed conformation while the β--linkage is less rigid. A conformational model for AFGP 1-4, which is based on the calculations has the peptide in an extended left-handed helix with three residues per turn similar to polyproline II. The model is consistent with CD data, amide proton coupling constants, temperature dependence of amide proton chemical shifts

  4. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  5. Estimation of the sea level muon spectra at different zenith angles below 10 TeV energy

    CERN Document Server

    Mitra, M; Pal, P B; Bhattacharya, D P

    2001-01-01

    The moderate energy primary cosmic ray nucleon spectrum has been calculated from the direct measurements of Webber et al. (1987), Seo et al. (1992) and Menn et al. (1997). Along with the other results surveyed by Swordy (1993). Using these directly measured primary mass composition results all particle primary nucleon energy spectrum has been constructed using superposition model to estimate the energy spectra of muons from the decay of the cosmic ray non-prompt and prompt mesons in the atmosphere. The Z-factors have been estimated from the CERN LEBC-EHS on the Lorentz invariant cross section results on pp to pi /sup +or-/X and pp to K/sup +or-/X inclusive reactions and FNAL data on pi /sup +or-/p to pi /sup +or-/X reactions, and duly corrected for A-A collisions. Using these Z-factors the meson energy spectra in the atmosphere have been calculated. The sea level muon energy spectra at zenith angles 0 degrees , 45 degrees , 72 degrees , and 75 degrees have been derived from the decay of non-prompt mesons by a...

  6. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    International Nuclear Information System (INIS)

    Xue, L.C.; Wu, L.Q.; Li, S.Q.; Li, Z.Z.; Tang, G.D.; Qi, W.H.; Ge, X.S.; Ding, L.L.

    2016-01-01

    It is very important to determine electron transition energies (E_t_r) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν)"2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E_t_r) between the anions and cations, Fe"2"+ and Fe"3"+ at the (A) and [B] sites and Ni"2"+ at the [B] sites for the (A)[B]_2O_4 spinel ferrite samples Co_xNi_0_._7_−_xFe_2_._3O_4 (0.0≤x≤0.3), Cr_xNi_0_._7Fe_2_._3_−_xO_4 (0.0≤x≤0.3) and Fe_3O_4. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  7. Measurement of thermal neutron spectra using LINAC in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-01-01

    The exact grasp of thermal neutron spectra in a core region is very important for obtaining accurate thermal neutron group constants in the calculation for the nuclear design of a reactor core. For the accurate grasp of thermal neutron spectra, the capability of thermal neutron spectra to describe the moderator cross-sections for thermal neutron scattering is a key factor. Accordingly, 0 deg angular thermal neutron spectra were measured by the time of flight (TOF) method using the JAERI LINAC as a pulsed neutron source, for light water system added with Cd and In, high temperature graphite system added with boron, and light water-natural uranium heterogeneous multiplication system among the reactor moderators of light water or graphite systems. First, the equations to give the time of flight and neutron flux by TOF method were analyzed, and several corrections were investigated, such as those for detector efficiency, background, the transmission coefficient of air and the Al window of a flight tube, mean emission time of neutrons, and the distortion effect of re-entrant hole on thermal neutron spectra. Then, the experimental system, results and calculation were reported for the experiments on the above three moderator systems. Finally, the measurement of fast neutron spectra in natural uranium system and that of the efficiency of a 6 Li glass scintillator detector are described. (Wakatsuki, Y.)

  8. Estimation of sea level muon energy spectrum at high latitude from the latest primary nucleon spectra near the top of the atmosphere

    CERN Document Server

    Haldar, T K; Bhattacharya, D P; 10.1023/A:1024822518795

    2003-01-01

    Vertical muon energy spectra at sea level have been estimated from a directly measured primary cosmic-ray nucleon spectrum. The hadronic energy moments have been calculated from the CERN LEBC EHS data on the Lorentz invariant cross-section results on pp to pi /sup +or-/X and pp to K/sup +or-/X inclusive reactions and are duly corrected for A-A collisions. Finally, the sea level muon energy spectra have been calculated from the decay of conventional mesons, using standard formulation. The estimated muon spectra are found to be in good agreement with the directly measured muon spectra obtained from different experiments. (32 refs).

  9. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Abolfazl, E-mail: sahosseini@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Tehran 8639-11365 (Iran, Islamic Republic of); Afrakoti, Iman Esmaili Paeen [Faculty of Engineering & Technology, University of Mazandaran, Pasdaran Street, P.O. Box: 416, Babolsar 47415 (Iran, Islamic Republic of)

    2017-04-11

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The {sup 241}Am-{sup 9}Be and {sup 252}Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions. - Highlights: • The neutron pulse height distribution was simulated using MCNPX-ESUT. • The energy spectrum of the neutron source was unfolded using GMDH. • The energy spectrum of the neutron source was

  10. Transverse momentum spectra of hadrons in p + p collisions at CERN SPS energies from the UrQMD transport model

    Science.gov (United States)

    Ozvenchuk, V.; Rybicki, A.

    2018-05-01

    The UrQMD transport model, version 3.4, is used to study the new experimental data on transverse momentum spectra of π±, K±, p and p bar produced in inelastic p + p interactions at SPS energies, recently published by the NA61/SHINE Collaboration. The comparison of model predictions to these new measurements is presented as a function of collision energy for central and forward particle rapidity intervals. In addition, the inverse slope parameters characterizing the transverse momentum distributions are extracted from the predicted spectra and compared to the corresponding values obtained from NA61/SHINE distributions, as a function of particle rapidity and collision energy. A complex pattern of deviations between the experimental data and the UrQMD model emerges. For charged pions, the fair agreement visible at top SPS energies deteriorates with the decreasing energy. For charged K mesons, UrQMD significantly underpredicts positive kaon production at lower beam momenta. It also underpredicts the central rapidity proton yield at top collision energy and overpredicts antiproton production at all considered energies. We conclude that the new experimental data analyzed in this paper still constitute a challenge for the present version of the model.

  11. Correction of measured charged-particle spectra for energy losses in the target - A comparison of three methods

    CERN Document Server

    Soederberg, J; Alm-Carlsson, G; Olsson, N

    2002-01-01

    The experimental facility, MEDLEY, at the The Svedberg Laboratory in Uppsala, has been constructed to measure neutron-induced charged-particle production cross-sections for (n, xp), (n, xd), (n, xt), (n, x sup 3 He) and (n, x alpha) reactions at neutron energies up to 100 MeV. Corrections for the energy loss of the charged particles in the target are needed in these measurements, as well as for loss of particles. Different approaches have been used in the literature to solve this problem. In this work, a stripping method is developed, which is compared with other methods developed by Rezentes et al. and Slypen et al. The results obtained using the three codes are similar and they could all be used for correction of experimental charged-particle spectra. Statistical fluctuations in the measured spectra cause problems independent of the applied technique, but the way to handle it differs in the three codes.

  12. The secondary neutrons spectra of 235U, 238U for incident energy range 1-2.5 MeV

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.; Balitsky, A.V.; Baryba, V.Ja.; Androsenko, P.A.; Androsenko, A.A.

    1993-01-01

    Spectra of inelastic scattered neutrons and fission neutrons were measured with neutron time of flight spectrometer. The solid tritium target was used as a neutron source. The energy distribution of neutrons on the sample was calculated with Monte-Carlo code, taking into account interaction income protons inside target and reaction kinematics. The detector efficiency was determined with 252 Cf source. The multiple scattering and absorption corrections were calculated with codes packet BRAND. Our results confirm ENDF/B-6 data library. (author)

  13. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  14. Neutron leakage spectra from Be, Pb and U spheres at 14 MeV energy

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Devkin, B.V.

    1989-01-01

    Experimental data on neutron leakage spectra from beryllium, lead and uranium spheres with a central 14 MeV neutron source using a time-of-flight spectrometer have been measured. The data were compared with those calculated with the BLANK code using different nuclear data files. 15 refs, 1 fig., 2 tabs

  15. Exciton spectra and energy band structure of Cu{sub 2}ZnSiSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Guc, M., E-mail: gmax@phys.asm.md [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Levcenko, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Dermenji, L. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Gurieva, G. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Schorr, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Syrbu, N.N. [Technical University of Moldova, Chisinau MD-2004, Republic of Moldova (Moldova, Republic of); Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of)

    2014-02-25

    Highlights: • Reflection spectra of Cu{sub 2}ZnSiSe{sub 4} were studied for E ⊥ c and E || c light polarizations. • Four excitonic series are revealed in the reflection spectra at 10 K. • Model of exciton dispersion and the presence of a dead-layer. • Exciton Rydberg energies and free carriers effective masses were calculated. • Reflectivity for E ⊥ c and E || c were analyzed in the region 3–6 eV at 300 K. -- Abstract: Exciton spectra are studied in Cu{sub 2}ZnSiSe{sub 4} single crystals at 10 and 300 K by means of reflection spectroscopy. The exciton parameters, dielectric constant and free carriers effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The structure found in the reflectivity was analyzed and related to the theoretical electronic band structure of close related Cu{sub 2}ZnSiS{sub 4} semiconductor.

  16. Measurement of energy spectra of charged particles emitted after the absorption of stopped negative pions in carbon

    International Nuclear Information System (INIS)

    Mechtersheimer, G.

    1978-06-01

    The energy spectra of charged particles (p,d,t, 3 He, 4 He and Li-nuclei) emitted after the absorption of stopped negative pions in carbon targets of different thickness (1.227, 0.307, 0.0202 g/cm 2 ) have been measured from the experimental threshold energy of about 0.5 MeV up to the kinematical limit of about 100 MeV. The experiments have been carried out at the biomedical pion channel πE3 of the Swiss Institute of Nuclear Research (SIN). (orig.) [de

  17. Model-independent evaluation of recoils channeling impact on visible energy spectra in dark matter particles crystalline detectors

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window

  18. Effect of source encapsulation on the energy spectra of sup 192 Ir and sup 137 Cs seed sources

    Energy Technology Data Exchange (ETDEWEB)

    Thomason, C [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics; Mackie, T R [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics Wisconsin Univ., Madison, WI (USA). Dept. of Human Oncology; Lindstrom, M J [Wisconsin Univ., Madison, WI (USA). Biostatistics Center

    1991-04-01

    The effect of source encapsulation on the energy spectra of {sup 192}Ir and {sup 137}Cs seed sources, both with stainless steel and with platinum encapsulation, was determined from results of Monte Carlo simulation. The fractional scatter dose around these sources has also been determined from Monte Carlo simulation. The platinum-encapsulated {sup 192}Ir source exhibited greater attenuation of the primary spectrum, as expected, and, consistent with this greater attenuation, exhibited more scattered radiation. Significantly less scatter was seen with the {sup 137}Cs source than with either {sup 192}Ir source, as is consistent with the higher-energy photons from {sup 137}Cs. (author).

  19. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    Science.gov (United States)

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  20. The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses

    Science.gov (United States)

    Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.

    2012-04-01

    We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these

  1. Changes in the DRIFT Spectra of Softwood Materials Irradiated by UV-laser as a Function of Energy

    Directory of Open Access Journals (Sweden)

    BARTA, Edit

    2005-01-01

    Full Text Available We investigated energy dependence of the effect of UV-laser irradiation on the DRIFT spectra of softwood samples. Changes in the spectra of softwoods have been studied with 248.5 nm wavelength of UV-laser radiation. To monitor the energy dependence, different number of laser impulses were directed towards the sample’s surface. The dependence on energy of different bands can be listed into four groups. Broad absorption bands, which belong to the same chemical groups located at various positions, do not show consistent changes due to the absorption of different energy dozes. The intensity of OH bands for the treated samples can be higher or lower depending on the amount of radiation energy. In the CHn and in the band of non-conjugated carbonyl groups only absorption increase can be observed. Bands resulting from only one chemical component, and containing no other absorption maxima around them, uniformly decreased. The regions where the band of a chemical component lies next to another one, showed no consistent changes during the irradiation. The initial decrease was followed by increase.

  2. On Descriptions of Particle Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Fu-Hu Liu

    2014-01-01

    is obtained that, at a given set of parameters, the standard distributions show a narrower shape than their Tsallis forms which result in wide and/or multicomponent spectra with the Tsallis distribution in between. A comparison among the temperatures obtained from the distributions is made with a possible relation to the Boltzmann temperature. An example of the angular distributions of projectile fragments in nuclear collisions is given.

  3. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  4. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Ruth C. [SETI Institute and Astrophysical Advances, 607 Marion Place, Palo Alto, CA 94301 (United States); Kurucz, Robert L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ayres, Thomas R., E-mail: peterson@ucolick.org [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  5. Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays

    International Nuclear Information System (INIS)

    Butson, M.J.; Cheung, T.; Yu, P.K.N.; Alnawaf, H.

    2009-01-01

    Full text: With new advancements in radiochromic film designs and sensitivity to suit different niche applications, EBT2 is the latest offering for the megavoltage radiotherapy market. New construction specifications including different physical construction and the use of a yellow coloured dye has provided the next generation radiochromic film for therapy applications. The film utilises the same active chemical for radiation measurement as its predecessor, EBT Gafchromic. Measurements have been performed using photo spectrometers to analyse the absorption spectra properties of this new EBT2 Gafchromic, radiochromic film. Results have shown that whilst the physical coloration or absorption spectra of the film, which turns yellow to green as compared to EBT film, (clear to blue) is significantly different due to the added yellow dye, the net change in absorption spectra properties for EBT2 are similar to the original EBT film. Absorption peaks are still located at 636 n m and 585 n m positions. A net optical density change of 0.590 ± 0.020 (2SD) for a 1 Gy radiation absorbed dose using 6 MV x-rays when measured at the 636 n m absorption peak was found. This is compared to 0.602 ± 0.025 (2SD) for the original EBT film (2005 Batch) and 0.557 ± 0.027 (2009 Batch) at the same absorption peak. The yellow dye and the new coating material produce a significantly different visible absorption spectra results for the EBT2 film compared to EBT at wavelengths especially below approximately 550 n m. At wavelengths above 550 n m differences in absolute OD are seen however, when dose analysis is performed at wavelengths above 550 n m using net optical density changes, no significant variations are seen. If comparing results of the late production EBT to new production EBT2 film, net optical density variations of approximately 10 % to 15 % are seen. As all new film batches should be calibrated for sensitivity upon arrival this should not be of concern.

  6. Gamma ray energy loss spectra simulation in NaI detectors with the Monte Carlo method

    International Nuclear Information System (INIS)

    Vieira, W.J.

    1982-01-01

    With the aim of studying and applying the Monte Carlo method, a computer code was developed to calculate the pulse height spectra and detector efficiencies for gamma rays incident on NaI (Tl) crystals. The basic detector processes in NaI (Tl) detectors are given together with an outline of Monte Carlo methods and a general review of relevant published works. A detailed description of the application of Monte Carlo methods to ν-ray detection in NaI (Tl) detectors is given. Comparisons are made with published, calculated and experimental, data. (Author) [pt

  7. Observation of charge-exchange spectra on C6+ +H in low-energy collision

    International Nuclear Information System (INIS)

    Kobuchi, Takashi; Sato, Kuninori; Goto, Motoshi; Ohyabu, Nobuyoshi; Kawahata, Kazuo; Sudo, Shigeru; Motojima, Osamu

    2003-01-01

    The extreme ultraviolet spectra of C VI have been studied for a Neutral Beam Injection (NBI) plasmas in Large Helical Device (LHD). A strong distortion in the population distribution over the excited levels was observed and we conclude that is caused by charge-exchange recombining (CXR) processes between C 6+ ion and recycling neutral hydrogen. Spatially resolved measurements show that the C 6+ -H CXR processes take place in the plasma peripheral region in LHD. We have taken a CXR part of C VI 1s-4p line using the result of a calculation code. (author)

  8. Numerical and Experimental Identification of Seven-Wire Strand Tensions Using Scale Energy Entropy Spectra of Ultrasonic Guided Waves

    Directory of Open Access Journals (Sweden)

    Ji Qian

    2018-01-01

    Full Text Available Accurate identification of tension in multiwire strands is a key issue to ensure structural safety and durability of prestressed concrete structures, cable-stayed bridges, and hoist elevators. This paper proposes a method to identify strand tensions based on scale energy entropy spectra of ultrasonic guided waves (UGWs. A numerical method was first developed to simulate UGW propagation in a seven-wire strand, employing the wavelet transform to extract UGW time-frequency energy distributions for different loadings. Mode separation and frequency band loss of L(0,1 were then found for increasing tension, and UGW scale energy entropy spectra were extracted to establish a tension identification index. A good linear relationship was found between the proposed identification index and tensile force, and effects of propagation distance and propagation path were analyzed. Finally, UGWs propagation was examined experimentally for a long seven-wire strand to investigate attenuation and long distance propagation. Numerical and experimental results verified that the proposed method not only can effectively identify strand tensions but can also adapt to long distance tests for practical engineering.

  9. Simulations of the neutron energy-spectra at the Olympus Gate Environmental Monitoring Station due to historical Bevatron operations

    International Nuclear Information System (INIS)

    Donahue, R.J.; Thomas, R.H.; Zeman, G.H.

    2001-01-01

    Offsite neutron fluences resulting from Bevatron operations reached a maximum in 1959, prior to the addition of a permanent concrete roof shield, which was constructed in 1962. From the first operation of the Bevatron measurements of neutron fluence were made at locations around the perimeter of the Lawrence Berkeley National Laboratory (LBNL) campus. Since the late 1950's measurements made at several locations, and particularly at the site of what is now called the Olympus Gate Environmental Monitoring Station, have been routinely reported and published. Early measurements were used to establish the shape of the neutron-energy spectrum from which an energy-averaged fluence-to-dose equivalent conversion coefficient could be derived. This conversion coefficient was then applied to a measured total neutron fluence to obtain the appropriate dose equivalent quantity required by regulation. Recent work by Thomas et al. (2000) have compared the early conversion coefficients used in the sixties with those accepted today and suggest suggested that ''the dose equivalents reported in the late fifties and early sixties were conservative by factors between two and four. In any current review of the historical data, therefore it would be prudent to reduce the reported dose equivalents by at least a factor of two.'' However, that analysis was based on the ''state of the art'' neutron energy-spectra of the '60s. This paper provides a detailed knowledge of the neutron energy spectrum at the site boundary paper thus removing any uncertainty in the analysis of Thomas et al., which might be caused by the use of the early neutron energy-spectra. Detailed Monte Carlo analyses of the interactions of 6.2 GeV protons in thick, medium-A targets are described. In the computer simulations, neutrons produced were allowed to scatter in the atmosphere. Detailed neutron energy spectra were calculated at a distance and elevation corresponding to the location of the Olympus Gate EMS. Both older

  10. Spallation Neutron Emission Spectra in Some Amphoter Target Nuclei by Proton Beam Up to 140 MeV Energy

    International Nuclear Information System (INIS)

    Yildirim, G.

    2008-01-01

    In the present study, the (p,xn) reaction neutron-emission spectra for some amphoter target nuclei as 27 A l, 64 Z n, 120 S n, and 208 P b were investigated up to 140 MeV incident proton energy. The pre-equilibrium calculations were calculated by using the hybrid model, the geometry dependent hybrid model, the full exciton model and the cascade exciton model. The reaction equilibrium component was calculated with a traditional compound nucleus model developed by Weisskopf Ewing. Calculation results have been discussed and compared with the available experimental data in literature

  11. Study on reaction mechanism by analysis of kinetic energy spectra of light particles and formation of final products

    Science.gov (United States)

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-05-01

    The sensitivity of reaction mechanism in the formation of compound nucleus (CN) by the analysis of kinetic energy spectra of light particles and of reaction products are shown. The dependence of the P CN fusion probability of reactants and W sur survival probability of CN against fission at its deexcitation on the mass and charge symmetries in the entrance channel of heavy-ion collisions, as well as on the neutron numbers is discussed. The possibility of conducting a complex program of investigations of the complete fusion by reliable ways depends on the detailed and refined methods of experimental and theoretical analyses.

  12. Comparing Erlang Distribution and Schwinger Mechanism on Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2016-01-01

    Full Text Available We study the transverse momentum spectra of J/ψ and Υ mesons by using two methods: the two-component Erlang distribution and the two-component Schwinger mechanism. The results obtained by the two methods are compared and found to be in agreement with the experimental data of proton-proton (pp, proton-lead (p-Pb, and lead-lead (Pb-Pb collisions measured by the LHCb and ALICE Collaborations at the large hadron collider (LHC. The related parameters such as the mean transverse momentum contributed by each parton in the first (second component in the two-component Erlang distribution and the string tension between two partons in the first (second component in the two-component Schwinger mechanism are extracted.

  13. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    International Nuclear Information System (INIS)

    Tucker, Lucas P.; Shores, Erik F.; Myers, Steven C.; Felsher, Paul D.; Garner, Scott E.; Solomon, Clell J. Jr.

    2012-01-01

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  14. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Lucas P. [Los Alamos National Laboratory; Shores, Erik F. [Los Alamos National Laboratory; Myers, Steven C. [Los Alamos National Laboratory; Felsher, Paul D. [Los Alamos National Laboratory; Garner, Scott E. [Los Alamos National Laboratory; Solomon, Clell J. Jr. [Los Alamos National Laboratory

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  15. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    International Nuclear Information System (INIS)

    Warshaw, S I

    2001-01-01

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity σv is calculated, where σ is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the TDF

  16. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  17. New Gener. High-Energy Spectra of the Blazar 3C 279 with XMM-Newton and GLAST

    Science.gov (United States)

    Collmar, Werner

    2007-10-01

    We propose two 20 ksec XMM-Newton observations of the X-ray bright gamma-ray blazar 3C~279 simultaneous with GLAST/LAT. The main goal is to measure its X-ray properties (spectrum, variability) in order to (1) improve our knowledge on the X-ray emission of the blazar, and (2) to supplement and correlate them to simultaneous GLAST/LAT Gamma-ray observations (30 MeV-300 GeV). Simultaneous GLAST observations of 3C 279 are guaranteed (assuming proper operation then). The high-energy data will be supplemented by ground-based measurements, adding finally up to multifrequency spectra which have unprecedented accuracy and will extend up to high-energy gamma-rays. Such high-quality SEDs will provide severe constraints on their modeling and have the potential to discriminate among models.

  18. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  19. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    Science.gov (United States)

    Derrickson, J. H.; Parnell, T. A.; Austin, R. W.; Selig, W. J.; Gregory, J. C.

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV/nucl was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of about 5 g/sq cm. Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper midwest region between 84 and 97 deg west longitude while remaining between 43.5 and 45 deg north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV/nucl.

  20. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    International Nuclear Information System (INIS)

    Derrickson, J.H.; Parnell, T.A.; Austin, R.W.; Selig, W.J.

    1992-01-01

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV nucl -1 was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of ∼5 g cm -2 . Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper mid-west region between 84 o and 97 o west longitude while remaining between 43.5 o and 45 o north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV nucl -1 . (author)

  1. Bremsstrahlung spectra from thick-target electron beams with noncollisional energy losses

    International Nuclear Information System (INIS)

    Brown, J.C.; MacKinnon, A.L.

