Correlated volume-energy fluctuations of phospholipid membranes: A simulation study
DEFF Research Database (Denmark)
Pedersen, Ulf. R.; Peters, Günther H.J.; Schröder, Thomas B.
2010-01-01
This paper reports all-atom computer simulations of five phospholipid membranes (DMPC, DPPC, DMPG, DMPS, and DMPSH) with focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and chain order. At constant temperature and pressure, volume and energy exhibit strong...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, and showing that the slow volume−energy fluctuations derive from van der Waals interactions of the tail region; they are thus...
International Nuclear Information System (INIS)
Zhao, Quantang; Cao, S.C.; Liu, M.; Sheng, X.K.; Wang, Y.R.; Zong, Y.; Zhang, X.M.; Jing, Y.; Cheng, R.; Zhao, Y.T.; Zhang, Z.M.; Du, Y.C.; Gai, W.
2016-01-01
A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.
Water Energy Simulation Toolset
Energy Technology Data Exchange (ETDEWEB)
2017-05-17
The Water-Energy Simulation Toolset (WEST) is an interactive simulation model that helps visualize impacts of different stakeholders on water quantity and quality of a watershed. The case study is applied for the Snake River Basin with the fictional name Cutthroat River Basin. There are four groups of stakeholders of interest: hydropower, agriculture, flood control, and environmental protection. Currently, the quality component depicts nitrogen-nitrate contaminant. Users can easily interact with the model by changing certain inputs (climate change, fertilizer inputs, etc.) to observe the change over the entire system. Users can also change certain parameters to test their management policy.
Correlated prompt fission data in transport simulations
Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.
2018-01-01
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in
Correlated prompt fission data in transport simulations
Energy Technology Data Exchange (ETDEWEB)
Talou, P.; Jaffke, P.; Kawano, T.; Stetcu, I. [Los Alamos National Laboratory, Nuclear Physics Group, Theoretical Division, Los Alamos, NM (United States); Vogt, R. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Randrup, J. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Rising, M.E.; Andrews, M.T.; Sood, A. [Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group, Los Alamos, NM (United States); Pozzi, S.A.; Clarke, S.D.; Marcath, M.J. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States); Verbeke, J.; Nakae, L. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); Jandel, M. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States); University of Massachusetts, Department of Physics and Applied Physics, Lowell, MA (United States); Meierbachtol, K. [Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation, Los Alamos, NM (United States); Rusev, G.; Walker, C. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States)
2018-01-15
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n-n, n-γ, and γ-γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX-PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation
Magnetic Flyer Facility Correlation and UGT Simulation
1978-05-01
assistance in this program from the following: Southern Research Institute - Material properties and C. Pears and G. Fornaro damage data Air Force ...techniques - flyer plate loading. The program was divided into two majur parts, the Facility Correlation Study and the UGT Simulation STudy. For the...current produces a magnetic field which then produces an accelerating force on the flyer plate, itself a current carry- ing part of the circuit. The flyer
Energy flux correlations and moving mirrors
International Nuclear Information System (INIS)
Ford, L.H.; Roman, Thomas A.
2004-01-01
We study the quantum stress tensor correlation function for a massless scalar field in a flat two-dimensional spacetime containing a moving mirror. We construct the correlation functions for right-moving and left-moving fluxes for an arbitrary trajectory, and then specialize them to the case of a mirror trajectory for which the expectation value of the stress tensor describes a pair of delta-function pulses, one of negative energy and one of positive energy. The flux correlation function describes the fluctuations around this mean stress tensor, and reveals subtle changes in the correlations between regions where the mean flux vanishes
Correlation energy generating potentials for molecular hydrogen
International Nuclear Information System (INIS)
Sharma, B.S.; Thakkar, A.J.
1985-01-01
A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials
Angular correlations and high energy evolution
International Nuclear Information System (INIS)
Kovner, Alex; Lublinsky, Michael
2011-01-01
We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.
Long range correlations, event simulation and parton percolation
International Nuclear Information System (INIS)
Pajares, C.
2011-01-01
We study the RHIC data on long range rapidity correlations, comparing their main trends with different string model simulations. Particular attention is paid to color percolation model and its similarities with color glass condensate. As both approaches corresponds, at high density, to a similar physical picture, both of them give rise to a similar behavior on the energy and the centrality of the main observables. Color percolation explains the transition from low density to high density.
Angular correlations near the Fermi energy
International Nuclear Information System (INIS)
Fox, D.; Cebra, D.A.; Karn, J.
1988-01-01
Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50 MeV/nucleon C+C, Ag, and Au. The single-particle inclusive energy spectra are well fit by a three moving source parametrization. Two-particle large-angle correlations are shown to be consistent with emission from a thermally equilibrated source when the effects of momentum conservation are considered. Single-particle inclusive spectra and light-particle correlations at small relative momentum were measured for 35 MeV/nucleon N+Ag. Source radii were extracted from the two-particle correlation functions and were found to be consistent with previous measurements using two-particle correlations and the coalescence model. The temperature of the emitting source was extracted from the relative populations of states using the quantum statistical model and was found to be 4.8/sub -2.4//sup +2.8/ MeV, compared to the 14 MeV temperature extracted from the slopes of the kinetic energy spectra
Incident energy dependence of pt correlations at relativistic energies
Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta, M R; Mazumdar; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N
2005-01-01
We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.
ERP Correlates of Simulated Purchase Decisions.
Gajewski, Patrick D; Drizinsky, Jessica; Zülch, Joachim; Falkenstein, Michael
2016-01-01
Decision making in economic context is an everyday activity but its neuronal correlates are poorly understood. The present study aimed at investigating the electrophysiological brain activity during simulated purchase decisions of technical products for a lower or higher price relative to a mean price estimated in a pilot study. Expectedly, participants mostly decided to buy a product when it was cheap and not to buy when it was expensive. However, in some trials they made counter-conformity decisions to buy a product for a higher than the average price or not to buy it despite an attractive price. These responses took more time and the variability of the response latency was enhanced relative to conformity responses. ERPs showed enhanced conflict related fronto-central N2 during both types of counter-conformity compared to conformity decisions. A reverse pattern was found for the P3a and P3b. The response-locked P3 (r-P3) was larger and the subsequent CNV smaller for counter-conformity than conformity decisions. We assume that counter-conformity decisions elevate the response threshold (larger N2), intensify response evaluation (r-P3) and attenuate the preparation for the next trial (CNV). These effects were discussed in the framework of the functional role of the fronto-parietal cortex in economic decision making.
ERP correlates of simulated purchase decisions
Directory of Open Access Journals (Sweden)
Patrick Darius Gajewski
2016-08-01
Full Text Available Decision making in economic context is an everyday activity but its neuronal correlates are poorly understood. The present study aimed at investigating the electrophysiological brain activity during simulated purchase decisions of technical products for a lower or higher price relative to a mean price estimated in a pilot study. Expectedly, participants mostly decided to buy a product when it was cheap and not to buy when it was expensive. But in some trials they made counter-conformity decisions to buy a product for more money than the average price or not to buy a product despite an attractive price. These responses took more time and the variability of the response latency was enhanced relative to conformity responses. ERPs showed enhanced conflict related fronto-central N2 during both types of counter-conformity compared to conformity decisions. A reverse pattern was found for the P3a and P3b. The response-locked P3 (r-P3 was larger and the subsequent CNV smaller for counter-conformity than conformity decisions. We assume that counter-conformity decisions elevate the response threshold (larger N2, intensify response evaluation (r-P3 and attenuate the preparation for the next trial (CNV. These effects were discussed in the framework of the functional role of the fronto-parietal cortex in economic decision making.
BLAST: Building energy simulation in Hong Kong
Fong, Sai-Keung
1999-11-01
The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was
Energy correlations for mixed rotational bands
International Nuclear Information System (INIS)
Doessing, T.
1985-01-01
A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)
International Nuclear Information System (INIS)
Breban, P; Eripret, C.
1995-01-01
The analysis methods used to evaluate the harmlessness of defects in the components of the primary coolant circuit of pressurized water reactor are based on the knowledge of the failure properties of concerned materials. The toughness is used to be measured through tests performed on normalized samples. But in some cases, especially for the vessel steel submitted to irradiation effects or for cast components in duplex stainless steel sensitive to thermal ageing, these measurements are not available on the material aged in operation. Therefore, fracture resistance has been evaluated through Charpy tests. Toughness is thus obtained on the basis of an empirical correlation. To improve these predictions, a modeling of the Charpy test in the framework of the local approach to fracture has been performed, for both materials. For the vessel steel, a complete evaluation of toughness has been achieved on the basis of a bidimensional viscoplastic modeling under large strain assumptions and a post-treatment with a Weibull model (cleavage fracture). The main hypothesis (partition between plain stress and plain strain areas in the bidimensional modeling) was corrected after a three dimensional calculations with the finite element program Code-Aster. The fracture analysis put into evidence that damage considerations like cavity nucleation and growth have to be introduced in the model in order to improve the description of physical phenomena. Two ways of progress have been suggested and are in course of being investigated, one in the framework of local approach to failure, the other with the help of micro-macro relationship. With regard to the duplex steel, the description of a Charpy (U) test allowed to clearly discriminate between crack initiation and propagation phases. A modeling through an equivalent homogenous material with a damage law based on a modified Gurson potential enables to describe quantitatively both phases of fracture. It clearly appears that a reliable
The perceived value of using BIM for energy simulation
Lewis, Anderson M.
Building Information Modeling (BIM) is becoming an increasingly important tool in the Architectural, Engineering & Construction (AEC) industries. Some of the benefits associated with BIM include but are not limited to cost and time savings through greater trade and design coordination, and more accurate estimating take-offs. BIM is a virtual 3D, parametric design software that allows users to store information of a model within and can be used as a communication platform between project stakeholders. Likewise, energy simulation is an integral tool for predicting and optimizing a building's performance during design. Creating energy models and running energy simulations can be a time consuming activity due to the large number of parameters and assumptions that must be addressed to achieve reasonably accurate results. However, leveraging information imbedded within Building Information Models (BIMs) has the potential to increase accuracy and reduce the amount of time required to run energy simulations and can facilitate continuous energy simulations throughout the design process, thus optimizing building performance. Although some literature exists on how design stakeholders perceive the benefits associated with leveraging BIM for energy simulation, little is known about how perceptions associated with leveraging BIM for energy simulation differ between various green design stakeholder user groups. Through an e-survey instrument, this study seeks to determine how perceptions of using BIMs to inform energy simulation differ among distinct design stakeholder groups, which include BIM-only users, energy simulation-only users and BIM and energy simulation users. Additionally, this study seeks to determine what design stakeholders perceive as the main barriers and benefits of implementing BIM-based energy simulation. Results from this study suggest that little to no correlation exists between green design stakeholders' perceptions of the value associated with using
Correlation between renew able energy source's energy output and load
International Nuclear Information System (INIS)
Ali, G.H.M.; El-Zeftawy, A.A.
1996-01-01
The common problem to all renew energy sources (RESs) is the mismatch between their energy output and load demand. In remote areas, the solution of this problem is in general employing a small diesel-generator or a storage battery. But, the storage battery is a major cost element of RESs and small diesel-generator is unreliable and costly. Therefore, a proposed technique has been introduced in this work to determine correlation between the energy output of wind energy systems (WES) and isolated loads. solar photovoltaic power system (PVS) and two of energy storage facilities are used here for this correlation. The proposed technique includes also two models for optimizing the generation and costs of WES accompanied with PVS, storage battery and water storage (reservoir) to accommodate an isolated load. The proposed technique is applied with the dynamic programming to coordinate the energy output of a WES with residential and pumping load in remote area of egypt. The results of this application reveal that minimization of both capacity of the storage battery and the whole power system cost are obtained. 4 figs
New angles on energy correlation functions
Moult, Ian; Necib, Lina; Thaler, Jesse
2016-12-01
Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i , N i , and U i . The M i series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.
New angles on energy correlation functions
Energy Technology Data Exchange (ETDEWEB)
Moult, Ian [Berkeley Center for Theoretical Physics, University of California,Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94720 (United States); Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Necib, Lina; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2016-12-29
Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M{sub i}, N{sub i}, and U{sub i}. The M{sub i} series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N{sub i} series behave parametrically like the N-subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U{sub i} series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.
Electron correlation energy in confined two-electron systems
Energy Technology Data Exchange (ETDEWEB)
Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)
2010-09-27
Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.
Simulating Optical Correlation on a Digital Image Processing
Denning, Bryan
1998-04-01
Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
Building energy demand aggregation and simulation tools
DEFF Research Database (Denmark)
Gianniou, Panagiota; Heller, Alfred; Rode, Carsten
2015-01-01
to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...
Convergence of third order correlation energy in atoms and molecules.
Kahn, Kalju; Granovsky, Alex A; Noga, Jozef
2007-01-30
We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.
Simulation of speckle patterns with pre-defined correlation distributions
Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.
2016-01-01
We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589
Energy simulation in building design
Hensen, J.L.M.
1992-01-01
Design decision support related to building energy consumption and / or indoor climate, should be based on an integral approach of environment, building, heating, ventilating and airconditioning (HVAC) system and occupants. The tools to achieve this are now available in the form of computer
Dual-energy mammography: simulation studies
International Nuclear Information System (INIS)
Bliznakova, K; Kolitsi, Z; Pallikarakis, N
2006-01-01
This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images
Efficient simulation of tail probabilities of sums of correlated lognormals
DEFF Research Database (Denmark)
Asmussen, Søren; Blanchet, José; Juneja, Sandeep
We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown to be eff......We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown...... optimize the scaling parameter of the covariance. The second estimator decomposes the probability of interest in two contributions and takes advantage of the fact that large deviations for a sum of correlated lognormals are (asymptotically) caused by the largest increment. Importance sampling...
Simulation of tendon energy storage in pedaling
DEFF Research Database (Denmark)
Rasmussen, John; Damsgaard, Michael; Christensen, Søren Tørholm
2001-01-01
The role of elastic energy stored in tendons during pedaling is investigated by means of numerical simulation using the AnyBody body modeling system. The loss of metabolic energy due to tendon elasticity is computed and compared to the mechanical work involved in the process. The AnyBody simulati...
Simulation Tool For Energy Consumption and Production
DEFF Research Database (Denmark)
Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne
2013-01-01
In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as well as appliances and other electrical components used in the modeled homes....
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target
Multiparticle correlations and intermittency in high energy collisions
Bozek, P
1992-01-01
In this work the analysis of the intermittency signal observed in high energy experi- ments is done using multiparticle distributions and correlation functions. The effect of the dimensional projection of the multiparticle distributions on one or two-dimensional subspace is discussed. The structure of the multiparticle cumulants is analyzed for the DELPHI e + e~ annihilation data. The language of the self-similar distribution func- tions, which is used in this work, is shown to be largely equivalent to the well known a-model. In the case of the ultrarelativistic nuclear collisions, where the Monte-Carlo simulations fail to reproduce the data, we argue that the observed intermittency pattern is a signal of some nonlinear effect beyond the simple superposition of nucleon-nucleon collisions. The model of spatiotemporal intermittency is discussed in details and is shown to reproduce qualitatively the dependence of t...
Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.
2011-01-01
The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...... in reasonable agreement with smoothed experimental data. The proposed method for obtaining correlation function integrals is shown to perform at least as well as or better than two previously published approaches....
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Hydrogen Epoch of Reinozation Array (HERA) Calibrated FFT Correlator Simulation
Salazar, Jeffrey David; Parsons, Aaron
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) project is an astronomical radio interferometer array with a redundant baseline configuration. Interferometer arrays are being used widely in radio astronomy because they have a variety of advantages over single antenna systems. For example, they produce images (visibilities) closely matching that of a large antenna (such as the Arecibo observatory), while both the hardware and maintenance costs are significantly lower. However, this method has some complications; one being the computational cost of correlating data from all of the antennas. A correlator is an electronic device that cross-correlates the data between the individual antennas; these are what radio astronomers call visibilities. HERA, being in its early stages, utilizes a traditional correlator system. The correlator cost scales as N2, where N is the number of antennas in the array. The purpose of a redundant baseline configuration array setup is for the use of a more efficient Fast Fourier Transform (FFT) correlator. FFT correlators scale as Nlog2N. The data acquired from this sort of setup, however, inherits geometric delay and uncalibrated antenna gains. This particular project simulates the process of calibrating signals from astronomical sources. Each signal “received” by an antenna in the simulation is given random antenna gain and geometric delay. The “linsolve” Python module was used to solve for the unknown variables in the simulation (complex gains and delays), which then gave a value for the true visibilities. This first version of the simulation only mimics a one dimensional redundant telescope array detecting a small amount of sources located in the volume above the antenna plane. Future versions, using GPUs, will handle a two dimensional redundant array of telescopes detecting a large amount of sources in the volume above the array.
Degeneracy and long-range correlation: A simulation study
Directory of Open Access Journals (Sweden)
Marmelat Vivien
2011-12-01
Full Text Available We present in this paper a simulation study that aimed at evidencing a causal relationship between degeneracy and long-range correlations. Long-range correlations represent a very specific form of fluctuations that have been evidenced in the outcomes time series produced by a number of natural systems. Long-range correlations are supposed to sign the complexity, adaptability and flexibility of the system. Degeneracy is defined as the ability of elements that are structurally different to perform the same function, and is presented as a key feature for explaining the robustness of complex systems. We propose a model able to generate long-range correlated series, and including a parameter that account for degeneracy. Results show that a decrease in degeneracy tends to reduce the strength of long-range correlation in the series produced by the model.
Deng, Yue
2014-01-01
Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.
Rapidity and multiplicity correlations in high energy hadronic collisions
International Nuclear Information System (INIS)
Heiselberg, H.
1993-01-01
Rapidity and multiplicity correlations of particle production in high energy hadronic collisions are studied. A simple model including short range correlations in rapidity due to clustering and long range correlations due to energy conservation is able to describe the two-body correlation functions well hadron-nucleon collisions around lab energies of 250 GeV. In this model fractional moments are calculated and compared to data. The strong rise of the factorial moments in rapidity intervals by size δy∝1 can be explained by long and short range correlation alone whereas the factorial moments approach a constant value at very small δy due to lack of correlations also in agreement with experiment. There is therefore no need for introducing intermittency in the particle production in hadronic collisions at these energies. (orig.)
Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations
DEFF Research Database (Denmark)
Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens
2008-01-01
Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...
Computer simulation of high energy displacement cascades
International Nuclear Information System (INIS)
Heinisch, H.L.
1990-01-01
A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)
DNA - A Thermal Energy System Simulator
DEFF Research Database (Denmark)
2008-01-01
DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...... the DNA installer...
Simulation of Spheromak Evolution and Energy Confinement
International Nuclear Information System (INIS)
Cohen, B; Hooper, E; Cohen, R; Hill, D; McLean, H; Wood, R; Woodruff, S; Sovinec, C; Cone, G
2004-01-01
Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive
Simulation of Spheromak Evolution and Energy Confinement
International Nuclear Information System (INIS)
Cohen, B.; Hooper, E.; Cohen, R.; Hill, D.; McLean, H.; Wood, R.; Woodruff, S.
2004-01-01
Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The dimensional, simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive
Simulation approach towards energy flexible manufacturing systems
Beier, Jan
2017-01-01
This authored monograph provides in-depth analysis and methods for aligning electricity demand of manufacturing systems to VRE supply. The book broaches both long-term system changes and real-time manufacturing execution and control, and the author presents a concept with different options for improved energy flexibility including battery, compressed air and embodied energy storage. The reader will also find a detailed application procedure as well as an implementation into a simulation prototype software. The book concludes with two case studies. The target audience primarily comprises research experts in the field of green manufacturing systems. .
Numerical simulations of topological and correlated quantum matter
Energy Technology Data Exchange (ETDEWEB)
Assaad, Fakher F. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik
2016-11-01
The complexity of the solid state does not allow us to carry out simulations of correlated materials without adopting approximation schemes. In this project we are tackling this daunting task with complementary techniques. On one hand one can start with density functional theory in the local density approximation and then add dynamical local interactions using the so called dynamical mean-field approximation. This approach has the merit of being material dependent in the sense that it is possible to include the specific chemical constituents of the material under investigation. Progress in this domain is described below. Another venue is to concentrate on phenomena occurring in a class of materials. Here, the strategy is to define models which one can simulate in polynomial time on supercomputing architectures, and which reproduce the phenomena under investigation. This route has been remarkably successful, and we are now in a position to provide controlled model calculations which can cope with antiferromagnetic fluctuations in metals, or nematic instabilities of fermi liquids. Both phenomena are crucial for our understanding of high temperature superconductivity in the cuprates and the pnictides. Access to the LRZ supercomputing center was imperative during the current grant period to do the relevant simulations on a wide range of topics on correlated electrons. In all cases access to supercomputing facilities allows to carry out simulations on larger and larger system sizes so as to be able to extrapolate to the thermodynamic limit relevant for the understanding of experiments and collective phenomena.
Simulation of the Energy Saver refrigeration system
International Nuclear Information System (INIS)
Barton, H.R. Jr.; Nicholls, J.E.; Mulholland, G.T.
1981-10-01
The helium refrigeration for the Energy Saver is supplied by a Central Helium Liquefier and 24 Satellite Refrigerators installed over a 1-1/4 square mile area. An interactive, software simulator has been developed to calculate the refrigeration available from the cryogenic system over a wide range of operating conditions. The refrigeration system simulator incorporates models of the components which have been developed to quantitatively describe changes in system performance. The simulator output is presented in a real-time display which has been used to search for the optimal operating conditions of the Satellite-Central system, to examine the effect of an extended range of operating parameters and to identify equipment modifications which would improve the system performance
Methodology for Validating Building Energy Analysis Simulations
Energy Technology Data Exchange (ETDEWEB)
Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.
2008-04-01
The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.
Electronic configurations and energies in some thermodynamically correlated laves compounds
International Nuclear Information System (INIS)
Campbell, G.M.
1979-04-01
The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies
A semiclassical treatment of correlation energy for nuclear systems
International Nuclear Information System (INIS)
Nielsen, M.
1988-01-01
Starting with the separation of the many-body density operator in two parts, one describing the one-body aspects of the full density and the other containing all dynamic correlations information, the semiclassical approximation for the system correlation energy, was calculated. It is showm that, in this case, the Gaussian Wave Packets Phase Space Representation is more convenient than the Wely-Wigner Rrepresentation for the analysis of the semiclassical correlation energy. Using a phenomenological interaction, the correlation energy to the nuclear matter and some simmetric finite nucleus was calculated. The Fermi Surface Diffusivity, was also calculated. Finally, from the relation between this theory and the pertubation theory, we have done some considerations about the viability on the local densities expansion for energy functionals. (author) [pt
Evaluation of correlative nuclear data at certain energy point
International Nuclear Information System (INIS)
Zhang Jianhua; Liu Tingjin.
1993-01-01
A method to process correlative nuclear data at certain energy point is presented. The corresponding processing code has also been developed. Using the code, the effects of the correlation have been discussed in detail for the cases of the two and three data. (3 figs.)
Two-particle correlations at FNAL and ISR energies
International Nuclear Information System (INIS)
Darriulat, P.
1975-01-01
Some recent experimental results concerning the cluster structure of hadronic final states at high incident energies are reviewed. Results of experiments on angular correlations, both rapidity correlations and joint azimuth-rapidity correlations, in the central region, are discussed. Recent evidence for local compensation of charges and new data on resonance production are reviewed. Leading and high transverse momentum clusters, in as much as they may somehow be related to central clusters, are dealt with briefly. (U.K.)
Correlations in simple multi-string models of pp collisions at ISR energies
International Nuclear Information System (INIS)
Lugovoj, V.V.; Chudakov, V.M.
1989-01-01
Simple statistical simulation algorithms are suggested for formation and breaking of a few quark-gluon strings in inelastic pp collisions. Theoretical multiplicity distributions, semi-inclusive quasirapidity spectra, forward-backward correlations of charged secondaries and seagull effect agree well with the experimental data at ISR energies. In the framework of the model, the semi-inclusive two-particle correlations of quasirapidities depend upon the fraction of the spherical chains. The seagull effect is qualitatively interpretated
Angular correlations and fragmentation in intermediate energy heavy ion collisions
International Nuclear Information System (INIS)
Kristiansson, Anders.
1990-05-01
Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)
Correlation of energy balance method to dynamic pipe rupture analysis
International Nuclear Information System (INIS)
Kuo, H.H.; Durkee, M.
1983-01-01
When using an energy balance approach in the design of pipe rupture restraints for nuclear power plants, the NRC specifies in its Standard Review Plan 3.6.2 that the input energy to the system must be multiplied by a factor of 1.1 unless a lower value can be justified. Since the energy balance method is already quite conservative, an across-the-board use of 1.1 to amplify the energy input appears unneccessary. The paper's purpose is to show that this 'correlation factor' could be substantially less than unity if certain design parameters are met. In this paper, result of nonlinear dynamic analyses were compared to the results of the corresponding analyses based on the energy balance method which assumes constant blowdown forces and rigid plastic material properties. The appropriate correlation factors required to match the energy balance results with the dynamic analyses results were correlated to design parameters such as restraint location from the break, yield strength of the energy absorbing component, and the restraint gap. It is shown that the correlation factor is related to a single nondimensional design parameter and can be limited to a value below unity if appropriate design parameters are chosen. It is also shown that the deformation of the restraints can be related to dimensionless system parameters. This, therefore, allows the maximum restraint deformation to be evaluated directly for design purposes. (orig.)
Scalable Quantum Simulation of Molecular Energies
Directory of Open Access Journals (Sweden)
P. J. J. O’Malley
2016-07-01
Full Text Available We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.
Serçinoglu, Onur; Ozbek, Pemra
2018-05-25
Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.
Correlation of simulated TEM images with irradiation induced damage
International Nuclear Information System (INIS)
Schaeublin, R.; Almeida, P. de; Almazouzi, A.; Victoria, M.
2000-01-01
Crystal damage induced by irradiation is investigated using transmission electron microscopy (TEM) coupled to molecular dynamics (MD) calculations. The displacement cascades are simulated for energies ranging from 10 to 50 keV in Al, Ni and Cu and for times of up to a few tens of picoseconds. Samples are then used to perform simulations of the TEM images that one could observe experimentally. Diffraction contrast is simulated using a method based on the multislice technique. It appears that the cascade induced damage in Al imaged in weak beam exhibits little contrast, which is too low to be experimentally visible, while in Ni and Cu a good contrast is observed. The number of visible clusters is always lower than the actual one. Conversely, high resolution TEM (HRTEM) imaging allows most of the defects contained in the sample to be observed, although experimental difficulties arise due to the low contrast intensity of the smallest defects. Single point defects give rise in HTREM to a contrast that is similar to that of cavities. TEM imaging of the defects is discussed in relation to the actual size of the defects and to the number of clusters deduced from MD simulations
Correlation energy for elementary bosons: Physics of the singularity
International Nuclear Information System (INIS)
Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung
2016-01-01
We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.
Correlation energy for elementary bosons: Physics of the singularity
Energy Technology Data Exchange (ETDEWEB)
Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China); Combescot, Monique [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, 75005 Paris (France); Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan (China); Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China)
2016-04-15
We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.
Simulation of diesel engine energy conversion processes
Directory of Open Access Journals (Sweden)
А. С. Афанасьев
2016-12-01
Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.
Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions
International Nuclear Information System (INIS)
Padula, Sandra S.; Socolowski, O. Jr.
2010-01-01
Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.
Phenomenology of the squeezed hadronic correlations at RHIC energies
International Nuclear Information System (INIS)
Padula, Sandra S.; Dudek, Danuce M.; Socolowski, Otavio Jr.
2012-01-01
We briefly review the basic theoretical results on bosonic back-to-back correlations (bBBC) and compare our predictions with the first experimental search for squeezed correlations of K + K - pairs, performed by PHENIX. The hadronic squeezed correlations are very sensitive to the functional form of the time emission distribution. The comparison is made for three different kaon time distributions. From such comparison we show that the outcome of the experimental search may still be inconclusive but it does not exclude the existence of squeezing effects on hadrons with in-medium modified masses already at RHIC energies. (author)
Correlations in hadron-hadron interactions at high energy
International Nuclear Information System (INIS)
Nguyen Huu Khanh
1978-01-01
Some main features of the experimental results on the correlations in hadron-hadron interactions at high energy are considered. Particular attention is paid to the long-range correlation, short-range correlation and Bose-Einstein effect. Long-range correlations are confirmed by the variation of the number of charged particles produced in the final state depending on energy, violation of Koba-Nielsen- Olesen scaling and the analysis of correlation betWeen the numbers of charged particles emitted in the forward and backward hemispheres. Short-range correlations are discussed from the point of view of ISR pp, 195 GeV/c pN and 32 GeV/c k + p experiments. Bose-Einstein effects are studied up to now only between pions. Pions are not produced directly but from the decay of heavier objects. Some experimental results seem to support the evidence for dynamical long-range correlations. Most of the data are compatible with the independent cluster model
Modeling and Simulation of Energy Recovery from a Photovoltaic ...
African Journals Online (AJOL)
Modeling and Simulation of Energy Recovery from a Photovoltaic Solar cell. ... Photovoltaic (PV) solar cell which converts solar energy directly into electrical energy is one of ... model of the solar panel which could represent the real systems.
Wave Energy Converter Annual Energy Production Uncertainty Using Simulations
Directory of Open Access Journals (Sweden)
Clayton E. Hiles
2016-09-01
Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.
Simulating quantum correlations as a distributed sampling problem
International Nuclear Information System (INIS)
Degorre, Julien; Laplante, Sophie; Roland, Jeremie
2005-01-01
It is known that quantum correlations exhibited by a maximally entangled qubit pair can be simulated with the help of shared randomness, supplemented with additional resources, such as communication, postselection or nonlocal boxes. For instance, in the case of projective measurements, it is possible to solve this problem with protocols using one bit of communication or making one use of a nonlocal box. We show that this problem reduces to a distributed sampling problem. We give a new method to obtain samples from a biased distribution, starting with shared random variables following a uniform distribution, and use it to build distributed sampling protocols. This approach allows us to derive, in a simpler and unified way, many existing protocols for projective measurements, and extend them to positive operator value measurements. Moreover, this approach naturally leads to a local hidden variable model for Werner states
International Nuclear Information System (INIS)
Žukovič, Milan; Hristopulos, Dionissios T
2009-01-01
A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the N c -state Potts model, each point is assigned to one of N c classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of
Žukovič, Milan; Hristopulos, Dionissios T.
2009-02-01
A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of
Model calibration for building energy efficiency simulation
International Nuclear Information System (INIS)
Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus
2014-01-01
Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases
Density-scaling exponents and virial potential-energy correlation ...
Indian Academy of Sciences (India)
This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...
Selection effects on GRB spectral-energy correlations
International Nuclear Information System (INIS)
Nava, Lara; Ghirlanda, Giancarlo; Ghisellini, Gabriele
2009-01-01
Instrumental selection effects can act upon the estimates of the peak energy E peak obs , the fluence F and the peak flux P of GRBs. If this were the case, then the correlations involving the corresponding rest frame quantities (i.e. E peak , E obs and the peak luminosity L iso ) would be questioned. We estimated, as a function of E peak obs , the minimum peak flux necessary to trigger a GRB and the minimum fluence a burst must have to determine the value of E peak obs by considering different instruments (BATSE, Swift, BeppoSAX). We find that the latter dominates over the former. We then study the E peak obs -fluence (and flux) correlation in the observer plane. GRBs with redshift show well defined E peak obs -F and E peak obs -P correlations: in this planes the selection effects are present, but do not determine the found correlations. This is not true for Swift GRBs with redshift, for which the spectral analysis threshold does affect their distribution in the observer planes. Extending the sample to GRBs without z, we still find a significant E peak obs -F correlation, although with a larger scatter than that defined by GRBs with redshift. We find that 6% are outliers of the Amati correlation. The E peak obs -P correlation of GRBs with or without redshift is the same and no outlier is found among bursts without redshift.
GRB physics and cosmology with peak energy-intensity correlations
Energy Technology Data Exchange (ETDEWEB)
Sawant, Disha, E-mail: sawant@fe.infn.it [University of Ferrara, Via Saragat-1, Block C, Ferrara 44122 (Italy); University of Nice, 28 Avenue Valrose, Nice 06103 (France); IRAP Erasmus PhD Program, European Union and INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); Amati, Lorenzo, E-mail: amati@iasfbo.inaf.it [INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); ICRANet, Piazzale Aldo Moro-5, Rome 00185 (Italy)
2015-12-17
Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.
Electron correlations in narrow energy bands: modified polar model approach
Directory of Open Access Journals (Sweden)
L. Didukh
2008-09-01
Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.
Investigation of the energy correlations of spallation neutrons by the MCNPX code
International Nuclear Information System (INIS)
Szieberth, Mate; Radocz, Gabor
2011-01-01
Earlier works have suggested that the energy correlations in a spallation source may influence the neutron noise measurements in an ADS. For the calculation of this effect not only the generally known and used one-particle spectrum is needed but also the so-called two particle spectrum, which describes also the energy correlations. Since measured data are not available for the energy distribution of the neutrons from a single spallation event the physical models of the MCNPX code have been used to investigate the effect. The calculational model has been successfully validated with measurements of the number distribution of spallation neutrons. The simulated one- and two-particle energy distributions and spectra proved that the energy correlations exist and have an important effect in low multiplicity spallation events and in thin targets. On the other hand for thick targets this effect appears negligible and the factorization of the two-particle spectrum seems an acceptable approximation. Further investigations are in hand to quantify the actual effect of the energy correlations on the neutron noise measurements. (author)
Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy
Energy Technology Data Exchange (ETDEWEB)
Tulipant, Zoltan; Kardos, Adam; Somogyi, Gabor [University of Debrecen, MTA-DE Particle Physics Research Group, Debrecen (Hungary)
2017-11-15
We present the computation of energy-energy correlation in e{sup +}e{sup -} collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction. We study the effect of the fixed higher-order corrections in a comparison of our results to LEP and SLC data. The next-to-next-to-leading order correction has a sizable impact on the extracted value of α{sub S}(M{sub Z}), hence its inclusion is mandatory for a precise measurement of the strong coupling using energy-energy correlation. (orig.)
Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy
Tulipánt, Zoltán; Kardos, Adam; Somogyi, Gábor
2017-11-01
We present the computation of energy-energy correlation in e^+e^- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction. We study the effect of the fixed higher-order corrections in a comparison of our results to LEP and SLC data. The next-to-next-to-leading order correction has a sizable impact on the extracted value of α S(M_Z), hence its inclusion is mandatory for a precise measurement of the strong coupling using energy-energy correlation.
Branciard, Cyril; Gisin, Nicolas
2011-07-08
The simulation of quantum correlations with finite nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present a protocol that reproduces tripartite Greenberger-Horne-Zeilinger correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the tripartite Greenberger-Horne-Zeilinger state.
Cross correlation analysis of medium energy gamma rays for the northern hemisphere
International Nuclear Information System (INIS)
Long, J.; Zanrosso, E.; Zych, A.D.; White, R.S.
1982-01-01
Data obtained with the UCR gamma telescope have been analyzed using the cross-correlation method. The observations extended over 37.5 hr from 0930 UT, 30 Sept. to 2300 UT, 1 oct. 1978 at 32deg N. Lat. (Palestine, Texas). The Crab Nebula- Anticenter region was observed on consecutive days. The telescope's wide field-of-view permitted the search for a number of other medium energy (1-30 MeV) source candidates. As the telescope swept the sky, the count rates for fixed celestial directions were correlated with the expected response as a function of time and telescope geometry. Similar correlations were carried out for sources measured in the laboratory and computer-simulated sources. In the correlation method the time independence and azimuthal symmetry of the atmospheric and cosmic diffuse backgrounds provide zero correlation. In contrast, a celestial source produces an asymmetric response with respect to the azimuthal direction which varies predictably in time to give a positive correlation. Preliminary correlation skymaps of the Anticenter region are presented and their statistical significance discussed. An energy spectrum obtained from the ''correlated counts'' is compared with measurements by other methods
Methods for converging correlation energies within the dielectric matrix formalism
Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario
2018-03-01
Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.
Symmetry energy of nucleonic matter with tensor correlations
Hen, Or; Li, Bao-An; Guo, Wen-Jun; Weinstein, L. B.; Piasetzky, Eli
2015-02-01
The nuclear symmetry energy (Esym(ρ ) ) is a vital ingredient of our understanding of many processes, from heavy-ion collisions to neutron stars structure. While the total nuclear symmetry energy at nuclear saturation density (ρ0) is relatively well determined, its value at supranuclear densities is not. The latter can be better constrained by separately examining its kinetic and potential terms and their density dependencies. The kinetic term of the symmetry energy, Esymkin(ρ0) , equals the difference in the per-nucleon kinetic energy between pure neutron matter (PNM) and symmetric nuclear matter (SNM), often calculated using a simple Fermi gas model. However, experiments show that tensor force induced short-range correlations (SRC) between proton-neutron pairs shift nucleons to high momentum in SNM, where there are equal numbers of neutrons and protons, but have almost no effect in PNM. We present an approximate analytical expression for Esymkin(ρ0) of correlated nucleonic matter. In our model, Esymkin(ρ0) =-10 MeV, which differs significantly from +12.5 MeV for the widely-used free Fermi gas model. This result is consistent with our analysis of recent data on the free proton-to-neutron ratios measured in intermediate energy nucleus-nucleus collisions as well as with microscopic many-body calculations, and previous phenomenological extractions. We then use our calculated Esymkin(ρ ) in combination with the known total symmetry energy and its density dependence at saturation density to constrain the value and density dependence of the potential part and to extrapolate the total symmetry energy to supranuclear densities.
Energy Technology Data Exchange (ETDEWEB)
Weber, Gernot (Dr. Gernot Weber, Energie-Gebaeudetechnik, Kleinostheim)
2011-07-01
Thermodynamics generally is regarded as one of the most difficult fields of knowledge. This may be particularly due to the difficulties and due to the often very complicated described correlations between the terms energy, entropy and exergy in the technical literature. The contribution under consideration tries to explain these correlations to the (scientifically trained) technically interested readers understandable.
Numerical Simulation of the Heston Model under Stochastic Correlation
Directory of Open Access Journals (Sweden)
Long Teng
2017-12-01
Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.
An Energy Oriented Model and Simulator for Wireless Sensor etworks
African Journals Online (AJOL)
Nafiisah
Wireless Sensor Network, Energy Modeling, Simulation, Energy. Efficiency ..... xMBCR: This scheme is based on the MBCR strategy, but improves the battery ... Moreover WSNs require large scale deployment (smart dusts) in remote and.
Energy deposition of heavy ions in the regime of strong beam-plasma correlations.
Gericke, D O; Schlanges, M
2003-03-01
The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.
Wind Energy System Time-domain (WEST) analyzers using hybrid simulation techniques
Hoffman, J. A.
1979-01-01
Two stand-alone analyzers constructed for real time simulation of the complex dynamic characteristics of horizontal-axis wind energy systems are described. Mathematical models for an aeroelastic rotor, including nonlinear aerodynamic and elastic loads, are implemented with high speed digital and analog circuitry. Models for elastic supports, a power train, a control system, and a rotor gimbal system are also included. Limited correlation efforts show good comparisons between results produced by the analyzers and results produced by a large digital simulation. The digital simulation results correlate well with test data.
Correlation-induced spectral changes and energy conservation
International Nuclear Information System (INIS)
Agarwal, G.S.; Wolf, E.
1996-01-01
An energy conservation law is derived for fields generated by random, statistically stationary, scalar sources of any state of coherence. It is shown that correlation-induced spectral changes are in strict agreement with this law and that, basic to the understanding of such changes, is a distinction that must be made between the spectrum of a source and the spectrum of the field that the source generates. This distinction, which is obviously relevant for spectroscopy, does not appear to have been previously recognized. copyright 1996 The American Physical Society
Cutoff effects on energy-momentum tensor correlators in lattice gauge theory
International Nuclear Information System (INIS)
Meyer, Harvey B.
2009-01-01
We investigate the discretization errors affecting correlators of the energy-momentum tensor T μν at finite temperature in SU(N c ) gauge theory with the Wilson action and two different discretizations of T μν . We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x 0 and spatial momentum p, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d 3 x T 00 has much larger discretization errors than the correlator of momentum ∫d 3 x T 0k . Secondly, the shear and diagonal stress correlators (T 12 and T kk ) require N τ ≥ 8 for the Tx 0 = 1/2 point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with a σ /a τ = 2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p correlators.
Nucleon-nucleon correlations and the Coulomb Displacement Energy
International Nuclear Information System (INIS)
Van Neck, D.; Waroquier, M.; Heyde, K.
1997-01-01
Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)
Multiparticle correlations and intermittency in high energy collisions
International Nuclear Information System (INIS)
Bozek, P.
1992-01-01
The analysis of the intermittency signal observed in high energy experiments is presented using multiparticle distributions and correlation functions. The effect of the dimensional projection of the multiparticle distributions on one or two-dimensional subspace is discussed. The structure of the multiparticle cumulants is analyzed for the DELPHI e + e - annihilation data. The model of spatiotemporal intermittency is discussed in details and is shown to reproduce qualitatively the dependence of the intermittency strength on the target and projectile nuclei. A 1-dimensional (1D) cellular-automaton and a 1D forest-fire model is studied. On the example of the noncritical 1D Ising model the difficulties of the scaled factorial moment (SFM) method in extracting genuine scaling behaviour is illustrated. All these studies could serve as tools to test the sensibility of the SFM method as used in the analysis of the high energy production. (K.A.) 122 refs.; 38 figs.; 3 tabs
Spatial correlation of energy deposition events in irradiated liquid water
International Nuclear Information System (INIS)
Hamm, R.N.; Wright, H.A.; Turner, J.E.; Ritchie, R.H.
1978-01-01
Monte Carlo electron transport computer code is used to study in detail the slowing down of electrons and all of their secondaries with initial energies up to 1.5 MeV in liquid water. The probability distributions for the number of ionizations and for the energy deposited in cubical volume elements from electron tracks in the water are analyzed. Both the electron energies and the sizes of the cubical cells are varied. Results are shown for electron energies between 100 eV and 10 keV and for cell sizes between 40 A and 1500 A. Good general agreement is found with results presented by Paretzke at the last symposium. The code can be used to obtain other basic distributions of importance in microdosimetry. As an example, microdosimetric single-event spectra for 500-eV electrons are computed in cubes with edges that range in size from 40 A to 200 A. The importance of correlations is shown explicitly in a comparison of secondary electrons produced by 60 Co and 50-keV photons
MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM
Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi
2017-01-01
This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.
Novel hybrid optical correlator: theory and optical simulation.
Casasent, D; Herold, R L
1975-02-01
The inverse transform of the product of two Fourier transform holograms is analyzed and shown to contain the correlation of the two images from which the holograms were formed. The theory, analysis, and initial experimental demonstration of the feasibility of a novel correlation scheme using this multiplied Fourier transform hologram system are presented.
Modeling and Simulation of Smart Energy Systems
DEFF Research Database (Denmark)
Connolly, David; Lund, Henrik; Mathiesen, Brian Vad
2015-01-01
At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries, ...... are presented on individual technologies and complete energy system strategies, which outline how it is possible to reach a 100% renewable energy system in the coming decades.......At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries......, the transition to renewable energy will improve energy security of supply, create new jobs, enhance trade, and consequently grow the national economy. However, even with such promising consequences, renewable energy only provided approximately 13% of the world's energy in 2007 (International Energy Agency, 2009a...
Dynamic modeling, simulation and control of energy generation
Vepa, Ranjan
2013-01-01
This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Tryggvason, Tryggvi
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...
Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan
International Nuclear Information System (INIS)
Wang, Adam S.; Pelc, Norbert J.
2011-01-01
Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material
Cognitive Simulation Driven Domestic Heating Energy Management
Thilakarathne, D.J.; Treur, J.
2016-01-01
Energy management for domestic heating is a non trivial research challenge, especially given the dynamics associated to indoor and outdoor air temperatures, required comfortable temperature set points over time, parameters of the heating source and system, and energy loss rate and capacity of a
Energy-Efficient Optimization for HARQ Schemes over Time-Correlated Fading Channels
Shi, Zheng
2018-03-19
Energy efficiency of three common hybrid automatic repeat request (HARQ) schemes including Type I HARQ, HARQ with chase combining (HARQ-CC) and HARQ with incremental redundancy (HARQ-IR), is analyzed and joint power allocation and rate selection to maximize the energy efficiency is investigated in this paper. Unlike prior literature, time-correlated fading channels is considered and two widely concerned quality of service (QoS) constraints, i.e., outage and goodput constraints, are also considered in the optimization, which further differentiates this work from prior ones. Using a unified expression of asymptotic outage probabilities, optimal transmission powers and optimal rate are derived in closed-forms to maximize the energy efficiency while satisfying the QoS constraints. These closed-form solutions then enable a thorough analysis of the maximal energy efficiencies of various HARQ schemes. It is revealed that with low outage constraint, the maximal energy efficiency achieved by Type I HARQ is
GEANT4 simulations for low energy proton computerized tomography
International Nuclear Information System (INIS)
Milhoretto, Edney; Schelin, Hugo R.; Setti, Joao A.P.; Denyak, Valery; Paschuk, Sergei A.; Evseev, Ivan G.; Assis, Joaquim T. de; Yevseyeva, O.; Lopes, Ricardo T.; Vinagre Filho, Ubirajara M.
2010-01-01
This work presents the recent results of computer simulations for the low energy proton beam tomographic scanner installed at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to adjust the parameters of previous simulation within the first experimental results and to understand some specific effects that affected the form of the final proton energy spectra. To do this, the energy and angular spread of the initial proton beam were added, and the virtual phantom geometry was specified more accurately in relation to the real one. As a result, a more realistic view on the measurements was achieved.
GEANT4 simulations for low energy proton computerized tomography
Energy Technology Data Exchange (ETDEWEB)
Milhoretto, Edney [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Schelin, Hugo R. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil)], E-mail: schelin@utfpr.edu.br; Setti, Joao A.P.; Denyak, Valery; Paschuk, Sergei A. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Evseev, Ivan G.; Assis, Joaquim T. de; Yevseyeva, O. [Polytechnic Institute/UERJ, Rua Alberto Rangel s/n, N. Friburgo, RJ, Brazil 28630-050 (Brazil); Lopes, Ricardo T. [Nuclear Instr. Lab./COPPE/UFRJ, Av. Horacio Macedo 2030, Rio de Janeiro-RJ (Brazil); Vinagre Filho, Ubirajara M. [Institute of Nuclear Engineering-IEN/CNEN, Rua Helio de Almeida 75, Rio de Janeiro-RJ (Brazil)
2010-04-15
This work presents the recent results of computer simulations for the low energy proton beam tomographic scanner installed at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to adjust the parameters of previous simulation within the first experimental results and to understand some specific effects that affected the form of the final proton energy spectra. To do this, the energy and angular spread of the initial proton beam were added, and the virtual phantom geometry was specified more accurately in relation to the real one. As a result, a more realistic view on the measurements was achieved.
Method for numerical simulation of two-term exponentially correlated colored noise
International Nuclear Information System (INIS)
Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.
2006-01-01
A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications
Data analytics using canonical correlation analysis and Monte Carlo simulation
Rickman, Jeffrey M.; Wang, Yan; Rollett, Anthony D.; Harmer, Martin P.; Compson, Charles
2017-07-01
A canonical correlation analysis is a generic parametric model used in the statistical analysis of data involving interrelated or interdependent input and output variables. It is especially useful in data analytics as a dimensional reduction strategy that simplifies a complex, multidimensional parameter space by identifying a relatively few combinations of variables that are maximally correlated. One shortcoming of the canonical correlation analysis, however, is that it provides only a linear combination of variables that maximizes these correlations. With this in mind, we describe here a versatile, Monte-Carlo based methodology that is useful in identifying non-linear functions of the variables that lead to strong input/output correlations. We demonstrate that our approach leads to a substantial enhancement of correlations, as illustrated by two experimental applications of substantial interest to the materials science community, namely: (1) determining the interdependence of processing and microstructural variables associated with doped polycrystalline aluminas, and (2) relating microstructural decriptors to the electrical and optoelectronic properties of thin-film solar cells based on CuInSe2 absorbers. Finally, we describe how this approach facilitates experimental planning and process control.
DEFF Research Database (Denmark)
Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese
potential of the energy saving in the society it is very important to address the decisive involvement of the end-users. The human behaviour is the factor that affects the most the energy use in low-energy buildings and should be included in energy simulations. The results can then be linked to programs...... the implementation of C02 neutral communities. A link between a dynamic energy simulation program for buildings and a simulation program for district heating networks is demonstrated. The results of the investigation give an example of how to analyze a community and make recommendations for applying the low...... in a cost-effective way in areas with linear heat densities down to 0.20 MWh/(m.year). Even in cases where the user behaviour is not optimal, the system is able to deliver heat to each customer. The low-energy district heating concept could be strategic for reaching ambitious energy and climate targets...
Energy related design decisions deserve simulation approach
Hensen, J.L.M.
1994-01-01
Building energy consumption and indoor climate result from complex dynamic thermal interactions between outdoor environment, building structure, environmental control systems, and occupants. This reality is too complicated to be casted in simple expressions, rules or graphs. After a general overview
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm; Tryggvason, T.
1998-01-01
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...
Search for correlated high energy cosmic ray events with CHICOS
International Nuclear Information System (INIS)
Carlson, B E; Brobeck, E; Jillings, C J; Larson, M B; Lynn, T W; McKeown, R D; Hill, James E; Falkowski, B J; Seki, R; Sepikas, J; Yodh, G B
2005-01-01
We present the results of a search for time correlations in high energy cosmic ray data (primary E > 10 14 eV) collected by the California HIgh school Cosmic ray ObServatory (CHICOS) array. Data from 60 detector sites spread over an area of 400 km 2 were studied for evidence of isolated events separated by more than 1 km with coincidence times ranging from 1 μs up to 1 s. The results are consistent with the absence of excess coincidences except for a 2.9σ excess observed for coincidence times less than 10 μs. We report upper limits for the coincidence probability as a function of coincidence time
Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises
Directory of Open Access Journals (Sweden)
Krasnopeev Alexey
2005-01-01
Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error ( that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target requirement. Computer simulations show that our designs can achieve energy savings up to when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.
Energy Dependent Streaming in Lattice Boltzmann Simulations
Czech Academy of Sciences Publication Activity Database
Pavlo, Pavol; Vahala, G.; Vahala, L.
2001-01-01
Roč. 46, č. 8 (2001), s. 241 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/43rd./. Long Beach, CA, 29.10.2001-02.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann Simulations Subject RIV: BL - Plasma and Gas Discharge Physics
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2018-05-01
This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the
Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations
Vlachoudis, V
2014-01-01
In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.
Holographic dark energy: Quantum correlations against thermodynamical description
International Nuclear Information System (INIS)
Horvat, R.
2008-01-01
Classical and quantum entropic properties of holographic dark energy (HDE) are considered in view of the fact that its entropy is far more restrictive than the entropy of a black hole of the same size. In cosmological settings (in which HDE is promoted to a plausible candidate for being the dark energy of the universe), HDE should be viewed as a combined state composed of the event horizon and the stuff inside the horizon. By any interaction of the subsystems, the horizon and the interior become entangled, raising thereby a possibility that their quantum correlations be responsible for the almost purity of the combined state. Under this circumstances, the entanglement entropy is almost the same for both subsystems, being also of the same order as the thermal (coarse grained) entropy of the interior or the horizon. In the context of thermodynamics, however, only additive coarse grained entropies matter, so we use these entropies to test the generalized second law (GSL) of gravitational thermodynamics in this framework. While we find that the original Li's model passes the GSL test for a special choice of parameters, in a saturated model with the choice for the IR cutoff in the form of the Hubble parameter, the GSL always breaks down
CFD simulation of energy sources in EAF
Directory of Open Access Journals (Sweden)
Ekrem Büyükkaya
2017-10-01
Full Text Available Modeling of energy production and heat transfer by carbon combustion and electrical arc is performed using Fluent computational fluid dynamic (CFD software in this manuscript. The heat energy generated by carbon burning and electric arc radiation during combustion of the scrap in the EAO has been examined in detail. For this reason, modeling studies have utilized the combustion reactions of carbon particles and electromagnetically emitted radiation. Firstly, particle surface and gas reactions are investigated in terms of injected carbon burning. The result of the chemical reaction at the burner outlet is about 3000 K of the core temperature during combustion. It has been determined that the temperature which acts on the slag is 2200 K. The radiation temperature was found to be highest in the area under the electrodes and fell to 1850 K in the area where the melt was poured. Under steady operating conditions, it was seen that electric energy was absorbed by about 5.5% of the electrodes. As a result of this study, CFD software can be used to model combustion and radiation and energy generation and heat transfer for an electric arc furnace at the design study.
Simulation of the human energy system / Cornelis Petrus Botha
Botha, Cornelis Petrus
2002-01-01
Preface - Biotechnology is generally accepted to be the next economical wave of the future. In order to attain the many benefits associated with this growing industry simulation modelling techniques have to be implemented successfully. One of the simulations that ne' ed to be performed is that of the human energy system. Pharmaceutical companies are currently pouring vast amounts of capital into research regarding simulation of bodily processes. Their aim is to develop cure...
DEFF Research Database (Denmark)
Dalla Rosa, Alessandro
2012-01-01
The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... a missing link in the development. In this paper is demonstrated how a link between a dynamic Building Simulation Programme (BSP) and a simulation program for District Heating (DH) networks can give important information during the design phase. By using a BSP it is possible to analyze the influence...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...
Simulation of pulsed accidental energy release in a reactor core
International Nuclear Information System (INIS)
Ryshanskii, V.A.; Ivanov, A.G.; Uskov, A.A.
1995-01-01
At the present time the strength of the load-bearing members of VVER and fast reactors during a hypothetical accident is ordinarily investigated in model experiments [1]. A power burst during an accident is simulated by a nonnuclear exothermal reaction in water, which simulates the coolant and fills the model. The problem is to make the correct choice of the simulator of the accidental energy burst as an effective (i.e., sufficiently high working capacity) source of dangerous loads, corresponding to the conditions of an accident. What factors and parameters determine the energy release? The answers to these questions are contradictory
Energy conservation in molecular dynamics simulations of classical systems
DEFF Research Database (Denmark)
Toxværd, Søren; Heilmann, Ole; Dyre, J. C.
2012-01-01
Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...
Neurocognitive Correlates of Young Drivers' Performance in a Driving Simulator.
Guinosso, Stephanie A; Johnson, Sara B; Schultheis, Maria T; Graefe, Anna C; Bishai, David M
2016-04-01
Differences in neurocognitive functioning may contribute to driving performance among young drivers. However, few studies have examined this relation. This pilot study investigated whether common neurocognitive measures were associated with driving performance among young drivers in a driving simulator. Young drivers (19.8 years (standard deviation [SD] = 1.9; N = 74)) participated in a battery of neurocognitive assessments measuring general intellectual capacity (Full-Scale Intelligence Quotient, FSIQ) and executive functioning, including the Stroop Color-Word Test (cognitive inhibition), Wisconsin Card Sort Test-64 (cognitive flexibility), and Attention Network Task (alerting, orienting, and executive attention). Participants then drove in a simulated vehicle under two conditions-a baseline and driving challenge. During the driving challenge, participants completed a verbal working memory task to increase demand on executive attention. Multiple regression models were used to evaluate the relations between the neurocognitive measures and driving performance under the two conditions. FSIQ, cognitive inhibition, and alerting were associated with better driving performance at baseline. FSIQ and cognitive inhibition were also associated with better driving performance during the verbal challenge. Measures of cognitive flexibility, orienting, and conflict executive control were not associated with driving performance under either condition. FSIQ and, to some extent, measures of executive function are associated with driving performance in a driving simulator. Further research is needed to determine if executive function is associated with more advanced driving performance under conditions that demand greater cognitive load. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD.
Dixon, Lance J; Luo, Ming-Xing; Shtabovenko, Vladyslav; Yang, Tong-Zhi; Zhu, Hua Xing
2018-03-09
The energy-energy correlation (EEC) between two detectors in e^{+}e^{-} annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.
QM/MM free energy simulations: recent progress and challenges
Lu, Xiya; Fang, Dong; Ito, Shingo; Okamoto, Yuko; Ovchinnikov, Victor
2016-01-01
Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly require a careful consideration of balancing computational cost and accuracy. Here we review several recent developments in free energy methods most relevant to QM/MM simulations and discuss several topics motivated by these developments using simple but informative examples that involve processes in water. For chemical reactions, we highlight the value of invoking enhanced sampling technique (e.g., replica-exchange) in umbrella sampling calculations and the value of including collective environmental variables (e.g., hydration level) in metadynamics simulations; we also illustrate the sensitivity of string calculations, especially free energy along the path, to various parameters in the computation. Alchemical free energy simulations with a specific thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM region when computing solvation free energies. For cases where high-level QM/MM potential functions are needed, we analyze two different approaches: the QM/MM-MFEP method of Yang and co-workers and perturbative correction to low-level QM/MM free energy results. For the examples analyzed here, both approaches seem productive although care needs to be exercised when analyzing the perturbative corrections. PMID:27563170
Workshop on data acquisition and trigger system simulations for high energy physics
International Nuclear Information System (INIS)
1992-01-01
This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit ampersand The Design of a Queue for this Circuit; Fast Data Compression ampersand Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ ampersand Online Processing at the SSC; Planned Enhancements to MODSEM II ampersand SIMOBJECT -- an Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies
Workshop on data acquisition and trigger system simulations for high energy physics
Energy Technology Data Exchange (ETDEWEB)
NONE
1992-12-31
This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- an Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.
Multiparticle correlations and intermittency in high energy collisions
International Nuclear Information System (INIS)
Bozek, P.
1992-01-01
An analysis of the intermittency signal observed in high energy experiments is presented using multiparticle distributions and correlation functions. The effect of the dimensional projection of the multiparticle distributions on one or two-dimensional subspace is discussed. The structure of the multiparticle cumulants is analyzed for the DELPHI e + e - annihilation data. The model of spatiotemporal intermittency is discussed in details and is shown to reproduce qualitatively the dependence of the intermittency strength on the target and projectile nuclei. A 1-dimensional (lD) cellular-automaton (CA) and a lD forest-fire model is studied. On the example of the noncritical lD Ising model the difficulties of the scaled factorial moment (SFM) method in extracting genuine scaling behaviour are illustrated. The problem of the finite-size effect in connection to the dimensional projection can be easily exemplified in the case of the 2D critical system with conformal symmetry. (R.P.) 122 refs., 38 figs., 3 tabs
Generating Correlated Gamma Sequences for Sea-Clutter Simulation
2012-03-01
generation of correlated Gamma random fields via SIRP theory is examined in [Conte et al. 1991, Armstrong & Griffiths 1991]. In these papers , the Gamma...2 〉2 + |〈x[n]x∗[n+ k]〉|2 . (4) Because 〈 |x|2 〉2 = z̄2 and |〈x[n]x∗[n+ k]〉|2 ≥ 0, this results in 〈z[n]z[n+ k]〉 ≥ z̄2 if the real- isation of z[n] is...linear map- ping. In a practical situation, a process with a given auto-covariance function would be specified. It is shown that by using an
Multiscale correlations in highly resolved Large Eddy Simulations
Biferale, Luca; Buzzicotti, Michele; Linkmann, Moritz
2017-11-01
Understanding multiscale turbulent statistics is one of the key challenges for many modern applied and fundamental problems in fluid dynamics. One of the main obstacles is the existence of anomalously strong non Gaussian fluctuations, which become more and more important with increasing Reynolds number. In order to assess the performance of LES models in reproducing these extreme events with reasonable accuracy, it is helpful to further understand the statistical properties of the coupling between the resolved and the subgrid scales. We present analytical and numerical results focussing on the multiscale correlations between the subgrid stress and the resolved velocity field obtained both from LES and filtered DNS data. Furthermore, a comparison is carried out between LES and DNS results concerning the scaling behaviour of higher-order structure functions using both Smagorinsky or self-similar Fourier sub-grid models. ERC AdG Grant No 339032 NewTURB.
Ren, Xinguo; Rinke, Patrick; Tkatchenko, Alexandre; Scheffler, Matthias
2010-01-01
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice-evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals-leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior ca...
Hardware in the loop simulation of arbitrary magnitude shaped correlated radar clutter
CSIR Research Space (South Africa)
Strydom, JJ
2014-10-01
Full Text Available This paper describes a simple process for the generation of arbitrary probability distributions of complex data with correlation from sample to sample, optimized for hardware in the loop radar environment simulation. Measured radar clutter is used...
Energy requirements during sponge cake baking: Experimental and simulated approach
International Nuclear Information System (INIS)
Ureta, M. Micaela; Goñi, Sandro M.; Salvadori, Viviana O.; Olivera, Daniela F.
2017-01-01
Highlights: • Sponge cake energy consumption during baking was studied. • High oven temperature and forced convection mode favours oven energy savings. • Forced convection produced higher weight loss thus a higher product energy demand. • Product energy demand was satisfactorily estimated by the baking model applied. • The greatest energy efficiency corresponded to the forced convection mode. - Abstract: Baking is a high energy demanding process, which requires special attention in order to know and improve its efficiency. In this work, energy consumption associated to sponge cake baking is investigated. A wide range of operative conditions (two ovens, three convection modes, three oven temperatures) were compared. Experimental oven energy consumption was estimated taking into account the heating resistances power and a usage factor. Product energy demand was estimated from both experimental and modeling approaches considering sensible and latent heat. Oven energy consumption results showed that high oven temperature and forced convection mode favours energy savings. Regarding product energy demand, forced convection produced faster and higher weight loss inducing a higher energy demand. Besides, this parameter was satisfactorily estimated by the baking model applied, with an average error between experimental and simulated values in a range of 8.0–10.1%. Finally, the energy efficiency results indicated that it increased linearly with the effective oven temperature and that the greatest efficiency corresponded to the forced convection mode.
Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications
Directory of Open Access Journals (Sweden)
Peter Smolek
2018-06-01
Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.
Simulation and energy analysis of distributed electric heating system
Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan
2018-02-01
Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.
Energy Technology Data Exchange (ETDEWEB)
Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.
2011-10-27
Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical
EVALUATION OF ENERGY PERFORMANCE USING DOE-2 ENERGY SIMULATION PROGRAM IN SINGAPORE
Directory of Open Access Journals (Sweden)
Po Seng Kian
2000-01-01
Full Text Available Recently, due to worldwide energy cost rising significantly, there has been an essential need to minimize the energy consumption. This global warning address many countries including Singapore realizing the important of energy efficiency in industries and buildings. This paper deals with analyzing the energy consumption of an 11-storey commercial building in Singapore using DOE-2 Energy Simulation Program. A study is made on the benefits derived from modifying the building envelope, space system setting, air-conditioning plant, and lighting. This encompasses a description of its quantitative impact on cooling load, energy consumption and energy saving achieved as compared with the original building. Following this, a life cycle costing is done to determine the economic benefits attained from this modification. This study shows that some alternative solutions can be achieved using energy simulation program to conserve the energy consumption.
Short range correlations in high energy heavy ion collisions
International Nuclear Information System (INIS)
Franco, V.; Nutt, W.T.
1978-01-01
We present a technique for including the effects of nucleon-nucleon correlations in the optical phase shift (chi) expansion of the nucleus-nucleus scattering amplitude and present the results for chi to second order. The total and inelastic cross sections are consistently higher than those obtained ignoring correlations, and are in better agreement with the data. Furthermore, the inclusion of correlations leads to second order phase shift functions which do not violate unitarity, in constrast to the case when correlations are ignored in very heavy nuclei (A 1 , A 2 > or approx. = 200). In elastic scattering differential cross sections, the effects of correlations can be quite large
Simulation-based Investigations of Electrostatic Beam Energy Analysers
Pahl, Hannes
2015-01-01
An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.
Alternative energy technologies an introduction with computer simulations
Buxton, Gavin
2014-01-01
Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe
Term value/band-gap energy correlations for solid rare gas excitons
International Nuclear Information System (INIS)
Anon.
1987-01-01
Term value/ionization energy correlation algorithms have proven to be of considerable utility in the assignment of atomic and molecular Rydberg states. Many examples of empirical term value/ionization energy correlations are known for diverse classes of atoms and molecules. The purpose of this paper is to demonstrate that similar correlations are also obtained for excitons in rare gas solids
Simulation of a directed random-walk model: the effect of pseudo-random-number correlations
Shchur, L. N.; Heringa, J. R.; Blöte, H. W. J.
1996-01-01
We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several types of pseudo-random-number sequences. This model provides qualitative understanding of the bias mechanism in a class of cluster Monte Carlo algorithms.
Correlations between technical skills and behavioral skills in simulated neonatal resuscitations.
Sawyer, T; Leonard, D; Sierocka-Castaneda, A; Chan, D; Thompson, M
2014-10-01
Neonatal resuscitation requires both technical and behavioral skills. Key behavioral skills in neonatal resuscitation have been identified by the Neonatal Resuscitation Program. Correlations and interactions between technical skills and behavioral skills in neonatal resuscitation were investigated. Behavioral skills were evaluated via blinded video review of 45 simulated neonatal resuscitations using a validated assessment tool. These were statistically correlated with previously obtained technical skill performance data. Technical skills and behavioral skills were strongly correlated (ρ=0.48; P=0.001). The strongest correlations were seen in distribution of workload (ρ=0.60; P=0.01), utilization of information (ρ=0.55; P=0.03) and utilization of resources (ρ=0.61; P=0.01). Teams with superior behavioral skills also demonstrated superior technical skills, and vice versa. Technical and behavioral skills were highly correlated during simulated neonatal resuscitations. Individual behavioral skill correlations are likely dependent on both intrinsic and extrinsic factors.
Dark Energy Studies with LSST Image Simulations, Final Report
International Nuclear Information System (INIS)
Peterson, John Russell
2016-01-01
This grant funded the development and dissemination of the Photon Simulator (PhoSim) for the purpose of studying dark energy at high precision with the upcoming Large Synoptic Survey Telescope (LSST) astronomical survey. The work was in collaboration with the LSST Dark Energy Science Collaboration (DESC). Several detailed physics improvements were made in the optics, atmosphere, and sensor, a number of validation studies were performed, and a significant number of usability features were implemented. Future work in DESC will use PhoSim as the image simulation tool for data challenges used by the analysis groups.
[Lack of correlation between performances in a simulator and in reality].
Konge, Lars; Bitsch, Mikael
2010-12-13
Simulation-based training provides obvious benefits for patients and doctors in education. Frequently, virtual reality simulators are expensive and evidence for their efficacy is poor, particularly as a result of studies with poor methodology and few test participants. In medical simulated training- and evaluation programmes it is always a question of transfer to the real clinical world. To illustrate this problem a study comparing the test performance of persons on a bowling simulator with their performance in a real bowling alley was conducted. Twenty-five test subjects played two rounds of bowling on a Nintendo Wii and 25 days later on a real bowling alley. Correlations of the scores in the first and second round (test-retest-reliability) and of the scores on the simulator and in reality (criterion validation) were studied and there was tested for any difference between female and male performance. The intraclass correlation coefficient equalled 0.76, i.e. the simulator fairly accurately measured participant performance. In contrast to this there was absolutely no correlation between participants' real bowling abilities and their scores on the simulator (Pearson's r = 0.06). There was no significant difference between female and male abilities. Simulation-based testing and training must be based on evidence. More studies are needed to include an adequate number of subjects. Bowling competence should not be based on Nintendo Wii measurements. Simulated training- and evaluation programmes should be validated before introduction, to ensure consistency with the real world.