    1985-01-01

    We consider what can be learned from the bremsstrahlung radiation of fast electrons in a thick target, generalized to include electron energy losses additional to collisions. We show that the observed photon spectrum can, in principle, be inverted to yield an integral functional of the electron spectrum and the effective energy loss rate. In the light of this result, there seems no reason to suppose, in the absence of a priori information to the contrary, that the photon spectrum is symptomatic more of the fast electron distribution than of the energy loss processes. In cases where the electron injection spectrum is known on independent observational or theoretical grounds, it is possible to infer an effective, ''phenomenological'' energy loss function. In the more general case, however, fullest possible modeling of the physical situation and comparison of the resulting spectrum with observations is all that can be attempted

  2. Energy spectra analysis of the four-layer DOI detector for the brain PET scanner: jPET-D4

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Tsuda, Tomoaki; Shibuya, Kengo; Yamaya, Taiga; Inadama, Naoko; Hasegawa, Tomoyuki; Murayama, Hideo

    2006-01-01

    A depth of interaction (DOI) detector is being developed for the brain PET scanner, jPET-D4. We introduce a light output correction procedure to compensate for variations among the crystal elements in the DOI detector. Under uniform irradiation with 511 keV gamma rays, we estimate the light output of each crystal element by identifying each crystal element, and generate a look-up table (LUT) for light output correction. We evaluate the energy resolution of all crystal elements. The energy resolution of 16% is achieved after light output correction for all crystal elements. The DOI detector can correct light output variations that are related to the DOI. We analyze the crystal position dependence of the energy spectra due to inter-crystal scattering among the multiple crystal elements in the DOI detector. It is highly possible that gamma rays interacting with central crystal elements in the crystal array are absorbed by surrounding crystal elements and the Compton part of the energy spectrum is decreased. Inter-crystal scattering has less impact on the energy resolution of the DOI detector

  3. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Science.gov (United States)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  4. Time dependence of energy spectra of brachytherapy sources and its impact on the half and the tenth value layers

    International Nuclear Information System (INIS)

    Yue, Ning J.; Chen Zhe; Hearn, Robert A.; Rodgers, Joseph J.; Nath, Ravinder

    2009-01-01

    Purpose: Several factors including radionuclide purity influence the photon energy spectra from sealed brachytherapy sources. The existence of impurities and trace elements in radioactive materials as well as the substrate and encapsulation may not only alter the spectrum at a given time but also cause change in the spectra as a function of time. The purpose of this study is to utilize a semiempirical formalism, which quantitatively incorporates this time dependence, to calculate and evaluate the shielding requirement impacts introduced by this time dependence for a 103 Pd source. Methods: The formalism was used to calculate the NthVL thicknesses in lead for a 103 Pd model 200 seed. Prior to 2005, the 103 Pd in this source was purified to a level better than 0.006% of the total 103 Pd activity, the key trace impurity consisting of 65 Zn. Because 65 Zn emits higher energy photons and has a much longer half-life of 244 days compared to 103 Pd, its presence in 103 Pd seeds led to a time dependence of the photon spectrum and other related physical quantities. This study focuses on the time dependence of the NthVL and the analysis of the corresponding shielding requirements. Results: The results indicate that the first HVL and the first TVL in lead steadily increased with time for about 200 days and then reached a plateau. The increases at plateau were more than 1000 times compared to the corresponding values on the zeroth day. The second and third TVLs in lead reached their plateaus in about 100 and 60 days, respectively, and the increases were about 19 and 2.33 times the corresponding values on the zeroth day, respectively. All the TVLs demonstrated a similar time dependence pattern, with substantial increases and eventual approach to a plateau. Conclusions: The authors conclude that the time dependence of the emitted photon spectra from brachytherapy sources can introduce substantial variations in the values of the NthVL with time if certain impurities are present

  5. Energy spectra of massive two-body decay products and mass measurement

    CERN Document Server

    Agashe, Kaustubh; Hong, Sungwoo; Kim, Doojin

    2016-01-01

    We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial b...

  6. Theory of emission spectra from metal films irradiated by low energy electrons near normal incidence

    International Nuclear Information System (INIS)

    Kretschmann, E.; Callcott, T.A.; Arakawa, E.T.

    1980-01-01

    The emission spectrum produced by low energy electrons incident on a rough metal surface has been calculated for a roughness auto-correlation function containing a prominent peak at a high wave vector. For low energy electrons near normal incidence, the high wavevector peak dominates the roughness coupled surface plasmon radiation (RCSPR) process. The calculation yields estimates of the ratio of RCSPR to transition radiation, the dependence of emission intensity on electron energy and the shape and position of the RCSPR peak. The most interesting result is that the high-wavevector roughness can split the RCSPR radiation into peaks lying above and below the asymptotic surface plasma frequency. The results are compared with data from Ag in the following paper. (orig.)

  7. Energy dependence of isotopic spectra from spallation residues; Dependance en energie des spectres isotopiques de residus de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to {beta} decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  8. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  9. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Petrosian, Vahe; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Blandford, Roger D.; /KIPAC, Menlo Park

    2011-08-19

    Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution or particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient

  10. [Ionization energies and infrared spectra studies of histidine using density functional theory].

    Science.gov (United States)

    Hu, Qiong; Wang, Guo-Ying; Liu, Gang; Ou, Jia-Ming; Wang, Rui-Li

    2010-05-01

    Histidines provide axial ligands to the primary electron donors in photosynthetic reaction centers (RCs) and play an important role in the protein environments of these donors. In this paper the authors present a systematic study of ionization energies and vibrational properties of histidine using hybrid density functional theory (DFT). All calculations were undertaken by using B3LYP method in combination with four basis sets: 6-31G(d), 6-31G(df, p), 6-31+G(d) and 6-311+G(2d, 2p) with the aim to investigate how the basis sets influence the calculation results. To investigate solvent effects and gain a detailed understanding of marker bands of histidine, the ionization energies of histidine and the vibrational frequencies of histidine which are unlabeled and 13C, 15N, and 2H labeled in the gas phase, CCl4, protein environment, THF and water solution, which span a wide range of dielectric constant, were also calculated. Our results showed that: (1) The main geometry parameters of histidine were impacted by basis sets and mediums, and C2-N3 and N3-C4 bond of imidazole ring of histidine side chain display the maximum bond lengths in the gas phase; (2) single point energies and frequencies calculated were decreased while ionization energies increased with the increasing level of basis sets and diffuse function applied in the same solvent; (3) with the same computational method, the higher the dielectric constant of the solvent used, the lower the ionization energy and vibrational frequency and the higher the intensity obtained. In addition, calculated ionization energy in the gas phase and marker bands of histidine as well as frequency shift upon 13C and 15N labeling at the computationally more expensive 6-311+G(2d, 2p) level are in good agreement with experimental observations available in literatures. All calculations indicated that the results calculated by using higher level basis set with diffuse function were more accurate and closer to the experimental value. In

  11. Fluctuations in transverse energy and multiplicity, energy densities, and neutral pion spectra in nucleus-nucleus collissions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The quantity most crucial to the probability of QGP formation is the thermalized energy density attained during the heavy-ion reaction. The amount of energy radiated transverse to the beam direction is the experimental quantity which is believed to be a measure of the amount of energy deposition in the reaction, and hence to reflect the energy density attained. In this presentation we consider the systematics of transverse energy production at CERN SPS energies, and we use the results to make estimates, under various assumptions, of attained energy densities. Measurements of direct photons and lepton pairs are considered to be among the most promising methods for studies of the QGP. In contrast to hadrons, direct photons are not expected to undergo any interactions after their creation. The WA80 collaboration has undertaken the measurement of direct photons, which is a difficult task due to the presence of a high background of photons from the decay of neutral pions. The π 0 spectra themselves, however, provide us with the opportunity to study the excited reaction zone during the hadronization phase. We present here measurements of neutral pions produced in 16 O + Au collisions at 200 GeV/nucleon. 22 refs., 11 figs

  12. Energy spectra of gold and silver ions jointly expanding in multielement laser plasma

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Kuramatov, D.; Tsoj, T.G.; Kholbaev, A.; Khaitbaev, K.

    1986-01-01

    The results of the investigations on energy distribution of Au and Ag ions jointly expanding in multielement paser plasma are presented. It is denonstrated, that on the stages of formation and expanding of multielement plasma multucharged ions considerable contribution is made by collision processes between electrons and ions and between ions of light and heavy elements. The results are discussed on the basis of existing theoretical models

  13. Full transverse-momentum spectra of low-mass Drell-Yan pairs at LHC energies

    CERN Document Server

    Fái, G; Zhang, X; Fai, George; Qiu, Jianwei; Zhang, Xiaofei

    2003-01-01

    The transverse momentum distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation. We argue that at LHC energies the results should be reliable for the entire transverse momentum range. We demonstrate that the transverse momentum distribution of low-mass Drell-Yan pairs is an advantageous source of constraints on the gluon distribution and its nuclear dependence.

  14. Qualitative features of the rearrangement of molecular energy spectra from a “wall-crossing” perspective

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, T., E-mail: iwai@amp.i.kyoto-u.ac.jp [Kyoto University, Kyoto (Japan); Zhilinskii, B., E-mail: zhilin@univ-littoral.fr [Université du Littoral Côte d' Opale, 59140 Dunkerque (France)

    2013-11-15

    Qualitatively different systems of molecular energy bands are studied on example of a parametric family of effective Hamiltonians describing rotational structure of triply degenerate vibrational state of a cubic symmetry molecule. The modification of band structure under variation of control parameters is associated with a topological invariant “delta-Chern”. This invariant is evaluated by using a local Hamiltonian for the control parameter values assigned at the boundary between adjacent parameter domains which correspond to qualitatively different band structures.

  15. Non-universal spectra of ultra-high energy cosmic ray primaries and secondaries in a structured universe

    International Nuclear Information System (INIS)

    Sigl, Guenter

    2007-01-01

    Analytical calculations of extra-galactic cosmic ray spectra above ∼ 10 17 eV are often performed assuming continuous source distributions, giving rise to spectra that depend little on the propagation mode, be it rectilinear or diffusive. We perform trajectory simulations for proton primaries in the probably more realistic case of discrete sources with a density of ∼ 10 -5 Mpc -3 . We find two considerable non-universal effects that depend on source distributions and magnetic fields: First, the primary extra-galactic cosmic ray flux can become strongly suppressed below a few 10 18 eV due to partial confinement in magnetic fields surrounding sources. Second, the secondary photon to primary cosmic ray flux ratio between ≅ 3 x 10 18 eV and ≅ 10 20 eV decreases with decreasing source density and increasing magnetization. As a consequence, in acceleration scenarios for the origin of highest energy cosmic rays the fraction of secondary photons may be difficult to detect even for experiments such as Pierre Auger. The cosmogenic neutrino flux does not significantly depend on source density and magnetization. (author)

  16. Analysis of kiwi fruit (Accented deliciosa) by energy dispersive X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Oliveira, Ana Claudia S.; Oliveira, Marcia L. de; Silva, Lucia C.A.S.; Arthur, Valter; Almeida, Eduardo

    2011-01-01

    The search for a healthy life has led consumers to eat fruits and vegetables in place of manufactured products, however, the demand for minimally processed products has evolved rapidly. The kiwi has at least eight nutrients beneficial to health: calcium, magnesium, manganese, phosphorus, iron, potassium, sodium and has also high vitamin C, which has wide acceptance in consumer markets. Energy dispersive spectroscopy X-ray (EDX) is the analytical technique used for elemental analysis or chemical characterization of a sample. It is a variant of fluorescence spectroscopy X-ray based on the sample through an investigation of interactions between electromagnetic radiation and matter, analyzing X-rays emitted by matter in response to being struck by charged particles. The aim of this study were to determine potassium, calcium, iron and bromine (K, Ca, Fe and Br, respectively) present in kiwifruit using the technique of fluorescence X-ray energy dispersive (EDXRF). Kiwifruit were peeled, washed and cut into slices and freeze-dried. After drying the sample was held digestion and subsequent reading of the same equipment in the X-ray fluorescence energy dispersive (EDXRF). The results indicated that the contents of potassium, calcium, iron and bromine are present in kiwifruit as expected when compared to Brazilian Table of Food Composition. (author)

  17. ROSAT Energy Spectra of Low-Mass X-Ray Binaries

    Science.gov (United States)

    Schulz, N. S.

    1999-01-01

    The 0.1-2.4 keV bandpass of the ROSAT Position Sensitive Proportional Counter (PSPC) offers an opportunity to study the very soft X-ray continuum of bright low-mass X-ray binaries (LMXBs). In 46 pointed observations, 23 LMXBs were observed with count rates between 0.4 and 165.4 counts s-1. The survey identified a total of 29 different luminosity levels, which are compared with observations and identified spectral states from other missions. The atoll source 4U 1705-44 was observed near Eddington luminosities in an unusually high intensity state. Spectral analysis provided a measure of the interstellar column density for all 49 observations. The sensitivity of spectral fits depends strongly on column density. Fits to highly absorbed spectra are merely insensitive toward any particular spectral model. Sources with column densities well below 1022 cm-2 are best fitted by power laws, while the blackbody model gives clearly worse fits to the data. Most single-component fits from sources with low column densities, however, are not acceptable at all. The inclusion of a blackbody component in eight sources can improve the fits significantly. The obtained emission radii of less than 5 km suggest emission from the neutron star surface. In 10 sources acceptable fits can only be achieved by including soft-line components. With a spectral resolution of the PSPC of 320-450 eV, between 0.6 and 1.2 keV unresolved broad-line features were detected around 0.65, 0.85, and 1.0 keV. The line fluxes range within 10-11 and 10-12 ergs cm-2 s-1, with equivalent widths between 24 and 210 eV. In LMC X-2, 2S 0918-549, and 4U 1254-690, line emission is indicated for the first time. The soft emission observed in 4U 0614+091 compares with recent ASCA results, with a new feature indicated at 1.31 keV. The deduced line fluxes in 4U 1820-30 and Cyg X-2 showed variability of a factor of 2 within timescales of 1-2 days. Average fluxes of line components in 4U 1820-30 varied by the same factor over a

  18. Consistent scalar and tensor perturbation power spectra in single fluid matter bounce with dark energy era

    Science.gov (United States)

    Bacalhau, Anna Paula; Pinto-Neto, Nelson; Vitenti, Sandro Dias Pinto

    2018-04-01

    We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, in which the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine-tuned exception) must have one and only one dark energy phase, occurring either in the contracting era or in the expanding era. Hence, these bounce solutions are necessarily asymmetric. Naturally, the more convenient solution is the one in which the dark energy phase happens in the expanding era, in order to be a possible explanation for the current accelerated expansion indicated by cosmological observations. In this case, one has the picture of a Universe undergoing a classical dust contraction from very large scales, the initial repeller of the model, moving to a classical stiff-matter contraction near the singularity, which is avoided due to the quantum bounce. The Universe is then launched to a dark energy era, after passing through radiation- and dust-dominated phases, finally returning to the dust expanding phase, the final attractor of the model. We calculate the spectral indices and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation nor using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model in which the presence of dark energy behavior in the Universe does not turn the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models problematic. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine-tunings, to yield the observed amplitude for scalar

  19. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  20. Energy flow and particle spectra with respect to the reaction plane for Au+Au collisions at AGS energies

    International Nuclear Information System (INIS)

    Zhang Yingchao; Wessels, J.P.

    1995-01-01

    Transverse energy flow is studied by exploiting the near 4π calorimetric coverage of experiment E877. A Fourier decomposition of the azimuthal transverse energy distributions in different regions of pseudorapidity is performed as a function of the centrality in order to describe the event shape. The extracted coefficients are compared to model predictions. Using the E877 forward spectrometer, triple differential cross section for protons and π + are measured with respect to the reaction plane determined by calorimeters. The variation of slope parameters at different orientations to the reaction plane is obtained by fitting to thermal Boltzmann distributions. (orig.)

  1. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  2. A theoretical investigation of spectra utilization for a CMOS based indirect detector for dual energy applications

    International Nuclear Information System (INIS)

    Kalyvas, N; Michail, C; Valais, I; Kandarakis, I; Fountos, G; Martini, N; Koukou, V; Sotiropoulou, P

    2015-01-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. Currently commercially available detectors may be suitable for dual energy mammographic applications. The scope of this work was to theoretically examine the performance of the Radeye CMOS digital indirect detector under three low- and high-energy spectral pairs. The detector was modeled through the linear system theory. The pixel size was equal to 22.5μm and the phosphor material of the detector was a 33.9 mg/cm 2 Gd 2 O 2 S:Tb phosphor screen. The examined spectral pairs were (i) a 40kV W/Ag (0.01cm) and a 70kV W/Cu (0.1cm) target/filter combinations, (ii) a 40kV W/Cd (0.013cm) and a 70kV W/Cu (0.1cm) target/filter combinations and (iii) a 40kV W/Pd (0.008cm) and a 70kV W/Cu (0.1cm) target/filter combinations. For each combination the Detective Quantum Efficiency (DQE), showing the signal to noise ratio transfer, the detector optical gain (DOG), showing the sensitivity of the detector and the coefficient of variation (CV) of the detector output signal were calculated. The second combination exhibited slightly higher DOG (326 photons per X-ray) and lower CV (0.755%) values. In terms of electron output from the RadEye CMOS, the first two combinations demonstrated comparable DQE values; however the second combination provided an increase of 6.5% in the electron output. (paper)

  3. Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method

    International Nuclear Information System (INIS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.

    2009-01-01

    We present the reconstruction of neutron energy spectra from time-of-flight signals. This technique is useful in experiments with the time of neutron production in the range of about tens or hundreds of nanoseconds. The neutron signals were obtained by a common hard X-ray and neutron fast plastic scintillation detectors. The reconstruction is based on the Monte Carlo method which has been improved by simultaneous usage of neutron detectors placed on two opposite sides from the neutron source. Although the reconstruction from detectors placed on two opposite sides is more difficult and a little bit inaccurate (it followed from several presumptions during the inclusion of both sides of detection), there are some advantages. The most important advantage is smaller influence of scattered neutrons on the reconstruction. Finally, we describe the estimation of the error of this reconstruction.

  4. Experimental investigation of rotation resistance moment energy spectra in multicylindrical circular Couette system with independently rotating cylinders

    Directory of Open Access Journals (Sweden)

    Serov Anatoly

    2017-01-01

    Full Text Available The torque of the rotational resistance in the Ku-Etta multi-cylinder system rotating in the direction towards each other is measured. The experiments were carried out for three values of the kinematic viscosity of the working fluid that fills the multicylinder system: water at a temperature of 24 °C (viscosity 0.9 cSt, an aqueous solution of glycerol at 20 °C and 41 °C (2.5 cSt and 5.2 cSt. An attempt is made to investigate the features of a viscous flow in the multicolor Couette flow system from the analysis of the energy spectra of the moment of resistance to rotation of cylinders.

  5. Missing mass spectra in pp inelastic scattering at total energies of 23 GeV and 31 GeV

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1974-01-01

    Results are reported of measurements of the momentum spectra of protons emitted at small angles in inelastic reactions at the CERN ISR. The data are for total energies s/sup 1///sub 2/ of 23 GeV and 31 GeV. The structure of the peak at low values of the missing mass M (of the system recoiling against the observed proton) is studied. The missing mass distributions have the form (M/sup 2/)-/sup B(t)/ where t is the four-momentum transfer squared. B(t) drops from 0.98+or-0.06 at t=-0.15 GeV/sup 2/ to 0.20+or-0.15 at t=-1.65 GeV/sup 2/. The results are compared with a simple triple-Regge formula. (12 refs).

  6. A note on extracting electronic stopping from energy spectra of backscattered slow ions applying Bragg's rule

    Science.gov (United States)

    Bruckner, B.; Roth, D.; Goebl, D.; Bauer, P.; Primetzhofer, D.

    2018-05-01

    Electronic stopping measurements in chemically reactive targets, e.g., transition and rare earth metals are challenging. These metals often contain low Z impurities, which contribute to electronic stopping. In this article, we present two ways how one can correct for the presence of impurities in the evaluation of proton and He stopping in Ni for primary energies between 1 and 100 keV, either considering or ignoring the contribution of the low Z impurities to multiple scattering. We find, that for protons either method leads to concordant results, but for heavier projectiles, e.g. He ions, the influence on multiple scattering must not be neglected.

  7. Processing and quantification of x-ray energy dispersive spectra in the Analytical Electron Microscope

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1988-08-01

    Spectral processing in x-ray energy dispersive spectroscopy deals with the extraction of characteristic signals from experimental data. In this text, the four basic procedures for this methodology are reviewed and their limitations outlined. Quantification, on the other hand, deals with the interpretation of the information obtained from spectral processing. Here the limitations are for the most part instrumental in nature. The prospects of higher voltage operation does not, in theory, present any new problems and may in fact prove to be more desirable assuming that electron damage effects do not preclude analysis. 28 refs., 6 figs

  8. Uncertainties in linear energy transfer spectra measured with track-etched detectors in space

    Czech Academy of Sciences Publication Activity Database

    Pachnerová Brabcová, Kateřina; Ambrožová, Iva; Kolísková, Zlata; Malušek, Alexandr

    2013-01-01

    Roč. 713, JUN 11 (2013), s. 5-10 ISSN 0168-9002 R&D Projects: GA ČR GA205/09/0171; GA AV ČR IAA100480902; GA AV ČR KJB100480901; GA ČR GD202/09/H086 Institutional research plan: CEZ:AV0Z10480505 Institutional support: RVO:61389005 Keywords : CR-39 * linear energy transfer * uncertainty model * space dosimetry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.316, year: 2013

  9. EXANA, a program for analysing EXtended energy loss fine structures, EXELFS spectra

    International Nuclear Information System (INIS)

    Tafreshi, M.A.; Bohm, C.; Csillag, S.

    1992-09-01

    This paper is a users guide and reference manual for the EXANA, an IBM or IBM compatible PC-based program used for analysing extended fine structures occurring on the high energy side of the ionisation edges. The RDF (Radial Distance Function) obtained from this analysis contains information about the number, distance, and type of the nearby atoms, as well as the inelastic mean free path and disorder in distances from the centre atom to the atoms in a atomic shell around it. The program can be made available on request. (au)

  10. Electronic energy loss spectra from mono-layer to few layers of phosphorene

    International Nuclear Information System (INIS)

    Mohan, Brij; Thakur, Rajesh; Ahluwalia, P. K.

    2016-01-01

    Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.

  11. Electronic energy loss spectra from mono-layer to few layers of phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Thakur, Rajesh; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla (HP) India 171005 (India)

    2016-05-23

    Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.

  12. Resonance spin memory in low-energy gamma-ray spectra from Sb, Tb, Ho and Ta odd-odd compound nuclei

    International Nuclear Information System (INIS)

    Olejniczak, U.; Gundorin, N.A.; Pikelner, L.B.; Serov, D.G.; Przytula, M.

    2002-01-01

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using a HPGe detector at the IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of 122 Sb, 160 Tb and 166 Ho was found to be quite distinct. For the 182 Ta compound nucleus it proved to be rather weak

  13. Application of a Bonner sphere spectrometer for determination of the energy spectra of neutrons generated by ≈1 MJ plasma focus

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Krása, Josef; Velyhan, Andriy; Scholz, M.; Ivanova-Stanik, I.M.; Bienkowska, B.; Miklaszewski, R.; Schmidt, H.; Řezáč, K.; Klír, D.; Kravárik, J.; Kubeš, P.

    2010-01-01

    Roč. 81, č. 11 (2010), 113503/1-113503/5 ISSN 0034-6748 R&D Projects: GA MŠk LA08024 Grant - others:FP-6 EU(XE) RITA-CT2006-26095 Institutional research plan: CEZ:AV0Z10100523 Keywords : plasma focus * fusion DD neutrons * Bonner sphere spectrometer * energy spectra of scattered neutrons * unfolded and calculated spectra Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010

  14. Quasi-particle energy spectra in local reduced density matrix functional theory.

    Science.gov (United States)

    Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  15. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    Science.gov (United States)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  16. Observations of galactic cosmic-ray energy spectra between 1 and 9 AU

    International Nuclear Information System (INIS)

    McDonald, F.B.; Lal, N.; Trainor, J.H.; Van Hollebeke, M.A.I.; Webber, W.R.