Simulation-based optimization of sustainable national energy systems
International Nuclear Information System (INIS)
Batas Bjelić, Ilija; Rajaković, Nikola
2015-01-01
The goals of the EU2030 energy policy should be achieved cost-effectively by employing the optimal mix of supply and demand side technical measures, including energy efficiency, renewable energy and structural measures. In this paper, the achievement of these goals is modeled by introducing an innovative method of soft-linking of EnergyPLAN with the generic optimization program (GenOpt). This soft-link enables simulation-based optimization, guided with the chosen optimization algorithm, rather than manual adjustments of the decision vectors. In order to obtain EnergyPLAN simulations within the optimization loop of GenOpt, the decision vectors should be chosen and explained in GenOpt for scenarios created in EnergyPLAN. The result of the optimization loop is an optimal national energy master plan (as a case study, energy policy in Serbia was taken), followed with sensitivity analysis of the exogenous assumptions and with focus on the contribution of the smart electricity grid to the achievement of EU2030 goals. It is shown that the increase in the policy-induced total costs of less than 3% is not significant. This general method could be further improved and used worldwide in the optimal planning of sustainable national energy systems. - Highlights: • Innovative method of soft-linking of EnergyPLAN with GenOpt has been introduced. • Optimal national energy master plan has been developed (the case study for Serbia). • Sensitivity analysis on the exogenous world energy and emission price development outlook. • Focus on the contribution of smart energy systems to the EU2030 goals. • Innovative soft-linking methodology could be further improved and used worldwide.
Building Performance Simulation tools for planning of energy efficiency retrofits
DEFF Research Database (Denmark)
Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming
2014-01-01
Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...
Contrasting the capabilities of building energy performance simulation programs
Energy Technology Data Exchange (ETDEWEB)
Crawley, Drury B. [US Department of Energy, Washington, DC (United States); Hand, Jon W. [University of Strathclyde, Glasgow, Scotland (United Kingdom). Energy Systems Research Unit; Kummert, Michael [University of Wisconsin-Madison (United States). Solar Energy Laboratory; Griffith, Brent T. [National Renewable Energy Laboratory, Golden, CO (United States)
2008-04-15
For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability. (author)
Fast Learning for Immersive Engagement in Energy Simulations
Energy Technology Data Exchange (ETDEWEB)
Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-04-25
The fast computation which is critical for immersive engagement with and learning from energy simulations would be furthered by developing a general method for creating rapidly computed simplified versions of NREL's computation-intensive energy simulations. Created using machine learning techniques, these 'reduced form' simulations can provide statistically sound estimates of the results of the full simulations at a fraction of the computational cost with response times - typically less than one minute of wall-clock time - suitable for real-time human-in-the-loop design and analysis. Additionally, uncertainty quantification techniques can document the accuracy of the approximate models and their domain of validity. Approximation methods are applicable to a wide range of computational models, including supply-chain models, electric power grid simulations, and building models. These reduced-form representations cannot replace or re-implement existing simulations, but instead supplement them by enabling rapid scenario design and quality assurance for large sets of simulations. We present an overview of the framework and methods we have implemented for developing these reduced-form representations.
High correlation between performance on a virtual-reality simulator and real-life cataract surgery
DEFF Research Database (Denmark)
Thomsen, Ann Sofia Skou; Smith, Phillip; Subhi, Yousif
2017-01-01
-tracking software of cataract surgical videos with a Pearson correlation coefficient of -0.70 (p = 0.017). CONCLUSION: Performance on the EyeSi simulator is significantly and highly correlated to real-life surgical performance. However, it is recommended that performance assessments are made using multiple data......PURPOSE: To investigate the correlation in performance of cataract surgery between a virtual-reality simulator and real-life surgery using two objective assessment tools with evidence of validity. METHODS: Cataract surgeons with varying levels of experience were included in the study. All...... antitremor training, forceps training, bimanual training, capsulorhexis and phaco divide and conquer. RESULTS: Eleven surgeons were enrolled. After a designated warm-up period, the proficiency-based test on the EyeSi simulator was strongly correlated to real-life performance measured by motion...
Simulation of embedded systems for energy consumption estimation
Energy Technology Data Exchange (ETDEWEB)
Lafond, S.
2009-07-01
Technology developments in semiconductor fabrication along with a rapid expansion of the market for portable devices, such as PDAs and mobile phones, make the energy consumption of embedded systems a major problem. Indeed the need to provide an increasing number of computational intensive applications and at the same time to maximize the battery life of portable devices can be seen as incompatible trends. System simulation is a flexible and convenient method for analyzinging and exploring the performance of a system or sub-system. At the same time, the increasing use of computational intensive applications strengthens the need to maximize the battery life of portable devices. As a consequence, the simulation of embedded systems for energy consumption estimation is becoming essential in order to study and explore the influence of system design choices on the system energy consumption. The original publications presented in the second part of this thesis propose several frameworks for evaluating the effects of particular system and software architectures on the system energy consumption. From a software point of view Java and C based applications are studied, and from a hardware perspective systems using general purpose processor and heterogeneous platforms with dedicated hardware accelerators are analyzed. Papers 1 and 2 present a framework for estimating the energy consumption of an embedded Java Virtual Machine and show how an accurate energy consumption model of Java opcodes can be obtained. Paper 3 evaluates the cost-effectiveness of Forward Error Correction algorithms in terms of energy consumption and demonstrates that a substantial energy saving is achievable in a DVB-H receiver when a FEC algorithm is used for file downloading scenarios. Paper 4 and 5 present the simulation of heterogeneous platforms and point out the drawback of different mechanisms used to synchronize a hardware accelerator used as a peripheral device. Paper 6 shows that the use of a multi
Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities
Baylin-Stern, Adam C.
This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.
Rooney-varga, J. N.; Franck, T.; Jones, A.; Sterman, J.; Sawin, E.
2013-12-01
To meet international goals for climate change mitigation and adaptation, as well as energy access and equity, there is an urgent need to explore and define energy policy paths forward. Despite this need, students, citizens, and decision-makers often hold deeply flawed mental models of the energy and climate systems. Here we describe a simulation role-playing game, World Energy, that provides an immersive learning experience in which participants can create their own path forward for global energy policy and learn about the impact of their policy choices on carbon dioxide emissions, temperature rise, energy supply mix, energy prices, and energy demand. The game puts players in the decision-making roles of advisors to the United Nations Sustainable Energy for All Initiative (drawn from international leaders from industry, governments, intergovernmental organizations, and citizens groups) and, using a state-of-the-art decision-support simulator, asks them to negotiate a plan for global energy policy. We use the En-ROADS (Energy Rapid Overview and Decision Support) simulator, which runs on a laptop computer in <0.1 sec. En-ROADS enables users to specify many factors, including R&D-driven cost reductions in fossil fuel-based, renewable, or carbon-neutral energy technologies; taxes and subsidies for different energy sources; performance standards and energy efficiency; emissions prices; policies to address other greenhouse gas emissions (e.g., methane, nitrous oxide, chlorofluorocarbons, etc.); and assumptions about GDP and population. In World Energy, participants must balance climate change mitigation goals with equity, prices and access to energy, and the political feasibility of policies. Initial results indicate participants gain insights into the dynamics of the energy and climate systems and greater understanding of the potential impacts policies.
Teaching simulator for divulgation of the nuclear energy
International Nuclear Information System (INIS)
Ortega B, M.G.; Gutierrez F, R.
2003-01-01
To solicitude of the authorities of the 'Universum' sciences museum of the UNAM, it develops a highly interactive computational system, to provide of information to the population in general about basic principles, uses and benefits of the nuclear energy. The objective is to achieve a better understanding and acceptance of the nuclear technology in our country. The system allows the visualization and simulation of nuclear processes as well as of its applications. The system is divided in three levels: basic, intermediate and simulation. In the basic level multimedia information is included on diverse basic concepts of the nuclear energy. The intermediate level includes the description and operation of some systems of the Laguna Verde nuclear power plant (CNLV). Finally the simulation level contains representative scenarios that the user can control by means of virtual control panels of the main systems of the CNLV. Inside the system a part of interactive games is included with the purpose that the user remembers with more easiness all the concepts and advantages of the nuclear energy mentioned during the previous levels. The system contributes, by means of the development of multimedia computational tools and of simulation, to the popularization of the use and applications of the nuclear energy in Mexico. (Author)
Molecular dynamics simulations and free energy profile of ...
Indian Academy of Sciences (India)
aDepartment of Chemical Engineering, bDepartment of Chemistry, Amirkabir University of Technology,. 15875-4413 ... Lipid bilayers; Paracetamol; free energy; molecular dynamics simulation; membrane. 1. ..... bilayer is less favourable due to the hydrophobic nature .... Orsi M and Essex J W 2010 Soft Matter 6 3797. 54.
MALAYSIAN WEATHER DATA (TRY) FOR ENERGY SIMULATIONS IN BUILDINGS
DEFF Research Database (Denmark)
Reimann, Gregers Peter
2001-01-01
Detailed energy simulations for buildings in Malaysia have become possible after the recent construction of a Malaysian TRY (Test Reference Year) based on 21 years of hourly weather data from Subang Meteorological Station. The climatic parameters contained in the TRY are dry bulb temperature, wet...
BRUS2. An energy system simulator for long term planning
DEFF Research Database (Denmark)
Skytte, K.; Skjerk Christensen, P.
1999-01-01
BRUS2 is a technical-economic bottom-up scenario model. The objective of BRUS2 is to provide decision-makers with information on consequences of given trends of parameters of society like population growth and productivity, and of political goals, e.g., energy saving initiatives. BRUS2 simulates ...
Testing simulation and structural models with applications to energy demand
Wolff, Hendrik
2007-12-01
This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality
A New Model to Simulate Energy Performance of VRF Systems
Energy Technology Data Exchange (ETDEWEB)
Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei
2014-03-30
This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real
Peritransplant energy changes and their correlation to outcome after human liver transplantation
Bruinsma, Bote G; Avruch, James H; Sridharan, Gautham V; Weeder, Pepijn D; Jacobs, Marie Louise; Crisalli, Kerry; Amundsen, Beth; Porte, Robert J; Markmann, James F; Uygun, Korkut; Yeh, Heidi
BACKGROUND: The ongoing shortage of donor livers for transplantation and the increased use of marginal livers necessitate the development of accurate pretransplant tests of viability. Considering the importance energy status during transplantation, we aimed to correlate peritransplant energy
Simulation of vacancy migration energy in Cu under high strain
International Nuclear Information System (INIS)
Sato, K.; Yoshiie, T.; Satoh, Y.; Xu, Q.; Kiritani, M.
2003-01-01
The activation energy for the migration of vacancies in Cu under high strain was calculated by computer simulation using static methods. The migration energy of vacancies was 0.98 eV in the absence of deformation. It varied with the migration direction and stress direction because the distance between a vacancy and its neighboring atoms changes by deformation. For example, the migration energy for the shortest migration distance was reduced to 9.6 and 39.4% of its initial value by 10% compression and 20% elongation, respectively, while that for the longest migration distance was raised to 171.7 by 20% elongation. If many vacancies are created during high-speed deformation, the lowering of migration energy enables vacancies to escape to sinks such as surfaces, even during the shorter deformation period. The critical strain rate above which the strain rate dependence of vacancy accumulation ceases to exist increases with the lowering of vacancy migration energy
Large Eddy Simulation of Turbulent Flows in Wind Energy
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak
This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...
Simulation of off-energy electron background in DELPHI
Falk, E; Von Holtey, Georg
1997-01-01
Monte Carlo simulations of off-energy electron background in the DELPHI luminometer STIC are reported. The study simulates the running conditions at 68 GeV with and without bunch trains. The electrostatic separators, which create the vertical separation bumps for the the bunch trains, cause a high concentration of background in the vertical plane. The simulations are compared to LEP data taken under similar running conditions. A comparison between the simulated running conditions at 68 GeV and those of the new LEP2 beam optics at 80.5 GeV is made. Moreover, the study investigates background components entering STIC elsewhere that through the front of the detector, and a significant portion is found to enter either from the back or from below. Possible improvements of the background situation are also discussed.
Disentangling interacting dark energy cosmologies with the three-point correlation function
Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea
2014-10-01
We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.
Study on low-energy sputtering near the threshold energy by molecular dynamics simulations
Directory of Open Access Journals (Sweden)
C. Yan
2012-09-01
Full Text Available Using molecular dynamics simulation, we have studied the low-energy sputtering at the energies near the sputtering threshold. Different projectile-target combinations of noble metal atoms (Cu, Ag, Au, Ni, Pd, and Pt are simulated in the range of incident energy from 0.1 to 200 eV. It is found that the threshold energies for sputtering are different for the cases of M1 < M2 and M1 ≥ M2, where M1 and M2 are atomic mass of projectile and target atoms, respectively. The sputtering yields are found to have a linear dependence on the reduced incident energy, but the dependence behaviors are different for the both cases. The two new formulas are suggested to describe the energy dependences of the both cases by fitting the simulation results with the determined threshold energies. With the study on the energy dependences of sticking probabilities and traces of the projectiles and recoils, we propose two different mechanisms to describe the sputtering behavior of low-energy atoms near the threshold energy for the cases of M1 < M2 and M1 ≥ M2, respectively.
Simulated galaxy interactions as probes of merger spectral energy distributions
Energy Technology Data Exchange (ETDEWEB)
Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Brassington, Nicola, E-mail: llanz@ipac.caltech.edu [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)
2014-04-10
We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.
Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias
2011-04-15
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
Two- and three-point energy correlations in hadronic e+e- annihilation
International Nuclear Information System (INIS)
Fox, G.C.; Wolfram, S.
1980-01-01
Correlations between the energies incident on two or three detectors around e + e - annihilation events are considered as a probe of the QCD structure of the events. Practical methods for deducing two-detector energy correlations (which give the mean product of energies incident on two detectors as a function of their angular separation) from measured events are devised. Analytical formulae for energy correlations from QCD perturbation theory are given, but it is found that large corrections from hadron formation obscure these asymptotic predictions at available energies. Correlations between the final state and the incoming e + - beam direction are discussed, and observables are presented which measure the angular distributions of planes of final particles with respect to the beam axis (but do not require explicit determination of the planes). Finally, three-detector energy correlations and their moments are treated, and methods for investigating planar structures in e + e - annihilation events are devised. (orig.) 891 HSI/orig. 892 MKO
DEFF Research Database (Denmark)
Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl
1999-01-01
adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...
A simulation of laser energy absorption by nanowired surface
Energy Technology Data Exchange (ETDEWEB)
Vasconcelos, Miguel F.S.; Ramos, Alexandre F., E-mail: miguel.vasconcelos@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Artes, Ciências e Humanidades
2017-07-01
Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)
A simulation of laser energy absorption by nanowired surface
International Nuclear Information System (INIS)
Vasconcelos, Miguel F.S.; Ramos, Alexandre F.
2017-01-01
Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)
Pauli correlations in heavy-ion collisions at high energies
International Nuclear Information System (INIS)
Franco, V.; Nutt, W.T.
1977-01-01
The effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions are calculated using the Fermi gas model for nuclei. When the Pauli principle is neglected for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and cross sections cannot be obtained. When Pauli correlations are included important cancellations in the optical phase-shift function are found which make possible the calculation of total and differential cross sections for heavy nuclei. (Auth.)
Scenario simulation based assessment of subsurface energy storage
Beyer, C.; Bauer, S.; Dahmke, A.
2014-12-01
Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC
Energy Technology Data Exchange (ETDEWEB)
Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering
1995-12-31
The Nationwide House Energy Rating Scheme (NatHERS) uses a simulation program as its reference tool to evaluate the energy demand of buildings. The Commonwealth Scientific Industrial Research Organisation (CSIRO) developed software called CHENATH, is a significantly enhanced version of the CHEETAH simulation program. As part of the NatHERS development process, it was considered important to subject CHENATH to further testing. Two separate evaluation projects were undertaken. This paper describes one of these projects. CHENATH was compared with a reference set of eight internationally recognized simulation programs using the BESTEST methodology. Annual heating and cooling energy requirements were compared for a specified set of variations on a simple double-glazed building. Annual incident and transmitted solar radiation was also compared, for which CHENATH agreed very well with the reference set. It also agreed well for heating energy, but tended to over-predict cooling energy. This is largely because it controls an environmental temperature rather than the required air temperature. For the same reason CHENATH over-predicted heating and cooling demands. No major discrepancies were found that would suggest bugs in the program. (author). 4 tabs., 10 figs., 4 refs.
Correlation between diffusion barriers and alloying energy in binary alloys
DEFF Research Database (Denmark)
Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan
2016-01-01
In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....
International Nuclear Information System (INIS)
Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.
2011-01-01
The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.
Study of energy-energy correlations between 12 and 46. 8 GeV c. m. energies
Energy Technology Data Exchange (ETDEWEB)
Braunschweig, W; Gerhards, R; Kirschfink, F J; Martyn, H U; Rosskamp, P; Bock, B; Eisenmann, J; Fischer, H M; Hartmann, H; Hilger, E
1987-10-01
We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) in e/sup +/e/sup -/ annihilation in the centre of mass energy range 12
Rapidity correlations in the RHIC Beam Energy Scan Data
Czech Academy of Sciences Publication Activity Database
Jowzaee, S.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert
2017-01-01
Roč. 967, č. 11 (2017), s. 792-795 ISSN 0375-9474 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * rapidity correlations * forward-backward asymmetry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.916, year: 2016
Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises
Directory of Open Access Journals (Sweden)
Krasnopeev Alexey
2005-01-01
Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error (MSE that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target MSE requirement. Computer simulations show that our designs can achieve energy savings up to 70 % when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.
Population models and simulation methods: The case of the Spearman rank correlation.
Astivia, Oscar L Olvera; Zumbo, Bruno D
2017-11-01
The purpose of this paper is to highlight the importance of a population model in guiding the design and interpretation of simulation studies used to investigate the Spearman rank correlation. The Spearman rank correlation has been known for over a hundred years to applied researchers and methodologists alike and is one of the most widely used non-parametric statistics. Still, certain misconceptions can be found, either explicitly or implicitly, in the published literature because a population definition for this statistic is rarely discussed within the social and behavioural sciences. By relying on copula distribution theory, a population model is presented for the Spearman rank correlation, and its properties are explored both theoretically and in a simulation study. Through the use of the Iman-Conover algorithm (which allows the user to specify the rank correlation as a population parameter), simulation studies from previously published articles are explored, and it is found that many of the conclusions purported in them regarding the nature of the Spearman correlation would change if the data-generation mechanism better matched the simulation design. More specifically, issues such as small sample bias and lack of power of the t-test and r-to-z Fisher transformation disappear when the rank correlation is calculated from data sampled where the rank correlation is the population parameter. A proof for the consistency of the sample estimate of the rank correlation is shown as well as the flexibility of the copula model to encompass results previously published in the mathematical literature. © 2017 The British Psychological Society.
Numerical simulations of energy transfer in two collisionless interpenetrating plasmas
Directory of Open Access Journals (Sweden)
Davis S.
2013-11-01
Full Text Available Ion stream instabilities are essential for collisionless shock formation as seen in astrophysics. Weakly relativistic shocks are considered as candidates for sources of high energy cosmic rays. Laboratory experiments may provide a better understanding of this phenomenon. High intensity short pulse laser systems are opening possibilities for efficient ion acceleration to high energies. Their collision with a secondary target could be used for collisionless shock formation. In this paper, using particle-in-cell simulations we are studying interaction of a sub-relativistic, laser created proton beam with a secondary gas target. We show that the ion bunch initiates strong electron heating accompanied by the Weibel-like filamentation and ion energy losses. The energy repartition between ions, electrons and magnetic fields are investigated. This yields insight on the processes occurring in the interstellar medium (ISM and gamma-ray burst afterglows.
Simulation of Solar Energy Use in Livelihood of Buildings
Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.
2017-11-01
Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.
International Nuclear Information System (INIS)
Chaudhry, I.A.; Mirza, M.R.; Rashid, M.J.
2010-01-01
The innovation in software analysis and various available programming facilities have urged the designers at various levels to do indispensable calculations for engine flows. Presently, the 3-D analysis approach is under practice to do simulations for various parameters involving engine operations using various soft wares, 'Fluent' being the trendiest at the moment for CFD modeling. The present work involves CFD modeling of diesel fuel sprays at a specified angle with cylinder axis. Fuel spray modeling includes sub-models for aerodynamic drag, droplet oscillation and distortion, turbulence effects, droplet breakup, evaporation, and droplet collision and coalescence. The data available from existing published work is used to model the fuel spray and the subsequent simulation results are compared to experimental results to test validity of the proposed models. (author)
Robustness of Component Models in Energy System Simulators
DEFF Research Database (Denmark)
Elmegaard, Brian
2003-01-01
During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...
Energy flux simulation in heterogeneous cropland - a two year study
Klein, Christian; Thieme, Christoph; Biernath, Christian; Heinlein, Florian; Priesack, Eckart
2016-04-01
Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere [Stainforth et al. 2005]. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial heterogeneity of soil and land use types are high, e.g. in Central Europe. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N [Biernath et al. 2013] . The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N to an analytical footprint model [Mauder & Foken 2011] . The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). The approach accounts for the temporarily and spatially
FESetup: Automating Setup for Alchemical Free Energy Simulations.
Loeffler, Hannes H; Michel, Julien; Woods, Christopher
2015-12-28
FESetup is a new pipeline tool which can be used flexibly within larger workflows. The tool aims to support fast and easy setup of alchemical free energy simulations for molecular simulation packages such as AMBER, GROMACS, Sire, or NAMD. Post-processing methods like MM-PBSA and LIE can be set up as well. Ligands are automatically parametrized with AM1-BCC, and atom mappings for a single topology description are computed with a maximum common substructure search (MCSS) algorithm. An abstract molecular dynamics (MD) engine can be used for equilibration prior to free energy setup or standalone. Currently, all modern AMBER force fields are supported. Ease of use, robustness of the code, and automation where it is feasible are the main development goals. The project follows an open development model, and we welcome contributions.
Simulation of energy- efficient building prototype using different insulating materials
Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed
2018-05-01
The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.
DNA – A General Energy System Simulation Tool
DEFF Research Database (Denmark)
Elmegaard, Brian; Houbak, Niels
2005-01-01
The paper reviews the development of the energy system simulation tool DNA (Dynamic Network Analysis). DNA has been developed since 1989 to be able to handle models of any kind of energy system based on the control volume approach, usually systems of lumped parameter components. DNA has proven...... to be a useful tool in the analysis and optimization of several types of thermal systems: Steam turbines, gas turbines, fuels cells, gasification, refrigeration and heat pumps for both conventional fossil fuels and different types of biomass. DNA is applicable for models of both steady state and dynamic...... operation. The program decides at runtime to apply the DAE solver if the system contains differential equations. This makes it easy to extend an existing steady state model to simulate dynamic operation of the plant. The use of the program is illustrated by examples of gas turbine models. The paper also...
Draught risk index tool for building energy simulations
DEFF Research Database (Denmark)
Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.
2014-01-01
Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...... of draught risk during a whole year, giving building designers a tool for the design stage of a building. The tool uses simple one-at-a-time calculations of flow elements and assesses the uncertainty of the result by counting the number of overlapping flow elements. The calculation time is low, making...... it usable in the early design stage to optimise the building layout. The tool provides an overview of the general draught pattern over a period, e.g. a whole year, and of how often there is a draught risk....
Measurement of αs from energy-energy correlations at the Z0 resonance
International Nuclear Information System (INIS)
Abe, K.; Abt, I.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Du, Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Kwon, Y.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.; Schindler, R.H.; Schneekloth, U.; Schumm, B.A.; Seiden, A.; Sen, S.
1994-01-01
We determine the strong coupling α s from a comprehensive study of energy-energy correlations (EEC's) and their asymmetry (AEEC's) in hadronic decays of Z 0 bosons collected by the SLD experiment at SLAC. The data are compared with all four available predictions of QCD calculated up to O(α s 2 ) in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between α s values extracted from the different O(α s 2 ) calculations. We also find a large renormalization scale ambiguity in α s determined from the EEC's using the O(α s 2 ) calculations; this ambiguity is reduced in the case of the AEEC's and is very small when the matched calculations are used. Averaging over all calculations, and over the EEC and AEEC results, we obtain α s (M Z 2 )=0.124 -0.004 +0.003 (expt.) ±0.009 (theory)
International Nuclear Information System (INIS)
Papageorgiou, George Nathaniel
2005-01-01
In the face of limited energy reserves and the global warming phenomenon, Europe is undergoing a transition from rapidly depleting fossil fuels to renewable unconventional energy sources. During this transition period, energy shortfalls will occur and energy prices will be increasing in an oscillating manner. As a result of the turbulence and dynamicity that will accompany the transition period, energy analysts need new appropriate methods, techniques and tools in order to develop forecasts for the behaviour of energy markets, which would assist in the long term strategic energy planning and policy analysis. This paper reviews energy market behaviour as related to policy formation, and from a dynamic point of view through the use of ''systems thinking'' and ''system dynamics'' principles, provides a framework for modelling the energy production and consumption process in relation to their environment. Thereby, effective energy planning can be developed via computerised simulation using policy experimentation. In a demonstration model depicted in this paper, it is shown that disasters due to attractive policies can be avoided by using simple computer simulation. (Author)
Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard
2016-09-01
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
Zou, Yunlong; Holmes, Russell J
2015-08-26
In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.
Z-1 perturbation theory applied to the correlation energy problem of atoms
International Nuclear Information System (INIS)
Robinson, B.H.
1975-01-01
Rayleigh--Schroedinger Perturbation Theory is applied to obtain directly exact and explicit analytic formulas for the electron correlation energies of N electron systems in terms of their pairwise interactions through second order in Z -1 , where Z is the nucleus of the atom. It is demonstrated that the second order correlation energy may be expressed as exactly the sum of pairwise correlation energies. In the case of no zeroth order degeneracy, the zeroth and first order terms vanish. The expression for the pairwise energies is an infinite sum, all terms of which are of the same sign. There is no numerical differencing. In the case of zeroth order degeneracy it is shown that the above statement concerning the second order energy still holds, but the expressions are a bit more complicated. It is shown that they ''almost'' reduce to a much simpler form. Also, the computation of the first order correlation energy is considered
Micro energy harvesting from ambient motion : modeling, simulation and design
Energy Technology Data Exchange (ETDEWEB)
Blystad, Lars-Cyril
2012-07-01
Vibration energy harvesting is the process of converting available ambient kinetic energy into useful electrical energy. It can be done on large scale with e.g. a wind-driven turbine. This thesis deals with small scale energy harvesters that are suitable for fabrication in Micro electromechanical Systems (MEMS) technologies. Such MEMS energy harvesters have the potential to supply power for micro power devices. Modeling, simulation and design of MEMS vibration energy harvesters are the foci of this thesis. Transduction mechanisms that are covered are electrostatic and piezoelectric. Electric equivalent circuits are obtained for the use in electromechanical simulations with the circuit simulator SPICE. The feasibility of simulating both narrow- and broadband vibrations, to model different external driving forces, in a standard circuit simulator is demonstrated. Comparisons of the har- vesters performance for different excitations are presented. A selection of passive and active power conditioning circuits is investigated and their performances compared. The active nonlinear switching conversion circuitry performs better than simple passive circuitry, especially when mechanical end stops are in effect. The active switching circuits give higher electromechanical damping, and thus can be driven at higher acceleration amplitudes before end stops are engaged. Mechanical end stops have to be present in all MEMS vibrational energy harvesters. Either due to space limitations, reliability issues, Simliberate introduction of nonlinearities or a combination of these. ulations in the thesis include mechanical end stops and thus include the corresponding nonlinearities introduced in the system. When the mechanical end stops are hit by the proof mass during high-amplitude vibrations, nonlinear effects such as saturation and jumps are present. The end stops increase the effective bandwidth at large acceleration amplitudes. End stops limit the output power for sinusoidal
Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen
Heaps, M. G.; Furman, D. R.; Green, A. E. S.
1975-01-01
A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.
Directory of Open Access Journals (Sweden)
Yan Li
2017-11-01
Full Text Available Due to the volatile and correlated nature of wind speed, a high share of wind power penetration poses challenges to power system production simulation. Existing power system probabilistic production simulation approaches are in short of considering the time-varying characteristics of wind power and load, as well as the correlation between wind speeds at the same time, which brings about some problems in planning and analysis for the power system with high wind power penetration. Based on universal generating function (UGF, this paper proposes a novel probabilistic production simulation approach considering wind speed correlation. UGF is utilized to develop the chronological models of wind power that characterizes wind speed correlation simultaneously, as well as the chronological models of conventional generation sources and load. The supply and demand are matched chronologically to not only obtain generation schedules, but also reliability indices both at each simulation interval and the whole period. The proposed approach has been tested on the improved IEEE-RTS 79 test system and is compared with the Monte Carlo approach and the sequence operation theory approach. The results verified the proposed approach with the merits of computation simplicity and accuracy.
Generalized canonical correlation analysis of matrices with missing rows : A simulation study
van de Velden, Michel; Bijmolt, Tammo H. A.
A method is presented for generalized canonical correlation analysis of two or more matrices with missing rows. The method is a combination of Carroll's (1968) method and the missing data approach of the OVERALS technique (Van der Burg, 1988). In a simulation study we assess the performance of the
CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY
Energy Technology Data Exchange (ETDEWEB)
Bruderer, Claudio; Chang, Chihway; Refregier, Alexandre; Amara, Adam; Bergé, Joel; Gamper, Lukas, E-mail: claudio.bruderer@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)
2016-01-20
Image simulations are becoming increasingly important in understanding the measurement process of the shapes of galaxies for weak lensing and the associated systematic effects. For this purpose we present the first implementation of the Monte Carlo Control Loops (MCCL), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig) and the image analysis software SExtractor. We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). We calibrate the UFig simulations to be statistically consistent with one of the SV images, which covers ∼0.5 square degrees. We then perform tolerance analyses by perturbing six simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative importance of different parameters. For spatially constant systematic errors and point-spread function, the calibration of the simulation reaches the weak lensing precision needed for the DES SV survey area. Furthermore, we find a sensitivity of the shear measurement to the intrinsic ellipticity distribution, and an interplay between the magnitude-size and the pixel value diagnostics in constraining the noise model. This work is the first application of the MCCL framework to data and shows how it can be used to methodically study the impact of systematics on the cosmic shear measurement.
Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.
2018-06-01
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.
De Beer, Stephanie B A; Glättli, Alice; Hutzler, Johannes; Vermeulen, Nico P E; Oostenbrink, Chris
2011-07-30
4-Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one-step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. Copyright © 2011 Wiley Periodicals, Inc.
Four-point correlation function of stress-energy tensors in N=4 superconformal theories
Korchemsky, G P
2015-01-01
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.
WINS. Market Simulation Tool for Facilitating Wind Energy Integration
Energy Technology Data Exchange (ETDEWEB)
Shahidehpour, Mohammad [Illinois Inst. of Technology, Chicago, IL (United States)
2012-10-30
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
Kovalenko, S.; Khoriauli, G.; C. Driouchi; J. D. Peso; L. Santi; Soloviev, I.; Arik, E.; Bernabeu, J; M. V. Castillo; Atkinson, T; Tegenfeldt, F.; Weidberg, A.R.; Røhne, O.; F. Anghinolfi; S. Chouridou
2016-01-01
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Gea...
SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS
Energy Technology Data Exchange (ETDEWEB)
MARNERIS,I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.
2007-06-25
The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.
SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS
International Nuclear Information System (INIS)
MARNERIS, I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.
2007-01-01
The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented
Discrete kinetic models from funneled energy landscape simulations.
Directory of Open Access Journals (Sweden)
Nicholas P Schafer
Full Text Available A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK. In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an "inside-out", nucleation-propagation like character.
International Nuclear Information System (INIS)
Stelzer, J.; Trebin, H.R.; Longa, L.
1994-08-01
We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K 11 , K 22 and K 33 as well as the surface constants K 13 and K 24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs
Simulation of a low energy beam transport line
International Nuclear Information System (INIS)
Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en
2012-01-01
A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)
Spectrum-energy Correlations in GRBs: Update, Reliability, and the Long/Short Dichotomy
Zhang, Z. B.; Zhang, C. T.; Zhao, Y. X.; Luo, J. J.; Jiang, L. Y.; Wang, X. L.; Han, X. L.; Terheide, R. K.
2018-05-01
Spectrum-energy correlations of peak energy with total prompt γ-ray emission energies, namely {E}p,i-{E}{iso}, {E}p,i-{E}γ , and {E}p,i-{L}p, had been studied for long gamma-ray bursts (GRBs) previously by many authors. These energy correlations were proposed to measure the universe and classify GRBs as useful probes. However, most of these relations were built by non-Swift bursts. The spectrum-energy correlations of short bursts have not been systematically established yet; in particular, how the newly found GRB170817A matches these energy relations is unknown to date. We will first refresh the three spectrum-energy relations of Swift/BAT and Fermi/GBM long bursts and build the corresponding relations of short bursts. Then, we confirm whether they are commonly available as a discriminator of short and long GRBs. Some potential violators to these relations will be investigated. Combining with the plane of peak energy versus fluence, we select 31 short and 252 long GRBs with well-measured peak energy and redshift to study the issue of GRB classifications connected with the above energy relations statistically. We find that the three energy relations do exist in our new GRB samples and they are marginally consistent with some previous results. We report for the first time that short GRBs hold the three corresponding energy relations having the consistent power-law indices with long GRBs. It is found that these energy relations can be adopted to discriminate GRBs successfully if they are put in the peak energy versus fluence plane. Excitingly, we point out that GRB090510 matches the energy relations of {E}p,i-{E}{iso} and {E}p,i-{L}p, but violates the {E}p,i-{E}γ relation. More excitingly, we find that GRB170817A is an outlier to all the three energy correlations.
Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo
2012-01-01
In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations
Directory of Open Access Journals (Sweden)
Heidi Koldsø
2014-10-01
Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.
A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields
Energy Technology Data Exchange (ETDEWEB)
Liu, J.-S. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Vojinovic, V. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Patino, R. [Cinvestav-Merida, Departamento de Fisica Aplicada, Km. 6 carretera antigua a Progreso, AP 73 Cordemex, 97310 Merida, Yucatan (Mexico); Maskow, Th. [UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, D-04318 Leipzig (Germany); Stockar, U. von [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)]. E-mail: urs.vonStockar@epfl.ch
2007-06-25
Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol{sup -1} of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure.
A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields
International Nuclear Information System (INIS)
Liu, J.-S.; Vojinovic, V.; Patino, R.; Maskow, Th.; Stockar, U. von
2007-01-01
Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol -1 of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure
International Nuclear Information System (INIS)
Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P; Schmitt, F; Meevasana, W; Motoyama, E M; Lu, D H; Kim, C; Scalettar, R T
2009-01-01
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas
2017-04-01
Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students
Energy-development correlation and the nuclear strategy in Brazil. Part 1
International Nuclear Information System (INIS)
Amarante, J.A.A. do
1981-01-01
The existence of clear correlation between the economic growth of a nation and its energy requirements, in particular of electricity, is demonstrated through the statistical analysis of the behaviour of 47 countries. (Author) [pt
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2012-01-01
The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...... while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...
A simulation of low energy channeling of protons in silicon
International Nuclear Information System (INIS)
Sabin, J.R.
1994-01-01
The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using the force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave FLAPW calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the local electron density, using the method of Echenique, Nieminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given initial velocity and a given incident position on the unit cell face. For each incident projectile velocity, the authors generate trajectories for incidence distributed over the channel face. The distribution of ranges generates an implantation profile. In this paper, they report ion (proton) implantation profiles for low energy protons with initial velocity along the (100) and (110) channel directions of diamond structured Silicon
Macroscopic/microscopic simulation of nuclear reactions at intermediate energies
International Nuclear Information System (INIS)
Lacroix, D.; Van Lauwe, A.; Durand, D.
2003-01-01
An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation
MCB. A continuous energy Monte Carlo burnup simulation code
International Nuclear Information System (INIS)
Cetnar, J.; Wallenius, J.; Gudowski, W.
1999-01-01
A code for integrated simulation of neutrinos and burnup based upon continuous energy Monte Carlo techniques and transmutation trajectory analysis has been developed. Being especially well suited for studies of nuclear waste transmutation systems, the code is an extension of the well validated MCNP transport program of Los Alamos National Laboratory. Among the advantages of the code (named MCB) is a fully integrated data treatment combined with a time-stepping routine that automatically corrects for burnup dependent changes in reaction rates, neutron multiplication, material composition and self-shielding. Fission product yields are treated as continuous functions of incident neutron energy, using a non-equilibrium thermodynamical model of the fission process. In the present paper a brief description of the code and applied methods are given. (author)
Design, modeling, simulation and evaluation of a distributed energy system
Cultura, Ambrosio B., II
This dissertation presents the design, modeling, simulation and evaluation of distributed energy resources (DER) consisting of photovoltaics (PV), wind turbines, batteries, a PEM fuel cell and supercapacitors. The distributed energy resources installed at UMass Lowell consist of the following: 2.5kW PV, 44kWhr lead acid batteries and 1500W, 500W & 300W wind turbines, which were installed before year 2000. Recently added to that are the following: 10.56 kW PV array, 2.4 kW wind turbine, 29 kWhr Lead acid batteries, a 1.2 kW PEM fuel cell and 4-140F supercapacitors. Each newly added energy resource has been designed, modeled, simulated and evaluated before its integration into the existing PV/Wind grid-connected system. The Mathematical and Simulink model of each system was derived and validated by comparing the simulated and experimental results. The Simulated results of energy generated from a 10.56kW PV system are in good agreement with the experimental results. A detailed electrical model of a 2.4kW wind turbine system equipped with a permanent magnet generator, diode rectifier, boost converter and inverter is presented. The analysis of the results demonstrates the effectiveness of the constructed simulink model, and can be used to predict the performance of the wind turbine. It was observed that a PEM fuel cell has a very fast response to load changes. Moreover, the model has validated the actual operation of the PEM fuel cell, showing that the simulated results in Matlab Simulink are consistent with the experimental results. The equivalent mathematical equation, derived from an electrical model of the supercapacitor, is used to simulate its voltage response. The model is completely capable of simulating its voltage behavior, and can predict the charge time and discharge time of voltages on the supercapacitor. The bi-directional dc-dc converter was designed in order to connect the 48V battery bank storage to the 24V battery bank storage. This connection was
Simulation of the Atmospheric Boundary Layer for Wind Energy Applications
Marjanovic, Nikola
Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different
Energy correlations in perturbative quantum chromodynamics: a conjecture for all orders
International Nuclear Information System (INIS)
Basham, C.L.; Brown, L.S.; Ellis, S.D.; Love, S.T.
1979-01-01
The hadronic energy produced in high-energy electron-positron annihilation has an angular correlation which can be computed by the asymptotically free perturbation theory of quantum chromodynamics. In finite orders, the correlation is not well behaved as the detectors become anti-collinear. The leading behaviour has been calculated to fourth order and an exponential expression for the sum of all orders is discussed. This expression obeys a non-trivial sum rule which lends support for its validity. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Goldberg, L. F.; Steigauf, B.
2013-04-01
A split simulation whole building energy/3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.
Energy Technology Data Exchange (ETDEWEB)
Goldberg, Louise F. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Steigauf, Brianna [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)
2013-04-01
A split simulation whole building energy / 3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.
Simulations of structure formation in interacting dark energy cosmologies
International Nuclear Information System (INIS)
Baldi, M.
2009-01-01
The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.
Energy prices and agricultural commodity prices: Testing correlation using copulas method
International Nuclear Information System (INIS)
Koirala, Krishna H.; Mishra, Ashok K.; D'Antoni, Jeremy M.; Mehlhorn, Joey E.
2015-01-01
The linear relationships between energy prices and prices for agricultural commodities such as corn and soybeans may have been affected, over the last several years, by policy legislations in the farm sector, the Energy Independence and Security Act of 2007, and the Renewable Fuel Standard Program for 2014. Using high-frequency data and newer methodology, this study investigates dependence between agricultural commodity futures prices and energy futures prices. Results reveal that agricultural commodity and energy future prices are highly correlated and exhibit positive and significant relationship. Findings from this study highlight that an increase in energy price increases the price of agricultural commodities. - Highlights: • Energy policy mandates production of 15 billion gallons of corn ethanol by 2015. • Energy-intensive agriculture has a link between energy sector and crop production costs. • We investigate correlation between energy prices and agricultural commodity prices. • Agricultural commodity and energy future prices are highly correlated. • Increase in energy price increases the price of agricultural commodity
Free electron laser small signal dynamics and inclusion of electron-beam energy phase correlation
International Nuclear Information System (INIS)
Dattoli, G.; Giannessi, L.; Ottaviani, P. L.
1998-01-01
In this paper are analyzed the problems associated with the generation of coherent radiation by an e-beam, traversing an undulator magnet, with an initial energy-phase correlation. The mechanism of the process are explained and the role played by the bunching is clarified. The effect of the correlation on the stimulated part of the emission is also discussed [it
Effects of pairing correlation on nuclear level density parameter and nucleon separation energy
International Nuclear Information System (INIS)
Rajesekaran, T.R.; Selvaraj, S.
2002-01-01
A systematic study of effects of pairing correlations on nuclear level density parameter 'a' and neutron separation energy S N is presented for 152 Gd using statistical theory of nuclei with deformation, collective and noncollective rotational degrees of freedom, shell effects, and pairing correlations
Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications
Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.
2008-12-01
With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Roach, D.; Jameson, M. G.; Dowling, J. A.; Ebert, M. A.; Greer, P. B.; Kennedy, A. M.; Watt, S.; Holloway, L. C.
2018-02-01
Many similarity metrics exist for inter-observer contouring variation studies, however no correlation between metric choice and prostate cancer radiotherapy dosimetry has been explored. These correlations were investigated in this study. Two separate trials were undertaken, the first a thirty-five patient cohort with three observers, the second a five patient dataset with ten observers. Clinical and planning target volumes (CTV and PTV), rectum, and bladder were independently contoured by all observers in each trial. Structures were contoured on T2-weighted MRI and transferred onto CT following rigid registration for treatment planning in the first trial. Structures were contoured directly on CT in the second trial. STAPLE and majority voting volumes were generated as reference gold standard volumes for each structure for the two trials respectively. VMAT treatment plans (78 Gy to PTV) were simulated for observer and gold standard volumes, and dosimetry assessed using multiple radiobiological metrics. Correlations between contouring similarity metrics and dosimetry were calculated using Spearman’s rank correlation coefficient. No correlations were observed between contouring similarity metrics and dosimetry for CTV within either trial. Volume similarity correlated most strongly with radiobiological metrics for PTV in both trials, including TCPPoisson (ρ = 0.57, 0.65), TCPLogit (ρ = 0.39, 0.62), and EUD (ρ = 0.43, 0.61) for each respective trial. Rectum and bladder metric correlations displayed no consistency for the two trials. PTV volume similarity was found to significantly correlate with rectum normal tissue complication probability (ρ = 0.33, 0.48). Minimal to no correlations with dosimetry were observed for overlap or boundary contouring metrics. Future inter-observer contouring variation studies for prostate cancer should incorporate volume similarity to provide additional insights into dosimetry during analysis.
Directory of Open Access Journals (Sweden)
Eduardo Borba Neves
2017-11-01
Full Text Available The aim of this study was to investigate the Correlations between the Simulated Military Tasks Performance and Physical Fitness Tests at high altitude. This research is part of a project to modernize the physical fitness test of the Colombian Army. Data collection was performed at the 13th Battalion of Instruction and Training, located 30km south of Bogota D.C., with a temperature range from 1ºC to 23ºC during the study period, and at 3100m above sea level. The sample was composed by 60 volunteers from three different platoons. The volunteers start the data collection protocol after 2 weeks of acclimation at this altitude. The main results were the identification of a high positive correlation between the 3 Assault wall in succession and the Simulated Military Tasks performance (r = 0.764, p<0.001, and a moderate negative correlation between pull-ups and the Simulated Military Tasks performance (r = -0.535, p<0.001. It can be recommended the use of the 20-consecutive overtaking of the 3 Assault wall in succession as a good way to estimate the performance in operational tasks which involve: assault walls, network of wires, military Climbing Nets, Tarzan jump among others, at high altitude.
A Simulation Framework for Optimal Energy Storage Sizing
Directory of Open Access Journals (Sweden)
Carlos Suazo-Martínez
2014-05-01
Full Text Available Despite the increasing interest in Energy Storage Systems (ESS, quantification of their technical and economical benefits remains a challenge. To assess the use of ESS, a simulation approach for ESS optimal sizing is presented. The algorithm is based on an adapted Unit Commitment, including ESS operational constraints, and the use of high performance computing (HPC. Multiple short-term simulations are carried out within a multiple year horizon. Evaluation is performed for Chile's Northern Interconnected Power System (SING. The authors show that a single year evaluation could lead to sub-optimal results when evaluating optimal ESS size. Hence, it is advisable to perform long-term evaluations of ESS. Additionally, the importance of detailed simulation for adequate assessment of ESS contributions and to fully capture storage value is also discussed. Furthermore, the robustness of the optimal sizing approach is evaluated by means of a sensitivity analyses. The results suggest that regulatory frameworks should recognize multiple value streams from storage in order to encourage greater ESS integration.
Simulation of Energy Savings in Automotive Coatings Processes
Gerini Romagnoli, Marco
Recently, the automakers have become more and more aware of the environmental and economic impact of their manufacturing processes. The paint shop is the largest energy user in a vehicle manufacturing plant, and one way to reduce costs and energy usage is the optimization of this area. This project aims at providing a tool to model and simulate a paint shop, in order to run and analyze some scenarios and case studies, helping to take strategic decisions. Analytical computations and real data were merged to build a tool that can be used by FCA for their Sterling Heights plant. Convection and conduction heat losses were modeled for the dip processes and the ovens. Thermal balances were used to compute the consumptions of booths, decks and ovens, while pump and fan energy consumptions were modeled for each sub-process. The user acts on a calendar, scheduling a year of production, and the model predicts the energy consumption of the paint shop. Five scenarios were run to test different conditions and the influence of scheduling on the energy consumption. Two different sets of production schedules have been evaluated, the first one fulfilling the production requirement in one shift of 10 hours, at high rate, the second one using two 7-hour-long shifts at medium production rate. It was found that the unit cost was minimized in the warmest months of spring and fall, and system shutdown was a crucial factor to reduce energy consumption. A fifth hypothetical scenario was run, with a 4 month continuous production and an 8 month total shutdown, which reduced the energy consumption to a half of the best realistic scenario. When the plant was run in a two-shifts configuration, the cost to coat a vehicle was found to be 29 with weekend shutdown, and 39 without. In the one-shift configuration, the cost was slightly higher, but the difference was less than 5%. While the fifth scenario showed a consistent reduction of the unit cost, inventory and logistic expenses deriving from the
CGC/saturation approach for soft interactions at high energy: long range rapidity correlations
International Nuclear Information System (INIS)
Gotsman, E.; Maor, U.; Levin, E.
2015-01-01
In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y 1 , y 2 ) ≥ 1, which is independent of y 1 and y 2 . Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)
Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C
1973-01-01
Measurements are reported of two-particle correlations in high energy proton-proton collisions with one particle in the pionization region and the other a proton in the fragmentation region. The correlation function is independent of x of the fragmentation proton for 0.55
Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature
DEFF Research Database (Denmark)
Huebner, K.; Karsch, F.; Pica, Claudio
2008-01-01
We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...... coefficients, in particular the bulk viscosity, in the vicinity of a second order phase transition point....
Energy consumption program: A computer model simulating energy loads in buildings
Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.
1978-01-01
The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.
Mirsadeghi, M.
2011-01-01
Building performance simulation (BPS) is widely applied to analyse heat, air and moisture (HAM) related issues in the indoor environment such as energy consumption, thermal comfort, condensation and mould growth. The uncertainty associated with such simulations can be high, and incorrect simulation
Short-range second order screened exchange correction to RPA correlation energies
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Nuclear controls and its correlation with the energy policy in two Koreas
International Nuclear Information System (INIS)
Choi, G. G.; Choi, Y. M.; Ahn, J. S.; Kim, J. S.
2003-01-01
The purpose of this paper is to analyse how the nuclear controls, main tools of implementation for the international NPT regime, have been understood and taken by two Koreas, and also what kind of influence it has on the energy policies of two Koreas as a national energy resources. Even though two Koreas have shown different position in their understanding and their reactions for the nuclear controls, there exist a close correlation between the nuclear controls and energy policies in the sense that they approach nuclear energy question as an essential way to make sure energy resources for industrial and social development
An Exploration Algorithm for Stochastic Simulators Driven by Energy Gradients
Directory of Open Access Journals (Sweden)
Anastasia S. Georgiou
2017-06-01
Full Text Available In recent work, we have illustrated the construction of an exploration geometry on free energy surfaces: the adaptive computer-assisted discovery of an approximate low-dimensional manifold on which the effective dynamics of the system evolves. Constructing such an exploration geometry involves geometry-biased sampling (through both appropriately-initialized unbiased molecular dynamics and through restraining potentials and, machine learning techniques to organize the intrinsic geometry of the data resulting from the sampling (in particular, diffusion maps, possibly enhanced through the appropriate Mahalanobis-type metric. In this contribution, we detail a method for exploring the conformational space of a stochastic gradient system whose effective free energy surface depends on a smaller number of degrees of freedom than the dimension of the phase space. Our approach comprises two steps. First, we study the local geometry of the free energy landscape using diffusion maps on samples computed through stochastic dynamics. This allows us to automatically identify the relevant coarse variables. Next, we use the information garnered in the previous step to construct a new set of initial conditions for subsequent trajectories. These initial conditions are computed so as to explore the accessible conformational space more efficiently than by continuing the previous, unbiased simulations. We showcase this method on a representative test system.
Determination of αs from jet production rates and energy-energy correlations on the Z0 resonance
International Nuclear Information System (INIS)
Pain, R.
1990-10-01
This presentation uses data obtained from the DELPHI experiment at LEP. The strong coupling constant α s is determined in two different analyses of the Z 0 decay into multi-hadronic final states. The first uses the jet production rates and the second the asymmetry of energy-energy correlations. Both methods compare experimental data with second order of perturbative QCD predictions. The results are α s (M z ) = 0.114 ± 0.003 ± 0.004 ± 0.012 using the jet rates method and α s (M z ) = 0.106 ± 0.003 ± 0.003 ± 0.003 from the energy-energy correlations method
Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G
2016-05-10
Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
International Nuclear Information System (INIS)
Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K
2011-01-01
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
Energy Technology Data Exchange (ETDEWEB)
Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra (Barcelona) Spain (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics CERN, CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT - 20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU - Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: kjg@particle.kth.se [Yale University, Department of Physics , PO Box 208121, New Haven, CT06520-8121 (United States)
2011-06-15
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
A serach for moderate- and high-energy neturino emission correlated with gamma-ray bursts
Becker-Szendy, R.; Bratton, C. B.; Breault, J.; Casper, D.; Dye, S. T.; Gajewski, W.; Goldhaber, M.; Haines, T. J.; Halverson, P. G.; Kielczewska, D.
1995-01-01
A temporal correlation analysis between moderate- (60 Mev less than or equal to E(sub nu)greater than or equal to 2500 MeV) and high-energy (E(sub nu) greater than or equal to 2000 MeV) neutrino interactions consist of two types: the moderate-energy interactions that are contained within the volume of IMB-3 and the upward-going muons produced by high-energy nu(sub mu) interactions in the rock around the detector. No evidence is found for moderate- or high-energy neutrino emission from GRBs nor for any neutrino/neutrino correlation. The nonobservation of nu/GRB correlations allows upper limits to be placed on the neutrino flux associated with GRBs.
Simulation of energy use in buildings with multiple micro generators
International Nuclear Information System (INIS)
Karmacharya, S.; Putrus, G.; Underwood, C.P.; Mahkamov, K.; McDonald, S.; Alexakis, A.
2014-01-01
This paper focuses on the detailed modelling of micro combined heat and power (mCHP) modules and their interaction with other renewable micro generators in domestic applications based on an integrated modular modelling approach. The simulation model has been developed using Matlab/Simulink and incorporates a Stirling engine mCHP module embedded in a lumped-parameter domestic energy model, together with contributions from micro wind and photovoltaic modules. The Stirling cycle component model is based on experimental identification of a domestic-scale system which includes start up and shut down characteristics. The integrated model is used to explore the interactions between the various energy supply technologies and results are presented showing the most favourable operating conditions that can be used to inform the design of advanced energy control strategies in building. The integrated model offers an improvement on previous models of this kind in that a fully-dynamic approach is adopted for the equipment and plant enabling fast changing load events such as switching on/off domestic loads and hot water, to be accurately captured at a minimum interval of 1 min. The model is applied to two typical 3- and 4-bedroom UK house types equipped with a mCHP module and two other renewable energy technologies for a whole year. Results of the two cases show that the electrical contribution of a Stirling engine type mCHP heavily depends on the thermal demand of the building and that up to 19% of the locally-generated electricity is exported whilst meeting a similar percentage of the overall annual electricity demand. Results also show that the increased number of switching of mCHP module has an impact on seasonal module efficiency and overall fuel utilisation. The results demonstrate the need for the analysis of equipment design and optimal sizing of thermal and electrical energy storage. -- Highlights: • Dynamic modelling of a building along with its space heating and hot
Wang, Li; Xi, Feng Ming; Wang, Jiao Yue
2016-03-01
The contradiction between energy consumption and economic growth is increasingly prominent in China. Liaoning Province as one of Chinese heavy industrial bases, consumes a large amount of energy. Its economic development has a strong dependence on energy consumption, but the energy in short supply become more apparent. In order to further understand the relationship between energy consumption and economic growth and put forward scientific suggestions on low carbon development, we used the grey correlation analysis method to separately examine the relevance of economic growth with energy consumption industries and energy consumption varieties through analy sis of energy consumption and economic growth data in Liaoning Province from 2000 to 2012. The results showed that the wholesale and retail sector and hotel and restaurant sector were in the minimum energy consumption in all kinds of sectors, but they presented the closest connection with the economic growth. Although industry energy consumption was the maximum, the degree of connection between industry energy consumption and economic growth was weak. In all types of energy consumption, oil and hydro-power consumption had a significant connection with economic growth. However, the degree of connection of coal consumption with economic growth was not significant, which meant that coal utilization efficiency was low. In order to achieve low carbon and sustainable development, Liaoning Province should transform the economic growth mode, adjust industry structure, optimize energy structure, and improve energy utilization efficiency, especially promote producer services and develop clean and renewable energy.
Kretsch, M J; Fong, A K; Green, M W
1999-03-01
To examine behavioral and body size influences on the underreporting of energy intake by obese and normal-weight women. Seven-day estimated food records were kept by subjects before they participated in a 49-day residential study. Self-reported energy intake was compared with energy intake required to maintain a stable body weight during the residential study (reference standard). Energy intake bias and its relationship to various body size and behavioral measures were examined. Twenty-two, healthy, normal-weight (mean body mass index [BMI] = 21.3) and obese (mean BMI = 34.2) women aged 22 to 42 years were studied. Analysis of variance, paired t test, simple linear regression, and Pearson correlation analyses were conducted. Mean energy intake from self-reported food records was underreported by normal-weight (-9.7%) and obese (-19.4%) women. BMI correlated inversely with the energy intake difference for normal-weight women (r = -.67, P = .02), whereas the Beck Depression Inventory correlated positively with the energy intake difference for obese women (r = .73, P behavioral traits play a role in the ability of women to accurately self-report energy intake. BMI appears to be predictive of underreporting of energy intake by normal-weight women, whereas emotional factors related to depression appear to be more determinant of underreporting for obese women. Understanding causative factors of the underreporting phenomenon will help practicing dietitians to devise appropriate and realistic diet intervention plans that clients can follow to achieve meaningful change.
Assessment of correlation energies based on the random-phase approximation
International Nuclear Information System (INIS)
Paier, Joachim; Ren, Xinguo; Rinke, Patrick; Scheffler, Matthias; Scuseria, Gustavo E; Grüneis, Andreas; Kresse, Georg
2012-01-01
The random-phase approximation to the ground state correlation energy (RPA) in combination with exact exchange (EX) has brought the Kohn-Sham (KS) density functional theory one step closer towards a universal, ‘general purpose first-principles method’. In an effort to systematically assess the influence of several correlation energy contributions beyond RPA, this paper presents dissociation energies of small molecules and solids, activation energies for hydrogen transfer and non-hydrogen transfer reactions, as well as reaction energies for a number of common test sets. We benchmark EX + RPA and several flavors of energy functionals going beyond it: second-order screened exchange (SOSEX), single-excitation (SE) corrections, renormalized single-excitation (rSE) corrections and their combinations. Both the SE correction and the SOSEX contribution to the correlation energy significantly improve on the notorious tendency of EX + RPA to underbind. Surprisingly, activation energies obtained using EX + RPA based on a KS reference alone are remarkably accurate. RPA + SOSEX + rSE provides an equal level of accuracy for reaction as well as activation energies and overall gives the most balanced performance, because of which it can be applied to a wide range of systems and chemical reactions. (paper)
Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.
2017-01-01
This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.
Modeling and Simulation of a Wave Energy Converter INWAVE
Directory of Open Access Journals (Sweden)
Seung Kwan Song
2017-01-01
Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.
Weather Correlations to Calculate Infiltration Rates for U. S. Commercial Building Energy Models.
Ng, Lisa C; Quiles, Nelson Ojeda; Dols, W Stuart; Emmerich, Steven J
2018-01-01
As building envelope performance improves, a greater percentage of building energy loss will occur through envelope leakage. Although the energy impacts of infiltration on building energy use can be significant, current energy simulation software have limited ability to accurately account for envelope infiltration and the impacts of improved airtightness. This paper extends previous work by the National Institute of Standards and Technology that developed a set of EnergyPlus inputs for modeling infiltration in several commercial reference buildings using Chicago weather. The current work includes cities in seven additional climate zones and uses the updated versions of the prototype commercial building types developed by the Pacific Northwest National Laboratory for the U. S. Department of Energy. Comparisons were made between the predicted infiltration rates using three representations of the commercial building types: PNNL EnergyPlus models, CONTAM models, and EnergyPlus models using the infiltration inputs developed in this paper. The newly developed infiltration inputs in EnergyPlus yielded average annual increases of 3 % and 8 % in the HVAC electrical and gas use, respectively, over the original infiltration inputs in the PNNL EnergyPlus models. When analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the newly developed infiltration inputs in EnergyPlus compared with using the original infiltration inputs. These results indicate that the effects of infiltration on HVAC energy use can be significant and that infiltration can and should be better accounted for in whole-building energy models.
Hallin, Karin; Häggström, Marie; Bäckström, Britt; Kristiansen, Lisbeth Porskrog
2016-01-01
Background: Health care educators account for variables affecting patient safety and are responsible for developing the highly complex process of education planning. Clinical judgement is a multidimensional process, which may be affected by learning styles. The aim was to explore three specific hypotheses to test correlations between nursing students’ team achievements in clinical judgement and emotional, sociological and physiological learning style preferences. Methods: A descriptive cross-sectional study was conducted with Swedish university nursing students in 2012-2013. Convenience sampling was used with 60 teams with 173 nursing students in the final semester of a three-year Bachelor of Science in nursing programme. Data collection included questionnaires of personal characteristics, learning style preferences, determined by the Dunn and Dunn Productivity Environmental Preference Survey, and videotaped complex nursing simulation scenarios. Comparison with Lasater Clinical Judgement Rubric and Non-parametric analyses were performed. Results: Three significant correlations were found between the team achievements and the students’ learning style preferences: significant negative correlation with ‘Structure’ and ‘Kinesthetic’ at the individual level, and positive correlation with the ‘Tactile’ variable. No significant correlations with students’ ‘Motivation’, ‘Persistence’, ‘Wish to learn alone’ and ‘Wish for an authoritative person present’ were seen. Discussion and Conclusion: There were multiple complex interactions between the tested learning style preferences and the team achievements of clinical judgement in the simulation room, which provides important information for the becoming nurses. Several factors may have influenced the results that should be acknowledged when designing further research. We suggest conducting mixed methods to determine further relationships between team achievements, learning style preferences
Hallin, Karin; Haggstrom, Marie; Backstrom, Britt; Kristiansen, Lisbeth Porskrog
2015-09-28
Health care educators account for variables affecting patient safety and are responsible for developing the highly complex process of education planning. Clinical judgement is a multidimensional process, which may be affected by learning styles. The aim was to explore three specific hypotheses to test correlations between nursing students' team achievements in clinical judgement and emotional, sociological and physiological learning style preferences. A descriptive cross-sectional study was conducted with Swedish university nursing students in 2012-2013. Convenience sampling was used with 60 teams with 173 nursing students in the final semester of a three-year Bachelor of Science in nursing programme. Data collection included questionnaires of personal characteristics, learning style preferences, determined by the Dunn and Dunn Productivity Environmental Preference Survey, and videotaped complex nursing simulation scenarios. Comparison with Lasater Clinical Judgement Rubric and Non-parametric analyses were performed. Three significant correlations were found between the team achievements and the students' learning style preferences: significant negative correlation with 'Structure' and 'Kinesthetic' at the individual level, and positive correlation with the 'Tactile' variable. No significant correlations with students' 'Motivation', 'Persistence', 'Wish to learn alone' and 'Wish for an authoritative person present' were seen. There were multiple complex interactions between the tested learning style preferences and the team achievements of clinical judgement in the simulation room, which provides important information for the becoming nurses. Several factors may have influenced the results that should be acknowledged when designing further research. We suggest conducting mixed methods to determine further relationships between team achievements, learning style preferences, cognitive learning outcomes and group processes.
Modeling energy market dynamics using discrete event system simulation
International Nuclear Information System (INIS)
Gutierrez-Alcaraz, G.; Sheble, G.B.
2009-01-01
This paper proposes the use of Discrete Event System Simulation to study the interactions among fuel and electricity markets and consumers, and the decision-making processes of fuel companies (FUELCOs), generation companies (GENCOs), and consumers in a simple artificial energy market. In reality, since markets can reach a stable equilibrium or fail, it is important to observe how they behave in a dynamic framework. We consider a Nash-Cournot model in which marketers are depicted as Nash-Cournot players that determine supply to meet end-use consumption. Detailed engineering considerations such as transportation network flows are omitted, because the focus is upon the selection and use of appropriate market models to provide answers to policy questions. (author)
Design and Control of Full Scale Wave Energy Simulator System
DEFF Research Database (Denmark)
Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm
2012-01-01
For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...
Theoretical Simulations of Materials for Nuclear Energy Applications
International Nuclear Information System (INIS)
Abrikosov, A.; Ponomareva, A.V.; Nikonov, A.Y.; Barannikova, S.A.; Dmitriev, A.I.
2014-01-01
We have demonstrated that state-of-the art theoretical calculations have a capability to predict thermodynamic and mechanical properties of materials with very high accuracy, comparable to the experimental accuracy. Considering Fe-Cr alloys, we have investigated the effect of multicomponent alloying on their phase stability, and we have shown that alloying elements Ni, Mn, and Mo, present in RPV steels, reduce the stability of low-Cr steels against binodal, as well as spinodal decomposition. Considering Zr-Nb alloys, we have demonstrated a possibility of obtaining their elastic moduli from ab initio electronic structure calculations. We argue that theoretical simulations represent valuable tool for a design of new materials for nuclear energy applications
Simulated Energy Usage for a Novel 6 DOF Articulated Robot
International Nuclear Information System (INIS)
Shaik, A A; Tlale, N; Bright, G
2014-01-01
The serial robot architecture is widespread in modern day manufacturing, and over the last few decades the technology has matured and settled to its current state. One drawback from the architecture however is the location of motors and gearboxes which are either at the joint it controls or close by. A novel hybrid 6 DOF robot was designed to move all the actuators to the robot base, and to control the desired axis through a set of connected links and gears, while maintaining the same workspace and dexterity. This would reduce the inertia of the movable part of the robot and some of the moment arms on the 3 axes required for translation of the 3 DOF spherical wrist. Doing so would decrease the energy requirements when compared to a 6 DOF serial robot. This paper focuses on the mathematical modelling and simulation of the novel hybrid machine design and compares it to an equivalent serial robot
Nonstationary signals phase-energy approach-theory and simulations
Klein, R; Braun, S; 10.1006/mssp.2001.1398
2001-01-01
Modern time-frequency methods are intended to deal with a variety of nonstationary signals. One specific class, prevalent in the area of rotating machines, is that of harmonic signals of varying frequencies and amplitude. This paper presents a new adaptive phase-energy (APE) approach for time-frequency representation of varying harmonic signals. It is based on the concept of phase (frequency) paths and the instantaneous power spectral density (PSD). It is this path which represents the dynamic behaviour of the system generating the observed signal. The proposed method utilises dynamic filters based on an extended Nyquist theorem, enabling extraction of signal components with optimal signal-to-noise ratio. The APE detects the most energetic harmonic components (frequency paths) in the analysed signal. Tests on simulated signals show the superiority of the APE in resolution and resolving power as compared to STFT and wavelets wave- packet decomposition. The dynamic filters also enable the reconstruction of the ...
Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges
Ismail-Beigi, Sohrab
2010-05-01
In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.
Energy Technology Data Exchange (ETDEWEB)
Pletschen, Ingo; Rohr, Stephan [ThyssenKrupp Aufzugswerke GmbH, Neuhausen a.d.F. (Germany); Kennel, Ralph [Technische Univ. Muenchen (Germany)
2011-07-01
Elevator systems would be in principal a good example for a perpetuum mobile. While lifting loads and persons electrical energy is converted into potential energy and reconverted later. In practice these conversions are however lossy. So the aim for high energy efficiency is to minimize these losses. However, as a travel of an elevator consists in main parts of acceleration and deceleration, the exclusive consideration of the efficiency during constant speed is not sufficient. Thus a simulation environment is introduced which reliably determines the elevators' energy consumption. The simulation is validated at an elevator afterwards the different influences on the energy consumption of elevators are analyzed. (orig.)
Zhang, Jun; Li, Ri Yi
2018-06-01
Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.
International Nuclear Information System (INIS)
He, Yongxiu; Wang, Bing; Wang, Jianhui; Xiong, Wei; Xia, Tian
2013-01-01
To establish a reasonable system and mechanism for Chinese energy prices, we use the Granger causality test, Hodrick–Prescott (HP) filter and time difference analysis to research the pricing relationship between Chinese and international energy prices. We find that Chinese and international crude oil prices changed synchronously while Chinese refined oil prices follow the changes of international oil prices with the time difference being about 1 month to 2 months. Further, Australian coal prices Granger causes Chinese coal prices, and there is a high correlation between them. The U.S. electricity price is influenced by the WTI crude oil price, the U.S. gasoline price and the HenryHub gas price. Due to the unreasonable price-setting mechanism and regulation from the central government, China′s terminal market prices for both electricity and natural gas do not reflect the real supply–demand situation. This paper provides quantitative results on the correlation between Chinese and international energy prices to better predict the impact of international energy price fluctuations on China′s domestic energy supply and guide the design of more efficient energy pricing policies. Moreover, it provides references for developing countries to improve their energy market systems and trading, and to coordinate domestic and international energy markets. -- Highlights: •The Hodrick-Prescott filter and time difference analysis are used to research the correlation among energy prices. •Our study finds that the U.S. and British refined oil prices Granger cause the Chinese refined oil price. •Both Chinese and the Australian coal prices play an important role in the international coal market. •The Chinese terminal electric power and terminal natural gas prices are not highly correlated. •The results are useful for guiding the design of more efficient energy pricing policies in China
Hocine, Nora; Meignan, Michel; Masset, Hélène
2018-04-01
To better understand the risks of cumulative medical X-ray investigations and the possible causal role of contrast agent on the coronary artery wall, the correlation between iodinated contrast media and the increase of energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy is investigated. The calculations of energy deposition have been performed using Monte Carlo (MC) simulation codes, namely PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and Monte Carlo N-Particle eXtended (MCNPX). Exposure of a cylinder phantom, artery and a metal stent (AISI 316L) to several X-ray photon beams were simulated. For the energies used in cardiac imaging the energy deposited in the coronary artery lumen increases with the quantity of iodine. Monte Carlo calculations indicate a strong dependence of the energy enhancement factor (EEF) on photon energy and iodine concentration. The maximum value of EEF is equal to 25; this factor is showed for 83 keV and for 400 mg Iodine/mL. No significant impact of the stent is observed on the absorbed dose in the artery for incident X-ray beams with mean energies of 44, 48, 52 and 55 keV. A strong correlation was shown between the increase in the concentration of iodine and the energy deposited in the coronary artery lumen for the energies used in cardiac imaging and over the energy range between 44 and 55 keV. The data provided by this study could be useful for creating new medical imaging protocols to obtain better diagnostic information with a lower level of radiation exposure.