    1977-01-01

    The variation of the 5--500 MeV per nucleon cosmic-ray helium component has been studied between 1 and 9 AU with essentially identical detector systems on Pioneer 10, Pioneer 11, and Helios I. Between 100 and 200 MeV per nucleon, a radial gradient of 3.3% +- 1.3% per AU is found. At 15 MeV per nucleon, this value increases to 20% +- 4% per AU. Between 4 and 9 AU a well-defined intensity maximum is observed at approx.17 MeV per nucleon. The average adiabatic energy loss between 1 and 9 AU is approx.4 MeV per nucleon per AU. In the inner solar system between 1 and 4 AU this value increases to 7 MeV per nucleon. The observed radial variation between 1 and 9 AU is well described by the Gleeson-Axford force-field solution of the modulation equations over an enrgy range extending from 15 to 500 MeV per nucleon and is in good agreement with the results reported by other Pioneer experiments. These values are much smaller than had been theoretically predicted. The data can be interpreted either in terms of large residual modulation with phi (1 AU) approx. =320 MV and with a modulation region which extends to 50--100 AU or with a significantly reduced modulation parameter of approx.150 MV. These values appear to represent reasonable upper and lower limits on the residual modulation for this period. For the lower limit of phi (1 AU) =150 MV, the low-energy helium component can originate outside the heliosphere, while for phi (1 AU) =320 MV, an interplanetary origin appears most probable

  17. Deconvolution of overlapping features in electron energy-loss spectra: the determination of absolute differential cross sections for electron-impact excitation of electronic states of molecules

    International Nuclear Information System (INIS)

    Campbell, L.; Brunger, M.J.; Teubner, O.J.P.; Mojarrabi, B.

    1996-06-01

    A set of three computer programs is reported which allow for the deconvolution of overlapping molecular electronic state structure in electron energy-loss spectra, even in highly perturbed systems. This procedure enables extraction of absolute differential cross sections for electron-impact excitation of electronic states of diatomic molecules from electron energy-loss spectra. The first code in the sequence uses the Rydberg-Klein-Rees procedure to generate potential energy curves from spectroscopic constants, while the second calculates Franck-Condon factors by numerical solution of the Schroedinger equation, given the potential energy curves. The third, given these Franck-Condon factors, the previously calculated relevant energies for the vibrational levels of the respective electronic states and the experimental energy-loss spectra, extracts the differential cross sections for each state. Each program can be run independently, or the three can run in sequence to determine these cross sections from the spectroscopic constants and the experimental energy-loss spectra. The application of these programs to the specific case of electron scattering from nitric oxide (NO) is demonstrated. 25 refs., 2 tabs., 2 figs

  18. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  19. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  20. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Cartoni, Antonella, E-mail: antonella.cartoni@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Roma 00185 (Italy); Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo [CNR-IMIP, Area della Ricerca di Roma 1, Monterotondo Scalo (Rm) 00015 (Italy)

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  1. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia and Physics Department, State University of Surabaya, Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 (Indonesia)

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

  2. The fluorescence action spectra of some saturated hydrocarbon liquids for excitation energies above and below their ionization thresholds

    International Nuclear Information System (INIS)

    Ostafin, A.E.; Lipsky, S.

    1993-01-01

    Fluorescence action spectra have been obtained for the neat liquids, cis-decalin, trans-decalin, bicyclohexyl, cyclohexane, methylcyclohexane, isobutylcyclohexane, 2,3,4-trimethylpentane, 2,3-dimethylbutane, 3-methylhexane, 3-methylpentane, n-decane, n-dodecane, and n-pentadecane at excitation energies, ε, ranging from their absorption onsets (at ca. 7 eV) to 10.3 eV. For all compounds, with the exception of cis-decalin, the fluorescence quantum yield is observed to monotonically decline with increasing ε, reaching a minimum value at an energy, ε m (a few tenths of an eV above the liquid phase ionization threshold, ε l ) followed by a slow increase. In the case of cis-decalin, the fluorescence quantum yield remains constant over the entire range of excitation energies studied, permitting its use as a quantum counter replacing the standard sodium salicylate, at least over a spectral range from 185 to 120 nm. The recovery of the fluorescence quantum yield for ε>ε m is attributed to an increasing probability for electron ejection followed by e - +RH + geminate recombination, to produce an excited state of RH with energy less than ε l . From a simple analysis of the action spectrum, a lower bound estimate of the electron ejection probability, φ ± , is obtained as a function of ε. In the case of cyclohexane, where φ ± has been obtained by other techniques at ε congruent 10 eV, the lower bound estimate agrees with the experimental value. From this agreement, arguments are presented to make plausible the conjecture that in all these liquids, the initially produced e - +RH + geminate ion pair first rapidly internally converts to an ion-pair state ca

  3. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    Science.gov (United States)

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were

  4. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    Science.gov (United States)

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  5. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives

    Science.gov (United States)

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2012-01-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902

  6. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    Science.gov (United States)

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.

  7. Automated Energy Calibration and Fitting of LaCl3(Ce y-Spectra Using Peak Likelihood and Tabu Search

    Directory of Open Access Journals (Sweden)

    Timothy P. McClanahan

    2008-10-01

    Full Text Available An automated method for ?-emission spectrum calibration and deconvolution is presented for spaceflight applications for a Cerium doped Lanthanum Chloride, (LaCl3(Ce ?-ray detector system. This detector will be coupled with a pulsed neutron generator (PNG to induce and enhance nuclide signal quality and rates, yielding large volumes of spectral information. Automated analytical methods are required to deconvolve and quantify nuclide signals from spectra; this will both reduce human interactions in spectrum analysis and facilitate feedback to automated robotic and operations planning. Initial system tests indicate significant energy calibration drifts (>6%, that which must be mitigated for spectrum analysis. A linear energy calibration model is presently considered, with gain and zero factors. Deconvolution methods incorporate a tabu search heuristic to formulate and optimize searches using memory structures. Iterative use of a peak likelihood methodology identifies global calibration minima and peak areas. The method is compared to manual methods of calibration and indicates superior performance using tabu methods. Performance of the Tabu enhanced calibration method is superior to similar unoptimized local search. The techniques are also applicable to other emission spectroscopy, eg. X-ray and neutron.

  8. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    Energy Technology Data Exchange (ETDEWEB)

    Derrickson, J H; Parnell, T A; Austin, R W; Selig, W J [National Aeronautics and Space Administration, Huntsville, AL (United States). George C. Marshall Space Flight Center; Gregory, J C [Alabama Univ., Huntsville, AL (United States)

    1992-07-01

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV nucl[sup -1] was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of [approx]5 g cm[sup -2]. Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper mid-west region between 84[sup o] and 97[sup o] west longitude while remaining between 43.5[sup o] and 45[sup o] north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV nucl[sup -1]. (author).

  9. Observation of Cd 4d95s25p J=3 autoionizing levels in (e,2e) energy spectra

    International Nuclear Information System (INIS)

    Martin, N.L.S.; Bauman, R.P.; Wilson, M.

    1998-01-01

    Cadmium (e,2e) energy spectra have been measured for kinematics corresponding to a momentum transfer of 1 a.u. Two previously unknown cadmium autoinizing levels have been observed. Their energies are in excellent agreement with existing ab initio structure calculations of the 4d 9 5s 2 5p J=3 levels. One level is easily seen at an ejected-electron direction along the momentum-transfer axis, but is absent for a direction 39 degree away from this axis. The opposite is true for the other level; it is absent in the former, but present in the latter case. This behavior is in agreement with a calculation that takes into account that the J=3 levels can autoionize into both singlet and triplet 5sEf continua. The intensity of the new levels, relative to the well-known 4d 9 5s 2 5p J=1 levels, agrees well with a plane-wave Born approximation calculation for the J=3 levels. The third 4d 9 5s 2 5p J=3 level is calculated to lie within the broad 4d 9 5s 2 5p 1 P 1 level and cannot be seen in the present experiments. copyright 1998 The American Physical Society

  10. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    Science.gov (United States)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  11. Energy spectra in $p$-shell $\\Lambda$ hypernuclei and $^{19}_{\\Lambda}\\textrm{F}$ and spin-dependent $\\Lambda N$ interactions

    OpenAIRE

    Kanada-En'yo, Yoshiko; Isaka, Masahiro; Motoba, Toshio

    2018-01-01

    Energy spectra of $0s$-orbit $\\Lambda$ states in $p$-shell $\\Lambda$ hypernuclei ($^{A}_\\Lambda Z$) and those in $^{19}_{\\Lambda}\\textrm{F}$ are studied with the microscopic cluster model and antisymmetrized molecular dynamics using the $G$-matrix effective $\\Lambda N$ ($\\Lambda NG$) interactions. Spin-dependent terms of the ESC08a version of the $\\Lambda NG$ interactions are tested and phenomenologically tuned to reproduce observed energy spectra in $p$-shell $^{A}_\\Lambda Z$. Spin-dependent...

  12. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: tajindersingh2k9@gmail.com [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)

    2017-06-15

    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  13. A Monte Carlo program for calculating high energy spectra in cylindrical geometry on the IBM 709 computer

    Energy Technology Data Exchange (ETDEWEB)

    Francescon, S [Computer Branch, Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1960-10-15

    The report describes an I.B.M. 709 program written at the request of the Reactor Division, Harwell, to obtain high energy spectra in a system containing a number of fissile and non-fissile materials, arranged as concentric cylinders of infinite length surrounded by an outer material with a square or rectangular boundary. At the cell boundary neutrons can be lost by leakage or reflected back into the system. A specified number of fission neutrons born in the fissile materials, together with any descendants they may have, are tracked one by one through the system until they are absorbed, lost by leakage through the lattice boundary, or their energies have fallen below a specifiable cut-off energy. The neutrons may be started from anywhere in the system and all neutron-nucleus reactions that occur in the nuclides supplied with the program are allowed. A descriptions is given of the use of the program, the current version of which is available as a self-loading binary tape which contains, in addition to the program, all the nuclear data at present available. Binary card decks are also available and nuclear data for other nuclides can be added. A feature of the program is the flexibility with which the core storage available for input and output data can be allocated according to the requirements of the problem. The output of the program is in the form of a Binary Coded Decimal tape (B.C.D.) which can be used on the normal I.B.M. off-line equipment to print out the results. An example is given of the results obtained for use in radiation damage calculations of the spatial distribution of neutrons in a simple uranium-D{sub 2}O system.

  14. Measurement of prompt neutron spectra from the "2"3"9Pu(n, f ) fission reaction for incident neutron energies from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Chatillon, A.; Belier, G.; Granier, T.; Laurent, B.; Morillon, B.; Taieb, J.; Haight, R.C.; Devlin, M.; Nelson, R.O.; Noda, R.S.; O'Donnell, J.M.

    2014-01-01

    Prompt fission neutron spectra in the neutron-induced fission of "2"3"9Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Mean energies deduced from the prompt fission neutron spectra (PFNS) lead to the observation of the opening of the second chance fission at 7 MeV and to indications for the openings of fission channels of third and fourth chances. Moreover, the general trend of the measured PFNS is well reproduced by the different models. The comparison between data and models presents, however, two discrepancies. First, the prompt neutron mean energy seems constant for neutron energy, at least up to 7 MeV, whereas in the theoretical calculations it is continuously increasing. Second, data disagree with models on the shape of the high energy part of the PFNS, where our data suggest a softer spectrum than the predictions. (authors)

  15. Study of the energy spectra of the major ion species in the ring-current region of the magnetosphere during geomagnetic storms

    International Nuclear Information System (INIS)

    Kistler, L.M.

    1987-01-01

    Using the University of Maryland/Max Planck Institute for Aeronomy Charge Energy Mass (CHEM) spectrometer on the AMPTE Charge Composition Explorer (CCE) spacecraft, the author examined the near-equatorial storm-time energy spectra of four major magnetospheric ions, H + , O + , He + , and He ++ over the energy range 1-300 keV/e in the L-range 3-6. The data were obtained during the main phase of all geomagnetic storms with minimum Dst less than -50 in the time period September 1984 to November 1985. During this period, the orbit of the CCE precessed such that the full range of local times was covered. When the spectra are organized by local time, certain features emerge. In particular, there is a dip in the spectra of all ions at 10-20 keV/e in the drawn-to-noon sector, while in the noon-to-dusk sector the proton distribution function drops off sharply below ∼5 keV. These spectra were compared with those predicted by a model of ion drift and loss in the magnetosphere. It was found that the spectra are most consistent with a Volland-Stern electric field with γ = 2 and with a rotation of the nominal dawn-to-dusk electric field eastward by two hours local time

  16. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Boda, Łukasz, E-mail: lboda@chemia.uj.edu.pl; Boczar, Marek; Gług, Maciej; Wójcik, Marek J. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland)

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  17. Disentangling random thermal motion of particles and collective expansion of source from transverse momentum spectra in high energy collisions

    Science.gov (United States)

    Wei, Hua-Rong; Liu, Fu-Hu; Lacey, Roy A.

    2016-12-01

    In the framework of a multisource thermal model, we describe experimental results of the transverse momentum spectra of final-state light flavor particles produced in gold-gold (Au-Au), copper-copper (Cu-Cu), lead-lead (Pb-Pb), proton-lead (p-Pb), and proton-proton (p -p) collisions at various energies, measured by the PHENIX, STAR, ALICE, and CMS Collaborations, by using the Tsallis-standard (Tsallis form of Fermi-Dirac or Bose-Einstein), Tsallis, and two- or three-component standard distributions which can be in fact regarded as different types of ‘thermometers’ or ‘thermometric scales’ and ‘speedometers’. A central parameter in the three distributions is the effective temperature which contains information on the kinetic freeze-out temperature of the emitting source and reflects the effects of random thermal motion of particles as well as collective expansion of the source. To disentangle both effects, we extract the kinetic freeze-out temperature from the intercept of the effective temperature (T) curve as a function of particle’s rest mass (m 0) when plotting T versus m 0, and the mean transverse flow velocity from the slope of the mean transverse momentum ( ) curve as a function of mean moving mass (\\overline{m}) when plotting versus \\overline{m}.

  18. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  19. Tests of the GIC and Measurements of Angular Distributions and Energy Spectra for 58Ni(n,p)58Co Reaction at 4.1 MeV

    Institute of Scientific and Technical Information of China (English)

    Yu.M.Gledenov; M.Sedysheva; G.Khuukhenkhuu

    1997-01-01

    <正>On the basis of measurements of double differential cross sections for (n,α) reactions in 5-7 MeV neutron energy region using gridded ionization chamber (GIC), we constructed a new GIC which, compared with the old ones, can bear higher pressure and makes it possible to measure (n,p) reactions up to 6 MeV and (n,xα) reactions up to 20 MeV. To test the new chamber, the saturation property for argon and krypton mixed with a few percent CO2 was studied using 241Am and compound Pu α source and tritium from 6Li(nth,t)4He, and the two dimensional spectra for 241Am and Pu α source, 6Li(nth,t)4He and H(n,p) reactions were measured. The measured energy spectra and angular distributions for α and tritium are reasonable, and the derived data for α, proton and tritium in argon and krypton from the measured spectra data were compared with the calculated ones. They are in good agreement. The angular distributions and energy spectra for 58Ni(n,p)58Co reaction at 4.1 MeV neutron energy were m

  20. Accurate atom-solid kinetic energy shifts from the simultaneous measurement of the KLL Auger spectra for Na, Mg, Al and Si

    International Nuclear Information System (INIS)

    Aksela, S; Turunen, P; Kantia, T; Aksela, H

    2011-01-01

    KLL Auger-energy shifts between free atoms and their solid surfaces were determined from spectra measured simultaneously in identical experimental conditions. Essentially, the shift values obtained for Na, Mg, Al and Si were more accurate than those achieved by combining the results from separate vapour and solid measurements. Using atomic Auger energies and determined shifts, reliable absolute solid state Auger energies with respect to the vacuum level were also obtained. Experimental shift values were also compared with calculations obtained with the excited atom model. 2s and 2p binding energy shifts were estimated from recent high resolution and due to open shell strongly split vapour phase spectra and corresponding published solid state results. Also, the question of the extent to which the 2s and 2p shifts deviate has been discussed here. (paper)

  1. Neutron energy spectra of sup 2 sup 5 sup 2 Cf, Am-Be source and of the D(d,n) sup 3 He reaction

    CERN Document Server

    Sang Tae Park

    2003-01-01

    The neutron energy spectrum of the following sources were measured using a fast neutron spectrometer with the NE-213 liquid scintillator: sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He reaction from a 3 MeV Pelletron accelerator in Tokyo Institute of Technology. The measured proton recoil pulse height data of sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He were unfolded using the mathematical program to obtain the neutron energy spectrum. The sup 2 sup 5 sup 2 Cf and Am-Be neutron energy spectra were measured and the results obtained showed a good agreement with the spectra usually published in the literature. The neutron energy spectrum from D(d,n) sup 3 He was measured and the results obtained also showed a good agreement with the calculation by time of flight (TOF) methods. (author)

  2. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Science.gov (United States)

    Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro

    2017-09-01

    Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  3. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for PKA energy spectra and heating number under neutron irradiation

    International Nuclear Information System (INIS)

    Iwamoto, Y.; Ogawa, T.

    2016-01-01

    The modelling of the damage in materials irradiated by neutrons is needed for understanding the mechanism of radiation damage in fission and fusion reactor facilities. The molecular dynamics simulations of damage cascades with full atomic interactions require information about the energy distribution of the Primary Knock on Atoms (PKAs). The most common process to calculate PKA energy spectra under low-energy neutron irradiation is to use the nuclear data processing code NJOY2012. It calculates group-to-group recoil cross section matrices using nuclear data libraries in ENDF data format, which is energy and angular recoil distributions for many reactions. After the NJOY2012 process, SPKA6C is employed to produce PKA energy spectra combining recoil cross section matrices with an incident neutron energy spectrum. However, intercomparison with different processes and nuclear data libraries has not been studied yet. Especially, the higher energy (~5 MeV) of the incident neutrons, compared to fission, leads to many reaction channels, which produces a complex distribution of PKAs in energy and type. Recently, we have developed the event generator mode (EGM) in the Particle and Heavy Ion Transport code System PHITS for neutron incident reactions in the energy region below 20 MeV. The main feature of EGM is to produce PKA with keeping energy and momentum conservation in a reaction. It is used for event-by-event analysis in application fields such as soft error analysis in semiconductors, micro dosimetry in human body, and estimation of Displacement per Atoms (DPA) value in metals and so on. The purpose of this work is to specify differences of PKA spectra and heating number related with kerma between different calculation method using PHITS-EGM and NJOY2012+SPKA6C with different libraries TENDL-2015, ENDF/B-VII.1 and JENDL-4.0 for fusion relevant materials

  4. IMP-8 observations of the spectra, composition, and variability of solar heavy ions at high energies relevant to manned space missions

    International Nuclear Information System (INIS)

    Tylka, Allan J.; Dietrich, William F.

    1999-01-01

    In more than 25 years of almost continuous observations, the University of Chicago's Cosmic Ray Telescope (CRT) on IMP-8 has amassed a unique database on high-energy solar heavy ions of potential relevance to manned spaceflight. In the very largest particle events, IMP-8/CRT has even observed solar Fe ions above the Galactic cosmic ray background up to ∼800 MeV/nucleon, an energy sufficiently high to penetrate nearly 25 g/cm 2 of shielding. IMP-8/CRT observations show that high-energy heavy-ion spectra are often surprisingly hard power laws, without the exponential roll-offs suggested by stochastic acceleration fits to lower energy measurements alone. Also, in many solar particle events the Fe/O ratio grows with increasing energy, contrary to the notion that ions with higher mass-to-charge ratios should be less abundant at higher energies. Previous studies of radiation hazards for manned spaceflight have often assumed heavy-ion composition and steeply-falling energy spectra inconsistent with these observations. Conclusions based on such studies should therefore be re-assessed. The significant event-to-event variability observed in the high-energy solar heavy ions also has important implications for strategies in building probabilistic models of solar particle radiation hazards

  5. Analysis of the neutron energy spectra from the sup(208)Pb (p,n) sup(208)Bi reaction at Esub(p)=200 MeV

    International Nuclear Information System (INIS)

    Ershov, S.N.; Fayans, S.A.; Gareev, F.A.; Pyatov, N.I.

    1986-01-01

    Microscopic calculation of the small-angle neutron energy spectra from the 208 Pb (p, n) 208 Bi reaction at Esub(p)=200 MeV are presented. It is shown that the distorted-wave impulse approximation and the microscopic theory of finite Fermi systems can be employed for describing the low-energy excitation region 0 <= Q <= 30 MeV with small momentum transfers. A quantitative estimate is obtained for the local charge of quasiparticles esub(q)[σtau]=0.8 that characterizes the quenching of the integral strength of spin-flip low-energy transitions and the relevant effects are discussed

  6. Time evolution of the characteristic electron energy losses spectra of the electrons scattered on polycrystal samples of Al mechanically cleaned in vacuum

    International Nuclear Information System (INIS)

    Szczesny, R.; Baranowski, A.; Beliczynski, J.

    1982-01-01

    Measurements by the reflection technique of characteristic electron energy losses (CEEL) with a primary electron beam of energy E 0 =1 keV have been carried out on polycrystal samples of Al. The sample surfaces have been mechanically cleaned in a dinamical vacuum of the order 10 -6 Tr before each measurement. The CEEL spectra have been corrected for the resolving power of the apparatus by the deconvolution method. We have ascertained that the measuring technique and elaboration data method are useful for quickly obtaining the plasmon energy loss spectrum for an investigated material. (author)

  7. Applying coda envelope measurements to local and regional waveforms for stable estimates of magnitude, source spectra and energy

    International Nuclear Information System (INIS)

    Hofstetter, R.; Mayeda, K.; Rodgers, A.; Walter, W.

    1999-01-01

    Magnitude estimation forms an integral part in any seismic monitoring endeavor. For monitoring compliance of the Comprehensive Nuclear-Test-Ban Treaty, regional seismic discriminants are often functions of magnitude such as m(sub b):M(sub 0) high-to-low spectral ratios, and nuclear yield estimation. For small-to-moderate magnitude events that cannot be studied by a large regional or global network of stations, there is a need for stable magnitudes that can be obtained from as few as one station. To date, magnitudes based on coda envelopes are by far the most stable because of the coda's averaging properties. Unlike conventional magnitudes which utilize the direct phases such as P (P(sub n), P(sub g)) or S (S(sub n), L(sub g)), or M(sub g), a coda envelope magnitude is not as sensitive to the undesirable effects of source radiation pattern, 3-D path heterogeneity, and constructive/destructive interference near the recording site. The stability of the coda comes from a time-domain measurement made over a large portion of the seismogram thereby averaging over the scattered wavefield. This approach has been applied to earthquakes in the western United States where it was found that a single-station coda magnitude was approximately equivalent to an average over a 64 station network which used only the direct waves such as L(sub g) (Mayeda and Walter, JGR, 1996). In this paper we describe in detail our calibration procedure starting with a broadband recording, correlation with independent moment estimates, formation of narrowband envelopes, coda envelope fitting with synthetics, and finally the resultant moment-rate spectra. Our procedure accounts for all propagation, site, and S-to-coda transfer function effects. The resultant coda-derived moment-rate spectra are then used to estimate seismic moment (M(sub o)), narrowband magnitudes such as m(sub b) or M(sub L), and total seismic energy. For the eastern Mediterranean region a preliminary study was completed for

  8. Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

    CERN Document Server

    Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W.C.; Zhou, Q.D.

    2015-01-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-...

  9. Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV (7)Li(p,n) reactions at angles from 0 degrees to 300 degrees

    CERN Document Server

    Iwamoto, Y; Nakamura, T; Nakashima, H; Mares, V; Itoga, T; Matsumoto, T; Nakane, Y; Feldbaumer, E; Jaegerhofer, L; Pioch, C; Tamii, A; Satoh, D; Masuda, A; Sato, T; Iwase, H; Yashima, H; Nishiyama, J; Hagiwara, M; Hatanaka, K; Sakamoto, Y

    2011-01-01

    The authors measured the neutron energy spectra of a quasi-monoenergetic (7)Li(p,n) neutron source with 246 and 389 MeV protons set at seven angles (0 degrees, 2.5 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees and 30 degrees), using a time-of-flight (TOF) method employing organic scintillators NE213 at the Research Center for Nuclear Physics (RCNP) of Osaka University. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0 degrees and 10 MeV at other angles. The cross-sections of the peak neutron production reaction at 0 degrees were on the 35-40 mb line of other experimental data, and the peak neutron angular distribution agreed well with the Taddeucci formula. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes of the continuum above 150 MeV changed considerably with the angle. In order to consider the correction required to derive the response in the peak region from the measured total response for high-energy neutron monitors such as DAR...

  10. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  11. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  12. Spectra of electrons emitted as a result of the sticking and annihilation of low energy positrons to the surfaces of graphene and highly oriented pyrolytic graphite (HOPG)

    Science.gov (United States)

    Chrysler, M.; Chirayath, V.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) was used to study the positron induced low energy electron spectra from HOPG and a sample composed of 6-8 layers of graphene grown on polycrystalline copper. A low energy (~2eV) beam of positrons was used to implant positrons into a surface localized state on the graphene and HOPG samples. Measurements of the energy spectra of the positron induced electrons obtained using a TOF spectrometer indicate the presence of an annihilation induced KLL C Auger peak (at ~263 eV) along with a narrow low energy secondary peak due to an Auger mediated positron sticking (AMPS) process. A broad spectral feature was also observed below ~15 eV which we believe may be due to a VVV C Auger transition not previously observed. The energy dependence of the integrated intensity of the AMPS peak was measured for a series of incident positron kinetic energies ranging from ~1.5 eV up to 11 eV from which the binding energy of the surface localized positron state on graphene and HOPG was estimated. The implication of our results regarding the applicability of AMPS and PAES to the study of graphene surfaces and interfaces will be discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  13. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  14. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Fleming, Graham R. [Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  15. Inclusive dielectron spectra in p plus p collisions at 3.5 GeV kinetic beam energy

    Czech Academy of Sciences Publication Activity Database

    Agakishiev, G.; Balanda, A.; Belyaev, A.; Finocchiaro, P.; Guber, F.; Karavicheva, T.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Lapidus, K.; Markert, J.; Michel, J.; Pechenova, O.; Rustamov, A.; Sobolev, Yuri, G.; Strobele, H.; Tarantola, A.; Teilab, K.; Tlustý, Pavel; Wagner, Vladimír

    2012-01-01

    Roč. 48, č. 5 (2012), s. 1-11 ISSN 1434-6001 R&D Projects: GA MŠk LC07050; GA AV ČR IAA100480803 Institutional support: RVO:61389005 Keywords : relativistic collisions * nuclear matter * dielectron spectra * HADES Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.043, year: 2012

  16. The thick-target 9Be(d,n) neutron spectra for deuteron energies between 2.6 and 7.0-MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1991-11-01

    The measurement of the zero deg. neutron spectra and yields from deuterons incident on thick beryllium metal targets is described. 235 U and 238 U fission ion chambers were used as neutron detectors to span the neutron energy range above 0.05-MeV with a time resolution of ≤ 3 nanosec. Measurements were made for incident deuteron energies from 2.6 to 7.0-MeV, at 0.4-MeV intervals, using time-of-flight techniques with flight paths of 2.7 and 6.8 meters. The results are presented in graphical form and in tables

  17. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  18. Fluorescence spectra and collisional energy transfer of YO (A2PIsub(1/2, 3/2)) molecules in flames

    International Nuclear Information System (INIS)

    Wijchers, T.

    1981-01-01

    The aim of this investigation was (a) to determine, from fluorescence spectra in the visible, the normalized, radiatively induced extra populations of vibronic levels of a diatomic metal compound; (b) to calculate therefrom the normalized collisional transition probabilities between vibrational levels in an excited electronic state. Yttrium monoixde (YO) was chosen as the metal compound and A 2 PIsub(1/2,3/2) as the state(s) to be investigated. (Auth.)

  19. Measurement of neutron energy spectra of PuO[sub 2]-UO[sub 2] mixed oxide fuel and penetrated through surrounding lead-acryl shield

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Noriaki; Tsujimura, Norio; Nakamura, Takashi (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Momose, Takumaro; Ninomiya, Kazushige; Ishiguro; Hideharu

    1993-12-01

    The energy spectra of neutrons emitted from an aluminum can containing PuO[sub 2]-UO[sub 2] mixed oxide fuel and penetrated through a 35mm thick lead-acryl shield surrounding the can, were measured with the NE-213 organic liquid scintillator, the proton recoil proportional counter and the multi-moderator [sup 3]He spectrometer (Bonner Ball). The measured results were compared with the results calculated by the MORSE-CG Monte Carlo code on the basis of source neutron yields obtained by the ORIGEN-2 code and the source energy spectrum cited from the reference data. The agreement between these two was pretty good. The dose equivalents were then calculated from thus-obtained energy spectra and the flux-to-dose conversion factor and showed good agreement with the data measured with the neutron dose-equivalent counters (rem counters). Since the published data on energy spectrum of mixed oxide fuel are very scarce, these results can be useful as basic data for shielding design study and radiation control of nuclear fuel facilities. (author).

  20. IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor

    2013-01-01

    This is the third of a series of articles reporting critically evaluated rotational–vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational–vibrational transitions of the most abundant isotopologue of water, H 2 16 O. The latest version of the MARVEL (Measured Active Rotational–Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H 2 16 O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H 2 16 O containstwo components, an ortho (o) and a para (p) one. For o-H 2 16 O and p-H 2 16 O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H 2 16 O and p-H 2 16 O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a

  1. The Equilibrium and Pre-equilibrium Triton Emission Spectra of Some Target Nuclei for ( n, xt) Reactions up to 45 MeV Energy

    Science.gov (United States)

    Tel, E.; Kaplan, A.; Aydın, A.; Özkorucuklu, S.; Büyükuslu, H.; Yıldırım, G.

    2010-08-01

    Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, ( n,xt) reactions for some target nuclei as 16O, 27Al, 59Co and 209Bi have been investigated up to 45 MeV incident neutron energy. In the calculations of the triton emission spectra, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.

  2. Attained energy densities and neutral pion spectra in nucleus-nucleus collisions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The quantity most crucial to the probability of QGP formation is the thermalized energy density attained during the heavy-ion reaction. The amount of energy radiated transverse to the beam direction is the experimental quantity which is believed to be a measure of the amount of energy deposition in the reaction, and hence to reflect the energy density attained. In this presentation we consider the systematics of transverse energy production at CERN SPS energies, and we use the results to make estimates, under various assumptions, of attained energy densities. 18 refs., 2 figs

  3. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  4. Nature of the high-binding-energy dip in the low-temperature photoemission spectra of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Dessau, D.S.; Shen, Z.; Wells, B.O.; King, D.M.; Spicer, W.E.; Arko, A.J.; Lombardo, L.W.; Mitzi, D.B.; Kapitulnik, A.

    1992-01-01

    At the transition to superconductivity, an anomalous high-binding-energy (∼-90 meV) dip appears in the low-temperature photoemission spectra taken along the Γ-bar M high-symmetry direction of Bi 2 Sr 2 CaCu 2 O 8+δ . This paper details experiments which further characterize the energy and k-space dependence of this dip structure. The dip occurs over a wide portion of the Γ-bar M zone diagonal (110), yet shows minimal energy dispersion. In the spectra taken along the Γ-X zone edge (100), the dip is very weak or not present. We show that these results imply that the dip is not an artifact dependent on the experiment or special features of the band structure and therefore is an intrinsic feature of the superconducting state of Bi 2 Sr 2 CaCu 2 O 8+δ . The behavior of the normal-state bands along Γ-bar M in relation to the local-density-approximation prediction of a Bi-O-based electron ''pocket'' is also discussed, with our data explained most naturally if the Bi-O band remains above the Fermi level for all k

  5. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    Science.gov (United States)

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Spectral range calculation inside the Research Irradiating Facility Army Technology Center using code MCNPX and comparison with the spectra of energy Caesium 137 raised in laboratory

    International Nuclear Information System (INIS)

    Gomes, Renato G.; Rebello, Wilson F.; Cavaliere, Marcos Paulo; Vellozo, Sergio O.; Moreira Junior, Luis; Vital, Helio C.; Silva, Ademir X.

    2013-01-01

    Using the MCNPX code, the objective was to calculate by means of computer simulation spectroscopy range inside the irradiation chamber upper radiator gamma research irradiating facility Army Technology Center (CTEx). The calculations were performed in the spectral range usual 2 points for research purposes irradiating the energy spectra of gamma rays from the source of Cesium chloride 137. Sought the discretization of the spectrum in 100 channels at points of upper bound of 1cm higher and lower dose rates previously known. It was also conducted in the laboratory lifting the spectrum of Cesium-137 source using NaI scintillator detector and multichannel analyzer. With the source spectrum Cesium-137 contained in the literature and raised in the laboratory, both used as reference for comparison and analysis in terms of probability of emission maximum of 0.661 MeV The spectra were quite consistent in terms of the behavior of the energy distributions with scores. The position of maximum dose rate showed absorption detection almost maximum energy of 0.661 MeV photopeak In the spectrum of the position of minimum dosage rate, it was found that due to the removal of the source point of interest, some loss detection were caused by Compton scattering. (author)

  7. New method in analysing high-energy γ spectra from heavy ion collisions at projectile energies around 10 MeV/u

    International Nuclear Information System (INIS)

    Kicinska-Habior, M.; Snover, K.A.; Drebi, Z.; Ye, D.; Kelly, M.; Maj, A.; Trznadel, Z.

    1996-01-01

    The gamma spectra from the giant dipole resonance (GDR) decay have been investigated. It was assumed that the gamma quanta emitted from GDR origin from statistical emission and Bremsstrahlung. The calculation results are compared with the experimental data from 12 C + 26 Mg and 12 C + 24 Mg reactions

  8. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Directory of Open Access Journals (Sweden)

    Itoga Toshiro

    2017-01-01

    Full Text Available Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  9. Energy spectra of the hyperbolic and second Poeschl-Teller like potentials solved by new exact quantization rule

    International Nuclear Information System (INIS)

    Dong Shihai; Gonzalez-Cisneros, A.

    2008-01-01

    A new exact quantization rule simplifies the calculation of the energy levels for the exactly solvable quantum system. In this work we calculate the energy levels of the Schroedinger equation with the hyperbolic potential by this quantization rule. The corresponding eigenfunction is also derived for completeness. The second Poeschl-Teller like potential case is also carried out

  10. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  11. The influence of mammographic X-ray spectra on absorbed energy distribution in breast: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Tzanakos, G.; Panayiotakis, G.

    2005-01-01

    A mathematical model, based on Monte Carlo simulation, is proposed for deriving absorbed energy and dose distribution in mammography utilizing a mathematical water-like phantom. The model was validated for its accuracy against experimental and published data. The main factor discriminating absorbed energy distribution characteristics among different mammographic techniques was considered the X-ray spectrum. The absorbed energy distribution inside the phantom was investigated via percentage depth dose and isodose curves. The influence of the factors affecting X-ray spectrum (tube voltage, anode material, filter material and thickness) on absorbed energy distribution was examined. The hardness of the beam, due to increase of tube voltage or filtration, was found to be the major factor affecting absorbed energy distribution inside the phantom. In general, Mo and W anode systems demonstrated superior dosimetric characteristics against those of W-Mo or Rh. The model presented can be used for estimating absolute and relative breast dose values and their spatial distributions

  12. A lower limit to the altitude of coronal particle storage regions deduced from solar proton energy spectra

    Science.gov (United States)

    Krimigis, S. M.

    1973-01-01

    The spectrum of low energy protons observed at 1 AU following solar flares shows little or no evidence of energy degradation down to approximately 0.3 MeV. Such observations may be used to set a lower limit on the altitude of hypothetical coronal particle storage regions, ranging from 2 to 7 R sub s. It is pointed out that closed coronal magnetic loop structures are observed to extend to 2R sub s, so that long-term storage of low energy protons does not take place in the immediate vicinity of the sun. It is further suggested that in the few cases where the proton spectrum appears to be degraded at low energies, the energy loss may be due to adiabatic deceleration in the expanding solar wind. The alternative of continual acceleration is suggested as a plausible substitute for the particle storage hypothesis.

  13. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    International Nuclear Information System (INIS)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-01-01

    Highlights: • First non-destructive measurements of XPS core level binding energies for group IVb-VIb transition metal nitrides are presented. • All films are grown under the same conditions and analyzed in the same instrument, providing a useful reference for future XPS studies. • Extracted core level BE values are more reliable than those obtained from sputter-cleaned N-deficient surfaces. • Comparison to Ar+-etched surfaces reveals that even mild etching conditions result in the formation of a nitrogen-deficient surface layer. • The N/metal concentration ratios from capped samples are found to be 25-90% higher than those from the corresponding ion-etched surfaces. - Abstract: We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN’s) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N 2 atmosphere. For XPS measurements, layers are either (i) Ar + ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These

  14. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G., E-mail: grzgr@ifm.liu.se [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Primetzhofer, D. [Department of Physics and Astronomy, The Ångström Laboratory, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Lu, J.; Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2017-02-28

    Highlights: • First non-destructive measurements of XPS core level binding energies for group IVb-VIb transition metal nitrides are presented. • All films are grown under the same conditions and analyzed in the same instrument, providing a useful reference for future XPS studies. • Extracted core level BE values are more reliable than those obtained from sputter-cleaned N-deficient surfaces. • Comparison to Ar+-etched surfaces reveals that even mild etching conditions result in the formation of a nitrogen-deficient surface layer. • The N/metal concentration ratios from capped samples are found to be 25-90% higher than those from the corresponding ion-etched surfaces. - Abstract: We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN’s) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N{sub 2} atmosphere. For XPS measurements, layers are either (i) Ar{sup +} ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy

  15. Computed secondary-particle energy spectra following nonelastic neutron interactions with 12C for En between 15 and 60 MeV: Comparisons of results from two calculational methods

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1991-04-01

    The organic scintillation detector response code SCINFUL has been used to compute secondary-particle energy spectra, dσ/dE, following nonelastic neutron interactions with 12 C for incident neutron energies between 15 and 60 MeV. The resulting spectra are compared with published similar spectra computed by Brenner and Prael who used an intranuclear cascade code, including alpha clustering, a particle pickup mechanism, and a theoretical approach to sequential decay via intermediate particle-unstable states. The similarities of and the differences between the results of the two approaches are discussed. 16 refs., 44 figs., 2 tabs

  16. A survey of neutron energy spectra and angular distributions of the 9Be(p,n)9B reaction for fast neutron radiotherapy

    International Nuclear Information System (INIS)

    Allab, M.

    1984-03-01

    Encouraging findings in radiobiology have stimulated a renewed use of fast neutrons in radiotherapy. The physical characteristics required for neutron beams to be suitable for radiotherapy are well established. As a result, the tendency is to replace the previous machines which generated the neutron beams from deuteron bombardment of thick targets (T, Li, Be) by hospital based cyclotrons which accelerate protons on thick Beryllium targets. This report surveys the available experimental data of the 9 Be(p,n) reaction (cross sections, neutron spectra, yields, mean neutron energies) from the threshold to the proton energy Esub(p)=120 MeV and the works using this reaction in dosimetry measurements, with an emphasis on the data since 1977

  17. Investigation of the properties of the flux and interaction of ultrahigh-energy cosmic rays by the method of local-muon-density spectra

    International Nuclear Information System (INIS)

    Bogdanov, A. G.; Gromushkin, D. M.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Trinchero, G.; Chernov, D. V.; Shutenko, V. V.; Yashin, I. I.

    2010-01-01

    A new method for studying extensive air showers is considered. The method is based on the phenomenology of the localmuon density. It is shown that measurement ofmuon-density spectra at various zenith angles makes it possible to obtain information about the energy spectrum, mass composition, and interaction of cosmic rays over a broad range of energies (10 15 -10 18 eV) by using a single array of comparatively small size. The results obtained from a comparison of experimental data on muon bundles from the DECOR coordinate detector with the results of simulation performed under various assumptions on the properties of the primary flux and for various hadron-interaction models are presented, and possible versions of the interpretation of these results are discussed.

  18. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Document Server

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  19. Perturbation of the energy loss spectra for an accelerated electron beam due to the photo injector exit

    CERN Document Server

    Salah, W

    2003-01-01

    The influence of the photo-injector exit hall on the energy loss for an accelerated electron beam is investigated, by calculating the total energy transferred from the electrons to the wakefields, which are driven by the beam. The obtained energy loss is compared to those previously obtained for a 'pill-box' cavity. This comparison shows that the influence of this hall, in terms of energy loss, varies over the beam length. It is strongest in the middle of the beam and decreases towards both ends. In consequence of this perturbation, the center of the beam is displaced from its initial position during the first phase (t < 200 ps) where the exit aperture has no effect to a new equilibrium position which takes place at 200 < t < 250 ps. (author)

  20. Investigation of an energy-gap model for photoacoustic O2A-band spectra: H2O calibration near 7180 cm−1

    International Nuclear Information System (INIS)

    Vess, E.M.; Anderson, C.N.; Awadalla, V.E.; Estes, E.J.; Jeon, C.; Wallace, C.J.; Hu, X.F.; Havey, D.K.

    2012-01-01

    Highlights: ► We investigate an energy transfer model for photoacoustic measurements of the O 2 A-band. ► We measure the response of a photoacoustic spectrometer for known quantities of H 2 O and O 2 . ► We fit multiple theoretical spectral line profiles to the data. ► We bind the relative uncertainty of the energy transfer model to less than 1%. ► We demonstrate that speed-dependence is an important line shape effect for these experiments. - Abstract: A photoacoustic spectrometer is used to evaluate the accuracy of an energy-gap model for collisional energy transfer. For photoacoustic measurements involving the b 1 Σ g + ←X 3 Σ g - transition of molecular oxygen the conversion of photon energy to thermal energy is inefficient and proceeds through the a 1 Δ g state. This results in attenuation of the photoacoustic signal. The magnitude of the attenuation can be predicted with an energy-gap model whose accuracy has been previously confirmed to within 3 ± 5%. However, this prior result does not rule out incomplete rotational relaxation of O 2 in the a 1 Δ g state. In this study, high-resolution spectra of H 2 O in air are used to calibrate the photoacoustic spectrometer. This work binds the relative uncertainty in the energy-gap relaxation factor for O 2 A-band photoacoustic signals to be approximately 1%. During one acoustic cycle, this result implies negligible collisional relaxation to the X 3 Σ g - state of O 2 and nearly complete collisional relaxation to the a 1 Δ g state.

  1. Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas).

    Science.gov (United States)

    Marques, Marise Conceição; do Nascimento, Clístenes Williams Araújo

    2013-10-05

    The vegetation of metal-contaminated soils using non-edible crops can be a safe and economical technique for Cd immobilization and the remediation of contaminated sites. Jatropha (Jatropha curcas L.) exhibits a relative tolerance to heavy metals and potential for biofuel production. The study was performed to monitor the Cd-induced alterations in jatropha plants by X-ray chlorophyll fluorescence. The Cd effects on photosynthetic pigments, the mineral composition of plants, defense enzyme activity and soluble proteins were also studied. Plants were grown for 20days in a nutrient solution with five Cd contents: 5, 10, 20, 30 and 40μmolL(-1); a control with no Cd addition was also monitored. The analysis of the chlorophyll fluorescence spectra allowed detecting alterations caused by Cd toxicity in the jatropha plants. The mineral composition of the plants was affected by the Cd doses; however, the Fe and Mg contents were not significantly reduced, which most likely improved the effects on the contents of the photosynthetic pigments. Because of its relative tolerance to Cd, Jatropha curcas may be a promising species to revegetate Cd-contaminated sites. Considering the long period needed to phytoremediate soils, the combination of remediation with bioenergy production could be an attractive option. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Catalogue of neutron spectra

    International Nuclear Information System (INIS)

    Buxerolle, M.; Massoutie, M.; Kurdjian, J.

    1987-09-01

    Neutron dosimetry problems have arisen as a result of developments in the applications of nuclear energy. The largest number of possible irradiation situations has been collected: they are presented in the form of a compilation of 44 neutron spectra. Diagrams show the variations of energy fluence and energy fluence weighted by the dose equivalent/fluence conversion factor, with the logarithm of the corresponding energy. The equivalent dose distributions are presented as percentages for the following energy bins: 0.01 eV/0.5 eV/50 keV/1 MeV/5 MeV/15 MeV. The dose equivalent, the mean energy and the effective energy for the dose equivalent for 1 neutron cm -2 are also given [fr

  3. Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Park, J. S.; Sasaki, K.; Saito, R.; Izumida, W.; Kalbáč, Martin; Farhat, H.; Dresselhaus, G.; Dresselhaus, M. S.

    2009-01-01

    Roč. 80, č. 8 (2009), 081402-1-081402-4 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fermi energy dependence * Raman spectroscopy * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 3.475, year: 2009

  4. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    International Nuclear Information System (INIS)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-01-01

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10 3 and 10 4 GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π ± and K ± mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments

  5. ON ESTIMATING THE HIGH-ENERGY CUTOFF IN THE X-RAY SPECTRA OF BLACK HOLES VIA REFLECTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    García, Javier A.; Steiner, James F.; McClintock, Jeffrey E.; Keck, Mason L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Dauser, Thomas; Wilms, Jörn, E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@head.cfa.harvard.edu, E-mail: keckm@bu.edu, E-mail: thomas.dauser@sternwarte.uni-erlangen.de [Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2015-08-01

    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope Γ of the power-law continuum and the energy E{sub cut} at which it rolls over. Remarkably, this latter parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that by fitting simultaneous NuSTAR (3–79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model relxill one can obtain reasonable constraints on E{sub cut} at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.

  6. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  7. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  8. Fluctuations in transverse energy and mulitplicity, energy densities, and neutral pion spectra in nucleus-nucleus collisions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The quantity most crucial to the probability of QGP formation is the thermalized energy density attained during the heavy-ion reaction. The amount of energy radiated transverse to the beam direction is the experimental quantity which is believed to be a measure of the amount of energy deposition in the reaction, and hence to reflect the energy density attained. In this presentation we consider the systematics of transverse energy production at CERN SPS energies, and we use the results to make estimates, under various assumptions, of attained energy densities

  9. Structure of X-ray photoelectron spectra of low-energy and core electrons of Ln(C6H4OCH3COO-3

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2005-01-01

    Full Text Available This paper deals with the results of an X-ray photo electron spectroscopy of lanthanide ortho-metoxybenzoates Ln(C6H4OCH3COO-3, where Ln represents lanthanides La through Lu except for Pm and C6H4OCH3COO- - residuum of ortho-metoxybenzoic acid. The core and outer electron X-ray photo electron spectroscopy spectra in the binding energy range of 0-1250 eV were shown to exhibit a complex, fine structure. The said structure was established due to the outer (0-15 eV binding energy and inner (15-50 eV binding energy valence molecular orbital from the filled Ln5p and O2s atomic shells multiple splitting, many-body perturbation, dynamic effect, etc. The mechanisms of such a fine structure formation were shown to manifest different probabilities in the spectrum of a certain electronic shell. There fore, the fine X-ray photo electron spectroscopy spectral structure resulting from a certain mechanism can be interpreted and its quantitative parameters related to the physical and chemical properties of the studied com pounds (degree of delocalization and participation of Ln4f electrons in the chemical bond, electronic configuration and oxidation states, density of uncoupled electrons on paramagnetic ions, degree of participation of the low binding energy filled electronic shells of lanthanide and ligands information of the outer and in nervalence molecular orbitals, lanthanide close environment structure in amorphous materials, etc.