Ductile crack growth simulation from near crack tip dissipated energy
International Nuclear Information System (INIS)
Marie, S.; Chapuliot, S.
2000-01-01
A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)
Directory of Open Access Journals (Sweden)
Griffin Patrick
2017-01-01
Full Text Available A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.
Baumgärtel, M.; Ghanem, K.; Kiani, A.; Koch, E.; Pavarini, E.; Sims, H.; Zhang, G.
2017-07-01
We discuss the efficient implementation of general impurity solvers for dynamical mean-field theory. We show that both Lanczos and quantum Monte Carlo in different flavors (Hirsch-Fye, continuous-time hybridization- and interaction-expansion) exhibit excellent scaling on massively parallel supercomputers. We apply these algorithms to simulate realistic model Hamiltonians including the full Coulomb vertex, crystal-field splitting, and spin-orbit interaction. We discuss how to remove the sign problem in the presence of non-diagonal crystal-field and hybridization matrices. We show how to extract the physically observable quantities from imaginary time data, in particular correlation functions and susceptibilities. Finally, we present benchmarks and applications for representative correlated systems.
Cross-correlation between EMG and center of gravity during quiet stance: theory and simulations.
Kohn, André Fabio
2005-11-01
Several signal processing tools have been employed in the experimental study of the postural control system in humans. Among them, the cross-correlation function has been used to analyze the time relationship between signals such as the electromyogram and the horizontal projection of the center of gravity. The common finding is that the electromyogram precedes the biomechanical signal, a result that has been interpreted in different ways, for example, the existence of feedforward control or the preponderance of a velocity feedback. It is shown here, analytically and by simulation, that the cross-correlation function is dependent in a complicated way on system parameters and on noise spectra. Results similar to those found experimentally, e.g., electromyogram preceding the biomechanical signal may be obtained in a postural control model without any feedforward control and without any velocity feedback. Therefore, correct interpretations of experimentally obtained cross-correlation functions may require additional information about the system. The results extend to other biomedical applications where two signals from a closed loop system are cross-correlated.
Constraining the geometry to study jet energy loss with 2-particle correlations
International Nuclear Information System (INIS)
Pei, H.; Awes, Terry C.; Cianciolo, Vince; Efremenko, Yuri V.; Enokizono, Akitomo; Read, Kenneth F. Jr.; Silvermyr, David O.; Sorensen, Soren P.; Stankus, Paul W.; Young, Glenn R.
2008-01-01
Correlations between two high-p T hadrons provide information on how partons lose energy as they travel through the dense plasma formed at RHIC. To vary the path length partons travel, we measure the back-to-back jets in the AA collision of centrality and reaction-plane dependence, in addition to '2+1' particle correlations, and compare with p+p results
Advancement of DOE's EnergyPlus Building Energy Simulation Payment
Energy Technology Data Exchange (ETDEWEB)
Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)
2011-09-30
significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.
A Correlated Model for Evaluating Performance and Energy of Cloud System Given System Reliability
Directory of Open Access Journals (Sweden)
Hongli Zhang
2015-01-01
Full Text Available The serious issue of energy consumption for high performance computing systems has attracted much attention. Performance and energy-saving have become important measures of a computing system. In the cloud computing environment, the systems usually allocate various resources (such as CPU, Memory, Storage, etc. on multiple virtual machines (VMs for executing tasks. Therefore, the problem of resource allocation for running VMs should have significant influence on both system performance and energy consumption. For different processor utilizations assigned to the VM, there exists the tradeoff between energy consumption and task completion time when a given task is executed by the VMs. Moreover, the hardware failure, software failure and restoration characteristics also have obvious influences on overall performance and energy. In this paper, a correlated model is built to analyze both performance and energy in the VM execution environment given the reliability restriction, and an optimization model is presented to derive the most effective solution of processor utilization for the VM. Then, the tradeoff between energy-saving and task completion time is studied and balanced when the VMs execute given tasks. Numerical examples are illustrated to build the performance-energy correlated model and evaluate the expected values of task completion time and consumed energy.
Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines
DEFF Research Database (Denmark)
Kallesøe, Bjarne Skovmose
This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world’s first combined wave and wind energy platform. The floating energy...
Jet energy scale uncertainty correlations between ATLAS and CMS at 8 TeV
CMS and ATLAS Collaborations
2015-01-01
An evaluation of the correlations between ATLAS and CMS jet energy scale uncertainties is presented for $\\sqrt{s}=8$ TeV $pp$ collisions recorded in 2012. Uncertainties within each experiment are grouped based on the general type of systematic effect they are intended to cover and the means by which they are derived. Inter-experimental correlation value ranges are established for each corresponding group of uncertainty components. This correlation range is intended to cover the possible correlation values when performing combinations between the two experiments, where the most conservative value obtained from scanning over the correlation range should be used for the final combined measurement. The procedure described here is primarily aimed at single-observable analyses, and has limitations when applied to multi-observable measurements.
SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY
Energy Technology Data Exchange (ETDEWEB)
Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Aldering, G.; Kim, A. G.; Nugent, P. [E. O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); D' Andrea, C. B.; Nichol, R. C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Finley, D. A.; Marriner, J.; Reis, R. R. R. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Mukherjee, P.; Parkinson, D. [Department of Physics and Astronomy, Pevensey 2 Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); and others
2012-07-10
We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg{sup 2} search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05
SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY
International Nuclear Information System (INIS)
Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T.; Kessler, R.; Frieman, J. A.; Aldering, G.; Kim, A. G.; Nugent, P.; D'Andrea, C. B.; Nichol, R. C.; Finley, D. A.; Marriner, J.; Reis, R. R. R.; Jarvis, M. J.; Mukherjee, P.; Parkinson, D.; Sako, M.
2012-01-01
We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg 2 search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 < z < 1.2 and (2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.
International Nuclear Information System (INIS)
Cheng, K.T.; Chen, M.H.; Johnson, W.R.
1994-04-01
A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table
Systematic studies of binding energy dependence of neutron-proton momentum correlation function
International Nuclear Information System (INIS)
Wei, Y B; Ma, Y G; Shen, W Q; Ma, G L; Wang, K; Cai, X Z; Zhong, C; Guo, W; Chen, J G; Fang, D Q; Tian, W D; Zhou, X F
2004-01-01
Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function have been systematically investigated for a series of nuclear reactions with light projectiles with the help of the isospin-dependent quantum molecular dynamics model. The relationship between the binding energy per nucleon of the projectiles and the strength of the neutron-proton HBT at small relative momentum has been obtained. Results show that neutron-proton HBT results are sensitive to the binding energy per nucleon
Clark, Michael D; Morris, Kenneth R; Tomassone, Maria Silvina
2017-09-12
We present a novel simulation-based investigation of the nucleation of nanodroplets from solution and from vapor. Nucleation is difficult to measure or model accurately, and predicting when nucleation should occur remains an open problem. Of specific interest is the "metastable limit", the observed concentration at which nucleation occurs spontaneously, which cannot currently be estimated a priori. To investigate the nucleation process, we employ gauge-cell Monte Carlo simulations to target spontaneous nucleation and measure thermodynamic properties of the system at nucleation. Our results reveal a widespread correlation over 5 orders of magnitude of solubilities, in which the metastable limit depends exclusively on solubility and the number density of generated nuclei. This three-way correlation is independent of other parameters, including intermolecular interactions, temperature, molecular structure, system composition, and the structure of the formed nuclei. Our results have great potential to further the prediction of nucleation events using easily measurable solute properties alone and to open new doors for further investigation.
International Nuclear Information System (INIS)
Schleier, W.; Besold, G.; Heinz, K.
1992-01-01
The authors study the applicability of parallelized/vectorized Monte Carlo (MC) algorithms to the simulation of domain growth in two-dimensional lattice gas models undergoing an ordering process after a rapid quench below an order-disorder transition temperature. As examples they consider models with 2 x 1 and c(2 x 2) equilibrium superstructures on the square and rectangular lattices, respectively. They also study the case of phase separation ('1 x 1' islands) on the square lattice. A generalized parallel checkerboard algorithm for Kawasaki dynamics is shown to give rise to artificial spatial correlations in all three models. However, only if superstructure domains evolve do these correlations modify the kinetics by influencing the nucleation process and result in a reduced growth exponent compared to the value from the conventional heat bath algorithm with random single-site updates. In order to overcome these artificial modifications, two MC algorithms with a reduced degree of parallelism ('hybrid' and 'mask' algorithms, respectively) are presented and applied. As the results indicate, these algorithms are suitable for the simulation of superstructure domain growth on parallel/vector computers. 60 refs., 10 figs., 1 tab
Directory of Open Access Journals (Sweden)
Gang-Jin Wang
2014-01-01
Full Text Available We supply a new perspective to describe and understand the behavior of cross-correlations between energy and emissions markets. Namely, we investigate cross-correlations between oil and gas (Oil-Gas, oil and CO2 (Oil-CO2, and gas and CO2 (Gas-CO2 based on fractal and multifractal analysis. We focus our study on returns of the oil, gas, and CO2 during the period of April 22, 2005–April 30, 2013. In the empirical analysis, by using the detrended cross-correlation analysis (DCCA method, we find that cross-correlations for Oil-Gas, Oil-CO2, and Gas-CO2 obey a power-law and are weakly persistent. Then, we adopt the method of DCCA cross-correlation coefficient to quantify cross-correlations between energy and emissions markets. The results show that their cross-correlations are diverse at different time scales. Next, based on the multifractal DCCA method, we find that cross-correlated markets have the nonlinear and multifractal nature and that the multifractality strength for three cross-correlated markets is arranged in the order of Gas-CO2 > Oil-Gas > Oil-CO2. Finally, by employing the rolling windows method, which can be used to investigate time-varying cross-correlation scaling exponents, we analyze short-term and long-term market dynamics and find that the recent global financial crisis has a notable influence on short-term and long-term market dynamics.
Beam energy and centrality dependence of two-pion Bose-Einstein correlations at SPS energies
Czech Academy of Sciences Publication Activity Database
Adamová, Dagmar; Agakichiev, G.; Appelshäuser, H.; Belaga, V.; Braun-Munzinger, P.; Campagnolo, R.; Castillo, A.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kushpil, Vasilij; Lenkeit, B.; Ludolphs, W.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Musa, L.; Panebrattsev, Yu.; Petchenova, O.; Petráček, Vojtěch; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Rehak, P.; Richter, M.; Sako, H.; Schmitz, W.; Schukraft, J.; Sedykh, S.; Seipp, W.; Sharma, A.; Shimansky, S.; Slívová, J.; Specht, H. J.; Stachel, J.; Šumbera, Michal; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Windelband, B.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V. V.
2003-01-01
Roč. 714, 1/2 (2003), s. 124-144 ISSN 0375-9474 R&D Projects: GA ČR GA202/03/0879; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : two-pion correlation function * heavy-ion collisions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.761, year: 2003
Energy Technology Data Exchange (ETDEWEB)
Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)
2015-08-01
Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.
Riem, N; Boet, S; Bould, M D; Tavares, W; Naik, V N
2012-11-01
Both technical skills (TS) and non-technical skills (NTS) are key to ensuring patient safety in acute care practice and effective crisis management. These skills are often taught and assessed separately. We hypothesized that TS and NTS are not independent of each other, and we aimed to evaluate the relationship between TS and NTS during a simulated intraoperative crisis scenario. This study was a retrospective analysis of performances from a previously published work. After institutional ethics approval, 50 anaesthesiology residents managed a simulated crisis scenario of an intraoperative cardiac arrest secondary to a malignant arrhythmia. We used a modified Delphi approach to design a TS checklist, specific for the management of a malignant arrhythmia requiring defibrillation. All scenarios were recorded. Each performance was analysed by four independent experts. For each performance, two experts independently rated the technical performance using the TS checklist, and two other experts independently rated NTS using the Anaesthetists' Non-Technical Skills score. TS and NTS were significantly correlated to each other (r=0.45, P<0.05). During a simulated 5 min resuscitation requiring crisis resource management, our results indicate that TS and NTS are related to one another. This research provides the basis for future studies evaluating the nature of this relationship, the influence of NTS training on the performance of TS, and to determine whether NTS are generic and transferrable between crises that require different TS.
van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
International Nuclear Information System (INIS)
Aggelen, Helen van; Yang, Yang; Yang, Weitao
2014-01-01
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H 2 , and eliminates delocalization errors in H 2 + and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R −6 asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations
International Nuclear Information System (INIS)
Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing
2015-04-01
With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.
Low-energy moments of non-diagonal quark current correlators at four loops
International Nuclear Information System (INIS)
Maier, A.
2015-06-01
We complete the leading four physical terms in the low-energy expansions of heavy-light quark current correlators at four-loop order. As a by-product we reproduce the corresponding top-induced non-singlet correction to the electroweak ρ parameter.
Correlation between X-ray and high energy gamma-ray emission form Cygnus X-3
International Nuclear Information System (INIS)
Weekes, T.C.; Danaher, S.; Fegan, D.J.; Porter, N.A.
1981-01-01
In May-June 1980, the 4.8 hour modulated X-ray flux from Cygnus X-3 underwent a significant change in the shape of the light curve; this change correlates with the peak in the high-energy (E > 2 x 10 12 eV) gamma ray emission at the same epoch. (orig.)
Communication: Thermodynamics of condensed matter with strong pressure-energy correlations
DEFF Research Database (Denmark)
Ingebrigtsen, Trond; Bøhling, Lasse; Schrøder, Thomas
2012-01-01
We show that for any liquid or solid with strong correlation between its NVT virial and potential-energy equilibrium fluctuations, the temperature is a product of a function of excess entropy per particle and a function of density, T = f(s)h(ρ). This implies that (1) the system's isomorphs (curve...
Correlation of the highest-energy cosmic rays with nearby extragalactic objects
Pierre Auger Collaboration, [No Value; Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez, C.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argirò, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Blümer, H.; Bohácová, M.; Bonifazi, C.; Bonino, R.; Boratav, M.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazón-Boado, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clark, P. D. J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Cronin, J.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Dobrigkeit, C.; D'Olivo, J. C.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; DuVernois, M. A.; Engel, R.; Epele, L.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fernández, A.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fonte, R.; Fracchiolla, C. E.; Fulgione, W.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Herrero, R.; Gonçalves, P.; Gonçalves do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; González, M.; Góra, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Huege, T.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Kopmann, A.; Krieger, A.; Krömer, O.; Kümpel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; Le Brun, P.; Lee, J.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Lozano Bahilo, J.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Malek, M.; Mancarella, G.; Manceñido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Martello, D.; Martínez, J.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nguyen Thi, T.; Nierstenhöfer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschläger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ostapchenko, S.; Otero, L.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pçkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Ngoc, DiepPham; Ngoc, DongPham; Pham Thi, T. N.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Porter, T. A.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Rídky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Rodríguez Frías, D.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Ros, G.; Rosado, J.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovánek, P.; Schüssler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Smetniansky De Grande, N.; Smialkowski, A.; Smída, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Tcaciuc, R.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torresi, D.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Tunnicliffe, V.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vázquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Waldenmaier, T.; Walker, P.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Xu, J.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.
2007-01-01
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 × 1019 electron volts and the positions of active galactic nuclei (AGN) lying within ~75 megaparsecs. We rejected the
Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei
Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiro, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Donato, C.; Bg, S. J. de Jong; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Epele, L.; Escobar, C. O.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fracchiolla, C. E.; Fulgione, W.; Garcia, B.; Gaimez, D. Garcia; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Albarracin, F. Gomez; Berisso, M. Gomez; Herrero, R. Gomez; Goncalves, P.; do Amaral, M. Goncalves; Gonzalez, D.; Gonzalezc, J. G.; Gonzalez, M.; Gora, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Huege, T.; Hussain, M.; Larlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koanga, V. -H.; Krieger, A.; Kroemer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; LeBrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Lopez, R.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Aguera, A. Lopez; Bahilo, J. Lozano; Garcia, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Mancenido, M. E.; Mandatat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martinez, J.; Bravo, O. Martinez; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Roverok, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovanek, P.; Schuessler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; De Grande, N. Smetniansky; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdes; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.
Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
Directory of Open Access Journals (Sweden)
Maassen Maria Alexandra
2017-07-01
Full Text Available The global economic system is facing multiple challenges in terms of social development, technology and innovation, as well as sustainability needs. As a result, the value of existing assets is changing globally depending on the scarcity, necessity and effects on the business field leading to increased prices of traditional sources of energy and increased competition in the economic field. Thus, the EU energy market has progressed in reducing its dependence on external energy sourcing, by increasing production of renewable energy, such as wind or solar, as well as by further integration of the electric grid. Based on the Pearson coefficient this article intends to research the correlations between the economic, energy and house prices in recent years and the future possible impacts depending on their evolution. For example, gas prices in the past decade increasing household costs in most countries due to the dependence on third parties for energy, lead to the need of increasing the share of renewable energy in total energy consumption, which have consequently decreased electricity prices since 2008. However, this development has still not solved the additional costs issue of households due to the new technologies implemented although wind and solar energy receive in general low margins. Such energy issues, as well as the increased housing prices after the financial crisis in 2008 have caused on their own an additional burden on the economy and households spending income in the next years following.
CGC/saturation approach for soft interactions at high energy: long range rapidity correlations
Energy Technology Data Exchange (ETDEWEB)
Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)
2015-11-15
In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)
Ab initio molecular dynamics simulations of low energy recoil events in MgO
International Nuclear Information System (INIS)
Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory
2017-01-01
In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.
Angular correlation between IceCube high-energy starting events and starburst sources
Energy Technology Data Exchange (ETDEWEB)
Moharana, Reetanjali; Razzaque, Soebur, E-mail: moharana.reetanjali@mail.huji.ac.il, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)
2016-12-01
Starburst galaxies and star-forming regions in the Milkyway, with high rate of supernova activities, are candidate sources of high-energy neutrinos. Using a gamma-ray selected sample of these sources we perform statistical analysis of their angular correlation with the four-year sample of high-energy starting events (HESE), detected by the IceCube Neutrino Observatory. We find that the two samples (starburst galaxies and local star-forming regions) are correlated with cosmic neutrinos at ∼ (2–3)σ (pre-trial) significance level, when the full HESE sample with deposited energy ∼> 20 TeV is considered. However when we consider the HESE sample with deposited energy ∼> 60 TeV, which is almost free of atmospheric neutrino and muon backgrounds, the significance of correlation decreased drastically. We perform a similar study for Galactic sources in the 2nd Catalog of Hard Fermi -LAT Sources (2FHL, >50 GeV) catalog as well, obtaining ∼ (2–3)σ (pre-trial) correlation, however the significance of correlation increases with higher cutoff energy in the HESE sample for this case. We also fit available gamma-ray data from these sources using a pp interaction model and calculate expected neutrino fluxes. We find that the expected neutrino fluxes for most of the sources are at least an order of magnitude lower than the fluxes required to produce the HESE neutrinos from these sources. This puts the starburst sources being the origin of the IceCube HESE neutrinos in question.
Growing correlation length on cooling below the onset of caging in a simulated glass-forming liquid
DEFF Research Database (Denmark)
Lačević, N.; Starr, F. W.; Schrøder, Thomas
2002-01-01
We present a calculation of a fourth-order, time-dependent density correlation function that measures higher-order spatiotemporal correlations of the density of a liquid. From molecular dynamics simulations of a glass-forming Lennard-Jones liquid, we find that the characteristic length scale...... of the dynamics of the liquid in the alpha-relaxation regime....
SIMULATION OF THE SYSTEMS WITH RENEWABLE ENERGY SOURCES USING HOMER SOFTWARE
Directory of Open Access Journals (Sweden)
FIRINCĂ S.D.
2015-12-01
Full Text Available This paper simulates by using the Homer software, distributed energy systems with capacity below 1 MW. Among the renewable energy sources are used wind and solar energy. For photovoltaic panels, we are considering two situations: fixed panels, oriented at 45 ° and panels with tracking system with two axis. Simulation results contain information regarding operation hours of the system throughout the year, energy produced from the renewable energy sources, energy consumption for the load, and excess of electrical energy. The Homer software also allows an economic analysis of these systems.
Correlation of etho-social and psycho-social data from "Mars-500" interplanetary simulation
Tafforin, Carole; Vinokhodova, Alla; Chekalina, Angelina; Gushin, Vadim
2015-06-01
Studies of social groups under isolation and confinement for the needs of space psychology were mostly limited by questionnaires completed with batteries of subjective tests, and they needed to be correlated with video recordings for objective analyses in space ethology. The aim of the present study is to identify crewmembers' behavioral profiles for better understanding group dynamics during a 520-day isolation and confinement of the international crew (n=6) participating to the "Mars-500" interplanetary simulation. We propose to correlate data from PSPA (Personal Self-Perception and Attitudes) computerized test, sociometric questionnaires and color choices test (Luscher test) used to measure anxiety levels, with data of video analysis during group discussion (GD) and breakfast time (BT). All the procedures were implemented monthly - GD, or twice a month - BT. Firstly, we used descriptive statistics for displaying quantitative subjects' behavioral profiles, supplied with a software based-solution: the Observer XT®. Secondly, we used Spearmen's nonparametric correlation analysis. The results show that for each subject, the level of non-verbal behavior ("visual interactions", "object interactions", "body interaction", "personal actions", "facial expressions", and "collateral acts") is higher than the level of verbal behavior ("interpersonal communication in Russian", and "interpersonal communication in English"). From the video analyses, dynamics profiles over months are different between the crewmembers. From the correlative analyses, we found highly negative correlations between anxiety and interpersonal communications; and between the sociometric parameter "popularity in leisure environment" and anxiety level. We also found highly significant positive correlations between the sociometric parameter "popularity in working environment" and interpersonal communications, and facial expressions; and between the sociometric parameter "popularity in leisure environment
Recent improvements in size effects correlations for DBTT and upper shelf energy of ferritic steels
International Nuclear Information System (INIS)
Kumar, A.S.; Louden, B.S.; Garner, F.A.; Hamilton, M.L.
1992-01-01
Currently available correlations for the effects of specimen size on the USE were developed for relatively ductile steels and will not serve as well when the steels become embrittled. Size effects correlations were developed recently for the impact properties of less ductile HT9 to be applied to other initially more ductile steels as they lose their ductility during irradiation. These new correlations successfully predict the ductile brittle transition temperature (DBTT) and the upper shelf energy (USE) of full size Charpy specimens based on subsize specimen data. The new DBTT and the USE correlations were tested against published experimental data on other ferritic steels and shown to perform successfully at lower USE particularly when both precracked and notched only specimens were employed
Rapidity correlations in inclusive two-particle production at storage ring energies
Dibon, Heinz; Gottfried, Christian; Nefkens, B M K; Neuhofer, G; Niebergall, F; Regler, Meinhard; Schmidt-Parzefall, W; Schubert, K R; Schumacher, P E; Winter, Klaus
1973-01-01
Inclusive two-particle production in the reaction pp to gamma +ch+ (anything) has been measured at the CERN ISR for four energies ( square root s=23, 30.5, 45, and 53 GeV) at two production angles of the charged particles (ch) and at eight production angles of the gamma -rays. The rapidity correlation of the two particles is weak and of short range. The peak correlation is sigma /sub inel/(d/sup 2/ sigma /sub gamma ch//d sigma /sub gamma /d sigma /sub ch/)-1=0.62+or-0.08, the correlation range (y/sub gamma /-y/sub ch/)=1.17+or-0.05, independently of s. The phi correlation extends over a wide gap in rapidity; its strength is increasing with increasing transverse momentum. (7 refs).
Radio-detection of ultra-high energy cosmic rays. Analysis, simulation and interpretation
International Nuclear Information System (INIS)
Marin, V.
2011-01-01
Despite the use of giant detectors suitable for low flux beyond 1018 eV, the origin of ultra energy cosmic rays, remains unclear. In the 60', the radio-detection of air shower is proposed as a complementary technique to the ground particle detection and to the fluorescence method. A revival of this technique took place in the 2000's in particular with CODALEMA experiment. The first results show both a strong dependence of the signal to the geomagnetic field and a strong correlation between energy estimated by the radio-detectors and by particle detectors. The new generation of autonomous detectors created by the CODALEMA collaboration indicates that it is now possible to detect air showers autonomously. Due to the expected performances (a nearly 100% duty cycle, a signal generated by the complete shower, simplicity and low cost of a detector), it is possible to consider to deploy this technique for the future large arrays. In order to interpret experimental data, a simulation tool, SELFAS, is developed in this wok. This simulation code allowed us to highlight the existence of a second radio-emission mechanism. A first interpretation of the longitudinal profile as an observable of a privileged instant of the shower development is also proposed, which could give an estimation of the nature of the primary. (author)
International Nuclear Information System (INIS)
Frauke, A.; Wilkens, J.J.; Villagrasa, C.; Rabus, H.
2015-01-01
The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometer scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant-4 Monte Carlo tool-kit with the Geant-4-DNA processes. Based on the energy transfer points - recorded with nanometer resolution - we investigated parametrizations of overall properties of ion track structure. Three different track structure parametrizations have been developed using the distances to the 10 next neighbouring ionizations, the radial energy distribution and ionisation cluster size distributions. These parametrizations of nanometer-scale track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. (authors)
International Nuclear Information System (INIS)
Greenwood, L.R.; Stoller, R.E.
1998-01-01
The results of molecular dynamics (MD) displacement cascade simulations in bcc iron have been used to obtain effective cross sections for two measures of primary damage production: (1) the number of surviving point defects expressed as a fraction of the displacements calculated using the standard secondary displacement model of Norgett, Robinson, and Torrens (NRT), and (2) the fraction of the surviving interstitials contained in clusters that formed during the cascade event. Primary knockon atom spectra for iron obtained from the SPECTER code have been used to weight these MD-based damage production cross sections in order to obtain spectrally-averaged values for several locations in commercial fission reactors and materials test reactors. An evaluation of these results indicates that neutron energy spectrum differences between the various enviromnents do not lead to significant differences between the average primary damage formation parameters. In particular, the defect production cross sections obtained for PWR and BWR neutron spectra were not significantly different. The variation of the defect production cross sections as a function of depth into the reactor pressure vessel wall is used as a sample application of the cross sections. A slight difference between the attenuation behavior of the PWR and BWR was noted; this difference could be explained by a subtle difference in the energy dependence of the neutron spectra. Overall, the simulations support the continued use of dpa as a damage correlation parameter
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-01
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-21
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
DEFF Research Database (Denmark)
Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne
2013-01-01
a thermal air flow simulation program - Into the energy systems analysis model. Descriptions of the energy systems in two geographical locations, i.e. Mexico and Denmark, are set up as inputs. Then, the assessment is done by calculating the energy impacts as well as environmental benefits in the energy...
The difficulty with correlations: Energy expenditure and brain mass in bats.
McNab, Brian K; Köhler, Meike
2017-10-01
Brain mass has been suggested to determine a mammal's energy expenditure. This potential dependence is examined in 48 species of bats. A correlation between characters may be direct or derived from shared correlations with intervening factors without a direct interaction. Basal rate of metabolism in these bats increases with brain mass: large brains are more expensive than small brains, and both brain mass and basal rate increase with body mass. Basal rate and brain mass also correlate with food habits in bats. Mass-independent basal rate weakly correlates with mass-independent brain mass, the correlation only accounting for 12% of the variation in basal rate, which disappears when the combined effects of body mass and food habits are deleted. The correlation between basal rate and brain mass seen in this and other studies usually accounts for bats. Most biological correlations are complicated and must be examined in detail before assurance can be given as to their bases. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Elyutin, P V; Rubtsov, A N
2008-01-01
The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence
Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2015-01-01
This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790
Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang
2017-12-01
The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.
The Multiscale Fluctuations of the Correlation between Oil Price and Wind Energy Stock
Directory of Open Access Journals (Sweden)
Shupei Huang
2016-06-01
Full Text Available Wind energy is considered a clear and sustainable substitution for fossil fuel, and the stock index of the wind energy industry is closely related to the oil price fluctuation. Their relationship is characterized by multiscale and time-varying features based on a variety of stakeholders who have different objectives within various time horizons, which makes it difficult to identify the factor in which time scale could be the most influential one in the market. Aiming to explore the correlation between oil price and the wind energy stock index from the time–frequency domain in a dynamic perspective, we propose an algorithm combining the wavelet transform, complex network, and gray correlation analyses and choose the Brent oil price and the international securities exchange (ISE global wind energy index from January 2006 to October 2015 in daily frequency as data sample. First, we define the multiscale conformation by a set of fluctuation information with different time horizons to represent the fluctuation status of the correlation of the oil–wind nexus rather than by a single original correlation value. Then, we transform the multiscale conformation evolution into a network model, and only 270 multiscale conformations and 710 transmissions could characterize 2451 data points. We find that only 30% of conformations and transmissions work as a backbone of the entire correlation series; through these major conformations, we identify that the main factor that could influence the oil–wind nexus are long-term components, such as policies, the status of the global economy and demand–supply issues. In addition, there is a clustering effect and transmissions among conformations that mainly happen inside clusters and rarely among clusters, which means the interaction of the oil–wind nexus is stable over a short period of time.
Energy Technology Data Exchange (ETDEWEB)
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Evolution of pressures and correlations in the glasma produced in high energy nuclear collisions
Ruggieri, M.; Liu, J. H.; Oliva, L.; Peng, G. X.; Greco, V.
2018-04-01
We consider the SU(2) glasma with Gaussian fluctuations and study its evolution by means of classical Yang-Mills equations solved numerically on a lattice. Neglecting in this first study the longitudinal expansion, we follow the evolution of the pressures of the system and compute the effect of the fluctuations in the early stage up to t ≈2 fm /c , that is the time range in which the glasma is relevant for high energy collisions. We measure the ratio of the longitudinal over the transverse pressure, PL/PT, and we find that unless the fluctuations carry a substantial amount of the energy density at the initial time, they do not change significantly the evolution of PL/PT in the early stage and that the system remains quite anisotropic. We also measure the longitudinal fields correlators both in the transverse plane and along the longitudinal direction: while at initial time fields appear to be anticorrelated in the transverse plane, this anticorrelation disappears in the very early stage, and the correlation length in the transverse plane increases. On the other hand, we find a dependence of the gauge invariant correlator on the longitudinal coordinate, which we interpret as a partial loss of correlation induced by the dynamics that we dub the gauge invariant string breaking. We finally study the effect of fluctuations on the longitudinal correlations: we find that string breaking is accelerated by the fluctuations and waiting for a sufficiently long time fluctuations lead to the complete breaking of the color strings.
Multiparticle Collectivity from Initial State Correlations in High Energy Proton-Nucleus Collisions
Dusling, Kevin; Mace, Mark; Venugopalan, Raju
2018-01-01
Qualitative features of multiparticle correlations in light-heavy ion (p +A ) collisions at RHIC and LHC are reproduced in a simple initial state model of partons in the projectile coherently scattering off localized domains of color charge in the heavy nuclear target. These include (i) the ordering of the magnitudes of the azimuthal angle n th Fourier harmonics of two-particle correlations vn{2 }, (ii) the energy and transverse momentum dependence of the four-particle Fourier harmonic v2{4 }, and (iii) the energy dependence of four-particle symmetric cumulants measuring correlations between different Fourier harmonics. Similar patterns are seen in an Abelian version of the model, where we observe v2{2 }>v2{4 }≈v2{6 }≈v2{8 } of two, four, six, and eight particle correlations. While such patterns are often interpreted as signatures of collectivity arising from hydrodynamic flow, our results provide an alternative description of the multiparticle correlations seen in p +A collisions.
Directory of Open Access Journals (Sweden)
Kyle H. Elliott
2013-04-01
Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia. Because BMR and daily energy expenditure (DEE are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4 and triiodothyronine (T3 with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR. RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.
Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin
2010-05-01
This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-03-01
This report summarizes the fiscal 1999 research result on simulation analysis on petroleum substituting energy. The simulation model for analyzing social and energy supply and demand structures comprehensively was established by improving the China and Korea models developed in fiscal 1998 through a use of input-output tables. In simulation of the China model, the reference case showed that a primary energy demand in 2030 reaches 3.3 times as much as that in 1997 (2.9 times in CO{sub 2}), resulting in serious energy and environment problems. Reduction of primary energy and CO{sub 2} is possible by promotion of energy saving and introduction of a carbon tax. In simulation of the Korea model, the reference case showed that CO{sub 2} emission in 2030 reaches 2.2 times as much as that in 1997, showing an annual increase rate of 2.4%. The annual increase rate can be reduced by introducing a carbon tax. The simulation model for automobile energy was also established for major countries in Asia. Automobile energy consumption increases with diffusion of automobiles until 2030 gradually. In particular, the consumption in China reaches that in Japan in 2010. (NEDO)
Directory of Open Access Journals (Sweden)
Sejdić Ervin
2010-02-01
Full Text Available Abstract Background Stride interval persistence, a term used to describe the correlation structure of stride interval time series, is thought to provide insight into neuromotor control, though its exact clinical meaning has not yet been realized. Since human locomotion is shaped by energy efficient movements, it has been hypothesized that stride interval dynamics and energy expenditure may be inherently tied, both having demonstrated similar sensitivities to age, disease, and pace-constrained walking. Findings This study tested for correlations between stride interval persistence and measures of energy expenditure including mass-specific gross oxygen consumption per minute (, mass-specific gross oxygen cost per meter (VO2 and heart rate (HR. Metabolic and stride interval data were collected from 30 asymptomatic children who completed one 10-minute walking trial under each of the following conditions: (i overground walking, (ii hands-free treadmill walking, and (iii handrail-supported treadmill walking. Stride interval persistence was not significantly correlated with (p > 0.32, VO2 (p > 0.18 or HR (p > 0.56. Conclusions No simple linear dependence exists between stride interval persistence and measures of gross energy expenditure in asymptomatic children when walking overground and on a treadmill.