  10. Transverse energy and neutral pion spectra obtained from 16O- and 32S-induced reactions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The most promising indication that this may, in fact, be the case comes from the NA38 dimuon measurements, which are focused on the question of J//psi/ suppression. This effect was predicted to be one of the signatures of QGP formation before any measurements were made, and it is the subject of the two other talks at this conference that deal with nucleus-nucleus reactions at ultrarelativistic energies. In this presentation we consider the general (global) features of heavy-ion reactions at CERN energies, and we examine the degree to which they differ from mere superpositions of nucleon-nucleon collisions. We discuss the present status of our data analysis and our main conclusions from the first round of CERN experiments with emphasis on transverse energy measurements, on attained energy densities, and on the spectra of produced neutral pions. Because of time limitations we will not discuss our measurements of distributions of charged particles and the analysis of these distributions in terms of fluctuations nor the results that we have obtained with the Plastic Ball on the behavior of target spectator matter. 20 refs., 5 figs

  11. Simulation of Electron Energy Spectra of a Biased Paracentric Hemispherical Deflection Analyzer as a Function of Entry Bias: Effects of Misalignments

    Directory of Open Access Journals (Sweden)

    O. Sise

    2014-01-01

    Full Text Available The performance of a biased paracentric hemispherical deflection analyzer (HDA, including fringing fields and their effect on focusing and energy resolution, is investigated using numerical methods. Electron energy spectra are calculated for three entry positions R0=84 mm, 100 mm, and 112 mm and compared with the recent experimental measurements. In both experiment and calculation, the two different paracentric entry positions R0=84 mm and R0=112 mm, on either side of the mean radius of 100 mm, are found to have a base energy resolution of about two times better than the conventional centric entry position R0=100 mm. In order to explain the discrepancies (6–30% between the simulated and the experimental resolutions the focusing characteristics are further investigated for different displacements of the input lens (ΔR0 with respect to the entry position R0 and the tilted input beam axis by αshift in the dispersive direction. We have found that the blame does not in fact lie with the theory and we have shown that the input lens may have been misaligned in the experiment. Slight misalignments affect both the true energy resolution measurement and the transmission of the beam.

  12. Determination of the mass of W boson at LEP2 with ALEPH detector by studying energy spectra of leptons

    International Nuclear Information System (INIS)

    Dessagne-Trescarte, S.

    2000-01-01

    One of the most significant goals of the LEP is to test with precision the Electroweak Standard Model. Whereas the first step was mainly centered on the study of the Z boson, the second phase, LEP200, allowed the study of the proprieties of the W boson. Thus, the mass of the W is a fundamental parameter of the Standard Model and its measurement is a very significant stake to test this model and to predict the mass of the Higgs boson through radiative corrections. LEP200 is well adapted to the study of the mass of the W boson, because the centre-of-mass energy is above the kinematic threshold, √S = 2M W , and thus makes it possible to produce W + W - pairs through the process e + e - → W + W - . The data collected by the ALEPH detector during the years 1997 and 1998 at the centre-of-mass energy of respectively 183 GeV and 189 GeV have been used in this thesis to perform a measurement of M W based on the comparison of distributions sensitive to M W , and built using the data and Monte Carlo samples generated at different W masses. Two types of methods can be used to estimate the W mass: the direct reconstruction of M W (using as estimator the invariant mass obtained after a 2C kinematic fit) or the measurement of M W through the WW cross section. This thesis proposes a new technique of direct reconstruction based on the use of the W → lν channel. The distributions used in the semileptonic channel are the energies of the lepton and of the neutrino calculated in the laboratory frame and in the centre-of-mass of the W, the lepton-neutrino invariant mass and the boost of the W. In the leptonic channel, the three distributions used are the energy of the most energetic lepton, the energy of the second lepton and the missing energy of the event. In the leptonic channel, WW → lνlν, one gets: M W = 81.409 ± 0.565(Stat) ± 0.125(Syst) GeV/c 2 . In the semileptonic channel WW → lνqq-bar, the result is: M W = 80.108 ± 0.186(Stat) ± 0.067(Syst) GeV/c 2 . These

  13. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators

    International Nuclear Information System (INIS)

    Juste, B.; Miró, R.; Verdú, G.; Macián, R.

    2012-01-01

    A calculation of the correct dose in radiation therapy requires an accurate description of the radiation source because uncertainties in characterization of the linac photon spectrum are propagated through the dose calculations. Unfortunately, detailed knowledge of the initial electron beam parameters is not readily available, and many researchers adjust the initial electron fluence values by trial-and-error methods. The main goal of this work was to develop a methodology to characterize the fluence of initial electrons before they hit the tungsten target of an Elekta Precise medical linear accelerator. To this end, we used a Monte Carlo technique to analyze the influence of the characteristics of the initial electron beam on the distribution of absorbed dose from a 6 MV linac photon beam in a water phantom. The technique is based on calculations with Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations with the MCNP5 transport code. The free parameters used in the SUSA calculations were the mean energy and full-width-at-half-maximum (FWHM) of the initial electron distribution. A total of 93 combinations of these parameters gave initial electron fluence configurations. The electron spectra thus obtained were used in a simulation of the electron transport through the target of the linear accelerator, which produced different photon (Bremsstrahlung) spectra. The simulated photon spectra were compared with the 6-MV photon spectrum provided by the linac manufacturer (Elekta). This comparison revealed how the mean energy and FWHM of the initial electron fluence affect the spectrum of the generated photons. This study has made it possible to fine-tune the examined electron beam parameters to obtain the resulted absorbed doses with acceptable accuracy (error <1%). - Highlights: ► Mean energy and radial spread are important parameters for simulating the incident electron beam in radiation therapy. ► Errors in determining the electron

  14. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing, E-mail: shiqingxu@cjlu.edu.cn; Zhang, Junjie, E-mail: jjzhang@cjlu.edu.cn

    2015-03-25

    Highlights: • Er{sup 3+} doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er{sup 3+} activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er{sup 3+}:{sup 4}I{sub 11/2}→{sup 4}I{sub 13/2} transition, high spontaneous radiative transition probability (30.09 s{sup −1}), large emission cross section ((14.84 ± 0.10) × 10{sup −21} cm{sup 2}) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier.

  15. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    International Nuclear Information System (INIS)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-01-01

    Highlights: • Er 3+ doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er 3+ activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er 3+ : 4 I 11/2 → 4 I 13/2 transition, high spontaneous radiative transition probability (30.09 s −1 ), large emission cross section ((14.84 ± 0.10) × 10 −21 cm 2 ) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier

  16. Theoretical energy level spectra and transition data for 4p64d, 4p64f and 4p54d2 configurations of W37+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P.; Kisielius, R.

    2012-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions was applied to determine atomic data for tungsten ions. The correlation effects were included by adopting the configuration interaction method. The Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals was employed to take into account relativistic effects. The energy level spectra, radiative lifetimes, Lande factors g were calculated for the 4p 6 4d, 4p 6 4f and 4p 5 4d 2 configurations of W 37+ ion. The atomic data, namely, the transition wavelengths, spontaneous emission rates and oscillator strengths for the electric dipole, electric quadrupole and magnetic dipole transitions among and within the levels of these configurations are tabulated.

  17. Particle spectra and mass composition in the ultra-high energy region in the framework of the Galactic origin of cosmic rays

    Directory of Open Access Journals (Sweden)

    Lagutin A.A.

    2017-01-01

    Full Text Available The possibility for a self-consistent description of all the basic features of the observed cosmic ray spectra and primary composition variations in the energy range of 1015 ÷ 1020 eV within the Galactic origin scenario is examined. We assume the existence of Galactic sources that accelerate particles up to ∼ 3 · 1018Z eV and take into account a highly inhomogeneous (fractal-like distribution of matter and magnetic fields in the Galaxy that leads to extremely large free paths of particles (“Lévy flights”, along with an overwhelming contribution to the cosmic ray fluxes observed above ∼1018 eV from particles reaching the Solar System without scattering. Our scenario was refined on the basis of recent experimental results on primary mass composition. Model predictions, which could be verified with the improved high-precision measurements in the nearest future are discussed.

  18. Ab initio potential energy surface, electric-dipole moment, polarizability tensor, and theoretical rovibrational spectra in the electronic ground state of {sup 14}NH{sub 3}{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, Sergei N. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Elektrochemie, D-01062 Dresden (Germany); Thiel, Walter [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Muelheim an der Ruhr (Germany); Carvajal, Miguel [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Avenida de las Fuerzas Armadas s/n, Universidad de Huelva, E-21071 Huelva (Spain); Jensen, Per [Theoretische Chemie, Bergische Universitaet, D-42097 Wuppertal (Germany)], E-mail: jensen@uni-wuppertal.de

    2008-05-04

    We report the calculation of a six-dimensional CCSD(T)/aug-cc-pVQZ potential energy surface for the electronic ground state of NH{sub 3}{sup +} together with the corresponding CCSD(T)/aug-cc-pVTZ dipole moment and polarizability surface of {sup 14}NH{sub 3}{sup +}. These electronic properties have been computed on a large grid of molecular geometries. A number of newly calculated band centers are presented along with the associated electric-dipole transition moments. We further report the first calculation of vibrational matrix elements of the polarizability tensor components for {sup 14}NH{sub 3}{sup +}; these matrix elements determine the intensities of Raman transitions. In addition, the rovibrational absorption spectra of the {nu}{sub 2}, {nu}{sub 3}, {nu}{sub 4}, 2{nu}{sub 2}-{nu}{sub 2}, and {nu}{sub 2}+{nu}{sub 3}-{nu}{sub 2} bands have been simulated.

  19. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  20. Energy spectra of protons emitted in the p+Xe→p+... interactions at 2.34 GeV/c and π-+Xe→p+... at 9 GeV/c

    International Nuclear Information System (INIS)

    Slovinskij, B.; Mulas, Eh.

    1981-01-01

    The energy spectra of protons (ESP) emitted in reactions p+Xe→kp+... at 2.34 GeV/c (k=1-9) and π - +Xe→kp+... at 9 GeV/c (k=1-17) have been studied. An evidence has been obtained for a unified description of those spectra by an exponential dependence of the invariant cross sections upon the kinetic energy independently of the proton emission angle. It is found that the ESP temperature becomes independent of the proton emission frequency when the energy of the interaction induced hadron is greater than approximately 3 GeV [ru

  1. Mathematical methods in the problem of reconstruction of hadron interaction characteristics and primary cosmic ray spectra at superhigh energies

    International Nuclear Information System (INIS)

    Astaf'ev, V.A.

    1985-01-01

    The paper reviews the mathematical methods used for analyzing the experimental data obtained in investigations of cosmic rays of superhigh energies (10 14 -10 19 eV). The analysis is carried out on the basis of the direct problem solution, i.e. calculation of the characteristics of nuclear-electromagnetic cascade showers developed in the atmosphere with regard to the specific features of experimental devices. The analytical and numerical metods for solving equations describing shower development, as well as simulation of cascade processes by the Monte Carlo method are applied herein

  2. Search for a particle with a long interaction length. [particle mandela to explain anomalous energy spectra at mountain altitude

    Science.gov (United States)

    Barrowes, S. C.; Huggett, R. W.; Jones, W. V.; Levit, L. B.; Porter, L. G.

    1975-01-01

    A search has been carried out for a long-lived particle having an interaction length lambda sub m equals 300 to 2000 gm/sq cm in air. Such a particle, called the mandela, has been proposed to explain an anomalous energy spectrum of particles observed near sea level with a shallow spectrometer. Data taken at mountain altitude with a deep spectrometer has been examined for compatibility with the existence of the mandela. Although data tend to favor the mandela hypothesis the results are not conclusive and appear to be explainable by conventional means.

  3. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion.

    Science.gov (United States)

    Ma, Jian; Moix, Jeremy; Cao, Jianshu

    2015-03-07

    We develop a hybrid cumulant expansion method to account for the system-bath entanglement in the emission spectrum in the multi-chromophoric Förster transfer rate. In traditional perturbative treatments, the emission spectrum is usually expanded with respect to the system-bath coupling term in both real and imaginary time. This perturbative treatment gives a reliable absorption spectrum, where the bath is Gaussian and only the real-time expansion is involved. For the emission spectrum, the initial state is an entangled state of the system plus bath. Traditional perturbative methods are problematic when the excitations are delocalized and the energy gap is larger than the thermal energy, since the second-order expansion cannot predict the displacement of the bath. In the present method, the real-time dynamics is carried out by using the 2nd-order cumulant expansion method, while the displacement of the bath is treated more accurately by utilizing the exact reduced density matrix of the system. In a sense, the hybrid cumulant expansion is based on a generalized version of linear response theory with entangled initial states.

  4. Primary proton and helium spectra at energy range from 50 TeV to 1015 eV observed with the new Tibet AS core detector array

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2013-06-01

    Full Text Available A new EAS hybrid experiment has been designed by constructing a YAC (Yangbajing Air shower Core detector array inside the existing Tibet-III air shower array. The first step of YAC, called “YAC-I” has been successfully carried out in 2009–2010 together with Tibet-III air-shower array. YAC-II has also been operated from 2011. Preliminary results of YAC-I and performance of YAC-II are presented in this paper. The primary proton and helium spectra at energy range from50 TeV to 1015 eV derived from YAC-I data based on QGSJET2 and SIBYLL2.1 are reported. The obtained P+He spectrum is smoothly connected with directobservation data below 100 TeV and also with our previously reported results at higher energies within statistical error s. Based on these results and the sharp kneeof all-particle energy spectrum observed by our experiment, the possible origin of the sharp knee is discussed. See the published papers.

  5. Attenuation corrections through energy spectra analysis of whole body and partial body measurements applying gamma spectroscopy; Schwaechungskorrektur bei gammaspektroskopischen Ganz- und Teilkoerpermessungen durch Analyse der Energiespektren

    Energy Technology Data Exchange (ETDEWEB)

    Schelper, L.F.; Lassmann, M.; Haenscheid, H.; Reiners, C. [Wuerzburg Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    1997-12-01

    The study was carried out within the framework of activities for testing means of direct determination of radioactivity levels in the human body due to incorporated, inhomogenously distributed radionuclides. A major task was to derive the average depth of activity distributions, particularly from photon radiation at energies below 500 keV, for the purpose of making suitable attenuation corrections. The paper presents two applicable methods which yield information on the mean depths of activity distributions, obtained through additional analyses of the energy spectra. The analyses are based on measuring the dependence of intensity of the Compton radiation on the length of pathways of the photons penetrating the soft tissue, or on measuring the energy-dependent absorption effects with photons. (orig./CB) [Deutsch] Im Rahmen der direkten Aktivitaetsbestimmung bei inhomogener Radionukliddeposition im menschlichen Koerper mittels Ganz- oder Teilkoerpermessanlagen im klinischen Bereich oder im Strahlenschutz sollte besonders bei Photonenstrahlung mit Energien von weniger als 500 keV eine Ermittlung der mittleren Tiefe der Aktivitaetsverteilung zur Schwaechungskorrektur erfolgen. Im klinischen Umfeld ist es haeufig moeglich, zur Tiefenkorrektur die mittlere Organtiefe und damit die schwaechende Gewebsschicht mittels Ultraschall zu bestimmen. Ergaenzend hierzu werden im Folgenden zwei Methoden vorgestellt, welche Aussagen ueber die mittlere Tiefe von Aktivitaetsverteilungen durch Gewinnung von Zusatzinformationen aus dem Energiespektrum im Rahmen von gamma-spektroskopischen Personenmessungen ermoeglichen. Dazu werden einerseits die Abhaengigkeit der Intensitaet der Comptonstrahlung von der Laenge der Wegstrecke von Photonen durch Weichgewebe und andererseits energieabhaengige Absorptionseffekte bei Photonen als Grundlage herangezogen. (orig.)

  6. Vibrational Spectra And Potential Energy Distributions of Normal Modes of N,N'-Etilenbis(P-Toluen sulfonamide)

    International Nuclear Information System (INIS)

    Alyar, S.

    2008-01-01

    N-substituted sulfonamides are well known for their diuretic, antidiabetic, antibacterial and antifungal, anticancer e.g., and are widely used in the therapy of patients. These important bioactive properties are strongly affected by the special features of -CH 2 -SO 2 -NR-linker and intramolecular motion Thus, the studies of energetic and spatial properties on N-substituted sulfonamides are of great importance to improve our understanding of their biological activities and enhance abilities to predict new drugs. Density Functional Theory B3LYP /6-31G(d,p) level has been applied to obtain the vibrational force field for the most stable conformation of N,N'-etilenbis(p-toluensulfonamit)(ptsen)having sulfonamide moiety. The results of these calculation have been compared with spectroscopic data to verify accuracy of calculation and applicability of the DFT approach to ptsen. Additionally, complete normal coordinate analyses with quantum mechanical scaling (SQM) were performed to derive the potential energy distributions (PE)

  7. Instrumentation for the observation of atmospheric parameters, relevant for IACTs, for site-search and correction of the energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian; Hose, Juergen; Engelhardt, Toni; Mirzoyan, Razmik; Schweizer, Thomas; Teshima, Masahiro [Max Plank Institut fuer Physik, Muenchen (Germany)

    2010-07-01

    The atmospheric conditions have impact on the measured data by imaging atmospheric Cherenkov telescopes (IACT). Cherenkov light from air showers traverses 5-25 km distance in the atmosphere before reaching the telescopes. This light becomes attenuated because of absorption by oxigen and ozone as well as because of the Rayleigh and the Mie scatterings. The latter is the variable component in the atmosphere that depends on the momentary distribution of aerosols, their size and types and distribution heights. We have developed a micro-LIDAR system for parametrising these losses and plan to locate it next to the MAGIC telescopes for simultaneous operation. This shall allow us to improve the energy resolution of the telescopes for the data taken at non-ideal weather conditions. Also, we are working on developing diverse instrumentation for paramerising the atmosphere and for the searching proper sites for the CTA project. In our presentation we plan to report about the above-mentioned activities.

  8. Effects of Cu stress on maize seedlings using X-ray energy spectrum and FTIR spectra methods

    International Nuclear Information System (INIS)

    Qiao Lin; Fu Zhaolin; Qiao Chuanying

    2011-01-01

    The effects of Cu 2+ stress on maize seedlings by using scanning electron microscope, X-ray energy spectrum and Fourier transform infrared attenuated total reflection (FTIR-ATR) spectrometry were investigated, and antioxidative enzymes activities such as SOD, CAT, POD, APX were measured. Results showed that, with the increasing of Cu concentration, the content of chlorophyll decreased, and antioxidative enzyme activities increased at first and then decreased at higher concentration stress. High concentration Cu 2+ treatment twisted the cells' shape and increased copper content on leaf surface, and absorption of other nutrients were also affected. The result of FTIR-ATR analysis showed that the organic content of leaf were changed by Cu 2+ stress. (authors)

  9. Mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S.; Goncalves Z, E.

    2015-10-01

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z eff of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z eff using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  10. Stopping cross section of vanadium for H+ and He+ ions in a large energy interval deduced from backscattering spectra

    Science.gov (United States)

    Moro, M. V.; Bruckner, B.; Grande, P. L.; Tabacniks, M. H.; Bauer, P.; Primetzhofer, D.

    2018-06-01

    We have experimentally determined electronic stopping cross sections of vanadium for 50-2750 keV protons and for 250-6000 keV He ions by relative measurements in backscattering geometry. To check the consistency of the employed procedure we investigate how to define adequate reference stopping cross section data and chose different reference materials. To proof consistency of different reference data sets, an intercomparison is performed to test the reliability of the evaluation procedure for a wide range of energies. This process yielded consistent results. The resulting stopping cross section data for V are compared to values from the IAEA database, to the most commonly employed semi-empirical program SRIM, and to calculations according to CasP. For helium, our results show a significant deviation of up to 10% with respect to literature and to SRIM, but are in very good agreement with the CasP predictions, in particular when charge-exchange processes are included in the model.

  11. Determination of workplace neutron spectra at a high energy hadron accelerator using active and passive Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Chiti, M.

    2008-01-01

    In the framework of the 2006 experimental benchmark organized at the GSI (Darmstadt, Germany) by the EC CONRAD network, a neutron dosimetry intercomparison was performed in a workplace field around a carbon target hit by 400 MeV/u 12 C ions. The radiation protection group of the INFN-LNF participated to the intercomparison with a Bonner sphere spectrometer equipped with an active 6 LiI(Eu) scintillator and a set of passive detectors, namely MCP-6s (80mgcm -2 )/MCP-7 TLD pairs from TLD Poland. Both active and passive spectrometers, independently tested and calibrated, were used to determine the field and dosimetric quantities in the measurement point. The FRUIT unfolding code, developed at the INFN-LNF radiation protection group, was used to unfold the raw BSS data. This paper compares the results of the active or passive spectrometers, obtaining a satisfactory agreement in terms of both spectrum shape and value of the integral quantities, as the neutron fluence or the ambient dose equivalent. These results allow qualifying the BSS based on TLD pairs as a reliable passive method to be used around high energy particle accelerators even in low dose rate areas. This is particularly useful in those workplaces where the active instruments could be disturbed by the presence of pulsed fields, large photon fluence or electromagnetic noise

  12. Using fluence separation to account for energy spectra dependence in computing dosimetric a-Si EPID images for IMRT fields

    International Nuclear Information System (INIS)

    Li Weidong; Siebers, Jeffrey V.; Moore, Joseph A.

    2006-01-01

    This study develops a method to improve the dosimetric accuracy of computed images for an amorphous silicon flat-panel imager. Radially dependent kernels derived from Monte Carlo simulations are convolved with the treatment-planning system's energy fluence. Multileaf collimator (MLC) beam hardening is accounted for by having separate kernels for open and blocked portions of MLC fields. Field-size-dependent output factors are used to account for the field-size dependence of scatter within the imager. Gamma analysis was used to evaluate open and sliding window test fields and intensity modulated patient fields. For each tested field, at least 99.6% of the points had γ<1 with a 3%, 3-mm criteria. With a 2%, 2-mm criteria, between 81% and 100% of points had γ<1. Patient intensity modulated test fields had 94%-100% of the points with γ<1 with a 2%, 2-mm criteria for all six fields tested. This study demonstrates that including the dependencies of kernel and fluence on radius and beam hardening in the convolution improves its accuracy compared with the use of radial and beam-hardening independent kernels; it also demonstrates that the resultant accuracy of the convolution method is sufficient for pretreatment, intensity modulated patient field verification

  13. An experimental and theoretical investigation of the valence orbital momentum distributions and binding energy spectra of nitrogen

    International Nuclear Information System (INIS)

    Cook, J.P.D.; Pascual, R.; Weigold, E.

    1989-05-01

    A detailed electron momentum spectrosocpy (EMS) and a manybody theoretical study of the complete valence region of N 2 was carried out. The 1500eV EMS momentum distributions show that they provide a sensitive test for orbital wavefunctions of SCF calculations, and of correlation effects. The outermost 3σ g orbital is more sharply peaked at the origin than predicted by the orbital wavefunction. The inner valence 2σ g orbital is severely split, with spectroscopic strength ranging from 34eV to over 60eV in binding energy. The results of the present extended basis 1p Green's function calculations, as well as those of several previous manybody calculations, are only in semiquantitative agreement with this. There is a 2σ u pole at 25eV with a pole strength of approximately 0.067 in agreement with the results of manybody calculations. There is significant 2σ u and or 1π u strength and little 2σ g strength in the region 26-34eV. Poles observed at 29 and 32eV, previously attributed to the 2σ g orbital, are shown to be largely 2σ u in character. The manybody calculations predict too much 2σ g strength in the region 26-34eV. 29 refs., 1 tab., 16 figs

  14. pT spectra in pp and AA collisions at RHIC and LHC energies using the Tsallis-Weibull approach

    Science.gov (United States)

    Dash, Sadhana; Mahapatra, D. P.

    2018-04-01

    The Tsallis q -statistics have been incorporated in the Weibull model of particle production, in the form of q-Weibull distribution, to describe the transverse momentum (pT) distribution of charged hadrons at mid-rapidity, measured at RHIC and LHC energies. The q-Weibull distribution is found to describe the observed pT distributions over all ranges of measured pT. Below 2.2 GeV/c, while going from peripheral to central collisions, the parameter q is found to decrease systematically towards unity, indicating an evolution from a non-equilibrated system in peripheral collisions, towards a more thermalized system in central collisions. However, the trend is reversed in the all inclusive pT regime. This can be attributed to an increase in relative contribution of hard pQCD processes in central collisions. The λ-parameter is found to be associated with the mean pT or the collective expansion velocity of the produced hadrons, which shows an expected increase with centrality of collisions. The k parameter is observed to increase with the onset of hard QCD scatterings, initial fluctuations, and other processes leading to non-equilibrium conditions.

  15. Neutron Energy Spectra from Neutron Induced Fission of 235U at 0.95 MeV and of 238U at 1.35 and 2.02 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Almen, E; Holmqvist, B; Wiedling, T

    1971-09-15

    The shapes of fission neutron spectra are of interest for power reactor calculations. Recently it has been suggested that the neutron induced fission spectrum of 235U may be harder than was earlier assumed. For this reason measurements of the neutron spectra of some fissile isotopes are in progress at our laboratory. This report will present results from studies of the energy spectra of the neutrons emitted in the neutron induced fission of 235U and 238U. The measurements were performed at an incident neutron energy of 0.95 MeV for 235U and at energies of 1.35 and 2.02 MeV for 238U using time-of-flight techniques. The time-of-flight spectra were only analysed at energies higher than those of the incident neutrons and up to about 10 MeV. Corrections for neutron attenuation in the uranium samples were calculated using a Monte Carlo program. The corrected fission neutron spectra were fitted to Maxwellian temperature distributions. For 235U a temperature of 1.27 +- 0.01 MeV gives the best fit to the experimental data and for 238U the corresponding values are 1.29 +- 0.03 MeV at 1.35 MeV and 1.29 +- 0.02 MeV at 2.02 MeV

  16. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    Science.gov (United States)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  17. A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations

    International Nuclear Information System (INIS)

    Turner, Adam C.; Zhang Di; Kim, Hyun J.; DeMarco, John J.; Cagnon, Chris H.; Angel, Erin; Cody, Dianna D.; Stevens, Donna M.; Primak, Andrew N.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-01-01

    The purpose of this study was to present a method for generating x-ray source models for performing Monte Carlo (MC) radiation dosimetry simulations of multidetector row CT (MDCT) scanners. These so-called ''equivalent'' source models consist of an energy spectrum and filtration description that are generated based wholly on the measured values and can be used in place of proprietary manufacturer's data for scanner-specific MDCT MC simulations. Required measurements include the half value layers (HVL 1 and HVL 2 ) and the bowtie profile (exposure values across the fan beam) for the MDCT scanner of interest. Using these measured values, a method was described (a) to numerically construct a spectrum with the calculated HVLs approximately equal to those measured (equivalent spectrum) and then (b) to determine a filtration scheme (equivalent filter) that attenuates the equivalent spectrum in a similar fashion as the actual filtration attenuates the actual x-ray beam, as measured by the bowtie profile measurements. Using this method, two types of equivalent source models were generated: One using a spectrum based on both HVL 1 and HVL 2 measurements and its corresponding filtration scheme and the second consisting of a spectrum based only on the measured HVL 1 and its corresponding filtration scheme. Finally, a third type of source model was built based on the spectrum and filtration data provided by the scanner's manufacturer. MC simulations using each of these three source model types were evaluated by comparing the accuracy of multiple CT dose index (CTDI) simulations to measured CTDI values for 64-slice scanners from the four major MDCT manufacturers. Comprehensive evaluations were carried out for each scanner using each kVp and bowtie filter combination available. CTDI experiments were performed for both head (16 cm in diameter) and body (32 cm in diameter) CTDI phantoms using both central and peripheral measurement positions. Both equivalent source model types

  18. Energy dependence of pi, p and pbar transverse momentum spectra for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, H

    2007-03-26

    We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV. Data are presented at mid-rapidity (lbar y rbar< 0.5) for 0.2< pT< 12 GeV/c. In the intermediate pT region (2< pT< 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT> 7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at sqrt sNN = 62.4 GeV peak at pT _~;; 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT> 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

  19. Spectra of the linear energy transfer measured with a track etch spectrometer in the beam of 1 GeV protons and the contribution of secondary charged particles to the dose

    International Nuclear Information System (INIS)

    Spurny, F.; Vlcek, B.; Bamblevskij, V.P.; Timoshenko, G.N.

    1999-01-01

    A spectrometer of the linear energy transfer (LET) on the base of CR-39 detector was used to establish the spectra of LET in the beam of protons with the primary energy of 1 GeV. It was found out that the LET spectra of secondary charged particles between 100 and 7000 MeV cm 2 g -1 do not depend on the radiator. The average quality factors for the LET region mentioned were obtained about 11.6 with ICRP 26 quality factors and about 14.0 with ICRP 60 quality factors. The spectra obtained permitted to calculate the contributions of these secondary charged particles to the dosimetric quantities. It was observed that these contributions were about 7.0% for the total absorbed dose of protons and close 90% in the case of the equivalent doses. It is more than it was found out for few hundred MeV protons

  20. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  1. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    International Nuclear Information System (INIS)

    Goliney, I.Yu.; Sugakov, V.I.; Valkunas, L.; Vertsimakha, G.V.

    2012-01-01

    Highlights: ► Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. ► Light absorption of LH2 is enhanced by a metal nanoparticle. ► Using nanoshells allows reaching resonance between molecular and plasmons. ► Metal nanoparticles introduce additional channel of excitation decay. ► Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  2. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  3. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    International Nuclear Information System (INIS)

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-01-01

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  4. Energy dependence of identified hadron spectra and event-by-event fluctuations in p+p interactions from NA61/SHINE at the CERN SPS

    CERN Document Server

    Rybczynski, Maciej; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Argyriades, J.; Baatar, B.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brooks, W.; Brzychczyk, J.; Bubak, A.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Esposito, L.S.; Feofilov, G.A.; Fodor, Z.; Ferrero, A.; Fulop, A.; Gazdzicki, M.; Golubeva, M.; Grabez, B.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Hakobyan, H.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivanov, Y.; Ivashkin, A.; Jakovic, D.; Kadija, K.; Kapoyannis, A.; Katrynska, N.; Kaptur, E.; Kielczewska, D.; Kikola, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalski, S.; Krasnoperov, A.; Kuleshov, S.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V.V.; Mackowiak-Pawlowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A.I.; Maletic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Mrowczynski, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A.D.; Paul, T.; Pistillo, C.; Redij, A.; Peryt, W.; Petukhov, O.; Planeta, R.; Pluta, J.; Popov, B.A.; Posiadala, M.; Pulawski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Renfordt, R.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Sipos, M.; Skrzypczak, E.; Slodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek, A.; Wyszynski, O.; Zambelli, L.; Zipper, W.

    2013-01-01

    NA61/SHINE at the CERN SPS is a fixed-target experiment pursuing a rich physics program including measurements for heavy ion, neutrino and cosmic ray physics. The main goal of the ion program is to explore the most interesting $T, mu_{B}$ region of the phase diagram of strongly interacting matter. We plan to study the properties of the onset of deconfinement and to search for the signatures of the critical point. The search is performed by varying collision energy (13A-158A GeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La). Thanks to its large acceptance and excellent particle identification capability NA61/SHINE is well suited for performing high-precision particle production measurements as well as for studying event-by-event fluctuations in p+p, p+nucleus and nucleus+nucleus collisions. Preliminary results on p+p interactions at 20, 31, 40, 80 and 158 GeV/c are presented. They include inclusive spectra of pi+, pi-, K- and protons as a function of transverse momentum/mass and rapidity as well as event-by-ev...

  5. A new method for the reconstruction of very-high-energy gamma-ray spectra and application to galatic cosmic-ray accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Milton Virgilio

    2014-09-15

    In this thesis, high-energy (HE; E>0.1 GeV) and very-high-energy (VHE; E>0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESSJ1646-458 (2.2 in size) towards the SC Westerlund 1 (Wd1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESSJ1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the

  6. A new method for the reconstruction of very-high-energy gamma-ray spectra and application to galatic cosmic-ray accelerators

    International Nuclear Information System (INIS)

    Fernandes, Milton Virgilio

    2014-09-01

    In this thesis, high-energy (HE; E>0.1 GeV) and very-high-energy (VHE; E>0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESSJ1646-458 (2.2 in size) towards the SC Westerlund 1 (Wd1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESSJ1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the

  7. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  8. Density functional theory calculations of energy-loss carbon near-edge spectra of small diameter armchair and zigzag nanotubes: Core-hole, curvature, and momentum-transfer orientation effects

    International Nuclear Information System (INIS)

    Titantah, J.T.; Lamoen, D.; Jorissen, K.

    2004-01-01

    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1 nm using the all-electron full-potential(-linearized)-augmented-plane-wave method. Emphasis is laid on the effects of curvature, the electron-beam orientation, and the inclusion of the core hole on the carbon electron-energy-loss K edge. The electron-energy-loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature-induced π-σ hybridization is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron-energy-loss measurements. We also find that the energy-loss near-edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, we report a reduction in the anisotropy as seen on the energy-loss near-edge spectra of carbon nanotubes

  9. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  10. Double photoionisation spectra of molecules

    CERN Document Server

    Eland, John

    2017-01-01

    This book contains spectra of the doubly charged positive ions (dications) of some 75 molecules, including the major constituents of terrestrial and planetary atmospheres and prototypes of major chemical groups. It is intended to be a new resource for research in all areas of molecular spectroscopy involving high energy environments, both terrestrial and extra-terrestrial. All the spectra have been produced by photoionisation using laboratory lamps or synchrotron radiation and have been measured using the magnetic bottle time-of-flight technique by coincidence detection of correlated electron pairs. Full references to published work on the same species are given, though for several molecules these are the first published spectra. Double ionisation energies are listed and discussed in relation to the molecular electronic structure of the molecules. A full introduction to the field of molecular double ionisation is included and the mechanisms by which double photoionisation can occur are examined in detail. A p...

  11. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0.8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Dickens, J.K.; Hill, N.W.; Hou, F.S.; McConnell, J.W.; Spencer, R.R.; Tsang, F.Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report

  12. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  13. Investigation of the neutron emission spectra of some deformed nuclei for (n, xn) reactions up to 26 MeV energy

    International Nuclear Information System (INIS)

    Kaplan, A.; Bueyuekuslu, H.; Tel, E.; Aydin, A.; Boeluekdemir, M.H.

    2011-01-01

    In this study, neutron-emission spectra produced by (n, xn) reactions up to 26 MeV for some deformed target nuclei as 165 Ho, 181 Ta, 184 W, 232 Th and 238 U have been investigated. Also, the mean free path parameter's effect for 9n, xn) neutron-emission spectra has been examined. In the calculations, pre-equilibrium neutron-emission spectra have been calculated by using new evaluated hybrid model and geometry dependent hybrid model, full exciton model and cascade exciton model. The reaction equilibrium component has been calculated by Weisskopf-Ewing model. The obtained results have been discussed and compared with the available experimental data and found agreement with each other. (author)

  14. BETA SPECTRA. I. Negatrons spectra; ESPECTROS BETA. I. Espectros simples de negatrones

    Energy Technology Data Exchange (ETDEWEB)

    Grau Malonda, A; Garcia-Torano, E

    1978-07-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  15. Measurements of the prompt neutron spectra in 233U, 235U, 239Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252Cf spontaneous fission in the energy range of 0.01-10 MeV

    International Nuclear Information System (INIS)

    Starostov, B.I.; Semenov, A.F.; Nefedov, V.N.

    1978-01-01

    The measurement results on the prompt neutron spectra in 233 U, 235 U, 239 Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252 Cf spontaneous fission in the energy range of 0.01-10 MeV are presented. The time-of-flight method was used. The exceeding of the spectra over the Maxwell distributions is observed at E 252 Cf neutron fission spectra. The spectra analysis was performed after normalization of the spectra and corresponding Maxwell distributions for one and the same area. In the range of 0.05-0.22 MeV the yield of 235 U + nsub(t) fission neutrons is approximately 8 and approximately 15 % greater than the yield of 252 Cf and 239 Pu + nsub(t) fission neutrons, respectively. In the range of 0.3-1.2 MeV the yield of 235 U + nsub(t) fission neutrons is 8 % greater than the fission neutron yield in case of 239 Pu + nsub(t) fission. The 235 U + nsub(t) and 233 U + nsub(t) fission neutron spectra do not differ from one another in the 0.05-0.6 MeV range

  16. Influence of Doppler and 'Stark' effects on the shape of the autoionization peaks in electron energy spectra produced in ion-atom collisions

    International Nuclear Information System (INIS)

    Gleizes, A.; Benoit-Cattin, P.; Bordenave-Montesquieu, A.; Merchez, H.

    1976-01-01

    A detailed study is given of the influence of the Doppler shift and broadening on the spectra of electrons ejected by autoionization in collisions between heavy particles. General formulae have been obtained which permit the validity of results already published by other authors to be discussed. These results have been applied to the spectra of electrons ejected in He + -He collisions at 15 keV. The variation of the width of the autoionization peaks against ejection angle is well explained by Doppler broadening. On the contrary, the shape of these peaks cannot be due to the Doppler effect but rather to the Stark effect which is also studied in various experimental cases; it has been verified that the latter effect disappears in collisions between neutral particles for which symmetric peaks at 15 keV are obtained. (author)

  17. Large Charge-Transfer Energy in LiFePO4 Revealed by Full-Multiplet Calculation for the Fe L3 -edge Soft X-ray Emission Spectra.

    Science.gov (United States)

    Asakura, Daisuke; Nanba, Yusuke; Makinose, Yuki; Matsuda, Hirofumi; Glans, Per-Anders; Guo, Jinghua; Hosono, Eiji

    2018-04-17

    We analyzed the Fe 3d electronic structure in LiFePO 4 /FePO 4 (LFP/FP) nanowire with a high cyclability by using soft X-ray emission spectroscopy (XES) combined with configuration-interaction full-multiplet (CIFM) calculation. The ex situ Fe L 2,3 -edge resonant XES (RXES) spectra for LFP and FP are ascribed to oxidation states of Fe 2+ and Fe 3+ , respectively. CIFM calculations for Fe 2+ and Fe 3+ states reproduced the Fe L 3 RXES spectra for LFP and FP, respectively. In the calculations for both states, the charge-transfer energy was considerably larger than those for typical iron oxides, indicating very little electron transfer from the O 2p to Fe 3d orbitals and a weak hybridization on the Fe-O bond during the charge-discharge reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spectra of linear energy transfer and other dosimetry characteristics as measured in C290 MeV/n MONO and SOBP ion beams at HIMAC-BIO (NIRS (Japan)) with different detectors

    International Nuclear Information System (INIS)

    Spurny, F.; Pachnerovy Brabcovy, K.; Ploc, O.; Ambrozovy, I.; Mrazova, Z.

    2011-01-01

    Active mobile dosimetry unit (Liulin), passive plastic nuclear track detectors (PNTD) and thermoluminescent detectors (TLD) were exposed in a C290 MeV/n beam at HIMAC-BIO (NIRS (Japan)). Two different types of beam configuration were used-monoenergetic beam (MONO) and spread-out Bragg peak (SOBP); the detectors were placed at several depths from the entrance up to the depths behind the Bragg peak. Relative response of TLDs in beams has been studied as a function of the depth, and it was re-proved that it can depend on the linear energy transfer (LET). Liulin measures energy deposition in Si; the spectra of energy deposited in Si can be transformed to the spectra of lineal energy or LET. PNTDs are able to determine the LET of registered particles directly. The limitation of both methods is in the range in which they can determine the LET-Liulin is able to measure perpendicularly incident charged particles up to ∼35 keV/μm (in water), PNTD can measure from ∼7 to 400 keV/μm, independently of the registration angle. The results from both methods are compared and combined for both beams' configuration, and a good agreement is observed. (authors)

  19. Power spectra of currents off Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Current measurements were carried out using a recording current meter across the continental shelf off Bombay, Maharashtra, India at 4 stations from an anchored ship. Power spectra were computed for selected lengths of records. Spectral energy...

  20. The structure of BPS spectra

    Science.gov (United States)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  1. OPEM3-program for calculating pion differential spectra in pp → npπ+ reaction at energies up to 1 GeV. Physical model

    International Nuclear Information System (INIS)

    Suslenko, V.K.; Gajsak, I.I.

    1982-01-01

    Theoretical basis for the program to calcUlate the denSjties of differential criss sections of the third order (spectra) for pions produced in the reaction pp → npπ + at enerajes up to 1 GeV is presented. A variant of one pion exchange model (OPEM), im which precise account of all contributions from four polar Feynman diagrams is made is selected as a a physical model of the reaction pp → npπ + . The model apparatus is presented in correspondence with the scheme of the structure of OPEM 3 program for computer realized in Fortran language

  2. Binding energy, phonon spectra and thermodynamic properties of elements with type structures A1 (Al, Cu), A2 (V, Ti2), A3 (Mg, Tiβ), A4 (Si, Sn)

    International Nuclear Information System (INIS)

    Sirota, N.N.; Soshnina, T.M.; Sirota, I.M.; Sokolovskij, T.D.

    2001-01-01

    One calculated dependences of binding energy on spacing between the nearest atoms of Al and Cu elements with A 1 type structure, of V and Ti α elements with A 2 type structure, of Mg and Ti β elements with A 3 type structure, Si and Sn elements with A 4 type structure. To calculate one applied the methods based on the Thomas-Fermi statistic theory of atom. The derived dependences were approximated using the expression in the form of the Mie-Grueneisen potential. On the basis of the Born-von-Karman model of solid body one calculated the phonon spectra using which one determined temperature dependences of specific heat, free and internal energy of the investigated elements. The calculated values of energy of atomization, equilibrium closest interatomic spacing and temperature dependences of specific heat are in compliance with the experimental data [ru

  3. Effects of terraces, surface steps and 'over-specular' reflection due to inelastic energy losses on angular scattering spectra for glancing incidence scattering

    CERN Document Server

    Danailov, D; O'Connor, D J

    2002-01-01

    Recent experiments and our molecular-dynamics simulations indicate that the main signal of the angular scattering spectra of glancing incidence scattering are not affected by the thermal motion of surface atoms and can be explained by our row-model with averaged cylindrical potentials. At the ICACS-18 Conference [Nucl. Instr. and Meth. B 164-165 (2000) 583] we reported good agreement between experimental and calculated multimodal azimuthal angular scattering spectra for the glancing scattering of 10 and 15 keV [Nucl. Instr. and Meth. B 180 (2001) 265, Appl. Surf. Sci. 171 (2001) 113] He sup 0 beam along the [1 0 0] direction on the Fe(1 0 0) face. Our simulations also predicted that in contrast to the 2D angular scattering distribution, the 1D azimuthal angular distribution of scattered particles is very sensitive to the interaction potential used. Here, we report more detailed calculations incorporating the influence of terraces and surface steps on surface channeling, which show a reduction of the angular s...

  4. Statistical properties of Fermi GBM GRBs' spectra

    Science.gov (United States)

    Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt

    2018-03-01

    Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.

  5. IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O, and D218O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Dénes, Nóra; Fazliev, Alexander Z.

    2014-01-01

    This paper is the fourth of a series of papers reporting critically evaluated rotational–vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: D 2 16 O, D 2 17 O, and D 2 18 O. The MARVEL (Measured Active Rotational–Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0–14 016, 0–7969, and 0–9108 cm −1 for D 2 16 O, D 2 17 O, and D 2 18 O, respectively. For D 2 16 O, D 2 17 O, and D 2 18 O, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for D 2 16 O, D 2 17 O, and D 2 18 O, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm −1 , from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved. - Highlights: • All published transitions are collected and analyzed. • A set of validated rovibrational transitions are presented. • Experimental energy levels for all three D 2 O isotopologues are determined. • Synthetic spectra are presented using these validated energy levels

  6. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  7. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  8. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  9. A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors -- possible evidence of spinon and holon branches

    International Nuclear Information System (INIS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2006-01-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E 1 approx 0.38eV and E 2 approx 0.8 eV. E 1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Gamma point at approx 0.5 eV. The other is given by a peak in the momentum space, nearly independent of energy between E 1 and E 2 . Above E 2 , a band-like dispersion re-emerges. We conjecture that these two energies mark the disintegration of the low energy quasiparticles into a spinon and holon branch in the high T c cuprates

  10. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    Science.gov (United States)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  11. Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy.

    Science.gov (United States)

    Lin, Hui; Jing, Jia; Xu, Liangfeng; Mao, Xiaoli

    2017-12-01

    To evaluate the influence of energy spectra, mesh sizes, high Z element on dose and PVDR in Microbeam Radiation Therapy (MRT) based on 1-D analogy-mouse-head-model (1-D MHM) and 3-D voxel-mouse-head-phantom (3-D VMHP) by Monte Carlo simulation. A Microbeam-Array-Source-Model was implemented into EGSnrc/DOSXYZnrc. The microbeam size is assumed to be 25μm, 50μm or 75μm in thickness and fixed 1mm in height with 200μmc-t-c. The influence of the energy spectra of ID17@ESRF and BMIT@CLS were investigated. The mesh size was optimized. PVDR in 1-D MHM and 3-D VMHP was compared with the homogeneous water phantom. The arc influence of 3-D VMHP filled with water (3-D VMHWP) was compared with the rectangle phantom. PVDR of the lower BMIT@CLS spectrum is 2.4times that of ID17@ESRF for lower valley dose. The optimized mesh is 5µm for 25µm, and 10µm for 50µm and 75µm microbeams with 200µmc-t-c. A 500μm skull layer could make PVDR difference up to 62.5% for 1-D MHM. However this influence is limited (influence is limited for the more depth (influence of 3-D heterogeneous media. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Ab Initio Potential Energy Surfaces for Both the Ground (X̃1A′ and Excited (A∼1A′′ Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr

    Directory of Open Access Journals (Sweden)

    Anyang Li

    2012-01-01

    Full Text Available Ab initio potential energy surfaces for the ground (X̃1A′ and excited (A˜A′′1 electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.