Masubuchi, Yuichi; Pandey, Ankita; Amamoto, Yoshifumi; Uneyama, Takashi
2017-11-01
Although it has not been frequently discussed, contributions of the orientational cross-correlation (OCC) between entangled polymers are not negligible in the relaxation modulus. In the present study, OCC contributions were investigated for 4- and 6-arm star-branched and H-branched polymers by means of multi-chain slip-link simulations. Owing to the molecular-level description of the simulation, the segment orientation was traced separately for each molecule as well as each subchain composing the molecules. Then, the OCC was calculated between different molecules and different subchains. The results revealed that the amount of OCC between different molecules is virtually identical to that of linear polymers regardless of the branching structure. The OCC between constituent subchains of the same molecule is significantly smaller than the OCC between different molecules, although its intensity and time-dependent behavior depend on the branching structure as well as the molecular weight. These results lend support to the single-chain models given that the OCC effects are embedded into the stress-optical coefficient, which is independent of the branching structure.
Correlation of high energy muons with primary composition in extensive air shower
Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.
1985-01-01
An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.
Constraint methods that accelerate free-energy simulations of biomolecules.
Perez, Alberto; MacCallum, Justin L; Coutsias, Evangelos A; Dill, Ken A
2015-12-28
Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.
Li, Ming-Hua; Zhu, Weishan; Zhao, Dong
2018-05-01
The gas is the dominant component of baryonic matter in most galaxy groups and clusters. The spatial offsets of gas centre from the halo centre could be an indicator of the dynamical state of cluster. Knowledge of such offsets is important for estimate the uncertainties when using clusters as cosmological probes. In this paper, we study the centre offsets roff between the gas and that of all the matter within halo systems in ΛCDM cosmological hydrodynamic simulations. We focus on two kinds of centre offsets: one is the three-dimensional PB offsets between the gravitational potential minimum of the entire halo and the barycentre of the ICM, and the other is the two-dimensional PX offsets between the potential minimum of the halo and the iterative centroid of the projected synthetic X-ray emission of the halo. Haloes at higher redshifts tend to have larger values of rescaled offsets roff/r200 and larger gas velocity dispersion σ v^gas/σ _{200}. For both types of offsets, we find that the correlation between the rescaled centre offsets roff/r200 and the rescaled 3D gas velocity dispersion, σ _v^gas/σ _{200} can be approximately described by a quadratic function as r_{off}/r_{200} ∝ (σ v^gas/σ _{200} - k_2)2. A Bayesian analysis with MCMC method is employed to estimate the model parameters. Dependence of the correlation relation on redshifts and the gas mass fraction are also investigated.
Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M
2014-03-29
Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. Copyright © 2014 Elsevier Inc. All rights reserved.
Quantum Simulations of Low Temperature High Energy Density Matter
National Research Council Canada - National Science Library
Voth, Gregory
2004-01-01
.... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...
Corso, Ruggero M; Cattano, Davide; Buccioli, Matteo; Carretta, Elisa; Maitan, Stefano
2016-01-01
Difficult airway (DA) occurs frequently (5-15%) in clinical practice. The El-Ganzouri Risk Index (EGRI) has a high sensitivity for predicting a difficult intubation (DI). However difficult mask ventilation (DMV) was never included in the EGRI. Since DMV was not included in the EGRI assessment, and obstructive sleep apnea (OSA) is also correlated with DMV, a study correlating the prediction of DA and OSA (identified by STOP-Bang questionnaire, SB) seemed important. We accessed a database previously collected for a post analysis simulation of the airway difficulty predictivity of the EGRI, associated with normal and difficult airway, particularly DMV. As secondary aim, we measured the correlation between the SB prediction system and DA, compared to the EGRI. A total of 2747 patients were included in the study. The proportion of patients with DI was 14.7% (95% CI 13.4-16) and the proportion of patients with DMV was 3.42% (95% CI 2.7-4.1). The incidence of DMV combined with DI was (2.3%). The optimal cutoff value of EGRI was 3. EGRI registered also an higher ability to predict DMV (AUC=0.76 (95% CI 0.71-0.81)). Adding the SB variables in the logistic model, the AUC increases with the inclusion of "observed apnea" variable (0.83 vs. 0.81, p=0.03). The area under the ROC curve for the patients with DI and DMV was 0.77 (95% CI 0.72-0.83). This study confirms that the incidence of DA is not negligible and suggests the use of the EGRI as simple bedside predictive score to improve patient safety. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Corso, Ruggero M; Cattano, Davide; Buccioli, Matteo; Carretta, Elisa; Maitan, Stefano
2016-01-01
Difficult airway (DA) occurs frequently (5-15%) in clinical practice. The El-Ganzouri Risk Index (EGRI) has a high sensitivity for predicting a difficult intubation (DI). However difficult mask ventilation (DMV) was never included in the EGRI. Since DMV was not included in the EGRI assessment, and obstructive sleep apnea (OSA) is also correlated with DMV, a study correlating the prediction of DA and OSA (identified by STOP-Bang questionnaire, SB) seemed important. We accessed a database previously collected for a post analysis simulation of the airway difficulty predictivity of the EGRI, associated with normal and difficult airway, particularly DMV. As secondary aim, we measured the correlation between the SB prediction system and DA, compared to the EGRI. A total of 2747 patients were included in the study. The proportion of patients with DI was 14.7% (95% CI 13.4-16) and the proportion of patients with DMV was 3.42% (95% CI 2.7-4.1). The incidence of DMV combined with DI was (2.3%). The optimal cutoff value of EGRI was 3. EGRI registered also an higher ability to predict DMV (AUC=0.76 (95% CI 0.71-0.81)). Adding the SB variables in the logistic model, the AUC increases with the inclusion of "observed apnea" variable (0.83 vs. 0.81, p=0.03). The area under the ROC curve for the patients with DI and DMV was 0.77 (95% CI 0.72-0.83). This study confirms that the incidence of DA is not negligible and suggests the use of the EGRI as simple bedside predictive score to improve patient safety. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
High Energy Ion Bombardment Simulation Facility at the University of Pittsburgh
International Nuclear Information System (INIS)
McGruer, J.N.; Choyke, W.J.; Doyle, N.J.; Spitznagel, J.A.
1975-01-01
The High Energy Ion Bombardment Simulation (HEIBS) Facility located at the University of Pittsburgh is now operational. The E-22 tandem accelerator of the Nuclear Physics Laboratory, fitted with a UNIS source, provides the heavy high energy ions. An auxiliary Van de Graaff accelerator is used for the simultaneous production of He ions. Special features of the simulation laboratory are reported
Wave energy level and geographic setting correlate with Florida beach water quality.
Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A
2016-03-15
Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Correlation Functions of the Energy Momentum Tensor on Spaces of Constant Curvature
Osborn, H
2000-01-01
An analysis of one and two point functions of the energy momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of $O(d-1,2)$, for two point functions of vector currents is derived in detail and extended to the energy momentu...
DEFF Research Database (Denmark)
Li, Rongling; Wei, Feng; Zhao, Yang
2017-01-01
Occupant behaviour has a substantial impact on the prediction of building energy performance. To capture this impact, co-simulation is considered an effective approach. It is still a new method in need of more development. In this study, a co-simulation framework is established to couple Energy......Plus with Java via Functional Mock-up Interface (FMI) using the EnergyPlusToFMU software package. This method is applied to a case study of a single occupant office with control of lighting, plug load and thermostat. Two control scenarios are studied. These are occupancy and occupant behaviour based control (OC...
Lee, Tsung-Han
improved DMFT to describe a Mott insulator containing spin-propagating and chargeless fermionic excitations, spinons. We found the spinon Fermi-liquid, in the Mott insulating phase, is immiscible to the electron Fermi-liquid, in the metallic phase, due to the strong scattering between spinons in a metal. Third, we proposed a new approach within the slave-boson (Gutzwiller) framework that allows to describe both the low energy quasiparticle excitation and the high energy Hubbard excitation, which cannot be captured within the original slave-boson framework. In the second part, we applied LDA+RISB to realistic materials modeling. First, we tested the accuracy of LDA+RISB on predicting the structure of transition metal compounds, CrO, MnO, FeO, CoO, CoS, and CoSe. Our results display remarkable agreements with the experimental observations. Second, we applied LDA+RISB to analyze the nature of the Am-O chemical bonding in the CsAm(CrO 4)2 crystal. Our results indicate the Am-O bonding has strongly covalent character, and they also address the importance of the correlation effects to describe the experimentally observed electronic structure. In summary, we proposed three extensions within DMFT and RISB framework, which allow to investigate the domain wall structure in metal-Mott insulator coexistence regime, the metal-to-Mott-insulator transition with spinons excitation in the Mott-insulating phase, and the Hubbard excitation within RISB approach. Furthermore, we demonstrated that LDA+RISB is a reliable approximation to the strongly correlated materials by applying it to the transition metal compounds and the Americian chromate compounds.
Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim
2017-12-01
We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.
Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.
2015-12-01
In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.
Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo
2017-03-01
Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.
Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo
2012-11-13
The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.
Energy efficient process planning based on numerical simulations
Neugebauer, Reimund; Hochmuth, C.; Schmidt, G.; Dix, M.
2011-01-01
The main goal of energy-efficient manufacturing is to generate products with maximum value-added at minimum energy consumption. To this end, in metal cutting processes, it is necessary to reduce the specific cutting energy while, at the same time, precision requirements have to be ensured. Precision is critical in metal cutting processes because they often constitute the final stages of metalworking chains. This paper presents a method for the planning of energy-efficient machining processes ...
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
Czech Academy of Sciences Publication Activity Database
Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav
2010-01-01
Roč. 6, č. 6 (2010), P06001/1-P06001/28 ISSN 1748-0221 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter methods * calorimeters * detector modelling and simulations * pattern recognition * cluster finding * calibration and fitting methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.148, year: 2010
Building Performance Simulation for Sustainable Energy Use in Buildings
Hensen, J.L.M.
2010-01-01
This paper aims to provide a general view of the background and current state of building performance simulation, which has the potential to deliver, directly or indirectly, substantial benefits to building stakeholders and to the environment. However the building simulation community faces many
International Nuclear Information System (INIS)
Walter, H.; Hofmann, R.
2011-01-01
This paper presents the results of a theoretical investigation on the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator (HRSG). The investigation was done for a vertical type natural circulation HRSG with 3 pressure stages under hot start-up and shutdown conditions. For the calculation of the flue gas-side heat transfer coefficient the well known correlations for segmented finned-tubes according to Schmidt, VDI and ESCOA TM (traditional and revised) as well as a new correlation, which was developed at the Institute for Energy Systems and Thermodynamics, are used. The simulation results show a good agreement in the overall behavior of the boiler between the different correlations. But there are still some important differences found in the detail analysis of the boiler behavior. - Research highlights: → Numerical simulation is performed to explore the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator. → Differences in the steam generator behavior are found. → In the worst case the boiler can lead to unfavorable operation conditions, e.g. reverse flow.
Correlations between the nuclear matter symmetry energy, its slope, and curvature
International Nuclear Information System (INIS)
Santos, B M; Delfino, A; Dutra, M; Lourenço, O
2015-01-01
By using point-coupling versions of finite range nuclear relativistic mean field models containing cubic and quartic self interactionsin the scalar field σ, a nonrelativistic limit is achieved. This approach allows for an analytical expression for the symmetry energy (J) as a function of its slope (L) in a unified form, namely, L = 3J + f(m*, ρ o , B o , K o ), where the quantities m*, p o , B o and K o are bulk parameters at the nuclear matter saturation density ρ o . This result establishes a linear correlation between L and J which is reinforced by exact relativistic calculations we have performed. An analogous analytical correlation can also be found for J, L and the symmetry energy curvature (K sym ). Based on these results, we propose a graphic constraint in L × J plane which finite range models should satisfy. (paper)
GW correlation effects on plutonium quasiparticle energies: Changes in crystal-field splitting
DEFF Research Database (Denmark)
Chantis, A.N.; Albers, R.C.; Svane, Axel
2009-01-01
We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GW method (QSGW). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centred cubic (fcc) unit cell. We span unit-cell volumes...... ranging from 10% greater than the equilibrium volume of the δ phase to 90% of the equivalent for the α phase of Pu. The selfconsistent GW quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends...... in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localisation of the f orbitals. We show that correlation effects narrow the f bands in two significantly different ways. Besides the expected narrowing of individual f bands (flatter dispersion), we find...
Energy Technology Data Exchange (ETDEWEB)
Meisel, D
1975-07-15
Recent experimental data concerning the rate constants for electron transfer reactions of organic systems in aqueous solutions and their equilibrium constants is examined for possible correlation. The data is correlated quite well by the Marcus theory, if a reorganization parameter, lambda, of 18 kcal/mole is used. Assuming that the only contribution to lambda is the free energy of rearrangement of the water molecules, an effective radius of 5 A for the reacting entities is estimated. For the zero free energy change reaction, i.e., electron exchange between a radical ion and its parent molecule, a rate constant of about 5 X 10/sup 7/ M/sup -1/ s/sup -1/ is predicted. (auth)
Energy-momentum tensor correlation function in Nf = 2 + 1 full QCD at finite temperature
Taniguchi, Yusuke; Ejiri, Shinji; Kanaya, Kazuyuki; Kitazawa, Masakiyo; Suzuki, Asobu; Suzuki, Hiroshi; Umeda, Takashi
2018-03-01
We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.
Energy-momentum tensor correlation function in Nf = 2 + 1 full QCD at finite temperature
Directory of Open Access Journals (Sweden)
Taniguchi Yusuke
2018-01-01
Full Text Available We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.
Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei
International Nuclear Information System (INIS)
Leitch, M.J.
1989-01-01
Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs
International Nuclear Information System (INIS)
Fyodorov, Yan V; Bouchaud, Jean-Philippe
2008-01-01
We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)
Energy Technology Data Exchange (ETDEWEB)
Fyodorov, Yan V [School of Mathematical Sciences, University of Nottingham, Nottingham NG72RD (United Kingdom); Bouchaud, Jean-Philippe [Science and Finance, Capital Fund Management 6-8 Bd Haussmann, 75009 Paris (France)
2008-09-19
We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)
Charged multiplicity distributions and correlations in e+e- annihilation at PETRA energies
International Nuclear Information System (INIS)
Braunschweig, W.; Gerhards, R.; Kirschfink, F.J.; Martyn, H.U.; Kolanoski, H.; Bowler, M.G.; Burrows, P.N.; Veitch, M.E.; Brandt, S.; Holder, M.; Caldwell, A.; Muller, D.; Ritz, S.; Strom, D.; Takashima, M.; Wu Saulan; Zobernig, G.
1989-01-01
We report on an analysis of the multiplicity distributions of charged particles produced in e + e - annihilation into hadrons at c.m. energies between 14 and 46.8 GeV. The charged multiplicity distributions of the whole event and single hemisphere deviate significantly from the Poisson distribution but follow approximate KNO scaling. We have also studied the multiplicity distributions in various rapidity intervals and found that they can be well described by the negative binomial distribution only for small central intervals. We have also analysed forward-backward multiplicity correlations for different energies and selections of particle charge and shown that they can be understood in terms of the fragmentation properties of the different quark flavours and by the production and decay of resonances. These correlations are well reproduced by the Lund string model. (orig.)
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-07
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.
Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas
Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu
2017-02-01
Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.
International Nuclear Information System (INIS)
Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo
2017-01-01
Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.
Patra, Abhilash; Jana, Subrata; Samal, Prasanjit
2018-04-01
The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.
International Nuclear Information System (INIS)
Jain, A.
1990-01-01
We report differential, integral, and momentum-transfer cross sections and the scattering length (A 0 ) for positron (e + )-argon scattering at low energies below the positronium formation threshold. An optical-potential approach is employed in which the repulsive Coulombic interaction is calculated exactly at the Hartree-Fock level and the attractive polarization and correlation effects are included approximately via a parameter-free positron correlation polarization (PCP) potential recently proposed by us. The PCP model is based on the correlation energy var-epsilon corr of one positron in a homogeneous electron gas; in the outside region, the var-epsilon corr is joined smoothly with the correct asymptotic form of the polarization interaction (-α 0 /2r 4 , where α 0 is the target polarizability) where they cross each other for the first time. The total optical potential of the e + -argon system is treated exactly in a partial-wave analysis to extract the scattering parameters. It is found that the PCP potential gives much better qualitative results, particularly for the differential cross sections and the scattering length, than the corresponding results obtained from an electron polarization potential used as such for the positron case. We also discuss the ''critical'' points (representing the minima in the differential scattering) in the low-energy e + -Ar scattering. The present results involve no fitting procedure
Reaction mechanism and nuclear correlations study by low energy pion double charge exchange
International Nuclear Information System (INIS)
Weinfeld, Z.
1993-06-01
In pion double-charge-exchange (DCX) reactions, a positive (negative) pion is incident on a nucleus and a negative (positive) pion emerges. These reactions are of fundamental interest since the process must involve at least two nucleons in order to conserve charge. Although two nucleon processes are present in many reactions they are usually masked by the dominant single nucleon processes. DCX is unique in that respect since it is a two nucleon process in lowest order and thus may be sensitive to two-nucleon correlations. Measurements of low energy pion double-charge-exchange reactions to the double-isobaric-analog-state (DIAS) and ground-state (GS) of the residual nucleus provide new means for studying nucleon-nucleon correlations in nuclei. At low energies (T π 7/2 shell at energies ranging from 25 to 65 MeV. Cross sections were measured on 42,44,48 Ca, 46,50 Ti and 54 Fe. The calcium isotopes make a good set of nuclei on which to study the effects of correlations in DCX reactions
Energy Technology Data Exchange (ETDEWEB)
Sobreira, F.; Rosenfeld, R. [Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Sao Paulo, SP (Brazil). Inst. Fisica Teorica; Simoni, F. de; Costa, L.A.N. da; Gaia, M.A.G.; Ramos, B.; Ogando, R.; Makler, M. [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ (Brazil)
2011-07-01
Full text: We study the cosmological constraints expected for the upcoming project Dark Energy Survey (DES) with the full functional form of the 2-point angular correlation function. The angular correlation function model applied in this work includes the effects of linear redshift-space distortion, photometric redshift errors (assumed to be Gaussian) and non-linearities prevenient from gravitational infall. The Fisher information matrix is constructed with the full covariance matrix, which takes the correlation between nearby redshift shells in a proper manner. The survey was sliced into 20 redshift shells in the range 0:4 {<=} z {<=} 1:40 with a variable angular scale in order to search only the scale around the signal from the baryon acoustic oscillation, therefore well within the validity of the non-linear model employed. We found that under those assumptions and with a flat {Lambda}CDM WMAP7 fiducial model, the DES will be able to constrain the dark energy equation of state parameter w with a precision of {approx} 20% and the cold dark matter with {approx} 11% when marginalizing over the other 25 parameters (bias is treated as a free parameter for each shell). When applying WMAP7 priors on {Omega}{sub baryon}, {Omega} c{sub dm}, n{sub s}, and HST priors on the Hubble parameter, w is constrained with {approx} 9% precision. This shows that the full shape of the angular correlation function with DES data will be a powerful probe to constrain cosmological parameters. (author)
Energy and polarization of the telluric field in correlation with seismic activity in Greece
Energy Technology Data Exchange (ETDEWEB)
Vargemezis, G.; Tsokas, G. N. [Geophysical Laboratory of Thessaloniki, Thessaloniki (Greece); Zlotnicki, J. [Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand (France)
2001-04-01
Many attempts have been made to disclose anomalous changes of the electromagnetic field in relation with tectonic earthquakes. It was tentatively developed a new approach based on the energy and polarity of the electric field, and apply this method to the seismicity in Greece. The study of the parameters of the horizontal electric field is realized in a time interval of five years. The data allows the study of long-term variations of the field. Further, it was examined the possible relation of the geoelectric activity with long distance seismicity (up to 500 km). The energy of the electric signal was estimated and correlated with the logarithm of the seismic moment (M{sub 0}). The values of the seismic moment estimated for each earthquake were summed for daily intervals, and the logarithm of the sum was computed. The same process was applied to the energy of the geoelectric field. Then, a correlation was attempted between the energy of the geoelectric field and the seismic moment referring to daily intervals. In two cases, changes in the energy of the horizontal geoelectric field were observed before the burst of the seismic activity. The energy of the telluric field increased several months before the burst of seismic activity and recovered right after the occurrence of the mainshocks. The hodograms of the horizontal geoelectric field show polarization changes regardless of the magnetic field. This is possibly attributed to the process of generation of electric currents before major earthquakes. Due to high and continuous regional seismicity in Greece, it was impossible to attribute the response of the polarization to the activation of specific seismic areas. It seems that the long-term energy variations of the horizontal geoelectric field as well as the polarization could be used in tandem with other possible precursors in order to contribute to earthquake prediction studies.
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
2003-01-01
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...
International Nuclear Information System (INIS)
Peterson, K.A.; Dunning, T.H. Jr.
1995-01-01
The hydrogen bond energy and geometry of the HF dimer have been investigated using the series of correlation consistent basis sets from aug-cc-pVDZ to aug-cc-pVQZ and several theoretical methods including Moller--Plesset perturbation and coupled cluster theories. Estimates of the complete basis set (CBS) limit have been derived for the binding energy of (HF) 2 at each level of theory by utilizing the regular convergence characteristics of the correlation consistent basis sets. CBS limit hydrogen bond energies of 3.72, 4.53, 4.55, and 4.60 kcal/mol are estimated at the SCF, MP2, MP4, and CCSD(T) levels of theory, respectively. CBS limits for the intermolecular F--F distance are estimated to be 2.82, 2.74, 2.73, and 2.73 A, respectively, for the same correlation methods. The effects of basis set superposition error (BSSE) on both the binding energies and structures have also been investigated for each basis set using the standard function counterpoise (CP) method. While BSSE has a negligible effect on the intramolecular geometries, the CP-corrected F--F distance and binding energy differ significantly from the uncorrected values for the aug-cc-pVDZ basis set; these differences decrease regularly with increasing basis set size, yielding the same limits in the CBS limit. Best estimates for the equilibrium properties of the HF dimer from CCSD(T) calculations are D e =4.60 kcal/mol, R FF =2.73 A, r 1 =0.922 A, r 2 =0.920 A, Θ 1 =7 degree, and Θ 2 =111 degree
Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems
Energy Technology Data Exchange (ETDEWEB)
Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger
2012-09-01
Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.
Performative building envelope design correlated to solar radiation and cooling energy consumption
Jacky, Thiodore; Santoni
2017-11-01
Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.
CURRENT SHEET ENERGETICS, FLARE EMISSIONS, AND ENERGY PARTITION IN A SIMULATED SOLAR ERUPTION
International Nuclear Information System (INIS)
Reeves, Katharine K.; Linker, Jon A.; Mikic, Zoran; Forbes, Terry G.
2010-01-01
We investigate coronal energy flow during a simulated coronal mass ejection (CME). We model the CME in the context of the global corona using a 2.5D numerical MHD code in spherical coordinates that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The simulation domain extends from 1 to 20 R s . To our knowledge, this is the first attempt to apply detailed energy diagnostics in a flare/CME simulation when these important terms are considered in the context of the MHD equations. We find that the energy conservation properties of the code are quite good, conserving energy to within 4% for the entire simulation (more than 6 days of real time). We examine the energy release in the current sheet as the eruption takes place, and find, as expected, that the Poynting flux is the dominant carrier of energy into the current sheet. However, there is a significant flow of energy out of the sides of the current sheet into the upstream region due to thermal conduction along field lines and viscous drag. This energy outflow is spatially partitioned into three separate components, namely, the energy flux flowing out the sides of the current sheet, the energy flowing out the lower tip of the current sheet, and the energy flowing out the upper tip of the current sheet. The energy flow through the lower tip of the current sheet is the energy available for heating of the flare loops. We examine the simulated flare emissions and energetics due to the modeled CME and find reasonable agreement with flare loop morphologies and energy partitioning in observed solar eruptions. The simulation also provides an explanation for coronal dimming during eruptions and predicts that the structures surrounding the current sheet are visible in X-ray observations.
Multi-Scale Simulation of High Energy Density Ionic Liquids
National Research Council Canada - National Science Library
Voth, Gregory A
2007-01-01
The focus of this AFOSR project was the molecular dynamics (MD) simulation of ionic liquid structure, dynamics, and interfacial properties, as well as multi-scale descriptions of these novel liquids (e.g...
Soft computing simulation tools for nuclear energy systems
International Nuclear Information System (INIS)
Kannan Balasubramanian, S.
2012-01-01
This chapter deals with simulation, a very powerful tool in designing, constructing and operating nuclear power generating facilities. There are very different types of power plants, and the examples mentioned in this chapter originate from experience with water cooled and water moderated thermal reactors, based on fission of uranium-235. Nevertheless, the methodological achievements in simulation mentioned below can definitely be used not only for this particular type of nuclear power generating reactor. Simulation means: investigation of processes in the time domain. We can calculate the characteristics and properties of different systems, e.g. we can design a bridge over a river, but if we calculate how it would respond to a thunderstorm with high winds, its movement can or can not evolve after a certain time into destructive oscillation - this type of calculations are called simulation
Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-03-01
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .
Elghali, Siddig
Middle East and North Africa countries have been criticized for failing to utilize foreign direct investment energy resources efficiently. The changing of energy resources environment of the past decades with its growing emphasis on the importance of imminent energy supply challenges require strategists to consider different types of energy resources investment to improve energy supply. One type of energy investment will show effectiveness and efficiency in utilizing foreign direct investment in exposing RE, fossil fuels, natural gas, and reducing CO2 emissions. The purpose of this quantitative correlational study was to utilize foreign direct investment to predict total primary energy supply in the Middle East and North Africa region between 1971 and 2013. The study was conducted using a sample size of 43 years of energy supply resources and foreign direct investment from 1971 to 2013, which includes all of the years for which FDI is available. RE potential may equip Middle East and North Africa countries with sustainable and clean electricity for centuries to come, as non-renewable energy resources may not meet the demands globally and domestically or environmentally. As demands for fossil fuels grow, carbon emissions will increase. RE may be a better option of CO 2 emissions sequestration and will increase electricity to rural areas without government subsidies and complex decision-making policies. RE infrastructure will reduce water desalinization costs, cooling systems, and be useful in heating. Establishing concentrated solar power may be useful for the region cooperation, negotiations, and integration to share this energy. The alternative sought to fossil fuels was nuclear power. However, nuclear power depends on depleting, non-renewable uranium resources. The cost of uranium will increase if widely used and the presence of a nuclear plant in an unstable region is unsafe. Thus, renewable energy as a long-term option is efficient. A nonlinear regression
International Nuclear Information System (INIS)
Pang Longgang; Wang Qun; Wang Xinnian; Xu Rong
2010-01-01
Transverse momentum correlations in the azimuthal angle of hadrons produced owing to minijets are first studied within the HIJING Monte Carlo model in high-energy heavy-ion collisions. Quenching of minijets during thermalization is shown to lead to significant diffusion (broadening) of the correlation. Evolution of the transverse momentum density fluctuation that gives rise to this correlation in azimuthal angle in the later stage of heavy-ion collisions is further investigated within a linearized diffusion-like equation and is shown to be determined by the shear viscosity of the evolving dense matter. This diffusion equation for the transverse momentum fluctuation is solved with initial values given by HIJING and together with the hydrodynamic equation for the bulk medium. The final transverse momentum correlation in azimuthal angle is calculated along the freeze-out hypersurface and is found to be further diffused for higher values of the shear viscosity to entropy density ratio, η/s∼0.2-0.4. Therefore the final transverse momentum correlation in azimuthal angle can be used to study the thermalization of minijets in the early stage of heavy-ion collisions and the viscous effect in the hydrodynamic evolution of strongly coupled quark-gluon plasma.
Simulation of the Effects of Occupant Behaviour on Indoor Climate and Energy Consumption
DEFF Research Database (Denmark)
Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn
2007-01-01
In this study the influence of occupant behaviour on energy consumption were investigated in simulations of a single room occupied by one person. The simulated occupant could manipulate six controls, such as turning on or off the heat and adjusting clothing. All control actions were carried out...... indoor environment close to neutral when he/she had the possibility to manipulate the controls. The energy consumption was similar within each behavioural mode regardless of the PMV limits. However, the energy consumption in the energy consuming behavioural mode was up to 330 % higher than in the energy...
Status of the Correlation Process of the V-HAB Simulation with Ground Tests and ISS Telemetry Data
Ploetner, P.; Roth, C.; Zhukov, A.; Czupalla, M.; Anderson, M.; Ewert, M.
2013-01-01
The Virtual Habitat (V-HAB) is a dynamic Life Support System (LSS) simulation, created for investigation of future human spaceflight missions. It provides the capability to optimize LSS during early design phases. The focal point of the paper is the correlation and validation of V-HAB against ground test and flight data. In order to utilize V-HAB to design an Environmental Control and Life Support System (ECLSS) it is important to know the accuracy of simulations, strengths and weaknesses. Therefore, simulations of real systems are essential. The modeling of the International Space Station (ISS) ECLSS in terms of single technologies as well as an integrated system and correlation against ground and flight test data is described. The results of the simulations make it possible to prove the approach taken by V-HAB.
Vibrational energy flow in the villin headpiece subdomain: Master equation simulations
International Nuclear Information System (INIS)
Leitner, David M.; Buchenberg, Sebastian; Brettel, Paul; Stock, Gerhard
2015-01-01
We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water
Vibrational energy flow in the villin headpiece subdomain: Master equation simulations
Energy Technology Data Exchange (ETDEWEB)
Leitner, David M., E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States); Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Buchenberg, Sebastian; Brettel, Paul [Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany); Stock, Gerhard, E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany)
2015-02-21
We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.
Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.
Energy Technology Data Exchange (ETDEWEB)
Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)
2017-07-01
In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)
Building Energy Assessment and Computer Simulation Applied to Social Housing in Spain
Directory of Open Access Journals (Sweden)
Juan Aranda
2018-01-01
Full Text Available The actual energy consumption and simulated energy performance of a building usually differ. This gap widens in social housing, owing to the characteristics of these buildings and the consumption patterns of economically vulnerable households affected by energy poverty. The aim of this work is to characterise the energy poverty of the households that are representative of those residing in social housing, specifically in blocks of apartments in Southern Europe. The main variables that affect energy consumption and costs are analysed, and the models developed for software energy-performance simulations (which are applied to predict energy consumption in social housing are validated against actual energy-consumption values. The results demonstrate that this type of household usually lives in surroundings at a temperature below the average thermal comfort level. We have taken into account that a standard thermal comfort level may lead to significant differences between computer-aided energy building simulation and actual consumption data (which are 40–140% lower than simulated consumption. This fact is of integral importance, as we use computer simulation to predict building energy performance in social housing.
Discrete event simulations for glycolysis pathway and energy balance
Zwieten, van D.A.J.; Rooda, J.E.; Armbruster, H.D.; Nagy, J.D.
2010-01-01
In this report, the biological network of the glycolysis pathway has been modeled using discrete event models (DEMs). The most important feature of this pathway is that energy is released. To create a stable steady-state system an energy molecule equilibrating enzyme and metabolic reactions have
Kelly, Kathleen M.
Several factors are critical in determining if a wind farm has a high probability of success. These factors include wind energy potential or wind class, sales price, cost of the wind energy generated, market for selling the wind, capacity factor or efficiency of the turbines, capital investment cost, debt and financing, and governmental factors such as taxes and incentives. This research studied the critical factors of thirty-three land based wind farms in the United States with over 20 mega-watts (MW) of capacity that have become operational since 1999. The goal was to develop a simple yet effective decision model using the critical factors to predict an internal rate of return (IRR) and the impact of having a tax credit to supplement the revenue stream. The study found that there are five critical factors that are significantly correlated with the internal rate of return (IRR) of a wind farm project. The critical factors are wind potential or wind class, cost of the wind energy generated, capacity factor or efficiency of the wind turbines, cost of capital investment, and the existence of a federal production tax credit (PTC). The decision model was built using actual wind farm data and industry standards whereby a score from zero to one hundred was coded for each of values except for the production tax credit. Since all the projects qualified for the production tax credit prior to their start up, it was no longer a variable. However, without the presence of this tax credit, the data imply that the projects would not be profitable within the first ten to fifteen years of operation. The scores for each of the categories were totaled and regressed against a calculated internal rate of return. There was ninety-seven percent correlation which was supported by simulation analysis. While this model is not intended to supplant rigorous accounting and financial study, it will help quickly determine if a site has potential and save many hours of analytical work.
An innovative simulation tool for waste to energy generation opportunities
Directory of Open Access Journals (Sweden)
Bilal Abderezzak
2017-03-01
Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.
THE PEAK ENERGY-DURATION CORRELATION AND POSSIBLE IMPLICATIONS ON GAMMA RAY BURST PROGENITOR
Directory of Open Access Journals (Sweden)
Heon-Young Chang
2006-09-01
Full Text Available We investigate the correlation between the peak energy and the burst duration using available long GRB data with known redshift, whose circumburst medium type has been suggested via afterglow light curve modeling. We find that the peak energy and the burst duration of the observed GRBs are correlated both in the observer frame and in the GRB rest frame. For our total sample we obtain, for instance, the Spearman rank-order correlation values sim 0.75 and sim 0.65 with the chance probabilities P=1.0 times 10^{-3} and P=6.0 times 10^{-3} in the observer frame and in the GRB rest frame, respectively. We note that taking the effects of the expanding universe into account reduces the value a bit. We further attempt to separate our GRB sample into the ``ISM'' GRBs and the ``WIND'' GRBs according to environment models inferred from the afterglow light curves and apply statistical tests, as one may expect that clues on the progenitor of GRBs can be deduced directly from prompt emission properties other than from the ambient environment surrounding GRBs. We find that two subsamples of GRBs show different correlation coefficients. That is, the Spearman rank-order correlation are sim 0.65 and sim 0.57 for the ``ISM'' GRBs and ``WIND'' GRBs, respectively, after taking the effects of the expanding universe into account. It is not yet, however, statistically very much significant that the GRBS in two types of circumburst media show statistically characteristic behaviors, from which one may conclude that all the long bursts are not originated from a single progenitor population. A larger size of data is required to increase the statistical significance.
Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha
2018-02-01
The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.
International Nuclear Information System (INIS)
Carneiro, Alvaro Luiz Guimaraes; Santos, Francisco Carlos Barbosa dos
2007-01-01
Energy is an essential input for social development and economic growth. The production and use of energy cause environmental degradation at all levels, being local, regional and global such as, combustion of fossil fuels causing air pollution; hydropower often causes environmental damage due to the submergence of large areas of land; and global climate change associated with the increasing concentration of greenhouse gases in the atmosphere. As mentioned in chapter 9 of Agenda 21, the Energy is essential to economic and social development and improved quality of life. Much of the world's energy, however, is currently produced and consumed in ways that could not be sustained if technologies were remain constant and if overall quantities were to increase substantially. All energy sources will need to be used in ways that respect the atmosphere, human health, and the environment as a whole. The energy in the context of sustainable development needs a set of quantifiable parameters, called indicators, to measure and monitor important changes and significant progress towards the achievement of the objectives of sustainable development policies. The indicators are divided into four dimensions: social, economic, environmental and institutional. This paper shows a methodology of analysis using Multivariate Statistical Technique that provide the ability to analyse complex sets of data. The main goal of this study is to explore the correlation analysis among the indicators. The data used on this research work, is an excerpt of IBGE (Instituto Brasileiro de Geografia e Estatistica) data census. The core indicators used in this study follows The IAEA (International Atomic Energy Agency) framework: Energy Indicators for Sustainable Development. (author)
Realistic electricity market simulator for energy and economic studies
International Nuclear Information System (INIS)
Bernal-Agustin, Jose L.; Contreras, Javier; Conejo, Antonio J.; Martin-Flores, Raul
2007-01-01
Electricity market simulators have become a useful tool to train engineers in the power industry. With the maturing of electricity markets throughout the world, there is a need for sophisticated software tools that can replicate the actual behavior of power markets. In most of these markets, power producers/consumers submit production/demand bids and the Market Operator clears the market producing a single price per hour. What makes markets different from each other are the bidding rules and the clearing algorithms to balance the market. This paper presents a realistic simulator of the day-ahead electricity market of mainland Spain. All the rules that govern this market are modeled. This simulator can be used either to train employees by power companies or to teach electricity markets courses in universities. To illustrate the tool, several realistic case studies are presented and discussed. (author)
Numerical Simulation of Energy Conversion Mechanism in Electric Explosion
Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team
2017-06-01
Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.
Experimental parameterization of an energy function for the simulation of unfolded proteins
DEFF Research Database (Denmark)
Norgaard, A.B.; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, K.
2008-01-01
The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and e...... and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.......The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle...
International Nuclear Information System (INIS)
Ding, X.; Sun, R.; Dong, C.; Koike, F.; Kato, D.; Murakami, I.; Sakaue, H.A.
2017-01-01
The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The study of W 54+ ion provide necessary reference data for the fusion plasma physics as tungsten was chosen to be used as the armour material of the divertor of the ITER project. The ground states [Ne]3s 2 3p 6 3d 2 and first excited states [Ne]3s 2 3p 5 3d 3 of W 54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W 54+ ion. (authors)
Two-scale correlation and energy cascade in three-dimensional turbulent flows
International Nuclear Information System (INIS)
Huang, Y X; Schmitt, F G; Gagne, Y
2014-01-01
In this paper, we propose a high-order harmonic-free methodology, namely arbitrary-order Hilbert spectral analysis, to estimate the two-scale correlation (TSC). When applied to fully developed turbulent velocity, we find that the scale-dependent Hilbert energy satisfies a lognormal distribution on both the inertial and dissipation ranges. The maximum probability density function of the logarithm of the Hilbert energy obeys a power law with a scaling exponent γ ≃ 0.33 in the inertial range. For the measured TSC, we observe a logarithmic correlation law with an experimental exponent α ≃ 0.37 on both the inertial and dissipation ranges. The correlation itself is found to be self-similar with respect to the distance between the two considered scales and a central frequency ω c in the logarithm space. An empirical nonlinear and nonlocal triad-scale interaction formula is proposed to describe the observed TSC. This triadic interaction can be interpreted as experimental evidence of a small-scale nonlinear and nonlocal coupling inside the self-similarity of the Richardson–Kolmogorov phenomenological cascade picture. (paper)
From plane waves to local Gaussians for the simulation of correlated periodic systems
International Nuclear Information System (INIS)
Booth, George H.; Tsatsoulis, Theodoros; Grüneis, Andreas; Chan, Garnet Kin-Lic
2016-01-01
We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.
From plane waves to local Gaussians for the simulation of correlated periodic systems
Energy Technology Data Exchange (ETDEWEB)
Booth, George H., E-mail: george.booth@kcl.ac.uk [Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Chan, Garnet Kin-Lic [Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)
2016-08-28
We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.
Analytical simulation of the cantilever-type energy harvester
Directory of Open Access Journals (Sweden)
Jie Mei
2016-01-01
Full Text Available This article describes an analytical model of the cantilever-type energy harvester based on Euler–Bernoulli’s beam theory. Starting from the Hamiltonian form of total energy equation, the bending mode shapes and electromechanical dynamic equations are derived. By solving the constitutive electromechanical dynamic equation, the frequency transfer function of output voltage and power can be obtained. Through a case study of a unimorph piezoelectric energy harvester, this analytical modeling method has been validated by the finite element method.
Transverse energy-energy correlations in next-to-leading order in {alpha}{sub s} at the LHC
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed; Wang, Wei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Barreiro, Fernando; Llorente, Javier [Universidad Autonoma de Madrid (Spain). Dept. de Fisica
2012-05-15
We compute the transverse energy-energy correlation (EEC) and its asymmetry (AEEC) in next-to-leading order (NLO) in {alpha}{sub s} in proton-proton collisions at the LHC with the center-of-mass energy E{sub c.m.}=7 TeV. We show that the transverse EEC and the AEEC distributions are insensitive to the QCD factorization- and the renormalization-scales, structure functions of the proton, and for a judicious choice of the jet-size, also the underlying minimum bias events. Hence they can be used to precisely test QCD in hadron colliders and determine the strong coupling {alpha}{sub s}. We illustrate these features by defining the hadron jets using the anti-k{sub T} jet algorithm and an event selection procedure employed in the analysis of jets at the LHC and show the {alpha}{sub s}(M{sub Z})-dependence of the transverse EEC and the AEEC in the anticipated range 0.11{<=} {alpha}{sub s}(M{sub Z}){<=}0.13.
Gauthier, Charles; Campbell, Peter G C; Couture, Patrice
2011-09-01
Enzymes representing a variety of metabolic pathways were examined in yellow perch (Perca flavescens) collected from a metal-contaminated region (Rouyn-Noranda, Québec, Canada) to determine which were most closely related to fish condition factor, pyloric caeca weight, and visceral lipid accumulation, as well to seek a better understanding of the influence of metal contamination on the physiology and biometrics of perch. Compared to laboratory fish, wild perch were under important energy restrictions. The condition factor of wild fish was correlated with indicators of aerobic metabolism (citrate synthase, cytochrome C oxidase), protein anabolism (nucleoside diphosphokinase), and indicators of lipid accumulation (glucose-6-phosphate dehydrogenase, visceral lipid index). Pyloric caeca weights were well correlated with indicators of protein anabolism, but only when both seasons were examined together, possibly indicating a lag in the response of enzymes to changes in diet. The addition of contaminant stress to existing energy restrictions led to changes in the relationships between enzymes and biometrics, reducing the predictive power of the models for perch in contaminated lakes. The present study broadens our knowledge of the impact of metal contamination on energy accumulation and tissue metabolic capacities in wild perch. Copyright © 2011 SETAC.
Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.
Sharpe, Daniel J; Levy, Mel; Tozer, David J
2018-02-13
Levy and Zahariev [Phys. Rev. Lett. 113 113002 (2014)] have proposed a new approach for performing density functional theory calculations, termed direct energy Kohn-Sham (DEKS) theory. In this approach, the electronic energy equals the sum of orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree-exchange-correlation potential, which must be approximated. In the present study, density scaling homogeneity considerations are used to facilitate DEKS calculations on a series of atoms and molecules, leading to three nonlocal approximations to the shifted potential. The first two rely on preliminary Kohn-Sham calculations using a standard generalized gradient approximation (GGA) exchange-correlation functional and the results illustrate the benefit of describing the dominant Hartree component of the shift exactly. A uniform electron gas analysis is used to eliminate the need for these preliminary Kohn-Sham calculations, leading to a potential with an unconventional form that yields encouraging results, providing strong motivation for further research in DEKS theory.
A simulation for energy dissipation in nuclear reactions
International Nuclear Information System (INIS)
Mshelia, E.D.; Ngadda, Y.H.
1989-01-01
A model for energy dissipation is presented which demonstrates energy transfer from a collective degree of freedom, represented by free motion, into intrinsic modes, represented by four coupled oscillators. The quantum mechanical probability amplitude for internal excitation is expressed as a multiple integral of a product of translational and intrinsic wavefunctions and exactly solved analytically. Its numerical values as a function of quantities of physical interest have been calculated, represented graphically and discussed. The results show that the probability distributions are peaked. (author)
Simulation of Energy Consumption and Emissions from Rail Traffic
DEFF Research Database (Denmark)
Lindgreen, Erik Bjørn Grønning; Sorenson, Spencer C
. The calculation procedure is evaluated with respect to resolution of operation conditions, and then evaluated by comparison with experimental data for a variety of passenger and goods trains. The results indicate that the energy consumption from modeling approach is valid to better that 10% for known operating...... characteristics. Emissions are calculated from the energy consumption using average fuel based emissions factors and electrical production emissions factors....
Bates, Nathaniel A.; Nesbitt, Rebecca J.; Shearn, Jason T.; Myer, Gregory D.; Hewett, Timothy E.
2017-01-01
Background Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. Purpose To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Study Design Descriptive laboratory study. Methods A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, −7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. Results The mean (6SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60–0.65), flexion (r = 0.64–0.66), lateral (r = 0.57–0.69), and external rotation torques (r = 0.47–0.72) as well as inverse correlations with peak abduction (r = −0.42 to −0.61) and internal rotation torques (r = −0.39 to −0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64–0.69) and lateral knee force (r = 0.55–0.74) as well as inverse correlations with peak external torque (r = −0.34 to 20.67) and medial knee force (r = −0.58 to −0.59). These moderate correlations were also present during simulated sidestep cutting. Conclusion The investigation supported the theory that increased posterior
Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong
2006-11-01
We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.
Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg
2016-12-13
We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.
Correlations among observables in the neutron-deuteron elastic scattering at low energies
International Nuclear Information System (INIS)
Frederico, T.; Goldman, I.D.
1984-01-01
The 2 S amplitude of the n-d elastic scattering appears like function of the dublet ( 2 a) scattering length in the three nucleons calculations. The correlation of Kcotg 2 δ o with 2 a, with separable N-N potential calculations, is obtained and the result is independent of the N-N potential. The 2 δ o (n-d) values obtained with these lines, using 2 a=.65F (experimental value), agree with p-d data. 2 S and 4 S scattering amplitude and tritium energy (E T ) calculations are performed with the zero-range model and an alternative deduction is proposed. These results for the E T and Kcotg 2 δ o correlation with 2 a show the limitations of this model. (L.C.) [pt
Studying multifragmentation dynamics at intermediate energies using two-fragment correlations
International Nuclear Information System (INIS)
Sangster, T.C.; Britt, H.C.; Namboodiri, M.N.
1993-01-01
One of the most challenging topics in Nuclear Physics is the multifragmentation at moderate excitation energies in large nuclear systems. Although the idea that multifragmentation is analogous to a liquid-gas like phase transition is not new, it has only been recently that highly exclusive experimental measurements have been coupled with sophisticated theoretical models like QMD and BUU/VUU to explore reaction dynamics and the process of fragment formation. Indeed, much of what is known about multifragmentation has resulted from the study of complex correlations present in both the experimental data and theoretical calculations. One of the most crucial questions in the ongoing debate concerning the liquid-gas analogy is the differentiation between simultaneous and sequential fragment emission. Clearly, the phase transition analogy breaks down if fragments are emitted sequentially as in an evaporative process. There have been a number of two-fragment correlation results published recently (including those presented in this paper) which attempt to put limits on the emission timescale using three-body Coulomb trajectory calculations with explicit emission times for sequential decays from a fixed source density. These results have been generally consistent and indicate that intermediate mass fragment (IMF) emission is nearly simultaneous in medium energy heavy ion collisions. Only very recently have calculations been performed which approach this question from the other extreme: simultaneous emission from a variable density source. When considered together, these results argue favorably for a simultaneous multifragmentation. In this paper the authors present comprehensive results on two-fragment correlations for heavy systems at intermediate energies
McCarty, J; Clark, A J; Copperman, J; Guenza, M G
2014-05-28
Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.
Dontje, T.; Lippert, Th.; Petkov, N.; Schilling, K.
1992-01-01
Autocorrelation becomes an increasingly important tool to verify improvements in the state of the simulational art in Latice Gauge Theory. Semi-systolic and full-systolic algorithms are presented which are intensively used for correlation computations on the Connection Machine CM-2. The
Akçay, A.E.; Biller, B.
2014-01-01
We consider an assemble-to-order production system where the product demands and the time since the last customer arrival are not independent. The simulation of this system requires a multivariate input model that generates random input vectors with correlated discrete and continuous components. In
International Nuclear Information System (INIS)
Jetzke, S.; Faisal, F.H.M.
1992-01-01
Investigating the relation between the asymptotic condition and the dynamic Coulomb correlation for single and multiple ionization we discuss a complete set of spatially separable N-electrons final-state wavefunctions, satisfying multiple ionization boundary conditions. We apply these results to electron and positron impact ionization of atomic hydrogen in the energy range 54.4 and 250 eV on the basis of a parameter-free model formulated within the scope of the multiple scattering approach. A comparison between our results and available experimental data and alternative theoretical calculations are made and discussed. (Author)
Accurate correlation energies in one-dimensional systems from small system-adapted basis functions
Baker, Thomas E.; Burke, Kieron; White, Steven R.
2018-02-01
We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.
International Nuclear Information System (INIS)
Takahashi, Y.
2003-01-01
This report describes the research work performed under the support of the DOE research grant E-FG02-97ER4108. The work is composed of three parts: (1) Visual analysis and quality control of the Micro Vertex Detector (MVD) of the PHENIX experiments carried out of Brookhaven National Laboratory. (2) Continuation of the data analysis of the EMU05/09/16 experiments for the study of the inclusive particle production spectra and multi-particle correlation. (3) Exploration of a new statistical means to study very high-multiplicity of nuclear-particle ensembles and its perspectives to apply to the higher energy experiments
Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering
Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo
2011-01-01
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy
Assessment and simulation tools for sustainable energy systems theory and applications
Cavallaro, Fausto
2013-01-01
This book covers both simulations using markal model and linear programming (LP) and methods and applications of multi-criteria, fuzzy-sets, algorithm genetics and neural nets (artificial intelligence) to energy systems.
International Nuclear Information System (INIS)
Abegg, R.; Davis, C.A.; Delheij, P.P.J.; Greeniaus, L.G.; Healey, D.C.; Miller, C.A.; Wait, G.D.; Ahmad, M.; Green, P.W.; Lapointe, C.; McDonald, W.J.; Moss, G.A.; Rodning, N.L.; Roy, G.; Ye, Y.
1989-06-01
In order to improve existing I=0 phase shift solutions, the spin correlation parameter, A NN , and the analyzing powers, A 0N and A N0 , have been measured in n-p elastic scattering over an angular range of 50 degrees -150 degrees (c.m.) at three neutron energies, 220, 325 and 425 MeV to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the 1 P 1 , 3 D 2 and ε 1 phase parameters which in some cases change by almost a degree. With exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also the analyzing power data (A 0N and A N0 ) measured at 477 MeV in a different experiment over a limited angular range (60 degrees - 80 degrees (c.m.)) are reported here. (Author) 30 refs., 10 figs., 5 tabs
Simulation of soft hadron hadron collisions at ultrarelativistic energies
International Nuclear Information System (INIS)
Werner, K.
1987-01-01
An event generator to simulate ultrarelativistic hadron hadron collisions is proposed. It is based on the following main assumptions: the process can be divided into two independent steps, string formation and string fragmentation; strings are formed as a consequence of color exchange between a quark of the projectile and a quark of the target; the fragmentation of strings is the same as in e + e - annihilation or in lepton nucleon scattering. 11 refs., 4 figs
Numerical simulation of energy efficiency measures: control and operational strategies
International Nuclear Information System (INIS)
Ardehali, M. M.
2006-01-01
The inherent limitation in performance of building envelop components and heating ventilating and air conditioning (HVAC) equipment necessitates the examination of operational strategies for improvement in energy-efficient operation of buildings. Due to the ease of installation and increasing availability of electronic controllers, operational strategies that could be programmed are of particular interest. The Iowa Energy Center in the US has taken the initiative to conduct the necessary assessment of current HVAC technology and the commonly-used operational strategies for commercial and industrial buildings, as applied to the midwestern part of the country, with weather and energy cost data for Des Moines, Iowa. The first part of this study focused on the energy consumption and cost effectiveness of HVAC systems. The objectives of the second part is concerned with examination of various operational strategies, namely, night purge (NP), fan optimum start and stop (OSS), condenser water reset (CWR), and chilled water reset (CHWR) applied to order and newer-type commercial office buildings. The indoor air quality requirement are met and the latest applicable energy rates from local utility companies are used. The results show that, in general, NP is not an effective strategy in buildings with low thermal mass storage, OSS reduced fan energy, and CWR and CHWR could be effective and require chillers with multi-stage unloading characteristics. The most operationally efficient strategies are the combination of OSS, CWR, and CHWR for the older-type building, and OSS for the newer-type building. Economically, the most effective is the OSS strategy for the older-type building and the CHWR strategy for the newer-type building.(Author)
Power in the loop real time simulation platform for renewable energy generation
Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing
2018-02-01
Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.
A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity
International Nuclear Information System (INIS)
Pisello, Anna Laura; Goretti, Michele; Cotana, Franco
2012-01-01
Highlights: ► We propose a new methodology for the evaluation of buildings’ thermal-energetic performance. ► We express year-round performance by an appropriate objective function. ► The procedure allows to translate dynamic simulation results into buildings’ energy guidelines. ► The proposed index shows an important correlation with indoor thermal comfort international index DH. -- Abstract: Buildings’ thermal-energetic assessment and the relative proposal of new technical solutions applied to both summer and winter analyses has a strategic role in increasing the year-round performance of buildings. Buildings’ dynamic analysis is by now a well-established procedure to study effective building energy performance given real climate considerations. Then in this work, a concise and effective methodology for analyzing buildings’ thermal performance in a dynamic environment is proposed and applied to different case studies, consisting of single-family residential buildings’ prototypes. This procedure is aimed to define different performance levels by proper non-dimensional indexes named thermal deviation indexes (TDI). These indexes values could express in a concise way buildings’ thermal behavior, different optimization strategies impact, sensitivity analysis results. Buildings’ prototypes representing the case studies are three free-floating houses where the architectural shape role and the sensitivity of different envelope features are analyzed, also supported by experimental results regarding envelope properties measured on existing residential buildings in Italy. The three prototypes are respectively designed to optimize summer or winter energy performance or to represent the typical Italian house before and after energy efficiency regulation is implemented. To better define the important envelope parameters necessary to calibrate the numerical models, experimental activities are conducted. In particular, thermal insulation level and roof
SimProp: a simulation code for ultra high energy cosmic ray propagation
International Nuclear Information System (INIS)
Aloisio, R.; Grillo, A.F.; Boncioli, D.; Petrera, S.; Salamida, F.
2012-01-01
A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented
Investigating energy deposition within cell populations using Monte Carlo simulations.
Oliver, Patricia A K; Thomson, Rowan M
2018-06-27
In this work, we develop multicellular models of healthy and cancerous human soft tissues, which are used to investigate energy deposition in subcellular targets, quantify the microdosimetric spread in a population of cells, and determine how these results depend on model details. Monte Carlo (MC) tissue models combining varying levels of detail on different length scales are developed: microscopically-detailed regions of interest (>1500 explicitly-modelled cells) are embedded in bulk tissue phantoms irradiated by photons (20 keV to 1.25 MeV). Specific energy (z; energy imparted per unit mass) is scored in nuclei and cytoplasm compartments using the EGSnrc user-code egs_chamber; specific energy mean, <z>, standard deviation, σ_{z}, and distribution, f(z,D), are calculated for a variety of macroscopic doses, D. MC-calculated f(z,D) are compared with normal distributions having the same mean and standard deviation. For mGy doses, there is considerable variation in energy deposition (microdosimetric spread) throughout a cell population: e.g., for 30 keV photons irradiating melanoma with 7.5 μm cell radius and 3 μm nuclear radius, σ_{z}/<z> for nuclear targets is 170%, and the fraction of nuclei receiving no energy deposition, f_{z=0}, is 0.31 for a dose of 10 mGy. If cobalt-60 photons are considered instead, then σ_{z}/<z> decreases to 84%, and f_{z=0} decreases to 0.036. These results correspond to randomly arranged cells with cell/nucleus sizes randomly sampled from a normal distribution with a standard deviation of 1 μm. If cells are arranged in a hexagonal lattice and cell/nucleus sizes are uniform throughout the population, then σ_{z}/<z> decreases to 106% and 68% for 30 keV and cobalt-60,respectively; f_{z=0 }
On the distribution of energy versus Alfvénic correlation for polar wind fluctuations
Directory of Open Access Journals (Sweden)
B. Bavassano
2006-11-01
Full Text Available Previous analyses have shown that polar wind fluctuations at MHD scales appear as a mixture of Alfvénic fluctuations and variations with an energy imbalance in favour of the magnetic term. In the present study, by separately examining the behaviour of kinetic and magnetic energies versus the Alfvénic correlation level, we unambiguously confirm that the second population is essentially related to a large increase of the magnetic energy with respect to that of the Alfvénic population. The relevant new result is that this magnetic population, though of secondary importance in terms of occurrence frequency, corresponds to a primary peak in the distribution of total energy. The fact that this holds in the case of polar wind, which is the least structured type of interplanetary plasma flow and with the slowest evolving Alfvénic turbulence, strongly suggests the general conclusion that magnetic structures cannot be neglected when modeling fluctuations for all kinds of wind regime.
Correlation functions of the energy-momentum tensor on spaces of constant curvature
International Nuclear Information System (INIS)
Osborn, H.; Shore, G.M.
2000-01-01
An analysis of one- and two-point functions of the energy-momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy-momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of O(d-1,2), for two-point functions of vector currents is derived in detail and extended to the energy-momentum tensor by analogy. It is demonstrated that, at non-coincident points, the two-point functions are not related to a in any direct fashion and there is no straightforward demonstration obtainable in this framework of irreversibility under renormalisation group flow of any function of the couplings for four-dimensional field theories which reduces to a at fixed points
A framework for simulation and control of hybrid energy networks
Geysen, D.; Booij, P.S.; Warmer, C.
2014-01-01
For the built environment it is envisaged that in the next decades the total annual energy demand, both thermal and electric, could be covered by renewable sources generated within the built environment. An increasing number of thermoelectric elements, such as heat pumps and thermal storage, will
Simulation of indoor environment in low energy housing
DEFF Research Database (Denmark)
Vagiannis, Georgios; Knudsen, Henrik N.; Toftum, Jørn
2012-01-01
was selected and sensitivity analyses were conducted for the importance of occupancy, ventilation, window opening, and heat recovery efficiency. In particular occupancy and venting played significant roles for the indoor environment and energy consumption. It was also shown that with passive measures, but also...
Aiding Design of Wave Energy Converters via Computational Simulations
Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak
2015-11-01
With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.
Attia, S.G.; Gratia, E.; De Herde, A.; Hensen, J.L.M.
2013-01-01
Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the
Lant, C.; Pérez Lapena, B.; Xiong, W.; Kraft, S.; Kowalchuk, R.; Blair, M.
2016-01-01
Guided by the Next Generation Science Standards and elements of problem-based learning, four human-environment systems simulations are described in brief—carbon, energy, water, and watershed—and a fifth simulation on nitrogen is described in more depth. These science, technology, engineering, and
A novel method for energy harvesting simulation based on scenario generation
Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min
2018-06-01
Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.
Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.
Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui
2016-03-05
The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Sato, Masanori; Matsubara, Takahiko; Takada, Masahiro; Hamana, Takashi
2011-01-01
Using 1000 ray-tracing simulations for a Λ-dominated cold dark model in Sato et al., we study the covariance matrix of cosmic shear correlation functions, which is the standard statistics used in previous measurements. The shear correlation function of a particular separation angle is affected by Fourier modes over a wide range of multipoles, even beyond a survey area, which complicates the analysis of the covariance matrix. To overcome such obstacles we first construct Gaussian shear simulations from the 1000 realizations and then use the Gaussian simulations to disentangle the Gaussian covariance contribution to the covariance matrix we measured from the original simulations. We found that an analytical formula of Gaussian covariance overestimates the covariance amplitudes due to an effect of the finite survey area. Furthermore, the clean separation of the Gaussian covariance allows us to examine the non-Gaussian covariance contributions as a function of separation angles and source redshifts. For upcoming surveys with typical source redshifts of z s = 0.6 and 1.0, the non-Gaussian contribution to the diagonal covariance components at 1 arcmin scales is greater than the Gaussian contribution by a factor of 20 and 10, respectively. Predictions based on the halo model qualitatively well reproduce the simulation results, however show a sizable disagreement in the covariance amplitudes. By combining these simulation results we develop a fitting formula to the covariance matrix for a survey with arbitrary area coverage, taking into account effects of the finiteness of survey area on the Gaussian covariance.
Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters
Oxaal, John
Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).
User's manual for computer code SOLTES-1 (simulator of large thermal energy systems)
International Nuclear Information System (INIS)
Fewell, M.E.; Grandjean, N.R.; Dunn, J.C.; Edenburn, M.W.
1978-09-01
SOLTES simulates the steady-state response of thermal energy systems to time-varying data such as weather and loads. Thermal energy system models of both simple and complex systems can easily be modularly constructed from a library of routines. These routines mathematically model solar collectors, pumps, switches, thermal energy storage, thermal boilers, auxiliary boilers, heat exchangers, extraction turbines, extraction turbine/generators, condensers, regenerative heaters, air conditioners, heating and cooling of buildings, process vapor, etc.; SOLTES also allows user-supplied routines. The analyst need only specify fluid names to obtain readout of property data for heat-transfer fluids and constants that characterize power-cycle working fluids from a fluid property data bank. A load management capability allows SOLTES to simulate total energy systems that simultaneously follow heat and power loads and demands. Generalized energy accounting is available, and values for system performance parameters may be automatically determined by SOLTES. Because of its modularity and flexibility, SOLTES can be used to simulate a wide variety of thermal energy systems such as solar power/total energy, fossil fuel power plants/total energy, nuclear power plants/total energy, solar energy heating and cooling, geothermal energy, and solar hot water heaters
Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations.
König, Gerhard; Brooks, Bernard R
2015-05-01
Free energy simulations are an important tool in the arsenal of computational biophysics, allowing the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introduces methods to increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints during post-processing. The primary purpose of employing constraints for these free energy methods is to increase the phase space overlap between ensembles, which is required for accuracy and convergence. The free energy costs of applying or removing constraints are calculated as additional explicit steps in the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered. We demonstrate the utility of this method with simple classical systems involving harmonic and anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and free energy simulations between alanine and serine. The errors for the analytical test cases are all below 0.0007kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to 0.04kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap increases by 94% relative to the unconstrained value and precision is doubled. The approach reduces errors arising from constraints by about an order of magnitude. Free energy simulations benefit from the use of constraints through enhanced convergence and higher precision. The primary utility of this approach is to calculate free energies for systems with disparate energy surfaces and bonded terms, especially in multi-scale molecular mechanics/quantum mechanics simulations. This article is part of a Special Issue
International Nuclear Information System (INIS)
Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en
2015-01-01
Highlights: • Renewable energy development is expanded and introduced into socioeconomic activities. • A dynamic optimization simulation model is developed based on input–output approach. • Regional economic, energy and environmental impacts are assessed dynamically. • Industrial and energy structure is adjusted optimally for GHG emission reduction. - Abstract: Specifying the renewable energy development as new energy industries to be newly introduced into current socioeconomic activities, this study develops a dynamic simulation model with input–output approach to make comprehensive assessment of the impacts on economic development, energy consumption and GHG emission under distinct levels of GHG emission constraints involving targeted GHG emission reduction policies (ERPs) and industrial restructuring. The model is applied to Jilin City to conduct 16 terms of dynamic simulation work with GRP as objective function subject to mass, value and energy balances aided by the extended input–output table with renewable energy industries introduced. Simulation results indicate that achievement of GHG emission reduction target is contributed by renewable energy industries, ERPs and industrial restructuring collectively, which reshape the terminal energy consumption structure with a larger proportion of renewable energy. Wind power, hydropower and biomass combustion power industries account for more in the power generation structure implying better industrial prospects. Mining, chemical, petroleum processing, non-metal, metal and thermal power industries are major targets for industrial restructuring. This method is crucial for understanding the role of renewable energy development in GHG mitigation efforts and other energy-related planning settings, allowing to explore the optimal level for relationships among all socioeconomic activities and facilitate to simultaneous pursuit of economic development, energy utilization and environmental preservation
Energy Technology Data Exchange (ETDEWEB)
Fuss, M.C. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Williart, A. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica (Portugal); Borge, M.J.G.; Tengblad, O. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G., E-mail: g.garcia@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)
2011-09-15
The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic {sup 106}Ru/{sup 106}Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: > We present the Monte Carlo code LEPTS, a low-energy particle track simulation. > Carefully selected input data from 10 keV to 1 eV. > Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.
High energy x-ray scattering studies of strongly correlated oxides
International Nuclear Information System (INIS)
Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T
2003-01-01
Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering
Explicit correlation treatment of the potential energy surface of CO{sub 2} dimer
Energy Technology Data Exchange (ETDEWEB)
Kalugina, Yulia N., E-mail: kalugina@phys.tsu.ru [Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation); Buryak, Ilya A. [Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation); Chemistry Department, Lomonosov Moscow State University, Moscow (Russian Federation); Ajili, Yosra [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-La-Vallée (France); Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis El Manar (Tunisia); Vigasin, Andrei A. [Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis El Manar (Tunisia); Hochlaf, Majdi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-La-Vallée (France)
2014-06-21
We present an extensive study of the four-dimensional potential energy surface (4D-PES) of the carbon dioxide dimer, (CO{sub 2}){sub 2}. This PES is developed over the set of intermolecular coordinates. The electronic computations are carried out at the explicitly correlated coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)-F12] level of theory in connection with the augmented correlation-consistent aug-cc-pVTZ basis set. An analytic representation of the 4D-PES is derived. Our extensive calculations confirm that “Slipped Parallel” is the most stable form and that the T-shaped structure corresponds to a transition state. Later on, this PES is employed for the calculations of the vibrational energy levels of the dimer. Moreover, the temperature dependence of the dimer second virial coefficient and of the first spectral moment of rototranslational collision-induced absorption spectrum is derived. For both quantities, a good agreement is found between our values and the experimental data for a wide range of temperatures. This attests to the high quality of our PES. Generally, our PES and results can be used for modeling CO{sub 2} supercritical fluidity and examination of its role in planetary atmospheres. It can be also incorporated into dynamical computations of CO{sub 2} capture and sequestration. This allows deep understanding, at the microscopic level, of these processes.
Destyanto, A. R.; Putri, O. A.; Hidayatno, A.
2017-11-01
Due to the advantages that serious simulation game offered, many areas of studies, including energy, have used serious simulation games as their instruments. However, serious simulation games in the field of energy transition still have few attentions. In this study, serious simulation game is developed and tested as the activity of public education about energy transition which is a conversion from oil to natural gas program. The aim of the game development is to create understanding and awareness about the importance of energy transition for society in accelerating the process of energy transition in Indonesia since 1987 the energy transition program has not achieved the conversion target yet due to the lack of education about energy transition for society. Developed as a digital serious simulation game following the framework of integrated game design, the Transergy game has been tested to 15 users and then analysed. The result of verification and validation of the game shows that Transergy gives significance to the users for understanding and triggering the needs of oil to natural gas conversion.
Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)
2016-12-15
These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.
Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation
International Nuclear Information System (INIS)
Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol
2016-01-01
These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.
Update on the status of hadronic squeezed correlations at RHIC energies
International Nuclear Information System (INIS)
Padula, S.S.; Dudek, D.M.; Socolowski, O. Jr.
2011-01-01
In high-energy heavy-ion collisions, a hot and dense medium is formed, where the hadronic masses may be shifted from their asymptotic values. If this mass modification occurs, squeezed back-to-back correlations (BBC) of particle-antiparticle pairs are predicted to appear, both in the fermionic (fBBC) and in the bosonic (bBBC) sectors. Although they have unlimited intensity even for finite-size expanding systems, these hadronic squeezed correlations are very sensitive to their time emission distribution. Here we discuss results in case this time emission is parameterized by a Levy-type distribution, showing that it reduces the signal even more dramatically than a Lorentzian distribution, which already reduces the intensity of the effect by orders of magnitude, as compared to the sudden emission. However, we show that the signal could still survive if the duration of the process is short, and if the effect is searched for lighter mesons, such as kaons. We compare some of our results to recent PHENIX preliminary data on squeezed correlations of K + K - pairs
Computer simulation studies of high energy collision cascades
International Nuclear Information System (INIS)
Robinson, M.T.
1991-07-01
A modified binary collision approximation allowing the proper order of the collisions in time was used to study cascades in Cu and Au at primary kinetic energies up to 100 keV. Nonlinearities were approximated by letting already-stopped cascade atoms become targets in later collisions, using an improved method of locating potential targets to extend the calculations to energies much higher than heretofore. Beside the effect of the approximate nonlinearity, the effect of thermal disorder in the targets was examined. Target redisplacements reduce the damage in Cu by 3% at most, but in Au they reduce it by amounts up to 20% at 100 keV. Thermal disorder is also important: by disrupting crystal effects, the damage is reduced significantly. 11 refs., 4 figs
Rise time of proton cut-off energy in 2D and 3D PIC simulations
Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.
2017-04-01
The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.
Ivanic, Joseph; Schmidt, Michael W
2018-06-04
A novel hybrid correlation energy (HyCE) approach is proposed that determines the total correlation energy via distinct computation of its internal and external components. This approach evolved from two related studies. First, rigorous assessment of the accuracies and size extensivities of a number of electron correlation methods, that include perturbation theory (PT2), coupled-cluster (CC), configuration interaction (CI), and coupled electron pair approximation (CEPA), shows that the CEPA(0) variant of the latter and triples-corrected CC methods consistently perform very similarly. These findings were obtained by comparison to near full CI results for four small molecules and by charting recovered correlation energies for six steadily growing chain systems. Second, by generating valence virtual orbitals (VVOs) and utilizing the CEPA(0) method, we were able to partition total correlation energies into internal (or nondynamic) and external (or dynamic) parts for the aforementioned six chain systems and a benchmark test bed of 36 molecules. When using triple-ζ basis sets it was found that per orbital internal correlation energies were appreciably larger than per orbital external energies and that the former showed far more chemical variation than the latter. Additionally, accumulations of external correlation energies were seen to proceed smoothly, and somewhat linearly, as the virtual space is gradually increased. Combination of these two studies led to development of the HyCE approach, whereby the internal and external correlation energies are determined separately by CEPA(0)/VVO and PT2/external calculations, respectively. When applied to the six chain systems and the 36-molecule benchmark test set it was found that HyCE energies followed closely those of triples-corrected CC and CEPA(0) while easily outperforming MP2 and CCSD. The success of the HyCE approach is more notable when considering that its cost is only slightly more than MP2 and significantly cheaper
Free-energy landscape of protein oligomerization from atomistic simulations
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K.; Parrinello, Michele
2013-01-01
In the realm of protein–protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage. PMID:24248370
KEYNOTE: Simulation, computation, and the Global Nuclear Energy Partnership
Reis, Victor, Dr.
2006-01-01
Dr. Victor Reis delivered the keynote talk at the closing session of the conference. The talk was forward looking and focused on the importance of advanced computing for large-scale nuclear energy goals such as Global Nuclear Energy Partnership (GNEP). Dr. Reis discussed the important connections of GNEP to the Scientific Discovery through Advanced Computing (SciDAC) program and the SciDAC research portfolio. In the context of GNEP, Dr. Reis talked about possible fuel leasing configurations, strategies for their implementation, and typical fuel cycle flow sheets. A major portion of the talk addressed lessons learnt from ‘Science Based Stockpile Stewardship’ and the Accelerated Strategic Computing Initiative (ASCI) initiative and how they can provide guidance for advancing GNEP and SciDAC goals. Dr. Reis’s colorful and informative presentation included international proverbs, quotes and comments, in tune with the international flavor that is part of the GNEP philosophy and plan. He concluded with a positive and motivating outlook for peaceful nuclear energy and its potential to solve global problems. An interview with Dr. Reis, addressing some of the above issues, is the cover story of Issue 2 of the SciDAC Review and available at http://www.scidacreview.org This summary of Dr. Reis’s PowerPoint presentation was prepared by Institute of Physics Publishing, the complete PowerPoint version of Dr. Reis’s talk at SciDAC 2006 is given as a multimedia attachment to this summary.
International Nuclear Information System (INIS)
Csikor, F.; Eszes, G.; Garrido, L.; Pocsik, G.
1987-01-01
Reasons why planar triple energy correlation measurement may serve as an appropriate method of α/sub S/ determination are reviewed. The new MARKJ results on α/sub S/ determination are briefly summarized
N-body simulations with a cosmic vector for dark energy
Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.
2012-07-01
We present the results of a series of cosmological N-body simulations of a vector dark energy (VDE) model, performed using a suitably modified version of the publicly available GADGET-2 code. The set-ups of our simulations were calibrated pursuing a twofold aim: (1) to analyse the large-scale distribution of massive objects and (2) to determine the properties of halo structure in this different framework. We observe that structure formation is enhanced in VDE, since the mass function at high redshift is boosted up to a factor of 10 with respect to Λ cold dark matter (ΛCDM), possibly alleviating tensions with the observations of massive clusters at high redshifts and early reionization epoch. Significant differences can also be found for the value of the growth factor, which in VDE shows a completely different behaviour, and in the distribution of voids, which in this cosmology are on average smaller and less abundant. We further studied the structure of dark matter haloes more massive than 5 × 1013 h-1 M⊙, finding that no substantial difference emerges when comparing spin parameter, shape, triaxiality and profiles of structures evolved under different cosmological pictures. Nevertheless, minor differences can be found in the concentration-mass relation and the two-point correlation function, both showing different amplitudes and steeper slopes. Using an additional series of simulations of a ΛCDM scenario with the same ? and σ8 used in the VDE cosmology, we have been able to establish whether the modifications induced in the new cosmological picture were due to the particular nature of the dynamical dark energy or a straightforward consequence of the cosmological parameters. On large scales, the dynamical effects of the cosmic vector field can be seen in the peculiar evolution of the cluster number density function with redshift, in the shape of the mass function, in the distribution of voids and on the characteristic form of the growth index γ(z). On
Simulating ecological changes caused by marine energy devices
Schuchert, Pia; Elsaesser, Bjoern; Pritchard, Daniel; Kregting, Louise
2015-04-01
Marine renewable energy from wave and tidal technology has the potential to contribute significantly globally to energy security for future generations. However common to both tidal and wave energy extraction systems is concern regarding the potential environmental consequences of the deployment of the technology as environmental and ecological effects are so far poorly understood. Ecological surveys and studies to investigate the environmental impacts are time consuming and costly and are generally reactive; a more efficient approach is to develop 2 and 3D linked hydrodynamic-ecological modelling which has the potential to be proactive and to allow forecasting of the effects of array installation. The objective of the study was to explore tools which can help model and evaluate possible far- and near field changes in the environment and ecosystem caused by the introduction of arrays of marine energy devices. Using the commercial software, MIKE by DHI, we can predict and model possible changes in the ecosystem. MIKE21 and ECOLab modelling software provide the opportunity to couple high level hydrodynamic models with process based ecological models and/or agent based models (ABM). The flow solutions of the model were determined in an idealised tidal basin with the dimensions similar to that of Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen. In the first instance a simple process oriented ecological NPZD model was developed which are used to model marine and freshwater systems describing four state variables, Nutrient, Phytoplankton, Zooplankton and Detritus. The ecological model was run and evaluated under two hydrodynamic scenarios of the idealised basin. This included no tidal turbines (control) and an array of 55 turbines, an extreme scenario. Whilst an array of turbines has an effect on the hydrodynamics of the Lough, it is unlikely to see an extreme effect on the NPZD model
Energy Technology Data Exchange (ETDEWEB)
Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Stanford, CA 94305 (United States); Schmitt, F; Meevasana, W; Motoyama, E M [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Lu, D H [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kim, C [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Scalettar, R T [Physics Department, University of California-Davis, Davis, CA 95616 (United States)], E-mail: moritzb@slac.stanford.edu
2009-09-15
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca
2018-06-01
We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.
Simulation to support passive and low energy cooling system design in the Czech Republic
Lain, M.; Bartak, M.; Drkal, F.; Hensen, J.L.M.
2005-01-01
This paper deals with the passive and low energy cooling technologies in the Czech Republic. The role of computer simulation in low energy building design and optimization is discussed. The work includes buildings and systems analysis as well as climate analysis in order to estimate the potential of
The importance of the PKA-energy spectrum for radiation damage simulation
International Nuclear Information System (INIS)
Dierckx, R.
1987-01-01
Primary damage phenomena as a function of the PKA-energy are simulated with the MARLOWE code. The PKA's studied have energies up to 2 MeV. The displacement cascades are divided into subcascades, the characteristics of which are determined. (orig.)
Mesoscale simulations of shockwave energy dissipation via chemical reactions.
Antillon, Edwin; Strachan, Alejandro
2015-02-28
We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.
Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation
Energy Technology Data Exchange (ETDEWEB)
Jorissen, Filip; Wetter, Michael; Helsen, Lieve
2015-09-21
This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.
International Nuclear Information System (INIS)
Oszwaldowski, R; Vazquez, H; Pou, P; Ortega, J; Perez, R; Flores, F
2003-01-01
A new DF-LCAO (density functional with local combination of atomic orbitals) method is used to calculate the electronic properties of 3,4,9,10 perylenetetracarboxylic dianhydride (PTCDA), C 6 H 6 , CH 4 , and CO. The method, called the OO (orbital occupancy) method, is a DF-based theory, which uses the OOs instead of ρ(r) to calculate the exchange and correlation energies. In our calculations, we compare the OO method with the conventional local density approximation approach. Our results show that, using a minimal basis set, we obtain equilibrium bond lengths and binding energies for PTCDA, C 6 H 6 , and CH 4 which are respectively within 6, and 10-15% of the experimental values. We have also calculated the affinity and ionization levels, as well as the optical gap, for benzene and PTCDA and have found that a variant of Koopmans' theorem works well for these molecules. Using this theorem we calculate the Koopmans relaxation energies of the σ- and π-orbitals for PTCDA and have obtained this molecule's density of states which compares well with experimental evidence
Review of simulation techniques for aquifer thermal energy storage (ATES)
Energy Technology Data Exchange (ETDEWEB)
Mercer, J.W.; Faust, C.R.; Miller, W.J.; Pearson, F.J. Jr.
1981-03-01
The storage of thermal energy in aquifers has recently received considerable attention as a means to conserve and more efficiently use energy supplies. The analysis of aquifer thermal energy storage (ATES) systems will rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES was reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities. Model development can then proceed with the expectation of an adequate data base existing for the model's eventual use. Review of model applications to ATES shows that the major emphasis has been on generic sensitivity analysis and site characterization. Assuming that models are applied appropriately, the primary limitation on model calculations is the data base used to construct the model. Numerical transport models are limited by the uncertainty of subsurface data and the lack of long-term historical data for calibration. Geochemical models are limited by the lack of thermodynamic data for the temperature ranges applicable to ATES. Model applications undertaken with data collection activities on ATES sites should provide the most important contributions to the understanding and utilization of ATES. Therefore, the primary conclusion of this review is that model application to field sites in conjunction with data collection activities is essential to the development of this technology.
International Nuclear Information System (INIS)
Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.
2013-01-01
Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint
Review of simulation techniques for Aquifer Thermal Energy Storage (ATES)
Mercer, J. W.; Faust, C. R.; Miller, W. J.; Pearson, F. J., Jr.
1981-03-01
The analysis of aquifer thermal energy storage (ATES) systems rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES were reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities.
Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code
Energy Technology Data Exchange (ETDEWEB)
Warren, A.W.; Edsinger, R.W.; Chan, Y.K.
1977-08-01
The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.
DEFF Research Database (Denmark)
Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano Paolo
2011-01-01
of basic assumptions that affect the results. Therefore, the calculated energy performance may differ significantly from the real energy consumption. One of the key reasons is the current inability to properly model occupant behaviour and to quantify the associated uncertainties in building performance...... predictions. By consequence, a better description of parameters related to occupant behaviour is highly required. In this paper, the state of art in occupant behaviour modelling within energy simulation tools is analysed and some concepts related to possible improvements of simulation tools are proposed...
The effect of low energy protons on silicon solar cells with simulated coverglass cracks
Gasner, S.; Anspaugh, B.; Francis, R.; Marvin, D.
1991-01-01
Results of a series of low-energy proton (LEP) tests are presented. The purpose of the tests was to investigate the effect of low-energy protons on the electrical performance of solar cells with simulated cracked covers. The results of the tests were then related to the space environment. A matrix of LEP tests was set up using solar cells with simulated cracks to determine the effect on electrical performance as a function of fluence, energy, crack width, coverglass adhesive shielding, crack location, and solar cell size. The results of the test were, for the most part, logical, and consistent.
Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator
Gorman, Dylan J.; Hemmerling, Boerge; Megidish, Eli; Moeller, Soenke A.; Schindler, Philipp; Sarovar, Mohan; Haeffner, Hartmut
2018-01-01
Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.
International Nuclear Information System (INIS)
Mani, B. K.; Angom, D.; Latha, K. V. P.
2009-01-01
We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.
The chemical energy unit partial oxidation reactor operation simulation modeling
Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.
2018-01-01
The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).
Integration of adaptive optics into highEnergy laser modeling and simulation
2017-06-01
contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent
Correlating TEM images of damage in irradiated materials to molecular dynamics simulations
International Nuclear Information System (INIS)
Schaeublin, R.; Caturla, M.-J.; Wall, M.; Felter, T.; Fluss, M.; Wirth, B.D.; Diaz de la Rubia, T.; Victoria, M.
2002-01-01
TEM image simulations are used to couple the results from molecular dynamics (MD) simulations to experimental TEM images. In particular we apply this methodology to the study of defects produced during irradiation. MD simulations have shown that irradiation of FCC metals results in a population of vacancies and interstitials forming clusters. The limitation of these simulations is the short time scales available, on the order of 100 s of picoseconds. Extrapolation of the results from these short times to the time scales of the laboratory has been difficult. We address this problem by two methods: we perform TEM image simulations of MD simulations of cascades with an improved technique, to relate defects produced at short time scales with those observed experimentally at much longer time scales. On the other hand we perform in situ TEM experiments of Au irradiated at liquid-nitrogen temperatures, and study the evolution of the produced damage as the temperature is increased to room temperature. We find that some of the defects observed in the MD simulations at short time scales using the TEM image simulation technique have features that resemble those observed in laboratory TEM images of irradiated samples. In situ TEM shows that stacking fault tetrahedra are present at the lowest temperatures and are stable during annealing up to room temperature, while other defect clusters migrate one dimensionally above -100 deg. C. Results are presented here
Rondini, Greta; Olearo, Beatrice; Soriano Del Castillo, José Miguel; Boselli, Pietro Marco
2018-03-01
to establish slimming guidelines and any other changing treatments is useful to know the individual's energy expenditure due to the fact that, nowadays, the incidence of many diseases related to the loss of lean mass and the accumulation of adipose tissue has increased. The dietary treatments are carried out on calculating the energy contained in food, and then put in relation to the total energy expended by the body in order to produce changes in body mass. the aim of this study was to evaluate the correlation between the food energy and body mass of different subjects in various pathophysiological conditions. one hundred and twenty subjects (male and female, aged 7-78 years old) were studied in various pathophysiological conditions and previously treated with the BFMNU (Biologia e Fisiologia Modellistica della Nutrizione Umana)method. a correlation coefficient R2 of 0.1256 was found between food energy of the diet usually followed by the subjects and their body mass. The correlation between food energy and food mass was with R2 of 0.211. The correlation between Δ% of food energy and Δ% of body mass of the subjects, obtained through dietary treatment with the BFMNU method, was 95.77 percent. the correlation between food energy and body mass is not significant, being a critical point about the diets designed on an energy basis. However, the body mass of an individual is determined by mass balance, regulated by corresponding metabolic rate, calculated by the BFMNU method, thanks to which the macronutrients in the diet are absorbed, redistributed and eliminated. A significant correlation, although not straight, is demonstrated between Δ% of food energy, supplied after processing through the dietary BFMNU method, and the Δ% of body mass, obtained following the dietetic path.
Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2018-01-01
Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.
Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations
Directory of Open Access Journals (Sweden)
Federico Fogolari
2018-02-01
Full Text Available Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.
Low-energy office buildings using existing technology. Simulations with low internal heat gains
Energy Technology Data Exchange (ETDEWEB)
Flodberg, Kajsa; Blomsterberg, Aake; Dubois, Marie-Claude [Lund Univ. (Sweden). Div. of Energy and Building Design
2012-11-01
Although low-energy and nearly zero-energy residential houses have been built in Sweden in the past decade, there are very few examples of low-energy office buildings. This paper investigates the design features affecting energy use in office buildings and suggests the optimal low-energy design from a Swedish perspective. Dynamic simulations have been carried out with IDA ICE 4 on a typical narrow office building with perimeter cell rooms. The results from the parametric study reveal that the most important design features for energy saving are demand-controlled ventilation as well as limited glazing on the facade. Further energy-saving features are efficient lighting and office equipment which strongly reduce user-related electricity and cooling energy. Together, the simulation results suggest that about 48% energy can be saved compared to a new office building built according to the Swedish building code. Thus, it is possible, using a combination of simple and well-known building technologies and configurations, to have very low energy use in new office buildings. If renewable energy sources, such as solar energy and wind power, are added, there is a potential for the annual energy production to exceed the annual energy consumption and a net zero-energy building can be reached. One aspect of the results concerns user-related electricity, which becomes a major energy post in very low-energy offices and which is rarely regulated in building codes today. This results not only in high electricity use, but also in large internal heat gains and unnecessary high cooling loads given the high latitude and cold climate. (orig.)
Star/galaxy separation at faint magnitudes: Application to a simulated Dark Energy Survey
Energy Technology Data Exchange (ETDEWEB)
Soumagnac, M.T.; et al.
2013-06-21
We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the Gravitational Weak Lensing and Large Scale Structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by Point Spread Function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use Principal Component Analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multi-parameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12% for galaxies, at i-magnitude fainter than 23.
Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey
Energy Technology Data Exchange (ETDEWEB)
Soumagnac, M. T.; Abdalla, F. B.; Lahav, O.; Kirk, D.; Sevilla, I.; Bertin, E.; Rowe, B. T. P.; Annis, J.; Busha, M. T.; Da Costa, L. N.; Frieman, J. A.; Gaztanaga, E.; Jarvis, M.; Lin, H.; Percival, W. J.; Santiago, B. X.; Sabiu, C. G.; Wechsler, R. H.; Wolz, L.; Yanny, B.
2015-04-14
We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23.
Simulation-based computation of the workload correlation function in a Lévy-driven queue
Glynn, P.W.; Mandjes, M.
2011-01-01
In this paper we consider a single-server queue with Lévy input, and, in particular, its workload process (Qt)t≥0, focusing on its correlation structure. With the correlation function defined as r(t):= cov(Q0, Qt) / varQ0 (assuming that the workload process is in stationarity at time 0), we first
Simulation-based computation of the workload correlation function in a Levy-driven queue
P. Glynn; M.R.H. Mandjes (Michel)
2009-01-01
htmlabstractIn this paper we consider a single-server queue with Levy input, and in particular its workload process (Q_t), focusing on its correlation structure. With the correlation function defined as r(t) := Cov(Q_0, Q_t)/Var Q_0 (assuming the workload process is in stationarity at time 0), we
Simulation-based computation of the workload correlation function in a Lévy-driven queue
P. Glynn; M.R.H. Mandjes (Michel)
2010-01-01
htmlabstractIn this paper we consider a single-server queue with Levy input, and in particular its workload process (Q_t), focusing on its correlation structure. With the correlation function defined as r(t) := Cov(Q_0,Q_t)/Var(Q_0) (assuming the workload process is in stationarity at time 0), we
Directory of Open Access Journals (Sweden)
Young Tae Chae
2016-06-01
Full Text Available A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG emissions. An energy simulation model was developed to study the energy usage patterns not only at a building level, but also of the internal thermal zones, and system operations. The model was validated using site measurements of energy usage and a detailed audit of the internal load conditions, system operation, and space programs to minimize the discrepancy between the documented status and actual operational conditions. Based on the results of the calibrated model and end-used energy consumption, the study proposed potential energy conservation measures (ECMs for the building envelope, HVAC system operational methods, and system replacement. It also evaluated each ECM from the perspective of both energy and utility cost saving potentials to help retrofitting plan decision making. The study shows that the energy consumption of the building was highly dominated by the thermal requirements of laboratory spaces. Among other ECMs the demand management option of overriding the setpoint temperature is the most cost effective measure.
Void analysis of target residues at SPS energy -evidence of correlation with fractal behaviour
International Nuclear Information System (INIS)
Ghosh, Dipak; Deb, Argha; Das, Rupa . E-mail : dipakghosh_in@yahoo.com
2007-01-01
This paper presents an analysis of the target residues in 32 S -AgBr and 16 0 -AgBr interactions at 200 AGeV and 60AGeV respectively in terms of fractal moment by Takagi method and void probability scaling. The study reveals an interesting feature of the production process. In 16 O- AgBr interactions multifractal behaviour is present in both hemispheres and void probability does not show a scaling behaviour, but at high energy the situation changes. In 32 S -AgBr interactions for both hemisphere monofractal behaviour is indicated by that data and void probability also shows good scaling behaviour. This suggests that a possible correlation of void probability with fractal behaviour of target residues. (author)
Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.
2017-10-01
Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.
International Nuclear Information System (INIS)
Hui, Y.Y.; Chang, Y.-R.; Lee, H.-Y.; Chang, H.-C.; Lim, T.-S.; Fann Wunshain
2009-01-01
The number of negatively charged nitrogen-vacancy centers (N-V) - in fluorescent nanodiamond (FND) has been determined by photon correlation spectroscopy and Monte Carlo simulations at the single particle level. By taking account of the random dipole orientation of the multiple (N-V) - fluorophores and simulating the probability distribution of their effective numbers (N e ), we found that the actual number (N a ) of the fluorophores is in linear correlation with N e , with correction factors of 1.8 and 1.2 in measurements using linearly and circularly polarized lights, respectively. We determined N a =8±1 for 28 nm FND particles prepared by 3 MeV proton irradiation
Kinetic Energy from Supernova Feedback in High-resolution Galaxy Simulations
Simpson, Christine M.; Bryan, Greg L.; Hummels, Cameron; Ostriker, Jeremiah P.
2015-08-01
We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (˜10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 109 M⊙ dwarf halo. We find that in high-density media (≳50 cm-3) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.
Abrecht, David G; Schwantes, Jon M
2015-03-03
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.
System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint
Energy Technology Data Exchange (ETDEWEB)
Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley
2015-08-21
Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.
GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport
International Nuclear Information System (INIS)
Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.
2006-01-01
A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)
2002-07-01
The purpose of the work is to validate the safety assessment methodology previously developed for passenger rail vehicle dynamics, which requires the application of simulation tools as well as testing of vehicles under different track scenarios. This...
International Nuclear Information System (INIS)
Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.
2007-01-01
A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored
Lackey, J.; Hadfield, C.
1992-01-01
Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.
Vargas, Carlos; Sierra, Juan; Posada, Juan; Botero-Cadavid, Juan F.
2017-01-01
ABSTRACT The injection molding process is the most widely used processing technique for polymers. The analysis of residual stresses generated during this process is crucial for the part quality assessment. The present study evaluates the residual stresses in a tensile strength specimen using the simulation software Moldex3D for two polymers, polypropylene and polycarbonate. The residual stresses obtained under a simulated design of experiment were modeled using a robust multivariable regressi...
Analysis of retarding field energy analyzer transmission by simulation of ion trajectories
van de Ven, T. H. M.; de Meijere, C. A.; van der Horst, R. M.; van Kampen, M.; Banine, V. Y.; Beckers, J.
2018-04-01
Retarding field energy analyzers (RFEAs) are used routinely for the measurement of ion energy distribution functions. By contrast, their ability to measure ion flux densities has been considered unreliable because of lack of knowledge about the effective transmission of the RFEA grids. In this work, we simulate the ion trajectories through a three-gridded RFEA using the simulation software SIMION. Using idealized test cases, it is shown that at high ion energy (i.e., >100 eV) the transmission is equal to the optical transmission rather than the product of the individual grid transparencies. Below 20 eV, ion trajectories are strongly influenced by the electric fields in between the grids. In this region, grid alignment and ion focusing effects contribute to fluctuations in transmission with ion energy. Subsequently the model has been used to simulate the transmission and energy resolution of an experimental RFEA probe. Grid misalignments reduce the transmission fluctuations at low energy. The model predicts the minimum energy resolution, which has been confirmed experimentally by irradiating the probe with a beam of ions with a small energy bandwidth.
Modeling and simulation of the energy use in an occupied residential building in cold climate
International Nuclear Information System (INIS)
Olofsson, Thomas; Mahlia, T.M.I.
2012-01-01
Highlights: ► An overview of the energy-characteristics based on illustrations in graphical figures. ► Figures to support identification and validation energy refurbishment measures. ► Emphasizing energy efficiency measures in early stage of building design. -- Abstract: In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance.
Mexico's long-term energy outlook : results of a detailed energy supply and demand simulation
International Nuclear Information System (INIS)
Conzelmann, G.; Quintanilla, J.; Conde, L.A.; Fernandez, J.; Mar, E.; Martin del Campo, C.; Serrato, G.; Ortega, R.
2006-01-01
This article discussed the results of a bottom-up analysis of Mexico's energy markets which was conducted using an energy and power evaluation program. The program was used to develop energy market forecasts to the year 2025. In the first phase of the study, dynamic optimization software was used to determine the optimal, least-cost generation system expansion path to meet growing demand for electricity. A separate model was used to determine the optimal generating strategy of mixed hydro-thermal electric power systems. In phase 2, a nonlinear market-based approach was used to determine the energy supply and demand balance for the entire energy system, as well as the response of various segments of the energy system to changes in energy price and demand levels. Basic input parameters included information on the energy system structure; base-year energy statistics; and, technical and policy constraints. A total of 14 scenarios were modelled to examine variations in load growth, sensitivities to changes in projected fuel prices, variations in assumed natural gas availability, system reliability targets, and the potential for additional nuclear capacity. Forecasts for the entire energy system were then developed for 4 scenarios: (1) reference case; (2) limited gas scenario; (3) renewable energy; and (4) additional nuclear power generation capacity. Results of the study showed that Mexico's crude oil production is projected to increase annually by 1 per cent to 2025. Imports of petroleum products resulting from the country's rapidly growing transportation sector will increase. Demand for natural gas is expected to outpace projected domestic production. The long-term market outlook for Mexico's electricity industry shows a heavy reliance on natural gas-based generating technologies. It was concluded that alternative results for a constrained-gas scenario showed a substantial shift to coal-based generation and associated effects on the natural gas market. 4 refs., 26
Energy Technology Data Exchange (ETDEWEB)
Ning Shuang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian Xiufang, E-mail: xfbian@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ren Zhenfeng [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)
2010-09-01
Activation energy is obtained from temperature dependence of viscosities by means of a fitting to the Arrhenius equation for liquid alloys of Cu-Sb, Cu-Te, Cu-Sn and Cu-Ag systems. We found that the changing trend of activation energy curves with concentration is similar to that of liquidus in the phase diagrams. Moreover, a maximum value of activation energy is in the composition range of the intermetallic phases and a minimum value of activation energy is located at the eutectic point. The correlation between the activation energy and the phase diagrams has been further discussed.
Climatic correlates of tree mortality in water- and energy-limited forests.
Directory of Open Access Journals (Sweden)
Adrian J Das
Full Text Available Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1 drought stress, or (2 the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
Two-electron germanium centers with a negative correlation energy in lead chalcogenides
International Nuclear Information System (INIS)
Terukov, E. I.; Marchenko, A. V.; Zaitseva, A. V.; Seregin, P. P.
2007-01-01
It is shown that the charge state of the 73 Ge antisite defect that arises in anionic sublattices of PbS, PbSe, and PbTe after radioactive transformation of 73 As does not depend on the position of the Fermi level, whereas the 73 Ge center in cationic sublattices of PbS and PbSe represents a two-electron donor with the negative correlation energy: the Moessbauer spectrum for the n-type samples corresponds to the neutral state of the donor center (Ge 2+ ), while this spectrum corresponds to the doubly ionized state (Ge 4+ ) of the center in the p-type samples. In partially compensated PbSe samples, a fast electron exchange between the neutral and ionized donor centers is realized. It is shown by the method of Moessbauer spectroscopy for the 119 Sn isotope that the germanium-related energy levels are located higher than the levels formed in the band gap of these semiconductors by the impurity tin atoms
Forecasting model for energy consumption in South Africa correlated with the income
Energy Technology Data Exchange (ETDEWEB)
Siti, M.W.; Nicolae, D.V.; Jimoh, A.A. [Tshwane Univ. of Technology, Pretoria (South Africa). Dept. of Electrical Engineers
2008-07-01
Demand-side-management (DSM) programs are used to influence customer electricity usage and reduce capital and operating costs for electric utilities. Escalating fuel costs and regulatory pressure are now causing some municipalities to consider demand-side options as alternatives to traditional resource planning. A mathematical model for forecasting energy consumption in South Africa was presented in this paper. The model used data from an energy consumption audit conducted in South Africa, and was correlated to the income of consumers. The model was used to study the impact of society, personality, and fixed contribution indexes on electricity consumption. Results of the modelling study showed that a higher fixed contribution factor indicates a more developed economic infrastructure and higher electrical expenditure. The personality index influences dynamic expenditures that are likely to be improved by electricity awareness programs. The study also showed that small changes in the society index can have a significant impact on electricity consumption. The model can be extrapolated to predict load profiles for particular localities or communities based on household income data. The model can also be used to validate load shaping, profiling, and prediction approaches. 6 refs., 4 tabs., 6 figs.
Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar
2016-02-01
Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.
Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed
Energy Technology Data Exchange (ETDEWEB)
Wetter, Michael
2010-08-22
This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.
Correlates of use of alcohol mixed with energy drinks among youth across 10 US metropolitan areas.
Khan, Shivani R; Cottler, Linda B; Striley, Catherine W
2016-06-01
Predictors of use of alcohol mixed with energy drinks (AmED) among youth have been understudied. The current analyses investigated the prevalence of and correlates for use of AmED among alcohol users from a national study of stimulant use among youth. The National Monitoring of Adolescent Prescription Stimulants Study (N-MAPSS) assessed behaviors and risk factors for stimulant use from 11,048 youth, 10-18 years of age recruited from entertainment venues across 10 US cities. Of the four cross sections, two had questions on having alcohol mixed with energy drinks (AmED) in the past 30 days along with sociodemographic characteristics, current tobacco and marijuana use and current nonmedical use of prescription opioids, anxiolytics, and stimulants. Only 13 to18 year olds and those who reported alcohol use were included in the analyses. Overall, 28.4% (1392 out of 4905) of the 13 to18 year olds reported past 30-day alcohol use. Among alcohol users, 27% reported having alcohol mixed with energy drinks in the past 30 days. Multivariate logistic regression indicated that use of AmED was significantly associated with tobacco and marijuana use and nonmedical use of prescription stimulants. Underage drinking is common among youth and more than a quarter of these drinkers use AmED. Use of AmED is significantly associated with tobacco and marijuana use and nonmedical use of prescription stimulants. Drug and alcohol intervention programs should educate on the risks of AmED, as the same population is at high-risk for use of AmED and alcohol/drug use. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Ichikawa, Kazuhide; Takahashi, Tomo
2008-01-01
We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation
US Clean Energy Sector and the Opportunity for Modeling and Simulation
Inge, Carole Cameron
2011-01-01
The following paper sets forth the current understanding of the US clean energy demand and opportunity. As clean energy systems come online and technology is developed, modeling and simulation of these complex energy programs provides an untapped business opportunity. The US Department of Defense provides a great venue for developing new technology in the energy sector because it is demanding lower fuel costs, more energy efficiencies in its buildings and bases, and overall improvements in its carbon footprint. These issues coupled with the security issues faced by foreign dependence on oil will soon bring more clean energy innovations to the forefront (lighter batteries for soldiers, alternative fuel for jets, energy storage systems for ships, etc).
International Nuclear Information System (INIS)
Kandic, A.; Jevremovic, T.; Boreli, F.
1989-01-01
Monte Carlo simulation (without secondary radiation) of the standard photon interactions (Compton scattering, photoelectric absorption and pair protection) for the complex slab's geometry is used in numerical code ACCA. A typical ACCA run will yield: (a) transmission of primary photon radiation differential in energy, (b) the spectrum of energy deposited in the target as a function of position and (c) the cumulative percent energy deposition as a function of position. A cumulative percent energy deposition of photon monoenergetic beam incident on simplest and complexity tissue slab and Fe slab are presented in this paper. (author). 5 refs.; 2 figs
What does Europe pay for clean energy?-Review of macroeconomic simulation studies
International Nuclear Information System (INIS)
Dannenberg, Astrid; Mennel, Tim; Moslener, Ulf
2008-01-01
This paper analyses the macroeconomic costs of environmental regulation in European energy markets on the basis of existing macroeconomic simulation studies. The analysis comprises the European emssions trading scheme, energy taxes, measures in the transport sector and the promotion of renewable energy sources. We find that these instruments affect the European economy, in particular the energy-intensive industries and the industries that produce internationally tradeable goods. From a macroeconomic point of view, however, the costs of environmental regulation appear to be modest. The underlying environmental targets and the efficient design of regulation are key determinants for the cost burden
Advanced computational simulations of water waves interacting with wave energy converters
Pathak, Ashish; Freniere, Cole; Raessi, Mehdi
2017-03-01
Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.
Energy improvement of a conventional dwelling in Argentina through thermal simulation
Energy Technology Data Exchange (ETDEWEB)
Filippin, C. [CONICET-CC302, Santa Rosa 6300, La Pampa (Argentina); Flores Larsen, S. [INENCO-Instituto de Investigaciones en Energias No Convencionales, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, CP 4400 Salta Capital (Argentina); Lopez Gay, E.
2008-10-15
This paper analyses the design, technology, thermal behaviour, and energy consumption of both a conventional and a refurbished dwelling located in a region with a temperate-cold climate in central Argentina. The thermal behaviour and the energy consumption of the conventional building were monitored during winter. The experimental data were analysed and included in a simulation of the transient thermal behaviour of the house. Measurements and simulation were in agreement, showing a mean deviation below 0.5{sup o}C. To reduce the heating and cooling loads, the dwelling was refurbished and its thermal behaviour was studied through a computer simulation, for the critical seasons (winter and summer) and for two occupancy schedules (with and without inhabitants). The refurbishment included passive solar heating, shading, and an insulated envelope. These successful changes allowed energy savings of 66% and 52% for winter and summer, respectively. (author)
Boll, Torben
2012-10-01
In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.
Estimation of numerical uncertainty in computational fluid dynamics simulations