  13. Skyshine spectra of gamma rays

    International Nuclear Information System (INIS)

    Swarup, Janardan

    1980-01-01

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  14. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  15. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    International Nuclear Information System (INIS)

    Brainerd, J.J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts. 13 references

  16. Extragalactic Background Light and energy spectra of Active Galactic Nuclei 3c454.3 and 1739+522 with high red shifts

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyna, V.G.; Malyshko, A.A.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y. [P.N.Lebedev Physical Institute, Leninsky prospect 53, Moscow, 119991 (Russian Federation)

    2009-12-15

    The cosmological processes, connecting the physics of matter in active galactic nuclei will be observed in the energy spectrum of electro-magnetic radiation. The understanding of mechanisms in active galactic nuclei requires the detection of a large sample of very high energy gamma-ray objects at varying redshifts. The redshifts of very high energy gamma-ray sources observed by SHALON range from z=0.0179 to z=1.375. During the period 1992-2008, SHALON has been used for observing the metagalactic sources NGC1275 (z=0.0183), SN2006gy (z=0.019), Mkn421 (z=0.031), Mkn501 (z=0.034), Mkn180 (z=0.046), OJ 287 (z=0.306), 3c454.3 (z=0.895), 1739+522 (z=1.375). The most distant object 1739+522 (with redshift z=1.375), seen at TeV energies, is also the most powerful. Thus, modern gamma-astronomical observations put forward the question: what mechanisms might be responsible for the currently observed gamma-ray fluxes from remote metagalactic sources? Observations of distant metagalactic sources have shown that the Universe is more transparent to very high energy gamma-rays than previously believed.

  17. Extragalactic Background Light and energy spectra of Active Galactic Nuclei 3c454.3 and 1739+522 with high red shifts

    International Nuclear Information System (INIS)

    Sinitsyna, V.G.; Malyshko, A.A.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y.

    2009-01-01

    The cosmological processes, connecting the physics of matter in active galactic nuclei will be observed in the energy spectrum of electro-magnetic radiation. The understanding of mechanisms in active galactic nuclei requires the detection of a large sample of very high energy gamma-ray objects at varying redshifts. The redshifts of very high energy gamma-ray sources observed by SHALON range from z=0.0179 to z=1.375. During the period 1992-2008, SHALON has been used for observing the metagalactic sources NGC1275 (z=0.0183), SN2006gy (z=0.019), Mkn421 (z=0.031), Mkn501 (z=0.034), Mkn180 (z=0.046), OJ 287 (z=0.306), 3c454.3 (z=0.895), 1739+522 (z=1.375). The most distant object 1739+522 (with redshift z=1.375), seen at TeV energies, is also the most powerful. Thus, modern gamma-astronomical observations put forward the question: what mechanisms might be responsible for the currently observed gamma-ray fluxes from remote metagalactic sources? Observations of distant metagalactic sources have shown that the Universe is more transparent to very high energy gamma-rays than previously believed.

  18. Measuring the spectra of low-energy X radiation of heavy-current nanosecond discharge in the diode of relativistic electron beam generator

    International Nuclear Information System (INIS)

    Aranchuk, L.E.; Bogolyubskij, S.L.; Volkov, G.S.

    1986-01-01

    Results of measuring the absolute energy spectrum of pulsed x-radiation of plasma produced by ''Triton'' REB generator (I∼200 kA, τ 1/2 ∼60 ns) are presented. Vacuum photoemission detectors are used to record 0.1-1 keV quanta. The mehod of Ross filters in combimation with detectors with specially selected characteristics was used in 1-20 keV energy interval. The measured radiation power in the E≥1.3 keV area exceeds 10 6 W and in 0.1-1 keV area it is of the order of 3x10 9 W

  19. Energetic Proton Spectra Measured by the Van Allen Probes

    Science.gov (United States)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  20. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    Science.gov (United States)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  1. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    Science.gov (United States)

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  2. Tsallis Extended Thermodynamics Applied to 2-d Turbulence: Lévy Statistics and q-Fractional Generalized Kraichnanian Energy and Enstrophy Spectra

    Directory of Open Access Journals (Sweden)

    Peter W. Egolf

    2018-02-01

    Full Text Available The extended thermodynamics of Tsallis is reviewed in detail and applied to turbulence. It is based on a generalization of the exponential and logarithmic functions with a parameter q. By applying this nonequilibrium thermodynamics, the Boltzmann-Gibbs thermodynamic approach of Kraichnan to 2-d turbulence is generalized. This physical modeling implies fractional calculus methods, obeying anomalous diffusion, described by Lévy statistics with q < 5/3 (sub diffusion, q = 5/3 (normal or Brownian diffusion and q > 5/3 (super diffusion. The generalized energy spectrum of Kraichnan, occurring at small wave numbers k, now reveals the more general and precise result k−q. This corresponds well for q = 5/3 with the Kolmogorov-Oboukov energy spectrum and for q > 5/3 to turbulence with intermittency. The enstrophy spectrum, occurring at large wave numbers k, leads to a k−3q power law, suggesting that large wave-number eddies are in thermodynamic equilibrium, which is characterized by q = 1, finally resulting in Kraichnan’s correct k−3 enstrophy spectrum. The theory reveals in a natural manner a generalized temperature of turbulence, which in the non-equilibrium energy transfer domain decreases with wave number and shows an energy equipartition law with a constant generalized temperature in the equilibrium enstrophy transfer domain. The article contains numerous new results; some are stated in form of eight new (proven propositions.

  3. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I-Energy levels and transition wavenumbers for H217O and H218O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Carleer, Michel R.; Csaszar, Attila G.; Gamache, Robert R.; Hodges, Joseph T.; Jenouvrier, Alain; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Toth, Robert A.; Vandaele, Ann Carine; Zobov, Nikolai F.; Daumont, Ludovic; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Mikhailenko, Semen N.

    2009-01-01

    This is the first part of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependence and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. The present article contains energy levels and data for line positions of the singly substituted isotopologues H 2 17 O and H 2 18 O. The procedure and code MARVEL, standing for measured active rotational-vibrational energy levels, is used extensively in all stages of determining the validated levels and lines and their self-consistent uncertainties. The spectral regions covered for both isotopologues H 2 17 O and H 2 18 O are 0-17125cm -1 . The energy levels are checked against ones determined from accurate variational calculations. The number of critically evaluated and recommended levels and lines are, respectively, 2687 and 8614 for H 2 17 O, and 4839 and 29 364 for H 2 18 O. The extensive lists of MARVEL lines and levels obtained are deposited in the Supplementary Material, as well as in a distributed information system applied to water, W-DIS, where they can easily be retrieved. A distinguishing feature of the present evaluation of water spectroscopic data is the systematic use of all available experimental data and validation by first-principles theoretical calculations.

  4. Energy spectra and oscillatory magnetization of two-electron self-assembled Inx Ga1-x As quantum rings in GaAs

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Kleemans, N.A.J.M.; Koenraad, P.M.

    2008-01-01

    The effects of the Coulomb interaction on the energy spectrum and the magnetization of two electrons in a strained Inx Ga1-x As/GaAs ringlike nanostructure are analyzed with realistic parameters inferred from the cross-sectional scanning-tunneling microscopy data. With an increasing magnetic field,

  5. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  6. An energy-dispersive X-ray monochromator for measurements in the soft X-ray spectra: design, construction and first measurements. Ein energiedispersiver Roentgenmonochromator mit der Moeglichkeit von Messungen im weichen Roentgenbereich: Entwurf, Aufbau und erste Messungen

    Energy Technology Data Exchange (ETDEWEB)

    Steil, S.

    1993-12-01

    An Energy-Dispersive X-ray Monochromator (EDM) for time-resolved X-ray absorption spectroscopy was built in the Synchrotron radiation laboratory at the 3.5 GeV ELectron Stretcher and Accelerator (ELSA). Bragg angles up to 70 and a specially designed vacuum system allow measurements down to an energy of 2.149 keV (P K-edge) with a Si(111)-crystal. Compared to a standard double crystal monochromator and for an EXAFS spectrum at the Cu K-edge at 8.979 keV for concentrated samples, the EDM boosts time resolution by 3 orders of magnitude. The time resolution increases by a factor of 50 for a XANES spectrum at the S K-edge at 2.472 keV for a rubber sample with 4% sulfur. The energy resolution of the EDM is limited by the Darwin width [Omega] of the Bragg crystal. The harmonics in the 'monochromatized' beam, which increase to lower energies, could be nearly eliminated by using a quartz mirror. The spherical aberration of the focus was described theoretically for a cylindrically bent crystal and compared with measurements. In a first time-resolved measurement at the S K-edge, which comprehended about 120 spectra taken in 40 minutes, the thermal ageing of a rubber sample was investigated to demonstrate the performance of the monochromator. (orig.)

  7. Spectral correction factors for conventional neutron dose meters used in high-energy neutron environments improved and extended results based on a complete survey of all neutron spectra in IAEA-TRS-403

    International Nuclear Information System (INIS)

    Oparaji, U.; Tsai, Y. H.; Liu, Y. C.; Lee, K. W.; Patelli, E.; Sheu, R. J.

    2017-01-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (E n > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252 Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252 Cf, 241 Am-Be and 239 Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6''-9'') are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. (authors)

  8. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    Science.gov (United States)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  9. Closing in on parton energy loss with charged particle spectra in Xe-Xe and Pb-Pb collisions with ALICE

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    For comparison, a pp reference at the collision energy of 5.44 TeV is obtained by interpolating between existing pp measurements at 5.02 and 7 TeV.  The nuclear modification factor in Xe-Xe collisions is compared to Pb-Pb collisions at 5.02 TeV and 2.76 TeV, showing remarkable similarity at pT > 10 GeV/c. The comparison of the measured nuclear mod...

  10. The neutron's Dirac-equation: Its rigorous solution at slab-like magnetic fields, non-relativistic approximation, energy spectra and statistical characteristics

    International Nuclear Information System (INIS)

    Zhang Yongde.

    1987-03-01

    In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs

  11. Inclusive sum rules and spectra of neutrons at the ISR

    International Nuclear Information System (INIS)

    Grigoryan, A.A.

    1975-01-01

    Neutron spectra in pp collisions at ISR energies are studied in the framework of sum rules for inclusive processes. The contributions of protons, π- and E- mesons to the energy sum rule are calculated at √5 = 53 GeV. It is shown by means of this sum rule that the spectra of neutrons at the ISR are in contradiction with the spectra of other particles also measured at the ISR

  12. Photon and photoneutron spectra produced in radiotherapy Linacs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.; Benites R, J. L.; Lallena, A. M.

    2011-10-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 -6 and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  13. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  14. Computer programs for locating and fitting full energie peak in γ-ray spectra. Test and rules for an estimation of the main results

    International Nuclear Information System (INIS)

    1980-12-01

    After the different interlaboratory tests on gamma spectrum analysis organised by the 'Laboratoire de Metrologie des Rayonnements Ionisants' and by the International Atomic Energy Agency, it looked useful to manage a same type of intercomparison with the different supplies of Data acquisition and Analysis systems including mini-ordinator or microprocessor. Four spectrum have been chosen between those of the interlaboratory tests. The test dealt with the investigation of total absorption peaks of different levels in a complex spectrum and the calculation of their main parameters. Four supplies participed in the intercomparison with their own logicial. The result allow to suggest a few tests in order to try a new logicial, or to compare results with standards [fr

  15. Mass attenuation coefficient (μ/ρ), effective atomic number (Z{sub eff}) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Goncalves Z, E., E-mail: madelon@cdtn.br [Pontifice Catholic University of Minas Gerais, Av. Dom Jose Gaspar 500, Belo Horizonte 30535-901, Minas Gerais (Brazil)

    2015-10-15

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z{sub eff} of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z{sub eff} using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  16. Comparison of spectra for validation of Penelope code for the energy range used in mammography; Comparacao de espectros para validacao do codigo PENELOPE para faixa de energia usada em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, M.A.G.; Ferreira, N.M.P.D., E-mail: malbuqueque@hotmail.co [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Pires, E.; Ganizeu, M.D.; Almeida, C.E. de, E-mail: marianogd@uol.com.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Prizio, R.; Peixoto, J.G., E-mail: guilherm@ird.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The spectra simulated by the Penelope code were compared with the spectra experimentally obtained through the silicon PIN photodiode detector, and with spectra calculated by the code of IPEN, and the comparison exhibited a concordance of 93.3 %, and make them an option for study of X-ray spectroscopy in the voltage range used in mammography

  17. Microsolvation of the water cation in neon: Infrared spectra and potential energy surface of the H2O+-Ne open-shell ionic complex

    Science.gov (United States)

    Dopfer, Otto; Roth, Doris; Maier, John P.

    2001-04-01

    The intermolecular potential of the H2O+-Ne open-shell ionic dimer in its doublet electronic ground state has been investigated by infrared spectroscopy in the vicinity of the O-H stretch vibrations (ν1 and ν3) and ab initio calculations at the unrestricted Møller-Plesset second-order (MP2) level with a basis set of aug-cc-pVTZ quality. The rovibrational structure of the photodissociation spectrum is consistent with a proton-bound planar H-O-H-Ne structure and a Ne-H separation of R0=1.815(5) Å. The complexation-induced redshifts are Δν1=-69 cm-1 and Δν3=-6 cm-1, respectively. Tunneling splittings observed in the perpendicular component of the ν3 hybrid band of H2O+-Ne are attributed to hindered internal rotation between the two equivalent proton-bound equilibrium structures. The interpretation of the H2O+-Ne spectrum is supported by the spectrum of the monodeuterated species, for which both the proton-bound and the deuteron-bound isomers are observed (DOH+-Ne, HOD+-Ne). The equilibrium structure of the calculated potential energy surface of H2O+-Ne has a slightly translinear proton bond, which is characterized by a Ne-H separation of Re=1.77 Å, a bond angle of φe=174°, and dissociation energies of De=756 cm-1 and D0=476 cm-1. According to the calculated potential, the exchange tunneling between the two equivalent minima occurs via the planar bridged transition state with C2v symmetry and a barrier of 340 cm-1. In general, the calculated properties of H2O+-Ne show good agreement with the experimental data. Initial steps in the microsolvation of the water cation in neon are discussed by comparing the calculated and experimental properties of H2O+-Nen (n=0-2) with neon matrix isolation data (n→∞).

  18. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  19. Differential dpa calculations with SPECTRA-PKA

    Science.gov (United States)

    Gilbert, M. R.; Sublet, J.-Ch.

    2018-06-01

    The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.

  20. Nuclear Neutrino Spectra in Late Stellar Evolution

    Science.gov (United States)

    Misch, G. Wendell; Sun, Yang; Fuller, George

    2018-05-01

    Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.

  1. Effect of isospin degree of freedom on transverse momentum spectra

    International Nuclear Information System (INIS)

    Kaur, Sukhjit; Swati

    2013-01-01

    We study the effect of isospin degree of freedom, incident energy as well as system mass on the behavior of transverse momentum spectra, dN/p t dp t , of neutrons and protons. We find that most of the nucleons suffer soft collisions. The effect of isospin degree of freedom on transverse spectra diminishes with the increase in the incident energy. In Fermi energy region, transverse momentum spectra of both protons and neutrons show sensitivity toward the density dependence of symmetry energy. (author)

  2. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  3. Analysis of energy transfer based emission spectra of (Sm{sup 3+}, Dy{sup 3+}): Li{sub 2}O–LiF–B{sub 2}O{sub 3}–CdO glasses

    Energy Technology Data Exchange (ETDEWEB)

    Naresh, V., E-mail: varna.naresh@gmail.com; Buddhudu, S., E-mail: profsb_svuniv@hotmail.com

    2014-03-15

    The present paper brings out the results concerning the preparation and optical properties of Sm{sup 3+} and Dy{sup 3+} each ion separately in four different concentrations (0.1, 0.5, 1.0 and 1.5 mol%) and also together doped (1 mol% Dy{sup 3+}+x mol% Sm{sup 3+}): Li{sub 2}O–LiF–B{sub 2}O{sub 3}–CdO (where x=0.1, 0.5, 1.0 and 1.5 mol%) glasses by a melt quenching method. Sm{sup 3+} doped base glasses have displayed an intense orange emission at 602 nm ({sup 4}G{sub 5/2}→{sup 6}H{sub 7/2}) with an excitation at 403 nm and Dy{sup 3+} doped glasses have shown two emissions located at 486 nm ({sup 4}F{sub 9/2}→{sup 6}H{sub 15/2}; blue) and 577 nm ({sup 4}F{sub 9/2}→{sup 6}H{sub 13/2}; yellow) with λ{sub exci}=387 nm. The co-doped (Dy{sup 3+}+Sm{sup 3+}) lithium fluoro-boro cadmium glasses have been excited with an excitation at 387 nm of Dy{sup 3+} which has resulted in with a significant reduction in Dy{sup 3+} emission, at the same time there exists an increase in the reddish-orange emission of Sm{sup 3+} due to an energy transfer from Dy{sup 3+} to Sm{sup 3+}. The non-radiative energy transfer from Dy{sup 3+} to Sm{sup 3+} is governed by dipole–quadrupole interactions as is explained in terms of their emission spectra, donor lifetime, energy level diagram and energy transfer characteristic factors. -- Highlights: • In co-doped (Dy{sup 3+}+Sm{sup 3+}): LFBCd glass, reddish-orange emission due to Sm{sup 3+} ({sup 4}F{sub 9/2}→{sup 6}H{sub J}) has been enhanced due to an energy transfer from Dy{sup 3+} ions in the glass. • This has been evidenced from a lowering trend in the emission transition lifetimes of donor (Dy{sup 3+}) ions with increasing acceptor (Sm{sup 3+}) concentration. • Energy transfer mechanism involved in Dy{sup 3+}→Sm{sup 3+} has been explained in terms of I–H luminescence decay curve analysis.

  4. Lattice vibration spectra. 16

    International Nuclear Information System (INIS)

    Lutz, H.D.; Willich, P.

    1977-01-01

    The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)

  5. Deconvoluting double Doppler spectra

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Chan, K.L.; Tang, H.W.

    2001-01-01

    The successful deconvolution of data from double Doppler broadening of annihilation radiation (D-DBAR) spectroscopy is a promising area of endeavour aimed at producing momentum distributions of a quality comparable to those of the angular correlation technique. The deconvolution procedure we test in the present study is the constrained generalized least square method. Trials with computer simulated DDBAR spectra are generated and deconvoluted in order to find the best form of regularizer and the regularization parameter. For these trials the Neumann (reflective) boundary condition is used to give a single matrix operation in Fourier space. Experimental D-DBAR spectra are also subject to the same type of deconvolution after having carried out a background subtraction and using a symmetrize resolution function obtained from an 85 Sr source with wide coincidence windows. (orig.)

  6. Spectra, Winter 2014

    Science.gov (United States)

    2014-01-01

    additional copies or more information, please email spectra@nrl.navy.mil. LEADINGEDGE 1 Contents 30 Navy Launches UAV from Submerged Submarine 31... multitasking have become mainstream concerns. For example, the New York Times in 2005 and Time magazine in 2006 both reported stories about...interruptions and multitasking , and how they affect performance by increasing human er- ror. In 2005, the information technol- ogy research firm Basex

  7. Thermoluminescence spectra of amethyst

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. [Suzhou Railway Teachers College (China). Dept. of Physics; Yang, B. [Beijing Normal University (China). Dept. of Physics; Wood, R.A.; White, D.R.R.; Townsend, P.D.; Luff, B.J. [Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences

    1994-04-01

    Thermoluminescence and cathodoluminescence data from natural and synthetic amethyst and synthetic quartz samples are compared. The spectra include features from the quartz host lattice and from impurity-generated recombination sites. Emission features exist throughout the wavelength range studied, 250-800 nm. The near infrared emission at 740-750 nm appears to be characteristic of the amethyst and is proposed to be due to Fe ion impurity. (Author).

  8. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  9. Pattern recognition in spectra

    International Nuclear Information System (INIS)

    Gebran, M; Paletou, F

    2017-01-01

    We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)

  10. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  11. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  12. Distortions in power spectra of digitized signals - II: Suggested solution

    International Nuclear Information System (INIS)

    Njau, E.C.

    1982-04-01

    In Part I of this report we developed analytical expressions which represent exactly the energy density spectra of ''digitization processes'' that are essentially involved in spectral analysis of continuous signals. Besides, we related the spectral energy density of each digitization process to the parameters of the exact spectral energy density of the corresponding signal. On this basis, we briefly discussed the forms of distortions (or false structures) which are present in normally computed power spectra when the corresponding spectra of the digitization processes are not sufficiently decoupled from or nullified in the computed spectra. The biggest worry with regard to these distortions is not only that they may mask the actual information contained in the original signal, but also they may tempt the researcher to establish false characteristics about the signal involved. It is, in this context, that any reasonable method that could be used (even conditionally) to pinpoint false structures in computed power spectra would be both timely and useful. A simple, handy guidance through which some portions of computed energy density spectra which are dominated by the false structures mentioned above, can be located is presented herein. Equations are presented which give the various frequencies at which false peaks may be located in such ''contaminated'' portions of computed energy density spectra. The occurrence of frequency shifts in computed power spectra is also briefly discussed. (author)

  13. Spectra processing with computer graphics

    International Nuclear Information System (INIS)

    Kruse, H.

    1979-01-01

    A program of processng gamma-ray spectra in rock analysis is described. The peak search was performed by applying a cross-correlation function. The experimental data were approximated by an analytical function represented by the sum of a polynomial and a multiple peak function. The latter is Gaussian, joined with the low-energy side by an exponential. A modified Gauss-Newton algorithm is applied for the purpose of fitting the data to the function. The processing of the values derived from a lunar sample demonstrates the effect of different choices of polynomial orders for approximating the background for various fitting intervals. Observations on applications of interactive graphics are presented. 3 figures, 1 table

  14. Virtual photon spectra for finite nuclei

    International Nuclear Information System (INIS)

    Wolynec, E.; Martins, M.N.

    1988-01-01

    The experimental results of an isochromat of the virtual photon spectrum, obtained by measuring the number of ground-state protons emitted by the 16.28 MeV isobaric analogue state in 90 Zr as a function of electron incident energy in the range 17-105 MeV, are compared with the values predicted by a calculation of the E1 DWBA virtual photon spectra for finite nuclei. It is found that the calculations are in excellent agreement with the experimental results. The DWBA virtual photon spectra for finite nuclei for E2 and M1 multipoles are also assessed. (author) [pt

  15. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  16. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  17. Hadronic spectra from collisions of heavy nuclei

    International Nuclear Information System (INIS)

    Jacobs, P.

    1997-03-01

    Hadronic spectra from collisions of heavy ions at ultrarelativistic energies are discussed, concentrating on recent measurements at the SPS of central Pb+Pb collisions at 158 GeV/nucleon, which are compared to collisions of lighter ions and at lower beam energies. Baryon stopping is seen to be larger for heavier systems and lower energies. Total yields of pions and kaons scale with the number of participants in central collisions at the SPS; in particular, the K/π ratio is constant between central S+S and Pb+Pb at the SPS. Transverse mass spectra indicate significantly larger radial flow for the heavier systems. At midrapidity, an enhancement of - >/ + > and - >/ + > at low P T are best explained by final state Coulomb interaction with the residual charge of the fireball

  18. Tunneling spectra of graphene on copper unraveled

    DEFF Research Database (Denmark)

    Zhang, Xin; Stradi, Daniele; Liu, Lei

    2016-01-01

    mechanisms, etc. The interpretation of the spectra can be complicated, however. Specifically for graphene grown on copper, there have been conflicting reports of tunneling spectra. A clear understanding of the mechanisms behind the variability is desired. In this work, we have revealed that the root cause...... of the variability in tunneling spectra is the variation in graphene-substrate coupling under various experimental conditions, providing a salutary perspective on the important role of 2D material-substrate interactions. The conclusions are drawn from measured data and theoretical calculations for monolayer, AB......-stacked bilayer, and twisted bilayer graphene coexisting on the same substrates in areas with and without intercalated oxygen, demonstrating a high degree of consistency. The Van Hove singularities of the twisted graphene unambiguously indicate the Dirac energy between them, lending strong evidence to our...

  19. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    Science.gov (United States)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  20. Seismic spectra of events at regional distances

    International Nuclear Information System (INIS)

    Springer, D.L.; Denny, M.D.

    1976-01-01

    About 40 underground nuclear explosions detonated at the Nevada Test Site (NTS) were chosen for analysis of their spectra and any relationships they might have to source parameters such as yield, depth of burial, etc. The sample covered a large yield range (less than 20 kt to greater than 1 Mt). Broadband (0.05 to 20 Hz) data recorded by the four-station seismic network operated by Lawrence Livermore Laboratory were analyzed in a search for unusual explosion signatures in their spectra. Long time windows (total wave train) as well as shorter windows (for instance, P/sub n/) were used as input to calculate the spectra. Much variation in the spectra of the long windows is typical although some gross features are similar, such as a dominant peak in the microseismic window. The variation is such that selection of corner frequencies is impractical and yield scaling could not be determined. Spectra for one NTS earthquake showed more energy in the short periods (less than 1 sec) as well as in the long periods (greater than 8 sec) compared to those for NTS explosions

  1. Beamstrahlung spectra in next generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.; Chen, P. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Kozanecki, W. (DAPNIA-SPP, CEN-Saclay (France))

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  2. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  3. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  4. Principal spectra describing magnetooptic permittivity tensor in cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)

    2016-12-15

    We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.

  5. Emission Spectra of Hydrogen-Seeded Helium Arcjets

    National Research Council Canada - National Science Library

    Welle, R

    2000-01-01

    .... This work reports on a recent set of experiments in which emission spectra of the plume of a helium arcjet were acquired and analyzed to obtain information on the internal energy modes of the arcjet...

  6. The new NIST atomic spectra database

    International Nuclear Information System (INIS)

    Kelleher, D.E.; Martin, W.C.; Wiese, W.L.; Sugar, J.; Fuhr, J.R.; Olsen, K.; Musgrove, A.; Mohr, P.J.; Reader, J.; Dalton, G.R.

    1999-01-01

    The new atomic spectra database (ASD), Version 2.0, of the National Institute of Standards and Technology (NIST) contains significantly more data and covers a wider range of atomic and ionic transitions and energy levels than earlier versions. All data are integrated. It also has a new user interface and search engine. ASD contains spectral reference data which have been critically evaluated and compiled by NIST. Version 2.0 contains data on 900 spectra, with about 70000 energy levels and 91000 lines ranging from about 1 Aangstroem to 200 micrometers, roughly half of which have transition probabilities with estimated uncertainties. References to the NIST compilations and original data sources are listed in the ASD bibliography. A detailed ''Help'' file serves as a user's manual, and full search and filter capabilities are provided. (orig.)

  7. Program LEPS to addition of gamma spectra from germanium detectors

    International Nuclear Information System (INIS)

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  8. Ghost lines in Moessbauer relaxation spectra

    International Nuclear Information System (INIS)

    Price, D.C.

    1985-01-01

    The appearance in Moessbauer relaxation spectra of 'ghost' lines, which are narrow lines that do not correspond to transitions between real hyperfine energy levels of the resonant system, is examined. It is shown that in many cases of interest, the appearance of these 'ghost' lines can be interpreted in terms of the relaxational averaging of one or more of the static interactions of the ion. (orig.)

  9. Analytic and numerical calculations of quantum synchrotron spectra from relativistic electron distributions

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Petrosian, V.

    1987-01-01

    Calculations are performed numerically and analytically of synchrotron spectra for thermal and power-law electron distributions using the single-particle synchrotron power spectrum derived from quantum electrodynamics. It is found that the photon energy at which quantum effects appear is proportional to temperature and independent of field strength for thermal spectra; quantum effects introduce an exponential roll-off away from the classical spectra. For power law spectra, the photon energy at which quantum effects appear is inversely proportional to the magnetic field strength; quantum effects produce a steeper power law than is found classically. The results are compared with spectra derived from the classical power spectrum with an energy cutoff ensuring conservation of energy. It is found that an energy cutoff is generally an inadequate approximation of quantum effects for low photon energies and for thermal spectra, but gives reasonable results for high-energy emission from power-law electron distributions. 17 references

  10. Spectra of chemical trees

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees

  11. Sequencing BPS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2016-03-02

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  12. Sequencing BPS spectra

    International Nuclear Information System (INIS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  13. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  14. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  15. Microdosimetric spectra measurements of JANUS neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, I.R.; Williamson, F.S.

    1985-01-01

    Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 ..mu..m) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs.

  16. Analysis of low-intensity scintillation spectra

    International Nuclear Information System (INIS)

    Muravsky, V.; Tolstov, S.A.

    2002-01-01

    The maximum likelihood algorithms for nuclides activities estimation from low intensity scintillation γ-ray spectra have been created. The algorithms treat full energy peaks and Compton parts of spectra, and they are more effective than least squares estimators. The factors that could lead to the bias of activity estimates are taken into account. Theoretical analysis of the problem of choosing the optimal set of initial spectra for the spectrum model to minimize errors of the activities estimation has been carried out for the general case of the N-components with Gaussian or Poisson statistics. The obtained criterion allows to exclude superfluous initial spectra of nuclides from the model. A special calibration procedure for scintillation γ-spectrometers has been developed. This procedure is required for application of the maximum likelihood activity estimators processing all the channels of the scintillation γ-spectrum, including the Compton part. It allows one to take into account the influence of the sample mass density variation. The algorithm for testing the spectrum model adequacy to the processed scintillation spectrum has been developed. The algorithms are realized in Borland Pascal 7 as a library of procedures and functions. The developed library is compatible with Delphi 1.0 and higher versions. It can be used as the algorithmic basis for analysis of highly sensitive scintillation γ- and β-spectrometric devices. (author)

  17. Microdosimetric spectra measurements of JANUS neutrons

    International Nuclear Information System (INIS)

    Marshall, I.R.; Williamson, F.S.

    1985-01-01

    Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 μm) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs

  18. Multifractal spectra in homogeneous shear flow

    Science.gov (United States)

    Deane, A. E.; Keefe, L. R.

    1988-01-01

    Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.

  19. Inelastic response spectra of simple degrading systems

    International Nuclear Information System (INIS)

    Andreaus, U.; Ceradini, G.; D'Asdia, P.; Gaudenzi, P.

    1985-01-01

    Ductility was first stated, for single-degree-of-freedom elastic-perfectly plastic systems as the ratio of maximum to yield displacements. An alternative approach, aimed to reduce design forces for ductile structures and based on the energy dissipated during earthquake allows to obtain more reliable ductility factors even when system restoring characteristics are affected by deterioration during loading history. Inelastic response of SDOF systems has been investigated under seimic excitation, assuming stable and degrading constitutive laws to model their structural behaviour. Energy spectra and ductility requirent diagrams are generated and compared with those of the corresponding elastic-perfectly plastic systems. (orig.)

  20. SIMULATION OF PARTICLE SPECTRA AT RHIC

    International Nuclear Information System (INIS)

    KAHANA, D.E.; KAHANA, S.H.

    2001-01-01

    A purely hadronic simulation is performed of the recently reported data from PHOBOS at energies of √s = 56, 130 GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at √s = 17.2 GeV/A. The results compare well with these early measurements at RHIC and indeed successfully predict the increase in multiplicity now seen by PHOBOS and the other RHIC detectors at the nominal maximum energy of √s = 200 GeV/A, suggesting that evidence for quark-gluon matter remains elusive

  1. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  2. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  3. Discrete Planck spectra

    International Nuclear Information System (INIS)

    Vlad, Valentin I.; Ionescu-Pallas, Nicholas

    2000-10-01

    The Planck radiation spectrum of ideal cubic and spherical cavities, in the region of small adiabatic invariance, γ = TV 1/3 , is shown to be discrete and strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, for the spherical cavity. The total energy (obtained by summing up the exact contributions of the eigenvalues and their weights, for low values of the adiabatic invariance) does not obey any longer Stefan-Boltzmann law. The new law includes a corrective factor depending on γ and imposes a faster decrease of the total energy to zero, for γ → 0. We have defined the double quantized regime both for cubic and spherical cavities by the superior and inferior limits put on the principal quantum numbers or the adiabatic invariance. The total energy of the double quantized cavities shows large differences from the classical calculations over unexpected large intervals, which are measurable and put in evidence important macroscopic quantum effects. (author)

  4. Statistical analysis of uncertainties of gamma-peak identification and area calculation in particulate air-filter environment radionuclide measurements using the results of a Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) organized intercomparison, Part I: Assessment of reliability and uncertainties of isotope detection and energy precision using artificial spiked test spectra, Part II: Assessment of the true type I error rate and the quality of peak area estimators in relation to type II errors using large numbers of natural spectra

    International Nuclear Information System (INIS)

    Zhang, W.; Zaehringer, M.; Ungar, K.; Hoffman, I.

    2008-01-01

    In this paper, the uncertainties of gamma-ray small peak analysis have been examined. As the intensity of a gamma-ray peak approaches its detection decision limit, derived parameters such as centroid channel energy, peak area, peak area uncertainty, baseline determination, and peak significance are statistically sensitive. The intercomparison exercise organized by the CTBTO provided an excellent opportunity for this to be studied. Near background levels, the false-positive and false-negative peak identification frequencies in artificial test spectra have been compared to statistically predictable limiting values. In addition, naturally occurring radon progeny were used to compare observed variance against nominal uncertainties. The results infer that the applied fit algorithms do not always represent the best estimator. Understanding the statistically predicted peak-finding limit is important for data evaluation and analysis assessment. Furthermore, these results are useful to optimize analytical procedures to achieve the best results

  5. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Pasanai, K., E-mail: krisakronmsu@gmail.com

    2017-01-15

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  6. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    International Nuclear Information System (INIS)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  7. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  8. Graphics based PC analysis of alpha spectra

    International Nuclear Information System (INIS)

    Chapman, T.C.

    1991-01-01

    New personal computer (PC) software performs interactive analysis of alpha spectra using EGA graphics. Spectra are collected with a commercial MCA board and analyzed using the software described here. The operator is required to approve each peak integration area before analysis proceeds. Sample analysis can use detector efficiencies or spike yields or both. Background corrections are made and upper limit values are calculated when specified. Nuclide identification uses a library of up to 64 nuclides with up to 8 alpha lines for each nuclide. Any one of 32 subset libraries can be used in an analysis. Analysis time is short and is limited by interaction with the operator, not by calculation time. Utilities include nuclide library editing, library subset editing, energy calibration, efficiency calibration, and background update

  9. Measurement and interpretation of plutonium spectra

    International Nuclear Information System (INIS)

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1982-01-01

    The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu 3+ in LaCl 3 , and an extension has permitted preliminary calculations of the spectra of other valence states

  10. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  11. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  12. FSFE: Fake Spectra Flux Extractor

    Science.gov (United States)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  13. He-like spectra from laboratory plasmas and solar flares

    International Nuclear Information System (INIS)

    Kato, Takako

    1990-01-01

    The X-ray spectra of He-like ions from tokamaks and solar flares have been measured. Several physical parameters of plasma can be derived from the X-ray spectra of He-like ions. The ion temperature can be derived from the doppler width of a resonance line. The electron temperature is obtained from the intensity ratio of dielectronic satellite lines to a resonance line. The energy level for the prominent lines is shown. The line q is produced mainly by the inner-shell excitation of Li-like ions, and line beta is produced by the inner-shell excitation of Be-like ions. The intensity ratios give the ion density ratios. The intensities of the intercombination and the forbidden lines are affected by the recombination from H-like ions. The synthetic spectra including excitation, ionization and recombination processes are fitted to the measurement. In this paper, the He-like X-ray spectra of the titanium ions from TFTR tokamak plasma and of the iron ions from solar flares are discussed, paying attention to the presence of high energy electrons which affect the spectra and ionization balance. Atomic data, the spectra from the TFTR tokamak, the spectra from solar flares and so on are described. (K.I.)

  14. International intercomparison of neutron spectra evaluating methods using activation detectors

    International Nuclear Information System (INIS)

    Fischer, A.

    1975-06-01

    The international intercomparison of neutron spectrum evaluation methods using activation detectors was organized by the IAEA in 1971 - 1972. All of the contributions and the results of a critical evaluation are presented here. The spectra of different contributors are compared to a reference spectrum by means of different integrals and weighting functions. Different cross section sets, foil numbers, energy point systems, guess spectra used by the contributors cause differences in the resulting spectra. The possible ways of separating these effects are also investigated. Suggestions are made for the organization of a new intercomparison on the basis of more uniform input data. (orig.) [de

  15. Funny hills in pion spectra from heavy-ion collisions

    International Nuclear Information System (INIS)

    Rasmussen, J.O.

    1982-03-01

    A discussion of some of the systematic features of the pion spectra in heavy-ions reactions is given. A discussion of the hills and valleys in heavy ion pion spectra that show up at the lower pion energies is given. The following topics are discussed: (1) three kinds of funny hills; (2) π - / + ratios near center of mass; (3) new Monte Carlo studies of charged pion spectra; and (4) pion orbiting about fireballs and Bose-Einstein behavior as explanation for the mid-rapidity P/sub perpendicular to/ approx. = 0.4 to 0.5 m/sub π/c hill

  16. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  17. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  18. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  19. Secondary graviton spectra and waterfall-like fields

    OpenAIRE

    Giovannini, Massimo

    2010-01-01

    The secondary spectra of the gravitons induced by a waterfall-like field are computed and the general bounds on the spectral energy density of the tensor modes of the geometry are translated into explicit constraints on the amplitude and slope of the waterfall spectrum. The obtained results are compared with the primary gravitational wave spectra of the concordance model and of its neighboring extensions as well as with the direct Ligo/Virgo bounds on stochastic backgrounds of relic gravitons...

  20. Applications of Monte Carlo simulations of gamma-ray spectra

    International Nuclear Information System (INIS)

    Clark, D.D.

    1995-01-01

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry

  1. Numerical analysis of alpha spectra using two different codes

    International Nuclear Information System (INIS)

    Hurtado, S.; Jimenez-Ramos, M.C.; Villa, M.; Vioque, I.; Manjon, G.; Garcia-Tenorio, R.

    2008-01-01

    This work presents an intercomparison between commercial software for alpha-particle spectrometry, Genie 2000, and the new free available software, Winalpha, developed by International Atomic Energy Agency (IAEA). In order to compare both codes, different environmental spectra containing plutonium, uranium, thorium and polonium have been analyzed, together with IAEA test alpha spectra. A statistical study was performed in order to evaluate the precision and accuracy in the analyses, and to enhance the confidence in using the software on alpha spectrometric studies

  2. Inelastic neutron spectra and cross sections for 238 U

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.V.

    1994-01-01

    The report discusses the experimental facilities of IPPE, results of spectra and cross sections investigations. The problems of existing data libraries were highlighted. Some of these problems for example, inelastic spectra at high energy may be solved by correct theoretical calculation. Others like level cross sections at E > 2 MeV and the possible structure of excitation function for group levels between 0.5 to 0.85 MeV demand new experimental efforts. 21 refs., 11 figs., 5 tabs

  3. Sequential Analysis of Gamma Spectra

    International Nuclear Information System (INIS)

    Fayez-Hassan, M.; Hella, Kh.M.

    2009-01-01

    This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.

  4. Crystal-field analysis for RE3+ ions in laser materials: II. Absorption spectra and energy levels calculations for Nd3+ ions doped into SrLaGa3O7 and BaLaGa3O7 crystals and Tm3+ ions in SrGdGa3O7

    International Nuclear Information System (INIS)

    Karbowiak, M.; Gnutek, P.; Rudowicz, C.; Ryba-Romanowski, W.

    2011-01-01

    Graphical abstract: In this paper we report a detailed analysis of spectroscopic data obtained from low temperature absorption spectra, which enabled assignment of energy levels, and subsequently their analysis in terms of the free-ion and crystal field (CF) parameters. Highlights: → Polarized absorption spectra measured for Nd 3+ and Tm 3+ ions in ABC 3 O 7 crystals. → Energy levels analyzed in terms of the free-ion and crystal-field (CF) parameters. → The combined ADS/SPM procedure have been successfully applied. → The B-bar k parameters and the power law exponents t k of SPM model are determined. → The energies of levels are important for evaluation of the emission cross-section. - Abstract: Low temperature polarized absorption spectra are analyzed to achieve assignments of energy levels for Nd 3+ and Tm 3+ ions at monoclinic C s site symmetry in ABC 3 O 7 crystals. Based on the concept of average optical center, the experimental energy levels for single crystals of SrLaGa 3 O 7 :Nd 3+ (SLG:Nd), BaLaGa 3 O 7 :Nd 3+ (BLG:Nd), and SrGdGa 3 O 7 :Tm 3+ (SGG:Tm) were analyzed in terms of the free-ion parameters and the crystal field (CF) ones, B kq . Assignments of the energy levels resolved in the spectra were done in stages applying the ascent/descent in symmetry method in CF analysis. The actual monoclinic C s site symmetry at the metal centers in ABC 3 O 7 crystals and the approximated orthorhombic C 2v and tetragonal C 4v symmetry were considered. The starting values of B kq 's for SLG:Nd and BLG:Nd crystals were obtained from superposition model (SPM) analysis. The final fitted crystal field parameters show high compatibility with the existing data for structurally similar ion-host systems. The obtained values of the intrinsic parameters provide basis for SPM analysis of CF parameters for rare earth ions in other similar systems, especially those exhibiting low-symmetry sites. The SPM parameters derived for SLG:Nd are used for simulation and

  5. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  6. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  7. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  8. Secondary charged particle spectra and kerma calculations

    International Nuclear Information System (INIS)

    Coyne, J.J.; Gerstenberg, H.M.; Hennen, L.A.

    1985-01-01

    The calculation of kerma factors from known cross sections is not as simple as is often implied. The kerma factors are strongly influenced by the reaction mechanism assumed. An important example of this dependence on the reaction mechanism is the contribution of the 12 C(n,n')3α reaction to the total kerma in carbon. First, a short review will be given of the ENDF/B-V carbon cross sections which were used in the calculation of carbon kerma factors. Using the reaction channels implied in the ENDF/B-V evaluation, the contribution of various reactions to the total kerma factors in carbon will be given. A detailed analysis of the reaction mechanisms which could contribute to the (n,n')3α reaction in carbon has been carried out. First their contribution to kerma, independent of cross section, will be calculated and then the initial spectra of alpha particles produced by the various reaction mechanisms will be given. A discussion of possible ways of experimentally distinguishing the reaction mechanisms will be made by comparing their different initial spectra and their variation in kerma with neutron energy. Finally, the event-size spectra for tissue-equivalent proportional counters will be presented, giving only the contributions from the (n,n')3α reaction and its various possible reaction channels. 3 refs., 11 figs., 4 tabs

  9. Displacement cross sections and PKA spectra: tables and applications

    International Nuclear Information System (INIS)

    Doran, D.G.; Graves, N.J.

    1976-12-01

    Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included

  10. RCI Simulation for EUV spectra from Sn ions

    International Nuclear Information System (INIS)

    Kagawa, T; Tanuma, H; Ohashi, H; Nishihara, K

    2007-01-01

    Using the relativistic-configuration-interaction atomic structure code, RCI simulations for EUV spectra from Sn 10+ , Sn 11+ and Sn 12+ ions are carried out, where it is assumed that each ion is embedded in a LTE plasma with the electron temperature of 30 eV. To make clear assignment of the measured spectra, the value of the excitation energy limit, which is introduced to limit the number of excited states in the simulation, is changed to see the excitation-energy-limit dependence of the spectral shape. The simulated spectra are obtained as a superposition of line intensities due to all possible transitions between two states whose excitation energy from the ground state is lower than the excitation energy limit assumed. The RCI simulated spectra are compared to the spectra measured with the chargeexchange- collision experiment in which a rare gas such as Xe or He as a target is bombarded by a charge-selected tin ion. Applicability of the LTE model to a decay model in the charge exchange collision experiment is also discussed

  11. Energy

    International Nuclear Information System (INIS)

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  12. Energy

    OpenAIRE

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  13. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  14. Biological Action Spectra (invited paper)

    International Nuclear Information System (INIS)

    Gruijl, F.R. de

    2000-01-01

    Ultraviolet (UV) radiation induces a wide variety of biological responses: ranging in humans from well-known short-term effects like sunburn to long-term effects like skin cancer. The wavelength dependencies ('action spectra') of the responses can differ significantly, depending on the UV-targeted molecules (their absorption spectra), their localisation (transmission to the target depth) and the photochemical reactions involved (e.g. quantum yields, competing reaction). An action spectrum (e.g. of sunburn) is usually determined in a wavelength by wavelength analysis of the response. This is not always possible (e.g. in case of skin cancer), and an action spectrum may then be extracted mathematically from differences in responses to broadband UV sources of various spectral compositions (yielding 'biological spectral weights'). However, relative spectral weights may shift with exposure levels and contributions from different wavelengths may not always add up. Under these circumstances conventional analyses will yield different action spectra for different experimental conditions. (author)

  15. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ohnishi, A.; Otuka, N.; Sahu, P.K.; Isse, M.; Nara, Y.

    2001-01-01

    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65 + 65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation. (author)

  16. Electronic Raman spectra in iron-based superconductors with two-orbital model

    International Nuclear Information System (INIS)

    Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng

    2011-01-01

    Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.

  17. Extraction of level density and γ strength function from primary γ spectra

    International Nuclear Information System (INIS)

    Schiller, A.; Bergholt, L.; Guttormsen, M.; Melby, E.; Rekstad, J.; Siem, S.

    2000-01-01

    We present a new iterative procedure to extract the level density and the γ strength function from primary γ spectra for energies close up to the neutron binding energy. The procedure is tested on simulated spectra and on data from the 173 Yb( 3 He,α) 172 Yb reaction

  18. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  19. Neutron spectra unfolding in Bonner spheres spectrometry using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Setayeshi, S.; Koohi-Fayegh, R.; Ghiassi-Nejad, M.

    2003-01-01

    The neural network method has been used for the unfolding of neutron spectra in neutron spectrometry by Bonner spheres. A back propagation algorithm was used for training of neural networks 4mm x 4 mm bare LiI(Eu) and in a polyethylene sphere set: 2, 3, 4, 5, 6, 7, 8, 10, 12, 18 inch diameter have been used for unfolding of neutron spectra. Neural networks were trained by 199 sets of neutron spectra, which were subdivided into 6, 8, 10, 12, 15 and 20 energy bins and for each of them an appropriate neural network was designed and trained. The validation was performed by the 21 sets of neutron spectra. A neural network with 10 energy bins which had a mean value of error of 6% for dose equivalent estimation of spectra in the validation set showed the best results. The obtained results show that neural networks can be applied as an effective method for unfolding neutron spectra especially when the main target is neutron dosimetry. (author)

  20. Automatic identification of mass spectra

    International Nuclear Information System (INIS)

    Drabloes, F.

    1992-01-01

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs