WorldWideScience

Sample records for energy scale-up project

  1. Minnesota wood energy scale-up project 1994 establishment cost data

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M. [Oak Ridge National Lab., TN (United States); Pierce, R. [Champion International, Alexandria, MN (United States); Kroll, T. [Minnesota Department of Natural Resources-Forestry, St. Cloud, MN (United States)

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  2. The SCALE-UP Project

    Science.gov (United States)

    Beichner, Robert

    2015-03-01

    The Student Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) project was developed nearly 20 years ago as an economical way to provide collaborative, interactive instruction even for large enrollment classes. Nearly all research-based pedagogies have been designed with fairly high faculty-student ratios. The economics of introductory courses at large universities often precludes that situation, so SCALE-UP was created as a way to facilitate highly collaborative active learning with large numbers of students served by only a few faculty and assistants. It enables those students to learn and succeed not only in acquiring content, but also to practice important 21st century skills like problem solving, communication, and teamsmanship. The approach was initially targeted at undergraduate science and engineering students taking introductory physics courses in large enrollment sections. It has since expanded to multiple content areas, including chemistry, math, engineering, biology, business, nursing, and even the humanities. Class sizes range from 24 to over 600. Data collected from multiple sites around the world indicates highly successful implementation at more than 250 institutions. NSF support was critical for initial development and dissemination efforts. Generously supported by NSF (9752313, 9981107) and FIPSE (P116B971905, P116B000659).

  3. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  4. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  5. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies

    International Nuclear Information System (INIS)

    Wilson, Charlie

    2012-01-01

    The 20th century has witnessed wholesale transformation in the energy system marked by the pervasive diffusion of both energy supply and end-use technologies. Just as whole industries have grown, so too have unit sizes or capacities. Analysed in combination, these unit level and industry level growth patterns reveal some consistencies across very different energy technologies. First, the up-scaling or increase in unit size of an energy technology comes after an often prolonged period of experimentation with many smaller-scale units. Second, the peak growth phase of an industry can lag these increases in unit size by up to 20 years. Third, the rate and timing of up-scaling at the unit level is subject to countervailing influences of scale economies and heterogeneous market demand. These observed patterns have important implications for experience curve analyses based on time series data covering the up-scaling phases of energy technologies, as these are likely to conflate industry level learning effects with unit level scale effects. The historical diffusion of energy technologies also suggests that low carbon technology policies pushing for significant jumps in unit size before a ‘formative phase’ of experimentation with smaller-scale units are risky. - Highlights: ► Comparative analysis of energy technology diffusion. ► Consistent pattern of sequential formative, up-scaling, and growth phases. ► Evidence for conflation of industry level learning effects with unit level up-scaling. ► Implications for experience curve analyses and technology policy.

  6. Small scale renewable solar energy and the best result project

    Energy Technology Data Exchange (ETDEWEB)

    Bilbao, J.; Miguel, A.H.; Perez-Burgos, A.M. [Valladolid Univ. (Spain)

    2008-07-01

    The European Community has established programmes with different Projects in relation with the develop of an energy system according to de Kyoto objectives, improving energy efficiency, maintaining security supply and doubling the share of renewable energy use. The Best Result Project (Building and Energy Systems and Technology in Renewable Energy Sources Update and Linked Training), is financed by the European Commission, Intelligent Energy Agency (EIE) and the project objectives are to develop training and diffusion activities in the field of Renewable Energy Technology. The project aims to raise the renewable energy knowledge among suppliers and general public. The project activities are: basis and specialized training events, workshops, meetings, visits and e-learning common platform. The final objective is to extend the market of small scale RES applications in the building and energy sector through common and local activities addressing RES suppliers and consumers. (orig.)

  7. Financing small scale wind energy projects in the UK

    International Nuclear Information System (INIS)

    Mitchell, Catherine

    1993-01-01

    This paper shows how wind energy projects in the UK have obtained finance. It attempts to list the financing options open to small scale developments and to note any likely problems which may occur. (UK)

  8. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  9. Reviving large-scale projects

    International Nuclear Information System (INIS)

    Desiront, A.

    2003-01-01

    For the past decade, most large-scale hydro development projects in northern Quebec have been put on hold due to land disputes with First Nations. Hydroelectric projects have recently been revived following an agreement signed with Aboriginal communities in the province who recognized the need to find new sources of revenue for future generations. Many Cree are working on the project to harness the waters of the Eastmain River located in the middle of their territory. The work involves building an 890 foot long dam, 30 dikes enclosing a 603 square-km reservoir, a spillway, and a power house with 3 generating units with a total capacity of 480 MW of power for start-up in 2007. The project will require the use of 2,400 workers in total. The Cree Construction and Development Company is working on relations between Quebec's 14,000 Crees and the James Bay Energy Corporation, the subsidiary of Hydro-Quebec which is developing the project. Approximately 10 per cent of the $735-million project has been designated for the environmental component. Inspectors ensure that the project complies fully with environmental protection guidelines. Total development costs for Eastmain-1 are in the order of $2 billion of which $735 million will cover work on site and the remainder will cover generating units, transportation and financial charges. Under the treaty known as the Peace of the Braves, signed in February 2002, the Quebec government and Hydro-Quebec will pay the Cree $70 million annually for 50 years for the right to exploit hydro, mining and forest resources within their territory. The project comes at a time when electricity export volumes to the New England states are down due to growth in Quebec's domestic demand. Hydropower is a renewable and non-polluting source of energy that is one of the most acceptable forms of energy where the Kyoto Protocol is concerned. It was emphasized that large-scale hydro-electric projects are needed to provide sufficient energy to meet both

  10. Setting up fuel supply strategies for large-scale bio-energy projects using agricultural and forest residues. A methodology for developing countries

    International Nuclear Information System (INIS)

    Junginger, M.

    2000-08-01

    The objective of this paper is to develop a coherent methodology to set up fuel supply strategies for large-scale biomass-conversion units. This method will explicitly take risks and uncertainties regarding availability and costs in relation to time into account. This paper aims at providing general guidelines, which are not country-specific. These guidelines cannot provide 'perfect fit'-solutions, but aim to give general help to overcome barriers and to set up supply strategies. It will mainly focus on residues from the agricultural and forestry sector. This study focuses on electricity or both electricity and heat production (CHP) with plant scales between 1040 MWe. This range is chosen due to rules of economies of scale. In large-scale plants the benefits of increased efficiency outweigh increased transportation costs, allowing a lower price per kWh which in turn may allow higher biomass costs. However, fuel-supply risks tend to get higher with increasing plant size, which makes it more important to assess them for large(r) conversion plants. Although the methodology does not focus on a specific conversion technology, it should be stressed that the technology must be able to handle a wide variety of biomass fuels with different characteristics because many biomass residues are not available the year round and various fuels are needed for a constant supply. The methodology allows for comparing different technologies (with known investment and operational and maintenance costs from literature) and evaluation for different fuel supply scenarios. In order to demonstrate the methodology, a case study was carried out for the north-eastern part of Thailand (Isaan), an agricultural region. The research was conducted in collaboration with the Regional Wood Energy Development Programme in Asia (RWEDP), a project of the UN Food and Agricultural Organization (FAO) in Bangkok, Thailand. In Section 2 of this paper the methodology will be presented. In Section 3 the economic

  11. From Project to Program: Tupange's Experience with Scaling Up Family Planning Interventions in Urban Kenya.

    Science.gov (United States)

    Keyonzo, Nelson; Nyachae, Paul; Kagwe, Peter; Kilonzo, Margaret; Mumba, Feddis; Owino, Kenneth; Kichamu, George; Kigen, Bartilol; Fajans, Peter; Ghiron, Laura; Simmons, Ruth

    2015-05-01

    This paper describes how the Urban Reproductive Health Initiative in Kenya, the Tupange Project (2010-2015), successfully applied the ExpandNet approach to sustainably scale up family planning interventions, first in Machakos and Kakamega, and subsequently also in its three core cities, Nairobi, Kisumu and Mombasa. This new focus meant shifting from a "project" to a "program" approach, which required paying attention to government leadership and ownership, limiting external inputs, institutionalizing interventions in existing structures and emphasizing sustainability. The paper also highlights the project's efforts to prepare for the future scale up of Tupange's interventions in other counties to support continuing and improved access to family planning services in the new context of devolution (decentralization) in Kenya. Copyright © 2015. Published by Elsevier Ltd.

  12. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  13. Scoping study into community-based renewable energy projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This scoping study has been carried out by the Centre for Sustainable Energy (CSE), a charity which promotes energy efficiency and renewable energy. CSE have used their involvement in the development of the Energy Club (the first energy service company for householders in the UK) and the Bristol Environment and Energy Trust (a cross-sector organisation initiating environmental projects) as the basis of the study. This study is the first phase of a long term project to set up two small-scale renewable energy schemes to demonstrate the benefits of a community based approach. Specific objectives of the study were: to identify, quantify and cost, renewable energy resources for interested community organisations; to evaluate two routes for developing community based projects - Environment Trusts and Energy Clubs'; to organise a seminar with the objective of bringing together community interest groups with experts in renewable energy; to identify two communities with viable renewable projects for the next phase - full feasibility studies/pilot projects. (author)

  14. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  15. A Guide to Bundling Small-scale CDM Projects

    International Nuclear Information System (INIS)

    Mariyappan, J.; Bhardwaj, N.; De Coninck, H.; Van der Linden, N.

    2005-07-01

    Small-scale renewable energy and energy efficiency projects that fit the development needs of many developing countries, can potentially be supported via the Clean Development Mechanism (CDM), one of the Kyoto Protocol's flexible mechanisms for tackling climate change. However, there is concern that due to high transaction costs, as well as many existing barriers, very few investments will be made in small-scale projects, which are often the most suitable development option in countries such as India. In view of this, the 'bundling' together of appropriate small-scale projects on a regional basis has been proposed as a way in which funding can be leveraged from international sources and transaction costs reduced. IT Power, IT Power India and the Energy research Centre of the Netherlands (ECN) are carrying out a 2-year project to establish the capacity within India to enable individual small scale projects to be bundled as a single CDM project. Overall objectives are to develop the necessary institutional capabilities to formulate and implement small scale CDM projects in India; to provide a guide on how to bundle small scale projects under the CDM in developing countries; and to raise the awareness of the potential for investment in small scale energy projects which can gain funding through the CDM

  16. Scaling up Telemedicine

    DEFF Research Database (Denmark)

    Christensen, Jannie Kristine Bang; Nielsen, Jeppe Agger; Gustafsson, Jeppe

    through negotiating, mobilizing coalitions, and legitimacy building. To illustrate and further develop this conceptualization, we build on insights from a longitudinal case study (2008-2014) and provide a rich empirical account of how a Danish telemedicine pilot was transformed into a large......-scale telemedicine project through simultaneous translation and theorization efforts in a cross-sectorial, politicized social context. Although we focus on upscaling as a bottom up process (from pilot to large scale), we argue that translation and theorization, and associated political behavior occurs in a broader...

  17. Financing Energy Services for Small-scale Energy-users - project FINESSE

    International Nuclear Information System (INIS)

    Annan, R.; Saunders, R.J.; Hassing, P.

    1994-01-01

    This paper presents the FINESSE (Financing Energy Services for Small-scale Energy users) launched in 1989 by World Bank 's Energy Sector Assistance Program (ESMAP) in association with the US Department of Energy and the Netherlands Ministry for Development Cooperation, whose purpose is to address financial, institutional and policy issues related to enhancing energy services for residential and commercial energy consumers in the Developing World. It describes the related technology benefits of renewable energy and energy efficiency, as well as a technology overview and outlines the strategies for financing alternatives in the Developing World. It concludes with a description of successful experiences in small-scale energy services, especially in Asia. (TEC). 8 figs

  18. Considerations for reducing food system energy demand while scaling up urban agriculture

    DEFF Research Database (Denmark)

    Mohareb, Eugene; Heller, Martin; Novak, Paige

    2017-01-01

    -income countries, considering UA classification, direct/indirect energy pressures, and interactions with other components of the food-energy-water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA...... with UA systems, highlighting that the literature is not yet sufficiently robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation...... of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high...

  19. Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks

    International Nuclear Information System (INIS)

    Busch, Jonathan; Roelich, Katy; Bale, Catherine S.E.; Knoeri, Christof

    2017-01-01

    The potential contribution of local energy infrastructure – such as heat networks – to the transition to a low carbon economy is increasingly recognised in international, national and municipal policy. Creating the policy environment to foster the scaling up of local energy infrastructure is, however, still challenging; despite national policy action and local authority interest the growth of heat networks in UK cities remains slow. Techno-economic energy system models commonly used to inform policy are not designed to address institutional and governance barriers. We present an agent-based model of heat network development in UK cities in which policy interventions aimed at the institutional and governance barriers faced by diverse actors can be explored. Three types of project instigators are included – municipal, commercial and community – which have distinct decision heuristics and capabilities and follow a multi-stage development process. Scenarios of policy interventions developed in a companion modelling approach indicate that the effect of interventions differs between actors depending on their capabilities. Successful interventions account for the specific motivations and capabilities of different actors, provide a portfolio of support along the development process and recognise the important strategic role of local authorities in supporting low carbon energy infrastructure. - Highlights: • Energy policy should account for diverse actor motivations and capabilities. • Project development is a multi-stage process, not a one-off event. • Participatory agent-based modelling can inform policy that accounts for complexity. • Policy should take a portfolio approach to providing support. • Local authorities have an important strategic role in local infrastructure.

  20. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Appendix 1. Bottom-up Scenarios

    International Nuclear Information System (INIS)

    Hoefnagels, R.; Dornburg, V.; Faaij, A.; Banse, M.

    2009-03-01

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in the main report. This report (part 1) presents scenarios for future biomass use for energy and materials, and analyses the consequences on energy supply, chemical productions, costs and greenhouse gas (GHG) emissions with a bottom-up approach. The bottom-up projections, as presented in this report, form the basis for modelling work using the top-down macro-economic model (LEITAP) to assess the economic impact of substituting fossil-based energy carriers with biomass in the Netherlands. The results of the macro-economic modelling work, and the linkage between the results of the bottom-up and top-down work, will be presented in the top-down economic part and synthesis report of this study

  1. Filling the gaps: Policy supports and interventions for scaling up renewable energy development in Small Island Developing States

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Shah, Kalim U.

    2016-01-01

    SIDS have both opportunities and challenges – economic, social and environmental vulnerability – for low carbon development. Economically, they are highly dependent on international trade; they have limited domestic markets, too small to provide significant scale economies; their exports are constraint by their isolation and remote location. We provide an overview of current energy situation in SIDS, their goals to adopt low carbon economic development paths, policies already in place or required to achieve the goals and challenges to implement their plans and strategies. The focus is on energy policy landscape that needs to be addressed in order to scale-up renewable energy technologies needed to stimulate low carbon economic growth. We find that SIDS face four key barriers to renewable energy development: information to improve the energy information network by strengthening existing information systems and building awareness of renewable energy; financing mechanisms for renewable energy projects, including regional loan structures and technical assistance to banks; policy supports to implement regulatory frameworks that enable renewable energy development; and building technical capacity among players in the renewable energy field. We recommend “policy enablers” that underlie what could positively impact on renewable energy goals and more broadly energy efficiency and climate change. - Highlights: • Incentive based policies are required to stimulate investment and reduce transaction costs. • Sustained, consistent long term policy outlooks to support achieving targets are often absent. • Gaps in technical data, resource assessments and local capacity hinders strong policy decisions. • Coordination by public and private actors across the value chain increases renewables deployment.

  2. Considerations for reducing food system energy demand while scaling up urban agriculture

    Science.gov (United States)

    Mohareb, Eugene; Heller, Martin; Novak, Paige; Goldstein, Benjamin; Fonoll, Xavier; Raskin, Lutgarde

    2017-12-01

    There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and interactions with other components of the food-energy-water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA. Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs. By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the

  3. Scale up, then power down

    International Nuclear Information System (INIS)

    Pichon, Max

    2011-01-01

    Full text: The University of Queensland has switched on what it says is Australia's largest solar photovoltaic installation, a 1.2MW system that spans 11 rooftops at the St Lucia campus. The UQ Solar Array, which effectively coats four buildings with more than 5,000 polycrystalline silicon solar panels, will generate about 1,850MWh a year. “During the day, the system will provide up to six per cent of the university's power requirements, reducing greenhouse gas emissions by approximately 1,650 tonnes of CO 2 -e per annum,”said Rodger Whitby, the GM of generation for renewables company Ingenero. It also underpins a number of cutting-edge research projects in diverse fields, according to Professor Paul Meredith, who oversaw the design and installation of the solar array. “A major objective of our array research program is to provide a clearer understanding of how to integrate megawatt- scale renewable energy sources into an urban grid,” said Professor Meredith, of the School of Mathematics and Physics and Global Change Institute. “Mid-size, commercial-scale renewable power generating systems like UQ's will become increasingly common in urban and remote areas. Addressing the engineering issues around how these systems can feed into and integrate with the grid is essential so that people can really understand and calculate their value as we transition to lower-emission forms of energy.” Electricity retailer Energex contributed $90,000 to the research project through state-of-the- art equipment to allow high-quality monitoring and analysis of the power feed. Another key research project addresses one of the most common criticisms of solar power: that it cannot replace baseload grid power. Through a partnership with Brisbane electricity storage technology company RedFlow, a 200kW battery bank will be connected to a 339kW section of the solar array. “The RedFlow system uses next-generation zinc bromine batteries,” Professor Meredith said.

  4. Risk analysis for renewable energy projects due to constraints arising

    Science.gov (United States)

    Prostean, G.; Vasar, C.; Prostean, O.; Vartosu, A.

    2016-02-01

    Starting from the target of the European Union (EU) to use renewable energy in the area that aims a binding target of 20% renewable energy in final energy consumption by 2020, this article illustrates the identification of risks for implementation of wind energy projects in Romania, which could lead to complex technical implications, social and administrative. In specific projects analyzed in this paper were identified critical bottlenecks in the future wind power supply chain and reasonable time periods that may arise. Renewable energy technologies have to face a number of constraints that delayed scaling-up their production process, their transport process, the equipment reliability, etc. so implementing these types of projects requiring complex specialized team, the coordination of which also involve specific risks. The research team applied an analytical risk approach to identify major risks encountered within a wind farm project developed in Romania in isolated regions with different particularities, configured for different geographical areas (hill and mountain locations in Romania). Identification of major risks was based on the conceptual model set up for the entire project implementation process. Throughout this conceptual model there were identified specific constraints of such process. Integration risks were examined by an empirical study based on the method HAZOP (Hazard and Operability). The discussion describes the analysis of our results implementation context of renewable energy projects in Romania and creates a framework for assessing energy supply to any entity from renewable sources.

  5. Building up a citizen-based project of renewable energies. Energy transition by local actors: stakes and modalities - Recommendation guide

    International Nuclear Information System (INIS)

    2013-01-01

    This guide first presents the energy and social context which could lead to citizen-based projects, presents some European examples and identifies some French limitations, and defines a citizen-based project. The second part proposes an overview of such a project and its various steps, and outlines the importance of some basic actions: to build up a pilot group and to define the project, to choose the right moment and to retain control of the project, to communicate and to mobilise. The next part presents the project methodology: elaboration of specification, establishment of partnership, definition of a business model, choice of a legal status. The last part addresses how to mobilise local and citizen funding: own funds and bank loan, participation of citizen and local communities

  6. Putting rural energy access projects into perspective: What lessons are relevant?

    International Nuclear Information System (INIS)

    Vleuten, Frank van der; Stam, Nienke; Plas, Robert-Jan van der

    2013-01-01

    As the Secretary General of the United Nations and the president of the World Bank are calling upon countries to commit themselves to universal access to modern energy services by 2030, and international players such as the International Energy Agency, the EU, and ESMAP are building scenarios how to accomplish this, this article demonstrates the non-linear dynamics of scaling up rural energy access, drawing among others from over 70 energy access projects implemented by the EASE network of national energy and development NGOs in eight countries and on experiences combining microfinance and (clean) energy access. The article shows that scaling up rural energy access demands careful tuning of support to the business models of rural entrepreneurs, in which development finance has only a limited role to play. The article argues for market development approaches that take a programmatic approach, change their intervention model as the market matures, and build on smart use of the limited sector capacity. The ultimate challenge is how to down-tune ambitions and spending power of the development community to match the absorption capacity of rural markets and the reality of entrepreneurs on the ground. - Highlights: • Practitioner's experiences and lessons, based on over 70 implemented projects. • Relevant for “Sustainable Energy for All” high-level initiative. • Match high international ambitions with low capacity of rural energy markets

  7. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    Science.gov (United States)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  8. Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO.POWER project

    International Nuclear Information System (INIS)

    Giambastiani, B.M.S.; Tinti, F.; Mendrinos, D.; Mastrocicco, M.

    2014-01-01

    Use of shallow geothermal energy, in terms of ground coupled heat pumps (GCHP) for heating and cooling purposes, is an environmentally-friendly and cost-effective alternative with potential to replace fossil fuels and help mitigate global warming. Focusing on the recent results of the GEO.POWER project, this paper aims at examining the energy performance strategies and the future regional and national financial instruments for large scale introduction of geothermal energy and GCHP systems in both residential and industrial buildings. After a transferability assessment to evaluate the reproducibility of some outstanding examples of systems currently existing in Europe for the utilisation of shallow geothermal energy, a set of regulatory, economic and technical actions is proposed to encourage the GCHP market development and support geothermal energy investments in the frame of the existing European normative platforms. This analysis shows that many European markets are changing from a new GCHP market to growth market. However some interventions are still required, such as incentives, regulatory framework, certification schemes and training activities in order to accelerate the market uptake and achieve the main European energy and climate targets. - Highlights: • Potentiality of geothermal applications for heating and cooling in buildings. • Description of the GEO.POWER project and its results. • Local strategies for the large scale introduction of GCHPs

  9. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  10. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  11. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  12. Scale-up of heterogeneous catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Heggs, P; Sunderland, P

    1979-12-01

    This report on the Institution of Chemical Engineers ''Problems in Applied Catalysis'' Meeting (Bath, U.K. 1/4-5/78) covers papers on the nature of the catalyst surface, including the use of IR spectroscopy, electron energy loss spectroscopy, low-energy electron diffraction, electron spectroscopy, secondary ion mass spectroscopy, and modular-beam scattering for investigating solid surfaces and their relevance to catalysis; study of the reaction mechanisms by which catalysis takes place; use of mechanistic models to determine the true chemical kinetics illustrated for the oxidation of benzene to maleic anhydride over a vanadium pentoxide/molybdenum trioxide catalyst; the study with respect to the importance of transport effects in catalyst pellets on scale-up, falsification of true kinetics, and the design of laboratory reactors; full-scale reactor design of packed-bed reactors; and practical scale-up problems illustrated for methanol synthesis over a copper catalyst, ammonia oxidation over a cobalt oxide catalyst, and the steam reforming of naphtha.

  13. Adoption of innovative energy systems in social housing: Lessons from eight large-scale renovation projects in The Netherlands

    International Nuclear Information System (INIS)

    Hoppe, Thomas

    2012-01-01

    Thanks to new insights on the impacts that dwellings have throughout their life cycles, there has been increased attention to retrofitting innovative energy systems (IES) in existing housing. This paper uses an explorative case study design to gain more knowledge about the governance aspects of this under-researched topic. The central research question is: Which factors influence the adoption of innovative energy systems in social housing sites during renovation projects? To answer this question, eight large-scale renovation projects in The Netherlands were investigated. These case studies allowed the identification of barriers, enabling factors and perspectives from three main actors—housing associations, tenants and local authorities. It turns out that adopting IES encounters many barriers: lack of trust between project partners, delay in project progress, financial feasibility considerations, lack of support from tenants, lengthy legal permit procedures, over-ambitious project goals, poor experiences in previous projects, and IES ambitions that are not taken serious by key decision-makers. Furthermore, IES were only successfully fitted in three of the eight projects. Moreover, ambitions were lowered as the projects progressed in all the cases investigated. The study calls for further systematic, in-depth comparison of fitting IES in large-scale renovation projects in social housing. - Highlights: ► Attention to adoption of innovative energy systems in social housing. ► Several non-technical factors influence adoption. ► In-depth analysis of eight local-level renovation projects. ► Ambitions are lowered as projects progress. ► Barriers: financial feasibility, over-ambitious goals, delay, lack of trust.

  14. Evaluating effectiveness of project start-ups: an exploratory study

    NARCIS (Netherlands)

    Halman, Johannes I.M.; Burger, G.T.N.

    In this paper an exploratory study is reported about the effectiveness of project start-up (PSU) practices within a world-scale operating, high technology innovating and manufacturing company. The emphasis is on the focal position of both project owner and project manager. To uncover potential

  15. Electronic Government in the City of Fez, Morocco : Scaling up to the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Electronic Government in the City of Fez, Morocco : Scaling up to the National Level. In the pilot phase of the project (101980), electronic service delivery was introduced and successfully deployed in the Fez-Agdal local government office. This phase will scale up the project to include the remaining local government offices ...

  16. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  17. Smart City pilot projects : exploring the dimensions and conditions of scaling up

    NARCIS (Netherlands)

    van Winden, W.; van den Buuse, D.J.H.M.

    2017-01-01

    In many cities, pilot projects are set up to test new technologies that help to address urban sustainability issues, improve the effectiveness of urban services, and enhance the quality of life of citizens. These projects, often labelled as “smart city” projects, are typically supported by

  18. Smart city pilot projects, scaling up or fading out? : Experiences from Amsterdam

    NARCIS (Netherlands)

    van Winden, W.

    2016-01-01

    In many cities, pilot projects are set up to test or develop new technologies that improve sustainability, urban quality of life or urban services (often labelled as “smart city” projects). Typically, these projects are supported by the municipality, funded by subsidies, and run in partnerships.

  19. Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up.

    Science.gov (United States)

    Zhao, Fang; Cambié, Dario; Janse, Jeroen; Wieland, Eric W; Kuijpers, Koen P L; Hessel, Volker; Debije, Michael G; Noël, Timothy

    2018-01-02

    The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer-Lambert-Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels.

  20. SEWGS Technology is Now Ready for Scale-up

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, D.; Van Selow, E.; Cobden, P. [Energy research Centre of the Netherlands ECN (Netherlands); Manzolini, G.; Macchi, E.; Gazzani, M. [Politecnico di Milano PTM, Dipartimento di Energia (Italy); Blom, R.; Henriksen, P.P. [SINTEF, Trondheim (Norway); Beavis, R. [BP Alternative Energy (United Kingdom); Wright, A. [Air products PLC (United Kingdom)

    2013-07-01

    In the FP7 project CAESAR, Air Products, BP, ECN, SINTEF and Politecnico di Milano worked together in the further development of the SEWGS process with the objective to reduce the energy penalty and the costs per ton of CO2 avoided to less than 25 euro through optimization of sorbent materials, reactor and process design and smart integration of the SEWGS unit in a combined cycle power plant. The most promising applications for the SEWGS technology are IGCC power plants and in combined cycles power plants fuelled with blast furnace top gas. Extensive sorbent development work resulted in a new sorbent called ALKASORB+ with a high capacity resulting in cost of CO2 avoided for the IGCC application of 23 euro. This is a reduction of almost 40% compared to the Selexol capture case. Since ALKASORB+ requires much less steam in the regeneration, the specific primary energy consumption is reduced to 44% below the specific energy consumption for the Selexol (2.08 versus 3.71 MJLHV/kgCO2). From a technical point of view SEWGS is ready to move to the next development level, which is a pilot plant installation with a capacity of 35 ton CO2 per day. This is over 500 times larger than the current ECN's multi column SEWGS installation, but still 50 times smaller than an envisaged commercial scale installation. The pilot plant will prove the technology under field conditions and at a sufficiently large scale to enable further up-scaling, delivering both the basic design and investment costs of a full scale SEWGS demonstration plant.

  1. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  2. The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project

    Science.gov (United States)

    Beichner, Robert J.

    2011-04-01

    How do you keep a classroom of 100 undergraduates actively learning? Can students practice communication and teamwork skills in a large class? How do you boost the performance of underrepresented groups? The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project has addressed these concerns. Because of their inclusion in a leading introductory physics textbook, project materials are used by more than 1/3 of all science, math, and engineering majors nationwide. The room design and pedagogy have been adopted at more than 100 leading institutions across the country. Physics, chemistry, math, astronomy, biology, engineering, earth sciences, and even literature classes are currently being taught this way. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. We promote active learning in a redesigned classroom for 100 students or more. (Of course, smaller classes can also benefit.) Class time is spent primarily on "tangibles" and "ponderables"--hands-on activities, simulations, and interesting questions. Nine students sit in three teams at round tables. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Hundreds of hours of classroom video and audio recordings, transcripts of numerous interviews and focus groups, data from conceptual learning assessments (using widely-recognized instruments in a pretest/posttest protocol), and collected portfolios of student work are part of our rigorous assessment effort. Our findings (based on data from over 16,000 students collected over five years as well as replications at adopting sites) can be summarized as the following: 1) Female failure rate is 1/5 of previous levels, even though more is demanded of students. 2) Minority failure rate is 1/4 that seen in traditionally taught courses. 3) At-risk students are more

  3. Energy projections 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The projections, prepared by Department of Energy officials, examine possible UK energy demand and supply prospects to the end of the century. They are based on certain broad long term assumptions about economic growth, technical improvements and movements in energy prices. The projections are intended to provide a broad quantitative framework for the consideration of possible energy futures and policy choices. Two cases are considered. In the first, the UK economy is assumed to grow at about 3 per cent to the end of the century and, in the second, at a lower level of about 2 per cent per annum. In both it is assumed that world oil prices will rise significantly above present levels (reaching some 30 dollars a barrel in terms of 1977 prices for Saudi Arabian marker crude by the end of the century). After incorporation of allowances for energy conservation which approximate to a reduction of some 20 per cent in demand, total primary fuel requirements in the year 2000 are estimated in the range 445 to 510 million tonnes of coal equivalent (mtce), representing an average rate of growth of 0.9 to 1.5 per cent a year. Potential indigenous energy supply by the end of the century is estimated in the range 390 to 410 mtce. This includes a possible installed nuclear capacity of up to 40 Gigawatts, approximately a fourfold increase on capacity already installed or under construction, and indigenous coal production of up to 155 million tonnes a year. The projections highlight the UK's prospective emergence during the later part of the century from a period from 1980 of energy surplus and the increasing roles which energy conservation, nuclear power and coal will be called upon to play as oil becomes scarcer and more expensive in the international market and as indigenous oil and gas production declines. (author)

  4. Additional renewable energy growth through small-scale community orientated energy policies

    International Nuclear Information System (INIS)

    Hain, J.J.; Ault, G.W.; Galloway, S.J.; Cruden, A.; McDonald, J.R.

    2005-01-01

    This paper summarises the energy policies that the UK Government has enacted in order to achieve its renewable targets by 2010. Current policies are designed primarily to support large-scale renewable projects through Renewable Obligation Certificates, Levy Exemption Certificates and capital grant schemes. Non-profit domestic and non-profit community renewable projects are also eligible for grant support. First-hand experience of privately owned renewable projects indicate that existing renewable policy is insufficient in its support of both small-scale and community-based profit oriented renewable energy (RE) schemes. Primary and secondary survey information suggests that people living in regions where RE will be situated may generally be inclined to support broader uses of renewables in these regions. Small-scale renewables can make a significant cumulative contribution to the RE mix. The results reported in this paper support the contention that the Government could go further towards approaching its targets through rural-focused changes to its energy incentive programmes

  5. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

  6. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  7. Scaling-up Sustainable Aquaculture Development in Sri Lanka ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... of Sri Lanka is increasingly emphasizing aquaculture development as a means to foster ... Pilot interventions tested the effectiveness of mobile short text messaging to ... Building on this project, researchers will test three ways of scaling-up ...

  8. Financial analysis of utility scale photovoltaic plants with battery energy storage

    International Nuclear Information System (INIS)

    Rudolf, Viktor; Papastergiou, Konstantinos D.

    2013-01-01

    Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed. - Highlights: • Generation shifting with batteries allows PV projects to generate additional revenues. • Battery lifetime, lifecycles and price are less relevant than electricity market prices. • Installed battery capacity of up to 50% of the daily PV energy boosts project economy. • A 25% higher premium for energy storage could improve NPV by approximately 65%

  9. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  10. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  11. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  12. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale.

    Science.gov (United States)

    Stolle, Achim; Schmidt, Robert; Jacob, Katharina

    2014-01-01

    The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.

  13. Renewable energy projects in the Dominican Republic

    Energy Technology Data Exchange (ETDEWEB)

    Viani, B.

    1997-12-01

    This paper describes a US/Dominican Republic program to develop renewable energy projects in the country. The objective is to demonstrate the commercial viability of renewable energy generation projects, primarily small-scale wind and hydropower. Preliminary studies are completed for three micro-hydro projects with a total capacity of 262 kWe, and two small wind power projects for water pumping. In addition wind resource assessment is ongoing, and professional training and technical assistance to potential investors is ongoing. Projects goals include not less than ten small firms actively involved in installation of such systems by September 1998.

  14. Scale-up on electrokinetic remediation: Engineering and technological parameters

    Energy Technology Data Exchange (ETDEWEB)

    López-Vizcaíno, Rubén [Department of Chemical Engineering, Institute of Chemical & Environmental Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Navarro, Vicente; León, María J. [Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Risco, Carolina [Department of Chemical Engineering, Institute of Chemical & Environmental Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Rodrigo, Manuel A., E-mail: manuel.rodrigo@uclm.es [Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Sáez, Cristina; Cañizares, Pablo [Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain)

    2016-09-05

    Highlights: • Moisture and compaction of soil must be re-establish in Scale-up of EKR. • Degree of compaction of soil depends on moisture, type of soil and EKR reactor. • Scale of EKR process determines the energy consumption in the treatment. • Electroosmosis and electromigration processes are favoured in prototype scale. • In real scale EKR processes it is important determine evaporation and leaks effects. - Abstract: This study analyses the effect of the scale-up of electrokinetic remediation (EKR) processes in natural soils. A procedure is proposed to prepare soils based on a compacting process to obtaining soils with similar moisture content and density to those found in real soils in the field. The soil used here was from a region with a high agrarian activity (Mora, Spain). The scale-up study was performed in two installations at different scales: a mock-up pilot scale (0.175 m{sup 3}) and a prototype with a scale that was very similar to a real application (16 m{sup 3}). The electrode configuration selected consisted of rows of graphite electrodes facing each other located in electrolyte wells. The discharge of 20 mg of 2,4-dichlorophenoxyacetic acid [2,4-D] per kg of dry soil was treated by applying an electric potential gradient of 1 V cm{sup −1}. An increase in scale was observed to directly influence the amount of energy supplied to the soil being treated. As a result, electroosmotic and electromigration flows and electric heating are more intense than in smaller-scale tests (24%, 1% and 25%, respectively respect to the values in prototype). In addition, possible leaks were evaluated by conducting a watertightness test and quantifying evaporation losses.

  15. Fiscal 2000 report on regional new energy vision formulation project for Yunomae town, Kumamoto prefecture; 2000 nendo Yunomaecho chiiki shin energy vision sakutei nado jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    A regional new energy vision has been formulated for Yunomae town, Kumamoto Prefecture, from the standpoint that local autonomies are required to work out measures compatible with Government energy policies and thereby to wrestle with environmental measures being undertaken across the world. The results of activities conducted for this purposed are stated in six chapters, which cover (1) the meaning of regional new energy vision formulation and its position, (2) outline of Yunomae town, (3) energy and environments, (4) energy situation in Yunomae town, (5) Yunomae town's regional new energy vision, and (6) plans for promoting the embodiment of the vision. In chapter (5), basic policies toward new energy utilization, overall plan, leading projects, and energy conservation measures are stated. The types of new energy taken up for discussion are photovoltaic power, wind power, biomass power, refuse-derived energy, and hydraulic energy. Projects are subjected to study, which relate to photovoltaic power generation, solar heat utilization, small scale hydroelectric power, small scale wind power, and the introduction of clean energy vehicles. It is expected that these projects when carried out will cover approximately 10% of the current energy consumption of the town. (NEDO)

  16. Spatial up-scaling of the retention by matrix diffusion

    International Nuclear Information System (INIS)

    Poteri, A.

    2006-11-01

    This work has been carried out as a part of the European research project FUNMIG: Fundamental processes of radionuclide migration (www.funmig.com). FUNMIG is a four year project that will be carried out between years 2005 and 2008. Participation of the VTT to the FUNMIG project is jointly funded by EU and Posiva Oy. The present report is an 18th month project delivery (PID4.6.1) of the work package 4.6. Work package 4.6 covers up-scaling processes of the retention and transport processes in the crystalline rock. (orig.)

  17. Domestic biogas diffusion in Rwanda - Key learning for scale up

    International Nuclear Information System (INIS)

    2016-03-01

    The NGO Veterinaires Sans Frontieres Belgium (VSF-B) supports local populations to improve livestock keeping and other related aspects such as natural resources management and micro-loans. In 2013, ENEA conducted a study to assess the opportunity for VSF-B to include domestic biogas energy within its scope of activities in Rwanda. In 2014, VSF-B launched the EVE project to install 100 bio-digesters and provide capacity building to smallholder farmers in Southern Rwanda within 3 years. The project is strongly integrated to the local context, partnering with a local federation of farmers, IMBARAGA, to implement the project, and leveraging the Rwandan National Domestic Biogas Program (NDBP). In mid-2015, ENEA conducted a new study to provide VSF-B with an intermediate evaluation of the project, a preliminary assessment of its impacts as well as recommendations to scale-up. VSF-B / IMBARAGA's activity on biogas within the EVE project is successful thanks to an efficient approach combining sensitisation and financial and technical support. By September 2015, half of the target of the pilot phase had been reached - 50 biogas systems were installed or under construction - and the remaining half was likely to be reached by the end of the project. This is the result of an efficient approach for domestic biogas distribution set up by VSF-B / IMBARAGA. Intensive work of sensitisation of farmers combined with an adapted financial support scheme (additional subsidies and guarantee funds for credit) and with technical support and monitoring of farmers are the three pillars on which VSF-B / IMBARAGA's success is based. End-users are highly satisfied of biogas systems and use, thanks to the robustness of the technology and the various outcomes delivered. Although the initial levers for biogas adoption by farmers were fuel savings and convenience to cook, other outcomes appears to be as meaningful to them once they start using the system: increased convenience to boil water or milk

  18. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Mark A [The Dow Chemical Company

    2014-08-27

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based

  19. Project for a renewable energy research centre

    Directory of Open Access Journals (Sweden)

    Andrea Giachetta

    2011-04-01

    Full Text Available In Liguria, where sustainable approaches to the design, construction and management of buildings enjoy scant currency, the idea of a company from Milan (FERA s.r.l. setting up a research centre for studies into renewable energy resources, could well open up very interesting development opportunities.The project includes: environmental rehabilitation (restoration projects; strategies for the protection of water resources and waste management systems; passive and active solar systems (solar thermal and experiments with thermodynamic solar energy; hyperinsulation systems, passive cooling of buildings; use of natural materials; bio-climatic use of vegetation. The author describes the project content within the context of the multidisciplinary work that has gone into it.

  20. Scaling up agroforestry farming systems: Lessons from the Malawi ...

    African Journals Online (AJOL)

    The study examined the factors affecting agroforestry technology upscaling and identified gaps in scaling up approaches of agroforestry technologies. One hundred and sixty-four farmers in Malawi Agroforestry Extension (MAFE) project districts of Mzimba, Ntcheu and Mangochi were interviewed. Logistic model was used in ...

  1. Bottom-up comparisons of CO2 storage and costs in forestry and biomass energy projects

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1993-01-01

    In order to include forestry and biomass energy projects in a possible CO 2 emission reduction regime, and to compare the costs of individual projects or national programs, it is necessary to determine the rate of equivalency between carbon in fossil fuel emissions and carbon stored in different types of forestry, biomass and renewable energy projects. This paper presents a comprehensive and consistent methodology to account for the costs and carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO 2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction

  2. Local embeddedness in community energy projects. A social entrepreneurship perspective

    Directory of Open Access Journals (Sweden)

    Mihaela Vancea

    2017-12-01

    Full Text Available An increasing number of community energy projects have emerged recently, reflecting diverse sociotechnical configurations in the energy sector. This article is based on an empirical study examining different types of community energy projects such as energy cooperatives, public service utilities and other entrepreneurially oriented initiatives across the European Union. Based on an in-depth analysis of three case studies, the article aims to introduce a social entrepreneurship perspective when discussing the relationship between local embeddedness and different forms of organisation and ownership in community energy. The results indicate that community energy projects can expand beyond the local scale without losing their collective and democratic form of functioning and ownership. Moreover, social movements can act as catalysts for this expansion beyond the local, in a quest for wider social transformation. Social entrepreneurship may provide a suitable analytical lens to avoid the ‘local trap’ when examining different forms of organisation and ownership in renewable energy, and further explore the question of scaling.

  3. Scaling Up the Production of More Nutritious Yellow Potatoes in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    English · Français ... Researchers will scale up improved yellow potato varieties that -yield 15% more than other varieties -are ... -have nearly 20% more iron and zinc than the most cultivated Colombian variety The project will deliver these ...

  4. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis

    International Nuclear Information System (INIS)

    Ouyang Wei; Wang Wei; Zhang Haixia; Wu Wengang; Li Zhihong

    2013-01-01

    The great advances in nanotechnology call for advances in miniaturized power sources for micro/nano-scale systems. Nanofluidic channels have received great attention as promising high-power-density substitutes for ion exchange membranes for use in energy harvesting from ambient ionic concentration gradient, namely reverse electrodialysis. This paper proposes the nanofluidic crystal (NFC), of packed nanoparticles in micro-meter-sized confined space, as a facile, high-efficiency and high-power-density scaling-up scheme for energy harvesting by nanofluidic reverse electrodialysis (NRED). Obtained from the self-assembly of nanoparticles in a micropore, the NFC forms an ion-selective network with enormous nanochannels due to electrical double-layer overlap in the nanoparticle interstices. As a proof-of-concept demonstration, a maximum efficiency of 42.3 ± 1.84%, a maximum power density of 2.82 ± 0.22 W m −2 , and a maximum output power of 1.17 ± 0.09 nW/unit (nearly three orders of magnitude of amplification compared to other NREDs) were achieved in our prototype cell, which was prepared within 30 min. The current NFC-based prototype cell can be parallelized and cascaded to achieve the desired output power and open circuit voltage. This NFC-based scaling-up scheme for energy harvesting based on NRED is promising for the building of self-powered micro/nano-scale systems. (paper)

  5. New approach to small scale power could light up much of the developing world

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.

    2011-01-15

    The modern conveniences requiring electricity have been out of reach for almost half of the world's population because they live too far from the grid. Innovative technology combined with creative new business models could significantly improve the quality of life for millions of people. This article discussed a small scale renewable energy system that could ensure that villages all over the world have access to radios, lights, refrigeration and other critical technologies. The article also noted the potential implications in terms of health, education and the general standard of living for millions of people. The basic model involves setting up small solar panels in a good location in a village or on a farm. The panels can be used to charge up equipment that is either on-site or portable. This article described how to achieve economies of scale through mass production of many similar units. The project has been tested in Brazil and a donation to the project of $100,000 will be used to install a solar-powered public infrastructure comprised of water pumping, school and an Internet station. The funds will also be used to provide 70 solar lanterns for children living in two villages on the Rio Tapajos, a tributary to the Amazon near Santarem. 1 fig.

  6. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  7. Large-scale building energy efficiency retrofit: Concept, model and control

    International Nuclear Information System (INIS)

    Wu, Zhou; Wang, Bo; Xia, Xiaohua

    2016-01-01

    BEER (Building energy efficiency retrofit) projects are initiated in many nations and regions over the world. Existing studies of BEER focus on modeling and planning based on one building and one year period of retrofitting, which cannot be applied to certain large BEER projects with multiple buildings and multi-year retrofit. In this paper, the large-scale BEER problem is defined in a general TBT (time-building-technology) framework, which fits essential requirements of real-world projects. The large-scale BEER is newly studied in the control approach rather than the optimization approach commonly used before. Optimal control is proposed to design optimal retrofitting strategy in terms of maximal energy savings and maximal NPV (net present value). The designed strategy is dynamically changing on dimensions of time, building and technology. The TBT framework and the optimal control approach are verified in a large BEER project, and results indicate that promising performance of energy and cost savings can be achieved in the general TBT framework. - Highlights: • Energy efficiency retrofit of many buildings is studied. • A TBT (time-building-technology) framework is proposed. • The control system of the large-scale BEER is modeled. • The optimal retrofitting strategy is obtained.

  8. Strengthening scaling up through learning from implementation: comparing experiences from Afghanistan, Bangladesh and Uganda.

    Science.gov (United States)

    Bennett, Sara; Mahmood, Shehrin Shaila; Edward, Anbrasi; Tetui, Moses; Ekirapa-Kiracho, Elizabeth

    2017-12-28

    Many effective innovations and interventions are never effectively scaled up. Implementation research (IR) has the promise of supporting scale-up through enabling rapid learning about the intervention and its fit with the context in which it is implemented. We integrate conceptual frameworks addressing different dimensions of scaling up (specifically, the attributes of the service or innovation being scaled, the actors involved, the context, and the scale-up strategy) and questions commonly addressed by IR (concerning acceptability, appropriateness, adoption, feasibility, fidelity to original design, implementation costs, coverage and sustainability) to explore how IR can support scale-up. We draw upon three IR studies conducted by Future Health Systems (FHS) in Afghanistan, Bangladesh and Uganda. We reviewed project documents from the period 2011-2016 to identify information related to the dimensions of scaling up. Further, for each country, we developed rich descriptions of how the research teams approached scaling up, and how IR contributed to scale-up. The rich descriptions were checked by FHS research teams. We identified common patterns and differences across the three cases. The three cases planned quite different innovations/interventions and had very different types of scale-up strategies. In all three cases, the research teams had extensive prior experience within the study communities, and little explicit attention was paid to contextual factors. All three cases involved complex interactions between the research teams and other stakeholders, among stakeholders, and between stakeholders and the intervention. The IR planned by the research teams focussed primarily on feasibility and effectiveness, but in practice, the research teams also had critical insights into other factors such as sustainability, acceptability, cost-effectiveness and appropriateness. Stakeholder analyses and other project management tools further complemented IR. IR can provide

  9. Feasibility Study for a Hopi Utility-Scale Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  10. Scaling up Evidence-Based Practices: Strategies from Investing in Innovation (i3)

    Science.gov (United States)

    DeWire, Tom; McKithen, Clarissa; Carey, Rebecca

    2017-01-01

    What can the Investing in Innovation (i3) grantees tell us about scaling innovative educational practices? The newly released white paper "Scaling Up Evidence-Based Practices: Strategies from Investing in Innovation (i3)" captures the experiences of nine grantees whose projects collectively have reached over 1.2 million students across…

  11. The impact of energy efficiency interventions on industry – the Industrial Energy Efficiency Project in South Africa

    CSIR Research Space (South Africa)

    Hartzenburg, A

    2015-10-01

    Full Text Available The IEE Project was set up in 2010 to help transform the energy-use patterns of South African industry by means of energy management systems and energy systems optimisation. Through IEE Project implementation, around 100 industry plants have saved 1...

  12. Scale-up of precipitation processes

    OpenAIRE

    Zauner, R.

    1999-01-01

    This thesis concerns the scale-up of precipitation processes aimed at predicting product particle characteristics. Although precipitation is widely used in the chemical and pharmaceutical industry, successful scale-up is difficult due to the absence of a validated methodology. It is found that none of the conventional scale-up criteria reported in the literature (equal power input per unit mass, equal tip speed, equal stirring rate) is capable of predicting the experimentally o...

  13. Techno-economic optimization of a scaled-up solar concentrator combined with CSPonD thermal energy storage

    Science.gov (United States)

    Musi, Richard; Grange, Benjamin; Diago, Miguel; Topel, Monika; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    A molten salt direct absorption receiver, CSPonD, used to simultaneously collect and store thermal energy is being tested by Masdar Institute and MIT in Abu Dhabi, UAE. Whilst a research-scale prototype has been combined with a beam-down tower in Abu Dhabi, the original design coupled the receiver with a hillside heliostat field. With respect to a conventional power-tower setup, a hillside solar field presents the advantages of eliminating tower costs, heat tracing equipment, and high-pressure pumps. This analysis considers the industrial viability of the CSPonD concept by modeling a 10 MWe up-scaled version of a molten salt direct absorption receiver combined with a hillside heliostat field. Five different slope angles are initially simulated to determine the optimum choice using a combination of lowest LCOE and highest IRR, and sensitivity analyses are carried out based on thermal energy storage duration, power output, and feed-in tariff price. Finally, multi-objective optimization is undertaken to determine a Pareto front representing optimum cases. The study indicates that a 40° slope and a combination of 14 h thermal energy storage with a 40-50 MWe power output provide the best techno-economic results. By selecting one simulated result and using a feed-in tariff of 0.25 /kWh, a competitive IRR of 15.01 % can be achieved.

  14. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  15. Tehachapi Wind Energy Storage Project - Technology Performance Report #3

    Energy Technology Data Exchange (ETDEWEB)

    Pinsky, Naum [Southern California Edison, Rosemead, CA (United States); O' Neill, Lori [Southern California Edison, Rosemead, CA (United States)

    2017-03-31

    The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing system capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.

  16. Scale-Up: Improving Large Enrollment Physics Courses

    Science.gov (United States)

    Beichner, Robert

    1999-11-01

    The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.

  17. Electronic Government in the City of Fez, Morocco : Scaling up to the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In the pilot phase of the project (101980), electronic service delivery was introduced and successfully deployed in the Fez-Agdal local government office. This phase will scale up the project to include the remaining local government offices in the city of Fez. It will also upgrade, enhance and complete the automation of the ...

  18. Scaling up Education Reform: Addressing the Politics of Disparity

    Science.gov (United States)

    Bishop, Russell; O'Sullivan, Dominic; Berryman, Mere

    2010-01-01

    What is school reform? What makes it sustainable? Who needs to be involved? How is scaling up achieved? This book is about the need for educational reforms that have built into them, from the outset, those elements that will see them sustained in the original sites and spread to others. Using the Te Kotahitanga Project as a model the authors…

  19. Small-scale bioenergy projects in rural China: Lessons to be learnt

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.; Zhang, L.

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy

  20. Reference Projections Energy and Emissions 2005-2020

    International Nuclear Information System (INIS)

    Van Dril, A.W.N.; Elzenga, H.E.

    2005-10-01

    The Reference Projection 2005-2020 covers the future development of Dutch energy use, greenhouse gas emissions and air pollution up to 2020. The Reference projection is based on assumptions regarding economic, structural, technological and policy developments. Two scenarios have been used. The Strong Europe (SE) scenario is characterized by moderate economic growth and strong public responsibility. The Global Economy (GE) scenario assumes high economic growth and has a strong orientation towards private responsibility. Energy consumption continues to grow in both scenarios and energy intensity is declining in the GE-scenario. Gradual rise of temperature is now included in the estimates for space heating and air conditioning. Energy prices for end users will rise, due to increased imports of natural gas and rising costs of electricity generation. The share of renewables in electricity consumption increases considerably due to subsidies for wind at sea and biomass, up to the target of 9% in 2010. Emissions of non-CO2 greenhouse gases are reduced and stabilise after 2010. The Dutch Kyoto target is probably met in both scenarios, assuming considerable emission reduction ef-forts abroad. Acidifying emissions of NOx and SO2 stabilise after reductions, but at levels that exceed their national emission ceiling (NEC). Emissions of volatile organic compounds are projected to fall with approximately 25% between 2002 and 2010 below their NEC. Emissions of ammonia are projected to meet their NEC. The emission of particulate matter (PM10) will stabilise at present levels

  1. Managing the risks of a large-scale infrastructure project : The case of Spoorzone Delft

    NARCIS (Netherlands)

    Priemus, H.

    2012-01-01

    Risk management in large-scale infrastructure projects is attracting the attention of academics and practitioners alike. After a brief summary of the theoretical background, this paper describes how the risk analysis and risk management shaped up in a current large-scale infrastructure project in

  2. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  3. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  4. ScaleUp America Communities

    Data.gov (United States)

    Small Business Administration — SBA’s new ScaleUp America Initiative is designed to help small firms with high potential “scale up” and grow their businesses so that they will provide more jobs and...

  5. Small-scale bioenergy projects in rural China: Lessons to be learnt

    International Nuclear Information System (INIS)

    Han Jingyi; Mol, Arthur P.J.; Lu Yonglong; Zhang Lei

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy projects in Shandong Province as a case and assesses these projects in terms of economy, technological performance and effectiveness. Results show that these projects have not achieved a satisfying performance after 10 years experience. Many projects have been discontinued. This failure is attributed to a complex of shortcomings in institutional structure, technical level, financial support and social factors. For a more successful future development of bioenergy in rural areas, China should reform its institutional structure, establish a renewable energy market and enhance the technological level of bioenergy projects

  6. Public perceptions of opportunities for community-based renewable energy projects

    International Nuclear Information System (INIS)

    Rogers, J.C.; Simmons, E.A.; Convery, I.; Weatherall, A.

    2008-01-01

    It now widely acknowledged that the UK needs to increase renewable energy capacity and it has been claimed that community-based renewable energy projects, with high levels of public participation, are more likely to be accepted by the public than top-down development of large-scale schemes and may bring additional benefits such as increased engagement with sustainable energy issues. However, little research has investigated public expectations of how people would like to participate in such projects and why. The aim of this study was to explore one rural community's response to a proposed sustainable energy project. A questionnaire survey and semi-structured interviews provided quantitative and qualitative data. There was widespread support for local generation and use of renewable energy, with respondents expecting benefits from a project in terms of increased community spirit and conservation of natural resources. However, desire for active involvement was lower and residents viewed themselves participating as consultees, rather than project leaders. We suggest community renewable energy projects are likely to gain public acceptance but are unlikely to become widespread without greater institutional support

  7. MEET : project action plan for AUMA energy management program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-22

    The Municipal Energy Efficiency Trust (MEET) action plan offers a framework to help municipalities in Alberta demonstrate leadership in reducing energy consumption. It sets out targets for energy reductions and the associated capital investment. As more information is compiled from energy audits, the targets will be refined. AUMA and Enmax Energy Corp have partnered to provide energy audits designed to allow all municipalities to undertake energy savings projects. The program is divided into 8 basic categories for energy savings projects including: water and sewage collection, treatment and distribution; recreation centres such as pools and skating rinks; streetlights; office buildings; garages, shops and parking lots; other and innovative projects; municipal audit evaluation support; and, direct grants applied to each project. The estimates for energy savings within each category are provided. The maximum allowable payback period for the project is assumed to be 15 years. Total municipal energy use in Alberta is estimated at 1,100,000 MWh per year. A province wide program will enable AUMA to provide centralized services such as project management and procurement services to address municipal resource constraints and provide some economies of scale for smaller municipalities. AUMA will act as the fund administrator and will set criteria for acceptable projects. The action plan focuses on the energy audit program, municipal facility data collection, municipal staff education, and the establishment of a funding pool. The target for 2002/2003 will be to identify projects with energy savings of at least 15,000 MWh for water treatment and distribution recreation centres for a total capital cost of $13,500,000. 1 tab., 3 figs.

  8. Prospects for local community wind energy projects in the UK

    International Nuclear Information System (INIS)

    Taylor, Derek; Open Univ., Milton Keynes

    1993-01-01

    This paper examines the prospects for local community wind energy projects in the UK. After explaining the advantages of such projects compared to purely commercial developments, the scale and funding for the projects are discussed. It is argued that such projects are beneficial both financially to individual members and also to the local rural economies particularly in deprived regions. (UK)

  9. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  10. Understanding errors in EIA projections of energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Carolyn; Herrnstadt, Evan; Morgenstern, Richard [Resources for the Future, 1616 P St. NW, Washington, DC 20036 (United States)

    2009-08-15

    This paper investigates the potential for systematic errors in the Energy Information Administration's (EIA) widely used Annual Energy Outlook, focusing on the near- to mid-term projections of energy demand. Based on analysis of the EIA's 22-year projection record, we find a fairly modest but persistent tendency to underestimate total energy demand by an average of 2 percent per year after controlling for projection errors in gross domestic product, oil prices, and heating/cooling degree days. For 14 individual fuels/consuming sectors routinely reported by the EIA, we observe a great deal of directional consistency in the errors over time, ranging up to 7 percent per year. Electric utility renewables, electric utility natural gas, transportation distillate, and residential electricity show significant biases on average. Projections for certain other sectors have significant unexplained errors for selected time horizons. Such independent evaluation can be useful for validating analytic efforts and for prioritizing future model revisions. (author)

  11. Hydrogen for small-scale energy consumers and CO2-storage. Feasibility study of a demonstration project in the Rijnmond, Netherlands

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    In the future natural gas can be substituted by hydrogen. In the short term hydrogen can be produced from fossil fuels. Released CO 2 can be stored. In the long run it will be possible to produce hydrogen from renewable energy sources (solar cells and wind turbines), which can be transported to the consumer. In the study on the title subject attention is paid to different methods of hydrogen production from natural gas and from residual oils, costs and problems of hydrogen distribution, hydrogen appliances, and CO 2 storage. From the results it appears that a demonstration project to use hydrogen on a small-scale is feasible, although expensive. The costs of the reconstruction of the present natural gas distribution system to a hydrogen distribution system is higher than expected. The price of hydrogen per GJ is higher than the equal energy content of natural gas, in spite of a reduction of the energy levy. The demonstration project will be 25% cheaper per GJ hydrogen when carried out in a newly built area. A demonstration project in which hydrogen is mixed with natural gas is even a factor 2 cheaper. 17 refs., 7 appendices

  12. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Dale, Michael; Barnhart, Charles J.

    2013-01-01

    In this paper we expand the work of Brandt and Dale (2011) on ERRs (energy return ratios) such as EROI (energy return on investment). This paper describes a “bottom-up” mathematical formulation which uses matrix-based computations adapted from the LCA (life cycle assessment) literature. The framework allows multiple energy pathways and flexible inclusion of non-energy sectors. This framework is then used to define a variety of ERRs that measure the amount of energy supplied by an energy extraction and processing pathway compared to the amount of energy consumed in producing the energy. ERRs that were previously defined in the literature are cast in our framework for calculation and comparison. For illustration, our framework is applied to include oil production and processing and generation of electricity from PV (photovoltaic) systems. Results show that ERR values will decline as system boundaries expand to include more processes. NERs (net energy return ratios) tend to be lower than GERs (gross energy return ratios). External energy return ratios (such as net external energy return, or NEER (net external energy ratio)) tend to be higher than their equivalent total energy return ratios. - Highlights: • An improved bottom-up mathematical method for computing net energy return metrics is developed. • Our methodology allows arbitrary numbers of interacting processes acting as an energy system. • Our methodology allows much more specific and rigorous definition of energy return ratios such as EROI or NER

  13. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Benally, Deputy Director,

    2012-05-15

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

  14. Hot rock energy projects : Australian context

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, B.A.; Malavazos, M. [Society of Petroleum Engineers, Richardson, TX (United States); Hill, A.J.; Coda, J. [Primary Industries and Resources South Australia, Adelaide (Australia)]|[Australian Geothermal Energy Group, Adelaide (Australia); Budd, A.R.; Holgate, F.L. [Australian Geothermal Energy Group, Adelaide (Australia)]|[Geoscience Australia, Adelaide (Australia)

    2008-10-15

    The Australia Geothermal Energy Group is an alliance of companies, government agencies and research organizations with an interest in promoting geothermal energy use. Hot rocks (HR) geothermal energy is a valued addition to the portfolio of safe, secure and competitive energy supplies because it offers the potential of inexhaustible geothermal heat energy with zero emissions. Australia's vast HR resources have attracted global interest and government support for HR projects, which call upon integrated expertise from the petroleum minerals and power industries. Funding from the Australian government is aimed at reducing critical, sector-wide uncertainties and equates to nearly 25 per cent of the cost of the private sector's field efforts to date. A national HR resource assessment and a road-map for the commercialization of Australian HR plays will be published in 2008 to help in the decision making process by portfolio managers. The challenges and prospects for HR projects in Australia were presented. It has been estimated that converting only 1 per cent of Australia's crustal energy from depths of 5 km and 150 degrees C to electricity would supply 26,000 years of Australia's 2005 primary power use. The factors that distinguish Australian HR resources include abundant radioactive granites and areas of recent volcanic activity; and, Australia is converging with Indonesia on a plate scale resulting in common, naturally occurring subhorizontally fractured basement rocks that are susceptible to hydraulic fracture stimulation. Most projects are focused on HR to develop enhanced or engineered geothermal systems (EGS) to fuel binary power plants. Approximately 80 percent of these projects are located in South Australia. 14 refs., 3 tabs., 3 figs.

  15. Scaling up ATLAS production system for the LHC Run 2 and beyond: project ProdSys2

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; García Navarro, José Enrique; Golubkov, Dmitry; Klimentov, Alexei; Maeno, Tadashi; Vaniachine, Alexandre

    2015-01-01

    The Big Data processing needs of the ATLAS experiment grow continuously, as more data and more use cases emerge. For Big Data processing the ATLAS experiment adopted the data transformation approach, where software applications transform the input data into outputs. In the ATLAS production system, each data transformation is represented by a task, a collection of many jobs, submitted by the ATLAS workload management system (PanDA) and executed on the Grid. Our experience shows that the rate of tasks submission grows exponentially over the years. To scale up the ATLAS production system for new challenges, we started the ProdSys2 project. PanDA has been upgraded with the Job Execution and Definition Interface (JEDI). Patterns in ATLAS data transformation workflows composed of many tasks, provided a scalable production system framework for template definitions of the many-tasks workflows. These workflows are being implemented in the Database Engine for Tasks (DEfT) that generates individual tasks for processing ...

  16. Energy white paper 2007: the British strategy to take up the energy challenge

    International Nuclear Information System (INIS)

    2007-01-01

    Following the energy policy review published in 2006 by the Department for Trade and Industry (DTI), the Energy White Paper 2007, published on May 23, 2007, gathers all measures preconized in this domain. This document recalls, first, the objectives and priorities of the British government at the international, national, regional and local scales, as already clearly explained in previous DTI publications. This white book announces also some new measures and the launching of new public hearings about other measures in view. All in all, 18 hearings are announced which deal with various topics, from the new nuclear power plants to the reform of renewables obligations, the organization of big energy projects or the dismantling of offshore energy facilities. This document recalls the objective of the government and describes the British international policy in the domain of energy. It presents the measures for the fight against climatic change (energy conservation, development of clean energies, decentralized energy production), for warranting the security of supplies (diversification of offer, improvement of networks, planning of energy projects) and, in particular, the proposals of the government concerning the transportation sector and the fight against energy paucity. It stresses also on the importance of R and D and on the British authority in energy technologies. Finally, it gathers the reactions of the most representative actors of the British energy sector. (J.S.)

  17. Reconciling Basin-Scale Top-Down and Bottom-Up Methane Emission Measurements for Onshore Oil and Gas Development: Cooperative Research and Development Final Report, CRADA Number CRD-14-572

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-04

    The overall objective of the Research Partnership to Secure Energy for America (RPSEA)-funded research project is to develop independent estimates of methane emissions using top-down and bottom-up measurement approaches and then to compare the estimates, including consideration of uncertainty. Such approaches will be applied at two scales: basin and facility. At facility scale, multiple methods will be used to measure methane emissions of the whole facility (controlled dual tracer and single tracer releases, aircraft-based mass balance and Gaussian back-trajectory), which are considered top-down approaches. The bottom-up approach will sum emissions from identified point sources measured using appropriate source-level measurement techniques (e.g., high-flow meters). At basin scale, the top-down estimate will come from boundary layer airborne measurements upwind and downwind of the basin, using a regional mass balance model plus approaches to separate atmospheric methane emissions attributed to the oil and gas sector. The bottom-up estimate will result from statistical modeling (also known as scaling up) of measurements made at selected facilities, with gaps filled through measurements and other estimates based on other studies. The relative comparison of the bottom-up and top-down estimates made at both scales will help improve understanding of the accuracy of the tested measurement and modeling approaches. The subject of this CRADA is NREL's contribution to the overall project. This project resulted from winning a competitive solicitation no. RPSEA RFP2012UN001, proposal no. 12122-95, which is the basis for the overall project. This Joint Work Statement (JWS) details the contributions of NREL and Colorado School of Mines (CSM) in performance of the CRADA effort.

  18. The NEED (National Energy Education Development) Project

    Science.gov (United States)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  19. Scaling up biomass gasifier use: an application-specific approach

    International Nuclear Information System (INIS)

    Ghosh, Debyani; Sagar, Ambuj D.; Kishore, V.V.N.

    2006-01-01

    Biomass energy accounts for about 11% of the global primary energy supply, and it is estimated that about 2 billion people worldwide depend on biomass for their energy needs. Yet, most of the use of biomass is in a primitive and inefficient manner, primarily in developing countries, leading to a host of adverse implications on human health, environment, workplace conditions, and social well being. Therefore, the utilization of biomass in a clean and efficient manner to deliver modern energy services to the world's poor remains an imperative for the development community. One possible approach to do this is through the use of biomass gasifiers. Although significant efforts have been directed towards developing and deploying biomass gasifiers in many countries, scaling up their dissemination remains an elusive goal. Based on an examination of biomass gasifier development, demonstration, and deployment efforts in India-a country with more than two decades of experiences in biomass gasifier development and dissemination, this article identifies a number of barriers that have hindered widespread deployment of biomass gasifier-based energy systems. It also suggests a possible approach for moving forward, which involves a focus on specific application areas that satisfy a set of criteria that are critical to deployment of biomass gasifiers, and then tailoring the scaling up strategy to the characteristics of the user groups for that application. Our technical, financial, economic and institutional analysis suggests an initial focus on four categories of applications-small and medium enterprises, the informal sector, biomass-processing industries, and some rural areas-may be particularly feasible and fruitful

  20. Setting up crowd science projects.

    Science.gov (United States)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  1. Energy research projects in the Nordic countries - catalogue 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The Nordic energy ministers at their meeting February 9, 1982 agreed upon a working plan for the Nordic energy cooperation. As part of this plan a contact group was established in order to maintain coordination and cooperation within the area of energy research and development. This group decided April 1982 to establish a catalogue of energy research projects in the Nordic countries. A pilot catalogue was published in June 1982. The 1983 catalogue gives an up-to-date survey of energy research and development projects in the Nordic countries. About 2125 projects are described, and information is given on investigator(s), performing organization, financing body, funds, and period. The catalogue is prepared by the Nordic energy libraries through their cooperation in Nordic Atomic Libraries Joint Secretariat. The information is also included in the data base Nordic Energy Index (NEI), which is online accessible at I/S Datacentralen, Copenhagen, via EURONET, SCANNET, TYMNET, AND TELENET. (BP)

  2. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  3. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  4. The Eni - IFP/Axens GTL technology. From R and D to a successful scale-up

    Energy Technology Data Exchange (ETDEWEB)

    Zennaro, R. [Eni S.p.A., Milan (Italy); Hugues, F. [Institut Francais du Petrole, Lyon (France); Caprani, E. [Axens, Paris (France)

    2006-07-01

    Proven natural gas reserves had reached about 184 Tscm in 2006 to which 36% is stranded gas far from the final market. Fischer Tropsch based GtL options today represent a viable route to develop such remote gas resources into high quality fuels and specialties. Thus opening different markets for the gas historically linked to the oil. Thanks to R and D successful improvements in the field of catalysis and reactor technology coupled with optimized integration and economies of scale have reduced the investment cost for building a Fischer Tropsch GtL complex. Basically all major Oil and Gas companies are involved in proprietary GtL development, and today several industrial projects have been announced. The most advanced is the Oryx project (QP-Sasol) which has been inaugurated the 6{sup th} of June '06 and currently in the starting up phase. Eni and IFP-Axens have developed a proprietary GtL Fischer-Tropsch and Upgrading technology in a close collaboration between the two groups. The Eni/IFP-Axens technology is based on proprietary catalysts and reactor, designed according to scale-up criteria defined in ten years of R and D activity. Unique large scale hydrodynamic facilities (bubble columns, loops) bench-scale dedicated pilot units, as well as large scale Fischer-Tropsch pilot plant, have been developed and operated to minimize reactor and ancillaries scale-up risks. The large scale Fischer-Tropsch pilot plant has been built and operated since 2001. The plant, located within the Eni refinery of Sannazzaro de' Burgondi (Pavia, Italy) is fully integrated to the refinery utilities and network. It reproduces at 20 bpd scale the overall Fischer Tropsch synthesis section: from slurry handling (loading, make-up, withdrawal), to reactor configuration and products separation units. Today the scale-up basis has been completed and the technology is ready for industrial deployment. (orig.)

  5. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  6. Energy research and development projects in the Nordic countries. Directory 1987

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This is the fifth directory of research, development and demonstration projects in the Nordic countries within the field of energy. The directory includes projects running in 1987. 2378 projects are described, all of them financed through special public funds (i.e. external funding). The energy research organisation in each Nordic country is briefly reviewed in the appendixes, and a list of relevant newsletters are given. The directory is published at the request of the Nordic Council of Ministers and a special Energy Research Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  7. Scaling up family planning in Sierra Leone: A prospective cost-benefit analysis.

    Science.gov (United States)

    Keen, Sarah; Begum, Hashina; Friedman, Howard S; James, Chris D

    2017-12-01

    Family planning is commonly regarded as a highly cost-effective health intervention with wider social and economic benefits. Yet use of family planning services in Sierra Leone is currently low and 25.0% of married women have an unmet need for contraception. This study aims to estimate the costs and benefits of scaling up family planning in Sierra Leone. Using the OneHealth Tool, two scenarios of scaling up family planning coverage to currently married women in Sierra Leone over 2013-2035 were assessed and compared to a 'no-change' counterfactual. Our costing included direct costs of drugs, supplies and personnel time, programme costs and a share of health facility overhead costs. To monetise the benefits, we projected the cost savings of the government providing five essential social services - primary education, child immunisation, malaria prevention, maternal health services and improved drinking water - in the scale-up scenarios compared to the counterfactual. The total population, estimated at 6.1 million in 2013, is projected to reach 8.3 million by 2035 in the high scenario compared to a counterfactual of 9.6 million. We estimate that by 2035, there will be 1400 fewer maternal deaths and 700 fewer infant deaths in the high scenario compared to the counterfactual. Our modelling suggests that total costs of the family planning programme in Sierra Leone will increase from US$4.2 million in 2013 to US$10.6 million a year by 2035 in the high scenario. For every dollar spent on family planning, Sierra Leone is estimated to save US$2.10 in expenditure on the five selected social sector services over the period. There is a strong investment case for scaling up family planning services in Sierra Leone. The ambitious scale-up scenarios have historical precedent in other sub-Saharan African countries, but the extent to which they will be achieved depends on a commitment from both the government and donors to strengthening Sierra Leone's health system post-Ebola.

  8. Optimisation of small-scale hydropower using quality assurance methods - Preliminary project; Vorprojekt: Optimierung von Kleinwasserkraftwerken durch Qualitaetssicherung. Programm Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, S.; Staubli, T.

    2006-11-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary project that examined how quality assurance methods can be used in the optimisation of small-scale hydropower projects. The aim of the project, to use existing know-how, experience and synergies, is examined. Discrepancies in quality and their effects on production prices were determined in interviews. The paper describes best-practice guidelines for the quality assurance of small-scale hydro schemes. A flow chart describes the various steps that have to be taken in the project and realisation work. Information collected from planners and from interviews made with them are presented along with further information obtained from literature. The results of interviews concerning planning work, putting to tender and the construction stages of these hydro schemes are presented and commented on. Similarly, the operational phase of such power plant is also examined, including questions on operation and guarantees. The aims of the follow-up main project - the definition of a tool and guidelines for ensuring quality - are briefly reviewed.

  9. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  10. Hydroacoustic measurements of the radiated noise from Wave Energy Converters in the Lysekil project and project WESA

    OpenAIRE

    Haikonen, Kalle; Sundberg, Jan; Leijon, Mats

    2013-01-01

    Field measurements of the hydroacoustic noise from Wave Energy Converters (WECs) in the Lysekil project at Uppsala University and the Project WESA (joint effort between Uppsala University (Lead Partner), Ålands Teknikkluster r.f. and University of Turku) are presented. Anthropogenic noise is increasing in the oceans world wide and wave energy conversion may contribute to this noise, but to what extent? The main objective in this study is to examine the noise from full scale operating WECs in ...

  11. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  12. Analysis of renewable energy projects' implementation in Russia

    Science.gov (United States)

    Ratner, S. V.; Nizhegorodtsev, R. M.

    2017-06-01

    With the enactment in 2013 of a renewable energy scheme by contracting qualified power generation facilities working on renewable energy sources (RES), the process of construction and connection of such facilities to the Federal Grid Company has intensified in Russia. In 2013-2015, 93 projects of solar, wind, and small hydropower energy were selected on the basis of competitive bidding in the country with the purpose of subsequent support. Despite some technical and organizational problems and a time delay of some RES projects, in 2014-2015 five solar generating facilities with total capacity of 50 MW were commissioned, including 30 MW in Orenburg oblast. However, the proportion of successful projects is low and amounts to approximately 30% of the total number of announced projects. The purpose of this paper is to analyze the experience of implementation of renewable energy projects that passed through a competitive selection and gained the right to get a partial compensation for the construction and commissioning costs of RES generating facilities in the electric power wholesale market zone. The informational background for the study is corporate reports of project promoters, analytical and information materials of the Association NP Market Council, and legal documents for the development of renewable energy. The methodological base of the study is a theory of learning curves that assumes that cost savings in the production of high-tech products depends on the production growth rate (economy of scale) and gaining manufacturing experience (learning by doing). The study has identified factors that have a positive and a negative impact on the implementation of RES projects. Improvement of promotion measures in the renewable energy development in Russia corresponding to the current socio-economic situation is proposed.

  13. Jet Energy Scale Uncertainties in ATLAS

    International Nuclear Information System (INIS)

    Barillari, Teresa

    2012-01-01

    The first proton-proton collisions at a centre of mass energy of √s = 7TeV have been used by the ATLAS experiment to achieve an accuracy of the jet energy measurement between 2% and 4% for jets transverse momenta between 20 GeV and 2TeV and in the absolute pseudorapidity range up to 4.5. The jet energy scale uncertainty is derived from measurements in situ of the calorimeter single response to hadrons together with systematic variations in the Monte Carlo simulation. The transverse momentum balance between a central and a forward jet in events with two high transverse momenta jets is used to set the jet energy uncertainty in the forward region. The obtained uncertainty is confirmed by in-situ measurements. Jets in the TeV energy range have been tested using a system of well calibrated jets at low transverse momenta against high transverse momenta jets. A further reduction of the jet energy scale uncertainty between 1% and 2% for jets transverse momenta above 30 GeV has been achieved using data from the 2011 run based on an integrated luminosity of 5 fb −1 .

  14. Energy performance evaluation of ultrasonic pretreatment of organic solid waste in a pilot-scale digester.

    Science.gov (United States)

    Rasapoor, Mazdak; Adl, Mehrdad; Baroutian, Saeid; Iranshahi, Zeynab; Pazouki, Mohammad

    2018-04-30

    It has been proven that ultrasonic pretreatment (UP) has positive effect on biogas generation from previous lab-scale studies. However, that is not always the case in larger scale processes. The purpose of this study was to evaluate the effectiveness of UP to biogas generation in terms of anaerobic digestion process and energy efficiency. Parameters including total solids (TS) and ultrasonic treatment operational parameters of organic solid waste (OSW) resulted from our past lab scale UP studies were applied in this study. OSW with 6-10% TS was treated using a lab-scale ultrasonic processor using various power densities (0.2-0.6 W/mL) at different time periods up to 30 min. Results of lab scale confirmed that OSW with 6% TS sonicated with 0.2 W/mL power density in 30 min gave the best outcome for the pilot scale experiment. To simulate the condition of an actual scale, in addition to energy analysis, two different organic loading rates (OLR), namely 500 and 1500 gVS/m 3 day were examined. The pilot digester was fed with OSW with or without the pretreatment based on the aforementioned specifications. The results showed that UP effectively improves biogas generation in terms of quantity and quality (CH 4 /CO 2 ). Furthermore, it decreases the time to reach the maximum cumulative biogas volume comparing to the untreated feed. The key achievement of this research has confirmed that although the relative increase in the energy gain by the influence of UP was more remarkable under the 500 gVS/m 3 day OLR, energy analysis showed a better energy gain and energy benefit as well as jumping in biogas yield up to 80% for UP treated OSW under 1500 gVS/m 3 day OLR. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Precocious scaling in antiproton-proton scattering at low energies

    International Nuclear Information System (INIS)

    Ion, D.B.; Petrascu, C.; Topor Pop, V.; Popa, V.

    1993-08-01

    The scaling of the diffraction peak in antiproton-proton scattering has been investigated from nera threshold up to 3 GeV/c laboratory momenta. It was shown that the scaling of the differential cross sections are evidentiated with a surprising accuracy not only at high energies, but also at very low ones (e.g. p LAB = 0.1 - 0.5 GeV/c), beyond the resonance and exotic resonance regions. This precocious scaling strongly suggests that the s-channel helicity conservation (SCHC) can be a peculiar property that should be tested in antiproton-proton interaction not only at high energies but also at low energy even below p LAB = 1 GeV/c. (author). 36 refs, 9 figs

  16. Do we have the right models for scaling up health services to achieve the Millennium Development Goals?

    Directory of Open Access Journals (Sweden)

    Subramanian Savitha

    2011-12-01

    Full Text Available Abstract Background There is widespread agreement on the need for scaling up in the health sector to achieve the Millennium Development Goals (MDGs. But many countries are not on track to reach the MDG targets. The dominant approach used by global health initiatives promotes uniform interventions and targets, assuming that specific technical interventions tested in one country can be replicated across countries to rapidly expand coverage. Yet countries scale up health services and progress against the MDGs at very different rates. Global health initiatives need to take advantage of what has been learned about scaling up. Methods A systematic literature review was conducted to identify conceptual models for scaling up health in developing countries, with the articles assessed according to the practical concerns of how to scale up, including the planning, monitoring and implementation approaches. Results We identified six conceptual models for scaling up in health based on experience with expanding pilot projects and diffusion of innovations. They place importance on paying attention to enhancing organizational, functional, and political capabilities through experimentation and adaptation of strategies in addition to increasing the coverage and range of health services. These scaling up approaches focus on fostering sustainable institutions and the constructive engagement between end users and the provider and financing organizations. Conclusions The current approaches to scaling up health services to reach the MDGs are overly simplistic and not working adequately. Rather than relying on blueprint planning and raising funds, an approach characteristic of current global health efforts, experience with alternative models suggests that more promising pathways involve "learning by doing" in ways that engage key stakeholders, uses data to address constraints, and incorporates results from pilot projects. Such approaches should be applied to current

  17. Do we have the right models for scaling up health services to achieve the Millennium Development Goals?

    Science.gov (United States)

    Subramanian, Savitha; Naimoli, Joseph; Matsubayashi, Toru; Peters, David H

    2011-12-14

    There is widespread agreement on the need for scaling up in the health sector to achieve the Millennium Development Goals (MDGs). But many countries are not on track to reach the MDG targets. The dominant approach used by global health initiatives promotes uniform interventions and targets, assuming that specific technical interventions tested in one country can be replicated across countries to rapidly expand coverage. Yet countries scale up health services and progress against the MDGs at very different rates. Global health initiatives need to take advantage of what has been learned about scaling up. A systematic literature review was conducted to identify conceptual models for scaling up health in developing countries, with the articles assessed according to the practical concerns of how to scale up, including the planning, monitoring and implementation approaches. We identified six conceptual models for scaling up in health based on experience with expanding pilot projects and diffusion of innovations. They place importance on paying attention to enhancing organizational, functional, and political capabilities through experimentation and adaptation of strategies in addition to increasing the coverage and range of health services. These scaling up approaches focus on fostering sustainable institutions and the constructive engagement between end users and the provider and financing organizations. The current approaches to scaling up health services to reach the MDGs are overly simplistic and not working adequately. Rather than relying on blueprint planning and raising funds, an approach characteristic of current global health efforts, experience with alternative models suggests that more promising pathways involve "learning by doing" in ways that engage key stakeholders, uses data to address constraints, and incorporates results from pilot projects. Such approaches should be applied to current strategies to achieve the MDGs.

  18. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  19. Financing alternative energy projects: An examination of challenges and opportunities for local government

    International Nuclear Information System (INIS)

    Cheung, Grace; Davies, Peter J.; Trück, Stefan

    2016-01-01

    Local government in Australia has a strong collective capacity to reduce GHG emissions through policies, funding allocation to renewable energy projects and the delivery of programs and services. This study examines the institutional capacity of councils in Sydney and how this impacts on decisions to invest in alternative energy projects. We find greenhouse gas emission targets of councils are strongly aligned to national targets but do not reflect the local council's institutional capacity, political leadership or strategic priorities. Energy reduction projects are often identified and undertaken by environmental staff without support from financial staff or financial-evaluation tools. An absence of national guidelines to provide consistency in tracking and reporting limits cross-sector benchmarking. Street lighting contributes to a significant proportion of council's total electricity expenditure and GHG emission profile. Being highly regulated, existing contracts and the current practice of street lighting services limits the councils’ ability to reduce emissions. Based on our analysis we recommend a number of measures to overcome these constraints including the use of financial evaluation tools for small-scale renewable energy projects, a standardised national tracking and reporting platform to facilitate progress-reporting and meaningful comparative analysis between councils and policy reform to the regulation of street lighting. - Highlights: • Australian local government sector can influence up to 50% of GHG emissions. • Institutional capacity, finance, leadership and staff, influence GHG performance. • Monitoring GHG emissions is limited by a lack of national guidelines or protocols. • Environmental officers lack tools and support to assess GHG reduction projects. • Reducing GHG emissions from street lighting is a contested legal and policy area.

  20. Bottom-up approach for decentralised energy planning. Case study of Tumkur district in India

    Energy Technology Data Exchange (ETDEWEB)

    Hiremath, Rahul B. [Walchand Institute of Technology, Solapur 413006 (India); Kumar, Bimlesh [Civil Engineering, Indian Institute of Technology, Guwahati 781039 (India); Balachandra, P. [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, Harvard Kennedy School, Harvard University, Cambridge, MA 02138 (United States); Ravindranath, N.H. [CST, IISc, Bangalore 560012 (India)

    2010-02-15

    Decentralized Energy Planning (DEP) is one of the options to meet the rural and small-scale energy needs in a reliable, affordable and environmentally sustainable way. The main aspect of the energy planning at decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least-cost to the economy and environment. Present work uses goal-programming method in order to analyze the DEP through bottom-up approach. This approach includes planning from the lowest scale of Tumkur district in India. The scale of analysis included village level - Ungra, panchayat level (local council) - Yedavani, block level - Kunigal and district level - Tumkur. The approach adopted was bottom-up (village to district) to allow a detailed description of energy services and the resulting demand for energy forms and supply technologies. Different scenarios are considered at four decentralized scales for the year 2005 and are developed and analyzed for the year 2020. Decentralized bioenergy system for producing biogas and electricity, using local biomass resources, are shown to promote development compared to other renewables. This is because, apart from meeting energy needs, multiple goals could be achieved such as self-reliance, local employment, and land reclamation apart from CO{sub 2} emissions reduction. (author)

  1. Bottom-up approach for decentralised energy planning: Case study of Tumkur district in India

    Energy Technology Data Exchange (ETDEWEB)

    Hiremath, Rahul B., E-mail: rahulhiremath@gmail.co [Walchand Institute of Technology Solapur 413006 (India); Kumar, Bimlesh, E-mail: bimk@iitg.ernet.i [Civil Engineering, Indian Institute of Technology, Guwahati 781039 (India); Balachandra, P., E-mail: balachandra_patil@hks.harvard.ed [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, Harvard Kennedy School, Harvard University, Cambridge, MA 02138 (United States); Ravindranath, N.H., E-mail: ravi@ces.iisc.ernet.i [CST, IISc, Bangalore 560012 (India)

    2010-02-15

    Decentralized Energy Planning (DEP) is one of the options to meet the rural and small-scale energy needs in a reliable, affordable and environmentally sustainable way. The main aspect of the energy planning at decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least-cost to the economy and environment. Present work uses goal-programming method in order to analyze the DEP through bottom-up approach. This approach includes planning from the lowest scale of Tumkur district in India. The scale of analysis included village level-Ungra, panchayat level (local council)-Yedavani, block level-Kunigal and district level-Tumkur. The approach adopted was bottom-up (village to district) to allow a detailed description of energy services and the resulting demand for energy forms and supply technologies. Different scenarios are considered at four decentralized scales for the year 2005 and are developed and analyzed for the year 2020. Decentralized bioenergy system for producing biogas and electricity, using local biomass resources, are shown to promote development compared to other renewables. This is because, apart from meeting energy needs, multiple goals could be achieved such as self-reliance, local employment, and land reclamation apart from CO{sub 2} emissions reduction.

  2. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  3. Role of Renewable Energy Certificates in Developing New Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Sumner, J.; Bird, L.

    2011-06-01

    For more than a decade, renewable energy certificates (RECs) have grown in use, becoming a common way to track ownership of the renewable and environmental attributes of renewable electricity generation. In recent years, however, questions have risen about the role RECs play in the decision to build new renewable energy projects. Information from a variety of market participants suggests that the importance of RECs in building new projects varies depending on a number of factors, including electricity market prices, the cost-competitiveness of the project, the presence or absence of public policies supportive of new projects, contract duration, and the perspective of different market participants. While there is no single answer to the role that RECs play, there are situations in which REC revenues are essential to project economics, as well as some where REC revenues may have little impact. To strengthen the role RECs play in both compliance and voluntary markets, there are a number of options that could be considered. In compliance markets, lawmakers or regulators would have to adopt measures that strengthen the role of RECs in the development of new projects, while in voluntary markets, it would be up to program leaders and market participants themselves to implement measures.

  4. Integrating the bottom-up and top-down approach to energy economy modelling. The case of Denmark

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper presents results from an integration project covering Danish models based on bottom-up and top-down approaches to energy]economy modelling. The purpose of the project was to identify theoretical and methodological problems for integrating existing models for Denmark and to implement...... an integration of the models. The integration was established through a number of links between energy bottom-up modules and a macroeconomic model. In this integrated model it is possible to analyse both top-down instruments, such as taxes along with bottom-up instruments, such as regulation of technology...

  5. Beam Energy Scan at RHIC and z-Scaling

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2013-01-01

    Roč. 245, DEC (2013), s. 231-238 ISSN 0920-5632. [7th Joint International Hadron Structure'13 Conference (HS 13). Tatranské Matliare, 30.06.2013-04.07.2013] R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : energy loss * nucleus-nucleus collisions * phase transition * scaling Subject RIV: BE - Theoretical Physics

  6. Large scale waste combustion projects. A study of financial structures and sensitivities

    International Nuclear Information System (INIS)

    Brandler, A.

    1993-01-01

    The principal objective of the study was to determine the key contractual and financial aspects of large scale energy-from-waste projects, and to provide the necessary background information on financing to appreciate the approach lenders take when they consider financing waste combustion projects. An integral part of the study has been the preparation of a detailed financial model, incorporating all major financing parameters, to assess the economic and financial viability of typical waste combustion projects. (author)

  7. Licensing and Environmental Issues of Wave Energy Projects

    DEFF Research Database (Denmark)

    Neumann, Frank; Tedd, James; Prado, Miguel

    2006-01-01

    a special standing or facilitated access to operating licenses due to their experimental character, the move of wave energy projects towards commercial applications implies complex procedures for obtaining licenses both with respect to the construction and deployment and operation phases, as well......The major non-technical barrier for large-scale wave energy implementation is the wide range of licensing issues and potential environmental concerns, in addition to significant National/regional differences in licensing procedures and permit requirements. Whereas some pilot plants have had...... as concerning ocean space use and environmental concerns. Despite recent efforts to streamline European EIA (Environmental Impact Assessment) in general, potential project developers are far from having a clear view of present and future requirements concerning these barriers on a trans-national level...

  8. GEAR UP Aspirations Project Evaluation

    Science.gov (United States)

    Trimble, Brad A.

    2013-01-01

    The purpose of this study was to conduct a formative evaluation of the first two years of the Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) Aspirations Project (Aspirations) using a Context, Input, Process, and Product (CIPP) model so as to gain an in-depth understanding of the project during the middle school…

  9. Institutions and processes for scaling up renewables: Run-of-river hydropower in British Columbia

    International Nuclear Information System (INIS)

    Jaccard, Mark; Melton, Noel; Nyboer, John

    2011-01-01

    The dramatic scale-up of renewable energy over the coming decades is likely to pose significant challenges for coordinating land use allocation, environmental assessment, energy system planning and the design of greenhouse gas abatement policy. Of particular concern is the establishment of institutions and processes that enable consideration of multiple objectives and attributes, with adequate representation of affected interests, and without resulting in excessive delays in the development of renewable energy as part of a greenhouse gas abatement strategy. This paper uses the Canadian province of British Columbia as a case study for describing these challenges and the responses of policy makers seeking to rapidly scale-up renewables. Using evaluative criteria to assess this experience, we identify lessons that may be applicable to other jurisdictions seeking to quickly expand the production of renewable energy. These lessons include the design of institutions and processes that would likely be required in almost any jurisdiction with similar aims. - Research highlights: → Tension exists between mitigating climate change through substantial renewable energy development and the local environmental impacts associated with this development. → The deployment of renewable energy technologies required for climate change mitigation is likely to lead to intensifying conflicts over land-use. → For this deployment to be successful, institutions and processes must be able to integrate and consider trade-offs related to goals and interests at different scales of decision making.

  10. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  11. Why are small scale demonstration projects important for the future of CCS?

    Science.gov (United States)

    Leetaru, H. E.; Bauer, R. A.; McBride, J. H.; Freiburg, J. T.; Greenberg, S. E.

    2017-12-01

    Carbon Capture and Storage (CCS) is moving toward large-scale commercial projects and the U.S. Department of Energy is supporting a new CarbonSAFE initiative to assist in the development of a 50 million tonnes geologic storage project. This type of large commercial CCS project will rely on lessons learned from smaller DOE CCS projects such as the Illinois Basin-Decatur Project (IBDP) and the Illinois Industrial Carbon Capture and Storage (IL-ICCS) Project located one mile north of IBDP. Over a three year period ending 2014 IBDP injected almost one million tonnes of CO2 into the Mt. Simon Sandstone, and the IL-ICCS project which commenced injection in 2017 will inject another four million tonnes over a four year period. The IBDP has recorded microseismic events within the study area through continuous downhole seismic monitoring before, during, and after injection. Monitoring shows that microseismicity increased during injection and originate not only in the Cambrian Mt. Simon Sandstone (the target reservoir), but also in the underlying Argenta clastics and deeper Precambrian igneous rocks as SW-NE elongate clusters aligned in strike to the maximum in situ stress direction. An interpretation of site 3D seismic reflection data suggests that much of the microseismicity is proximal to interpreted faults that extend from the basement up into the lowermost Mt. Simon strata. The faults proximally associated with microseismic activity are oriented parallel with respect to the maximum stress direction. The seismic monitoring of the IBDP indicate that the assessment of induced seismic potential associated with commercial-scale CCS requires not only identification of a suitable reservoir and its petrophysical characteristics, but also the extent and orientation of existing faults and their relation to regional stress orientation. Assessment of regional fault orientation using 3D seismic reflection data can be extremely useful to understanding the risks of induced seismicity

  12. Renewable energy projects to electrify rural communities in Cape Verde

    International Nuclear Information System (INIS)

    Ranaboldo, Matteo; Lega, Bruno Domenech; Ferrenbach, David Vilar; Ferrer-Martí, Laia; Moreno, Rafael Pastor; García-Villoria, Alberto

    2014-01-01

    Highlights: • The design of 2 off-grid electrification projects in Cape Verde is developed. • Configurations with hybrid renewable energy systems and micro-grids are considered. • A detailed micro-scale wind resource assessment is carried out. • An optimization model is used in order to support the design. • The proposed system is economically beneficial in comparison with diesel generation. - Abstract: Even though Cape Verde has high wind and solar energy resources, the conventional strategy for increasing access to electricity in isolated rural areas is by centralized microgrids with diesel generators. In this study, the design of 2 off-grid electrification projects based on hybrid wind–photovoltaic systems in Cape Verde is developed and analyzed. The design considers some significant novelty features in comparison with previous studies. First a detailed wind resource assessment is carried out combining meso-scale wind climate data and a specialized micro-scale wind flow model. Then a mathematical model is used for the design of off-grid projects considering a combination of individual systems and microgrids. In this study, locations far from the demand points are also considered as possible generation points. Various design configurations are analyzed and compared. The proposed configurations exploit the highest wind potential areas and are economically beneficial in comparison with diesel generator systems

  13. Spanish leadership in marine renewable energies. The project Ocean Lider; Liderazgo espanol en energias renovables oceanicas. El proyecto Ocean Lider

    Energy Technology Data Exchange (ETDEWEB)

    Amante, J.

    2012-07-01

    The Cenit-e Ocean Lider project is an ambitious R+D technological initiative promoted by a consortium of companies with a strong research capability which addresses the challenge of developing the necessary technologies to set up integrated large scale installations that can harness energies of marine renewable sources, such as waves, tidal currents and wind. Ocean Lider developed knowledge and technologies would provide some new power plant concepts, devices, structures, data acquisition and site characterization systems, vessels, etc. In this way, some new technologies for harnessing ocean energy generation, distribution and transmission would be developed and sized according to a large scale scheme, to make this hybrid harvest (wave, current and wind) as profitable as possible. (Author)

  14. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  15. Smart border initiative: a Franco-German cross-border energy optimisation project

    International Nuclear Information System (INIS)

    2017-01-01

    Integrated and optimised local energy systems will play a key role in achieving the energy transition objectives set by France and Germany, in line with the Energy Union's goals, and contribute to ensuring a secure, affordable and climate-friendly energy supply in the EU. In order to capitalise on the French and German expertise and experiences in developing such systems and to continue strengthening the cross-border cooperation towards a fully integrated European energy market, both Governments have decided to launch a common initiative to identify and structure a cross-border energy optimisation project. Tilia and Dena have undertaken this mission to jointly develop the Smart Border Initiative (SBI). The SBI will, on the one hand, connect policies designed by France and Germany in order to support their cities and territories in their energy transition strategies and European market integration. It is currently a paradox that, though more balanced and resilient energy systems build up, bottom-up, at the local level, borders remain an obstacle to this local integration, in spite of the numerous complementarities observed in cross-border regions, and of their specific needs, in terms of smart mobility for example. The SBI project aims at enabling European neighbouring regions separated by a border to jointly build up optimised local energy systems, and jointly develop their local economies following an integrated, sustainable and low-carbon model. On the other hand, this showcase project will initiate a new stage in the EU electricity market integration, by completing high voltage interconnections with local, low voltage integration at DSO level, opening new optimisation possibilities in managing the electricity balance, and enabling DSOs to jointly overcome some of the current challenges, notably the increased share of renewable energy (RE) and ensuring Europe's security of supply

  16. The scaling of tongue projection in the veiled chameleon, Chamaeleo calyptratus.

    Science.gov (United States)

    Herrel, Anthony; Redding, Chrystal L; Meyers, J Jay; Nishikawa, Kiisa C

    2014-08-01

    Within a year of hatching, chameleons can grow by up to two orders of magnitude in body mass. Rapid growth of the feeding mechanism means that bones, muscles, and movements change as chameleons grow while needing to maintain function. A previous morphological study showed that the musculoskeletal components of the feeding apparatus grow with negative allometry relative to snout-vent length (SVL) in chameleons. Here, we investigate the scaling of prey capture kinematics and muscle physiological cross-sectional area in the veiled chameleon, Chamaeleo calyptratus. The chameleons used in this study varied in size from approximately 3 to 18 cm SVL (1-200 g). Feeding sequences of 12 chameleons of different sizes were filmed and the timing of movements and the displacements and velocities of the jaws, tongue, and the hyolingual apparatus were quantified. Our results show that most muscle cross-sectional areas as well as tongue and hyoid mass scaled with isometry relative to mandible length, yet with negative allometry relative to SVL. Durations of movement also scaled with negative allometry relative to SVL and mandible length. Distances and angles generally scaled as predicted under geometric similarity (slopes of 1 and 0, respectively), while velocities generally scaled with slopes greater than 0 relative to SVL and mandible length. These data indicate that the velocity of jaw and tongue movements is generally greater in adults compared to juveniles. The discrepancy between the scaling of cross-sectional areas versus movements suggests changes in the energy storage and release mechanisms implicated in tongue projection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Project financing renewable energy schemes

    International Nuclear Information System (INIS)

    Brandler, A.

    1993-01-01

    The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)

  18. Energy efficiency of uninterruptible power supply systems (UPS); Projekt Energieeffizienz von USV-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, G.; Mauchle, P.

    2005-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) summarises and presents nine individual reports and documents concerning the topic of uninterruptible power supplies. The documents compiled for the Swiss Federal Office of Energy in earlier projects concerning the quality and energy efficiency of uninterruptible power supply (UPS) systems dating from 1998 to 2000 have been revised and expanded in collaboration with a UPS Systems 'Trendwatch' group. The central documents such as 'Optimised use of UPS systems', 'Measurement procedures for UPS systems', 'Label for UPS systems' and 'Quality/Energy matrix' have been translated into English. These documents form the basis for the international distribution of the studies and findings relating to the quality and energy efficiency of UPS systems. These results are to be distributed by both European as well as American commissions. A label and codes of conduct are being developed. The nine individual reports are summarised in separate abstracts also recorded in the ETDEWEB database.

  19. Making energy projects happen

    International Nuclear Information System (INIS)

    Gilliland, S.F.; Utt, W.P.; Neff, N.T.

    1988-01-01

    In today's business environment, control of energy cost is a major challenge for businesses, institutions, and governmental agencies. New technologies are available to reduce energy costs through cogeneration, cheaper fuels, or other means. Often it is not possible for a Plant Owner to undertake such a project, regardless of how desirable it may be. The authors of this paper show that by applying the principles of Project Structuring and developing a comprehensive project team, the desired reduction in energy costs can be achieved. Various examples are cited, and guidelines are given for an Owner to use

  20. The Agri-Territorial Energy System: Energy from Biomass as a Tool in Local Development

    International Nuclear Information System (INIS)

    Tritz, Yvan

    2012-01-01

    Biomass is a high-potential energy source whose development has been one of the primary objectives of the debate over the environment in France. Among the projects emerging today, we highlight two types of logics: large-scale projects such as electrical power or biofuel production plants, and smaller, local initiatives launched in rural areas. This paper lays down and illustrates the bases for the Agri-Territorial Energy System (ATES). This was inspired by Local Productive Systems and Localized Agri-food Systems, and the concept was set up on the basis of analyses of local projects involving biomass energy production. The ATES option offers strong local rooting and an organizational innovation process linking multi-stake holders. The concept is illustrated by two case studies: the Miscanthus project in Ammerzwiller (Alsace), and the Bois Bocage energy project in Orne (Basse-Normandie). These examples bring up an important point, namely the multifunctional dimension of the ATES concept

  1. Scaling up of renewable chemicals.

    Science.gov (United States)

    Sanford, Karl; Chotani, Gopal; Danielson, Nathan; Zahn, James A

    2016-04-01

    The transition of promising technologies for production of renewable chemicals from a laboratory scale to commercial scale is often difficult and expensive. As a result the timeframe estimated for commercialization is typically underestimated resulting in much slower penetration of these promising new methods and products into the chemical industries. The theme of 'sugar is the next oil' connects biological, chemical, and thermochemical conversions of renewable feedstocks to products that are drop-in replacements for petroleum derived chemicals or are new to market chemicals/materials. The latter typically offer a functionality advantage and can command higher prices that result in less severe scale-up challenges. However, for drop-in replacements, price is of paramount importance and competitive capital and operating expenditures are a prerequisite for success. Hence, scale-up of relevant technologies must be interfaced with effective and efficient management of both cell and steel factories. Details involved in all aspects of manufacturing, such as utilities, sterility, product recovery and purification, regulatory requirements, and emissions must be managed successfully. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Setting up local community wind energy projects

    International Nuclear Information System (INIS)

    Larke, Charmian.

    1993-01-01

    A report is given on progress to establish a company in the UK which involves local people at an early stage in the development of wind farms. Particular attention is paid to obtaining local finance for the projects. Because rural communities tend to be relatively poor, larger investors will need to be involved. (UK)

  3. Cumulative biological impacts framework for solar energy projects in the California Desert

    Science.gov (United States)

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  4. Energy, Electricity and Nuclear Power Estimates for the Period up to 2030. 2009 Ed

    International Nuclear Information System (INIS)

    2009-01-01

    Reference Data Series No. 1 is an annual publication - currently in its twenty-ninth edition - containing estimates of energy, electricity and nuclear power trends up to the year 2030. The future growth of energy, electricity and nuclear power up to the year 2030 is presented as low and high estimates in order to encompass the uncertainties associated with the future. These estimates should be viewed as very general growth trends whose validity must constantly be subjected to critical review. The energy forecasts carried out in increasing numbers over the last years by international, national and private organizations are based on a multiplicity of different assumptions and different aggregating procedures, which make their comparison and synthesis very difficult. The basic differences refer to such fundamental input data as: - World and regional scenarios of economic development; - Correlation of economic growth and energy consumption; - Assumptions on physical, economic and political constraints applying to energy production and consumption; - Future prices of different energy sources. The projections presented in this booklet are based on a compromise among: - National projections supplied by each country for a recent OECD/NEA study; - Indicators of development published by the World Bank in its World Development Indicators; - Estimates of energy, electricity and nuclear power growth continuously carried out by the IAEA in the wake of recent global and regional projections made by other international organizations

  5. Energy, electricity and nuclear power estimates for the period up to 2030. 2008 ed

    International Nuclear Information System (INIS)

    2008-01-01

    Reference Data Series No. 1 is an annual publication containing estimates of energy, electricity and nuclear power trends up to the year 2030. The future growth of energy, electricity and nuclear power up to the year 2030 is presented as low and high estimates in order to encompass the uncertainties associated with the future. These estimates should be viewed as very general growth trends whose validity must constantly be subjected to critical review. The energy forecasts carried out in increasing numbers over the last years by international, national and private organizations are based on a multiplicity of different assumptions and different aggregating procedures, which make their comparison and synthesis very difficult.The basic differences refer to such fundamental input data as: World and regional scenarios of economic development; Correlation of economic growth and energy consumption; Assumptions on physical, economic and political constraints applying to energy production and consumption; Future prices of different energy sources. The projections presented in this booklet are based on a compromise among: National projections supplied by each country for a recent OECD/NEA study; Indicators of development published by the World Bank in its World Development Indicators; Estimates of energy, electricity and nuclear power growth continuously carried out by the IAEA in the wake of recent global and regional projections made by other international organizations

  6. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-03-02

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The

  7. Estimating unbiased economies of scale of HIV prevention projects: a case study of Avahan.

    Science.gov (United States)

    Lépine, Aurélia; Vassall, Anna; Chandrashekar, Sudha; Blanc, Elodie; Le Nestour, Alexis

    2015-04-01

    Governments and donors are investing considerable resources on HIV prevention in order to scale up these services rapidly. Given the current economic climate, providers of HIV prevention services increasingly need to demonstrate that these investments offer good 'value for money'. One of the primary routes to achieve efficiency is to take advantage of economies of scale (a reduction in the average cost of a health service as provision scales-up), yet empirical evidence on economies of scale is scarce. Methodologically, the estimation of economies of scale is hampered by several statistical issues preventing causal inference and thus making the estimation of economies of scale complex. In order to estimate unbiased economies of scale when scaling up HIV prevention services, we apply our analysis to one of the few HIV prevention programmes globally delivered at a large scale: the Indian Avahan initiative. We costed the project by collecting data from the 138 Avahan NGOs and the supporting partners in the first four years of its scale-up, between 2004 and 2007. We develop a parsimonious empirical model and apply a system Generalized Method of Moments (GMM) and fixed-effects Instrumental Variable (IV) estimators to estimate unbiased economies of scale. At the programme level, we find that, after controlling for the endogeneity of scale, the scale-up of Avahan has generated high economies of scale. Our findings suggest that average cost reductions per person reached are achievable when scaling-up HIV prevention in low and middle income countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (Project FALSIRE)

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J.; Schulz, H.; Sievers, J.

    1993-06-01

    This report summarizes the recently completed Phase I of the Project for Fracture Analysis of Large-Scale International Reference Experiments (Project FALSIRE). Project FALSIRE was created by the Fracture Assessment Group (FAG) of Principal Working Group No. 3 (PWG/3) of the Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency's (NEA's) Committee on the Safety of Nuclear Installations (CSNI). Motivation for the project was derived from recognition by the CSNI-PWG/3 that inconsistencies were being revealed in predictive capabilities of a variety of fracture assessment methods, especially in ductile fracture applications. As a consequence, the CSNI/FAG was formed to evaluate fracture prediction capabilities currently used in safety assessments of nuclear components. Members are from laboratories and research organizations in Western Europe, Japan, and the United States of America (USA). On behalf of the CSNI/FAG, the US Nuclear Regulatory Commission's (NRC's) Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Anlagen--und Reaktorsicherheit (GRS), Koeln, Federal Republic of Germany (FRG) had responsibility for organization arrangements related to Project FALSIRE. The group is chaired by H. Schulz from GRS, Koeln, FRG

  9. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (Project FALSIRE)

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J. [Oak Ridge National Lab., TN (United States); Schulz, H.; Sievers, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Gemany)

    1993-06-01

    This report summarizes the recently completed Phase I of the Project for Fracture Analysis of Large-Scale International Reference Experiments (Project FALSIRE). Project FALSIRE was created by the Fracture Assessment Group (FAG) of Principal Working Group No. 3 (PWG/3) of the Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency`s (NEA`s) Committee on the Safety of Nuclear Installations (CSNI). Motivation for the project was derived from recognition by the CSNI-PWG/3 that inconsistencies were being revealed in predictive capabilities of a variety of fracture assessment methods, especially in ductile fracture applications. As a consequence, the CSNI/FAG was formed to evaluate fracture prediction capabilities currently used in safety assessments of nuclear components. Members are from laboratories and research organizations in Western Europe, Japan, and the United States of America (USA). On behalf of the CSNI/FAG, the US Nuclear Regulatory Commission`s (NRC`s) Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Anlagen--und Reaktorsicherheit (GRS), Koeln, Federal Republic of Germany (FRG) had responsibility for organization arrangements related to Project FALSIRE. The group is chaired by H. Schulz from GRS, Koeln, FRG.

  10. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are

  11. 'Scaling-up is a craft not a science': Catalysing scale-up of health innovations in Ethiopia, India and Nigeria.

    Science.gov (United States)

    Spicer, Neil; Bhattacharya, Dipankar; Dimka, Ritgak; Fanta, Feleke; Mangham-Jefferies, Lindsay; Schellenberg, Joanna; Tamire-Woldemariam, Addis; Walt, Gill; Wickremasinghe, Deepthi

    2014-11-01

    Donors and other development partners commonly introduce innovative practices and technologies to improve health in low and middle income countries. Yet many innovations that are effective in improving health and survival are slow to be translated into policy and implemented at scale. Understanding the factors influencing scale-up is important. We conducted a qualitative study involving 150 semi-structured interviews with government, development partners, civil society organisations and externally funded implementers, professional associations and academic institutions in 2012/13 to explore scale-up of innovative interventions targeting mothers and newborns in Ethiopia, the Indian state of Uttar Pradesh and the six states of northeast Nigeria, which are settings with high burdens of maternal and neonatal mortality. Interviews were analysed using a common analytic framework developed for cross-country comparison and themes were coded using Nvivo. We found that programme implementers across the three settings require multiple steps to catalyse scale-up. Advocating for government to adopt and finance health innovations requires: designing scalable innovations; embedding scale-up in programme design and allocating time and resources; building implementer capacity to catalyse scale-up; adopting effective approaches to advocacy; presenting strong evidence to support government decision making; involving government in programme design; invoking policy champions and networks; strengthening harmonisation among external programmes; aligning innovations with health systems and priorities. Other steps include: supporting government to develop policies and programmes and strengthening health systems and staff; promoting community uptake by involving media, community leaders, mobilisation teams and role models. We conclude that scale-up has no magic bullet solution - implementers must embrace multiple activities, and require substantial support from donors and governments in

  12. The energy program: goals up to the year 1990 and projections for the year 2000 (abstract and conclusions)

    International Nuclear Information System (INIS)

    1980-01-01

    The energy Program of the Mexican Government outlines its objectives, establishes its priorities and emphasizes its bonds with industry, regional development and the external sector, the macro-economic and sectional frame of reference of the Program is also given. Here the most relevant modifications to which the goals and outlooks of the industrial plan have been subjected are examined as are the changes that have occurred on the international scene and in the national economic policy. In a like manner, alternative options of economic policy are explored to establish a criteria with regard to the levels, long term sales of hydrocarbons should have abroad. This examination interrelates the aforementioned exports with the evolution in the economic structure, with the balance of payments from non-petroleum sources, and with the internal demand for hydrocarbons, and with the fuel reserve. The objectives of the program up to the year 1990 and the overall impact on the balance of energy in the country are analized. This permits an assessment of the contribution of the program in comparison with what would previsibly occur upon continuing to follow the tendencies of offer and demand. A similar question with respect to the principle kinds of energetics: nuclear energy, petroleum and gas, coal and electricity, the latter comprising the different sources in the generation of electricity, are considered. Finally, the necessary steps to implement programs of follow-up and evaluation are referred to. A supplement in the report covers the aspects of method and statistics; models used in making the projections, the results obtained from these models, estimates of the energetic potential of the country and the determination of the effective capacity to generate electricity

  13. Toward a Common Ontology of Scaling Up in Development

    Directory of Open Access Journals (Sweden)

    April N. Frake

    2018-03-01

    Full Text Available Scaling up development measures to target global food insecurity has a distinctly spatial character and is often cited as a solution to the global hunger crisis. Development does not occur without scaling and consensus on the ontological meaning of scaling up is a vital component to developing sustainable solutions to the global hunger crisis across geographical scales. Yet ‘scaling up’, while frequently used throughout Research and Development (R&D and Natural Resource Management (NRM literature, lacks ontological agreement. We begin by considering the noun, ‘scale’ and existing literature on scaling up, then present a visual analysis of definitions provided for scaling up across development institutions. Our study finds that the organization of terms used across these definitions falls into three distinct categories: Interventions, Mechanisms, and Outcomes. Further, we contend that the continued uncertainty is linked to scale being applied in two fashions: as a noun (outcome and verb (process. Rather than calling for reformed definitions, we argue for precision of definitions. To that end, we present a conceptual framework of scaling up that gives greater emphasis on separating the noun scale, from the verb, to scale. Further, Monitoring and Evaluation (M&E in our model complements scaling efforts beginning with how scaling up is defined by program, through to final evaluation of success.

  14. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up.

    Science.gov (United States)

    Chan, Chung-Hung; See, Tiam-You; Yusoff, Rozita; Ngoh, Gek-Cheng; Kow, Kien-Woh

    2017-04-15

    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Scale-up of a comprehensive harm reduction programme for people injecting opioids: lessons from north-eastern India

    Science.gov (United States)

    Lalmuanpuii, Melody; Biangtung, Langkham; Mishra, Ritu Kumar; Reeve, Matthew J; Tzudier, Sentimoa; Singh, Angom L; Sinate, Rebecca

    2013-01-01

    Abstract Problem Harm reduction packages for people who inject illicit drugs, including those infected with human immunodeficiency virus (HIV), are cost-effective but have not been scaled up globally. In the north-eastern Indian states of Manipur and Nagaland, the epidemic of HIV infection is driven by the injection of illicit drugs, especially opioids. These states needed to scale up harm reduction programmes but faced difficulty doing so. Approach In 2004, the Bill & Melinda Gates Foundation funded Project ORCHID to scale up a harm reduction programme in Manipur and Nagaland. Local setting In 2003, an estimated 10 000 and 16 000 people were injecting drugs in Manipur and Nagaland, respectively. The prevalence of HIV infection among people injecting drugs was 24.5% in Manipur and 8.4% in Nagaland. Relevant changes By 2012, the harm reduction programme had been scaled up to an average of 9011 monthly contacts outside clinics (80% of target); an average of 1709 monthly clinic visits (15% of target, well above the 5% monthly goal) and an average monthly distribution of needles and syringes of 16 each per programme participant. Opioid agonist maintenance treatment coverage was 13.7% and retention 6 months after enrolment was 63%. Antiretroviral treatment coverage for HIV-positive participants was 81%. Lessons learnt A harm reduction model consisting of community-owned, locally relevant innovations and business approaches can result in good harm reduction programme scale-up and influence harm reduction policy. Project ORCHID has influenced national harm reduction policy in India and contributed to the development of harm reduction guidelines. PMID:23599555

  16. Scale-up of a comprehensive harm reduction programme for people injecting opioids: lessons from north-eastern India.

    Science.gov (United States)

    Lalmuanpuii, Melody; Biangtung, Langkham; Mishra, Ritu Kumar; Reeve, Matthew J; Tzudier, Sentimoa; Singh, Angom L; Sinate, Rebecca; Sgaier, Sema K

    2013-04-01

    Harm reduction packages for people who inject illicit drugs, including those infected with human immunodeficiency virus (HIV), are cost-effective but have not been scaled up globally. In the north-eastern Indian states of Manipur and Nagaland, the epidemic of HIV infection is driven by the injection of illicit drugs, especially opioids. These states needed to scale up harm reduction programmes but faced difficulty doing so. In 2004, the Bill & Melinda Gates Foundation funded Project ORCHID to scale up a harm reduction programme in Manipur and Nagaland. In 2003, an estimated 10 000 and 16 000 people were injecting drugs in Manipur and Nagaland, respectively. The prevalence of HIV infection among people injecting drugs was 24.5% in Manipur and 8.4% in Nagaland. By 2012, the harm reduction programme had been scaled up to an average of 9011 monthly contacts outside clinics (80% of target); an average of 1709 monthly clinic visits (15% of target, well above the 5% monthly goal) and an average monthly distribution of needles and syringes of 16 each per programme participant. Opioid agonist maintenance treatment coverage was 13.7% and retention 6 months after enrolment was 63%. Antiretroviral treatment coverage for HIV-positive participants was 81%. A harm reduction model consisting of community-owned, locally relevant innovations and business approaches can result in good harm reduction programme scale-up and influence harm reduction policy. Project ORCHID has influenced national harm reduction policy in India and contributed to the development of harm reduction guidelines.

  17. Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments

    International Nuclear Information System (INIS)

    Burton, Jonathan; Hubacek, Klaus

    2007-01-01

    In its 2003 White Paper the UK government set ambitious renewable energy targets. Local governments and households have an increasing role in the overall energy system as consumers, suppliers of smaller-scale applications and citizens discussing energy projects. In this paper, we consider if small-scale or large-scale approaches to renewable energy provision can achieve energy targets in the most socially, economically and environmentally (SEE) effective way. We take a local case study of renewable energy provision in the Metropolitan Borough of Kirklees in Yorkshire, UK, and apply a multi-criteria decision analysis methodology to compare the small-scale schemes implemented in Kirklees with large-scale alternatives. The results indicate that small-scale schemes are the most SEE effective, despite large-scale schemes being more financially viable. The selection of the criteria on which the alternatives are assessed and the assigned weights for each criterion are of crucial importance. It is thus very important to include the relevant stakeholders to elicit this information

  18. Sustainability assessment of renewable energy projects: research report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report describes the results of a study that examined the development of an appraisal framework for renewable energy projects in the UK. The aim was to develop a framework that reflected the quality of life capital approach and could take into account social, economic and environmental effects at a range of different scales. The report describes in some detail: the steps leading to the definition, refinement and testing of the appraisal framework; the assessment methodology; baseline characterisation and evaluation; and application. Three fictional case studies (wind farm in a remote upland rural area, energy recovery facility in an urban fringe location and wood fuelled renewable energy plant in less remote rural area) are used to test the approach.

  19. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  20. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  1. Environment - Geothermal, the energy to wake up - Stimulation rather than fracturing - Iceland, the Texas of geothermal energy

    International Nuclear Information System (INIS)

    Chandes, Camille; Moragues, Manuel

    2013-01-01

    A first article comments the current efforts for the development of geothermal in France after a period during which it has been given up. It evokes the project of a geothermal plant near Paris (to supply Arcueil and Gentilly with energy), the increasing number of projects in different countries. It outlines the French delay in this sector, and that geothermal energy is as difficult to find as oil. It evokes the new actors of the sector and outlines the fierce competition in front of Icelander, Italian, US and Japanese actors, and the opportunities for the French ones. A second article comments the use of the hydraulic stimulation in geothermal energy exploration rather than hydraulic fracturing as in shale gas exploration, and outlines that according to geothermal energy actors this technique avoids the risk of micro-earthquake. A last article describes the activity of the geothermal sector in Iceland: geothermal energy supplies two thirds of primary energy consumption in this country. It exploits the Icelander volcanism. This development has been particularly noticeable since 2000, but some questions are raised regarding the production potential

  2. Bio-based economy in the Netherlands. Macro-economic outline of a large-scale introduction of green resources in the Dutch energy supply

    International Nuclear Information System (INIS)

    Van der Hoeven, D.

    2009-03-01

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. This is the public version of studies [nl

  3. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050. 2010 Ed

    International Nuclear Information System (INIS)

    2010-01-01

    Reference Data Series No. 1 (RDS-1) is an annual publication - currently in its thirtieth edition - containing estimates of energy, electricity and nuclear power trends up to the year 2050. RDS-1 starts with a summary of the situation of nuclear power in IAEA Member States as of the end of 2009. The data on nuclear power are based on actual statistical data collected by the IAEA's Power Reactor Information System (PRIS). Energy and electricity data for 2009, however, are estimated, since the latest available information from the United Nations Department of Economic and Social Affairs is for 2007. Population data originate from the World Population Prospects (2008 revision), published by the Population Division of the United Nations Department of Economic and Social Affairs, and the 2009 values again are estimates. As in the past, projections of future needs of energy, electricity and nuclear power are presented as low and high estimates encompassing the inherent uncertainties involved in projecting trends. The RDS-1 estimates should be viewed as very general growth trends whose validity must be constantly subjected to critical review. Beginning with the 30th edition of this publication, however, the end-point of the estimates is extended up to the year 2050 (instead of 2030). Looking beyond 2030 is prompted by the interest expressed by numerous Member States currently without nuclear power in adding nuclear energy to their future national energy supply mixes. Given the lead times in planning and implementing nuclear power programmes, a fair share of these are likely to result in actual plant commissioning and grid connection after 2030. Many international, national and private organizations routinely engage in energy demand and supply projections, including nuclear power. These projections are based on a multitude of different assumptions and aggregating procedures, which make a straightforward comparison and synthesis very difficult. The basic differences refer

  4. Multi-scale, multi-model assessment of projected land allocation

    Science.gov (United States)

    Vernon, C. R.; Huang, M.; Chen, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.

    2017-12-01

    Effects of land use and land cover change (LULCC) on climate are generally classified into two scale-dependent processes: biophysical and biogeochemical. An extensive amount of research has been conducted related to the impact of each process under alternative climate change futures. However, these studies are generally focused on the impacts of a single process and fail to bridge the gap between sector-driven scale dependencies and any associated dynamics. Studies have been conducted to better understand the relationship of these processes but their respective scale has not adequately captured overall interdependencies between land surface changes and changes in other human-earth systems (e.g., energy, water, economic, etc.). There has also been considerable uncertainty surrounding land use land cover downscaling approaches due to scale dependencies. Demeter, a land use land cover downscaling and change detection model, was created to address this science gap. Demeter is an open-source model written in Python that downscales zonal land allocation projections to the gridded resolution of a user-selected spatial base layer (e.g., MODIS, NLCD, EIA CCI, etc.). Demeter was designed to be fully extensible to allow for module inheritance and replacement for custom research needs, such as flexible IO design to facilitate the coupling of Earth system models (e.g., the Accelerated Climate Modeling for Energy (ACME) and the Community Earth System Model (CESM)) to integrated assessment models (e.g., the Global Change Assessment Model (GCAM)). In this study, we first assessed the sensitivity of downscaled LULCC scenarios at multiple resolutions from Demeter to its parameters by comparing them to historical LULC change data. "Optimal" values of key parameters for each region were identified and used to downscale GCAM-based future scenarios consistent with those in the Land Use Model Intercomparison Project (LUMIP). Demeter-downscaled land use scenarios were then compared to the

  5. VALUES-ORIENTED PROJECT MANAGEMENT OF RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович ВОЗНИЙ

    2017-03-01

    Full Text Available The value-oriented approach to project management of renewable energy based on classification stage of the life cycle of products of the projects, adapted to the goals and objectives of information modeling, which allowed to formulate stricter requirements information models used at different stages of the power plant is proposed. A classification of the alternative energy projects, which highlighting areas for activities is proposed. The list of stakeholders that have an impact on alternative energy projects and presented their classification is defined. The value of alternative energy projects considered from the standpoint of a utilitarian approach, using the concept of utility and on the basis of this concept proposed classification values of alternative energy projects. Criteria values as indicators for assessing the value of alternative energy projects and their weights determined by pairwise comparison. To take into account the changes of the value criteria over time proposed to use the key control points value, assessed value criteria in various key points of control, defined indicator of the total value of alternative energy projects. The classification of risks and tools for value-oriented risk management in alternative energy projects is proposed. Further study authors plan to link the development of mechanisms for harmonization value alternative energy projects for their stakeholders.

  6. Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Brisa; Vetter, Matthias [Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg (Germany); Bourg, Catherine [Fondation Energies pour le Monde (France); Crehay, Romain [Centre Wallon de Recherches Agronomiques (Belgium)

    2010-07-01

    The project ''Renewable Energy Sustainable Programs for Intelligent Rural Electrifrication'' RESIREA has been looking for the creation of conditions that make possible the establishment of Renewable Energy Technologies (RET) markets in targeted provinces to Lao PDR, Cambodia and Vietnam. As a main result of the project, in three different selected provinces (one in each country) have been proposed villages as ''ready to implement''. The ''ready to implement'' villages are specific RET projects resulted from applying developed methodologies. One methodology is a deeply well structured cross-analysis of technical and economic parameters and the results have been integrated in a Geographical Information System GIS. Based on the least-cost methodology, off-grid biomass and photovoltaic PV power supply systems have been designed and asset for the proposed villages. In the case of PV system designs, a detailed study has been carried out by means of simulations tools and extensive field data. The PV system design looks to contribute to an ''easy scale-up'' concept for off-grid power supply systems, especially when rural communities are too diverse. Further expected benefits besides the supply of electricity services are the improvement of the living and health conditions of the populations, the stimulation of local markets for RET and economic activities. (orig.)

  7. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.

  8. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  9. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  10. APERC - energy outlook up to 2030

    International Nuclear Information System (INIS)

    Jung, Y.

    2005-01-01

    Energy demand in the APERC region is projected to rise by almost 60 percent between 2002 and 2030, at 2.0 percent per annum. Electricity demand is projected to rise at a rate of 2.9 percent per annum, mainly driven by rising income and urbanisation in the developing economies. Increasing demand for oil (1.9 percent per annum) is not likely to be met by increased search of possible solutions.(author). Understanding of the problems and to dependence on imports is seen increasing to 66 percent by 2030 from its current level of 39 percent. Strong energy demand growth in Asia and North America, geopolitical instability in key energy exporting economies, and constraints on infrastructure to deliver energy sources to the market, have exerted strong upward pressure on energy prices. Concern for energy security is looming larger in APERC. Rising energy price may cause growth in APERC economies to stall, due to high oil import dependency and an inflexible energy supply structure. APERC economies may need to increase flexibility in energy supply infrastructure to enhance security of energy supply at reasonable price.. Two options are to enhance technological innovation and to improve resource allocation efficiency through cross border cooperation. Robust energy demand growth in the APERC region will need substantial investment requirements for new energy infrastructure. APERC's analysis indicates that the equivalent of some US$ 5.3 to 6.7 trillion will be needed to develop new energy infrastructure. Financing energy investment will pose challenges throughout the region. Challenges are arguably greater for developing economies of APERC where energy investment requirements relative to the size of economy are larger and their domestic capital markets are underdeveloped. Developed economies of APERC may face challenges in financing energy projects. Regulatory uncertainty may make it harder to attract capital to develop energy infrastructure.(author)

  11. Final Report for NIREC Renewable Energy Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Walt [Nevada Institute for Renewable Energy Commercialization (NIREC), Las Vegas, NV (United States)

    2017-05-02

    This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption of renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.

  12. Estimating returns to scale and scale efficiency for energy consuming appliances

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Efficiency Standards Group; Okwelum, Edson O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Efficiency Standards Group

    2018-01-18

    Energy consuming appliances accounted for over 40% of the energy use and $17 billion in sales in the U.S. in 2014. Whether such amounts of money and energy were optimally combined to produce household energy services is not straightforwardly determined. The efficient allocation of capital and energy to provide an energy service has been previously approached, and solved with Data Envelopment Analysis (DEA) under constant returns to scale. That approach, however, lacks the scale dimension of the problem and may restrict the economic efficient models of an appliance available in the market when constant returns to scale does not hold. We expand on that approach to estimate returns to scale for energy using appliances. We further calculate DEA scale efficiency scores for the technically efficient models that comprise the economic efficient frontier of the energy service delivered, under different assumptions of returns to scale. We then apply this approach to evaluate dishwashers available in the market in the U.S. Our results show that (a) for the case of dishwashers scale matters, and (b) the dishwashing energy service is delivered under non-decreasing returns to scale. The results further demonstrate that this method contributes to increase consumers’ choice of appliances.

  13. Associations - Communities - Residents. Building together a citizen-based project of renewable energies - Methodological guide

    International Nuclear Information System (INIS)

    Ramard, Dominique; Fleury, Laurianne; Peyret, Albert; Ghesquiere, Christine; Kauber, Markus; Jourdain, Pierre

    2012-11-01

    This guide first outlines the challenges and stakes of citizen-based renewable energies: example of a necessary energy transition in Brittany, interest of a local production of renewable energies, examples in other European countries, and emergence of a citizen-based energy movement in France. The second part presents the four main phases of such a project (diagnosis, development, construction, and exploitation), the main issues to be addressed, and the main steps of a citizen-based renewable energy project (technical, legal and financial, and citizen-related aspects during the different phases). The third part describes how to elaborate a citizen-based project: by addressing the project dimensions, by defining a legal specification, by performing a provisional business model, by choosing an appropriate legal structure, by creating a project company, and by mobilizing local actors). The last part addresses how to finance the project: by building up own funds, by asking banks for support, and by citizen participation to investment

  14. Scaling up: Assessing social impacts at the macro-scale

    International Nuclear Information System (INIS)

    Schirmer, Jacki

    2011-01-01

    Social impacts occur at various scales, from the micro-scale of the individual to the macro-scale of the community. Identifying the macro-scale social changes that results from an impacting event is a common goal of social impact assessment (SIA), but is challenging as multiple factors simultaneously influence social trends at any given time, and there are usually only a small number of cases available for examination. While some methods have been proposed for establishing the contribution of an impacting event to macro-scale social change, they remain relatively untested. This paper critically reviews methods recommended to assess macro-scale social impacts, and proposes and demonstrates a new approach. The 'scaling up' method involves developing a chain of logic linking change at the individual/site scale to the community scale. It enables a more problematised assessment of the likely contribution of an impacting event to macro-scale social change than previous approaches. The use of this approach in a recent study of change in dairy farming in south east Australia is described.

  15. Application of demography to energy facility development projects. Working Paper No. 39

    International Nuclear Information System (INIS)

    Krannich, R.S.; Stanfield, G.G.

    1977-01-01

    The emergence of concern regarding socioeconomic consequences of large-scale development projects has resulted in a growing literature directed as estimating the types and levels of various impact dimensions which can be expected to result in human communities experiencing such development. Among these dimensions, a focus on population change has been prevalent. Accurate demographic predictions may be viewed as critical for the adequate comprehension of and preparation for impacts deriving from projects such as energy facility developments. Unfortunately, the state of the art in projecting demographic consequences of energy projects has been generally inadequate. Several of the more influential prior methods for estimating local demographic effects of developing energy facilities are critiqued, although their specific prediction figures are not summarized. The studies reviewed were found to be of dubious practical utility, probably due in part to the failure of basic demography to provide a base of support for applied demographic research. This report sets forth recommendations for the development of a theoretical perspective which would more adequately serve the needs of practitioners attempting to predict local demographic effects of energy facility development

  16. Large-scale renewable energy project barriers: Environmental impact assessment streamlining efforts in Japan and the EU

    International Nuclear Information System (INIS)

    Schumacher, Kim

    2017-01-01

    Environmental Impact Assessment (EIA) procedures have been identified as a major barrier to renewable energy (RE) development with regards to large-scale projects (LS-RE). However EIA laws have also been neglected by many decision-makers who have been underestimating its impact on RE development and the stifling potential they possess. As a consequence, apart from acknowledging the shortcomings of the systems currently in place, few governments momentarily have concrete plans to reform their EIA laws. By looking at recent EIA streamlining efforts in two industrialized regions that underwent major transformations in their energy sectors, this paper attempts to assess how such reform efforts can act as a means to support the balancing of environmental protection and climate change mitigation with socio-economic challenges. Thereby this paper fills this intellectual void by identifying the strengths and weaknesses of the Japanese EIA law by contrasting it with the recently revised EIA Directive of the European Union (EU). This enables the identification of the regulatory provisions that impact RE development the most and the determination of how structured EIA law reforms would affect domestic RE project development. The main focus lies on the evaluation of regulatory streamlining efforts in the Japanese and EU contexts through the application of a mixed-methods approach, consisting of in-depth literary and legal reviews, followed by a comparative analysis and a series of semi-structured interviews. Highlighting several legal inconsistencies in combination with the views of EIA professionals, academics and law- and policymakers, allowed for a more comprehensive assessment of what streamlining elements of the reformed EU EIA Directive and the proposed Japanese EIA framework modifications could either promote or stifle further RE deployment. - Highlights: •Performs an in-depth review of EIA reforms in OECD territories •First paper to compare Japan and the European

  17. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  18. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  19. Polyethylene encapsulation of mixed wastes: Scale-up feasibility

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01

    A polyethylene process for the improved encapsulation of radioactive, hazardous, and mixed wastes have been developed at Brookhaven National Laboratory (BNL). Improvements in waste loading and waste form performance have been demonstrated through bench-scale development and testing. Maximum waste loadings of up to 70 dry wt % mixed waste nitrate salt were achieved, compared with 13--20 dry wt % using conventional cement processes. Stability under anticipated storage and disposal conditions and compliance with applicable hazardous waste regulations were demonstrated through a series of lab-scale waste form performance tests. Full-scale demonstration of this process using actual or surrogate waste is currently planned. A scale-up feasibility test was successfully conducted, demonstrating the ability to process nitrate salts at production rates (up to 450 kg/hr) and the close agreement between bench- and full-scale process parameters. Cored samples from the resulting pilot-scale (114 liter) waste form were used to verify homogeneity and to provide additional specimens for confirmatory performance testing

  20. PROJECT APPROACH TO ENERGY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Інга Борисівна СЕМКО

    2016-02-01

    Full Text Available Project management is widely used around the world as a tool to improve business performance. Correct implementation of the program of implementation of energy efficiency is accompanied by the adoption of an appropriate legislative framework, support programs, the approval of market-based instruments. Currently, it is paying enough attention to the effective application of market-based instruments, although most of the activities in the field of energy efficiency from the economic side are quite profitable. The authors suggested the use of the methodology of project management to the management of energy-saving measures, new approaches to the place and role of project management in the hierarchy of guidance. As a result, this innovation can improve the competitiveness of enterprises. The conclusions that the energy-saving project management allows you to get the best results for their implementation by reducing the time, resources, risk reduction.

  1. Jet Energy Scale Uncertainties in ATLAS

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2012-01-01

    About one year after the first proton-proton collisions at a centre of mass energy of $sqrt(s) = 7,TeV$, the ATLAS experiment has achieved an accuracy of the jet energy measurement between $2-4%$ for jet transverse momenta from $20,GeV$ to $2,TeV$ in the pseudorapidity range up to $4.5$. The jet energy scale uncertainty is derived from in-situ single hadron response measurement along with systematic variations in the Monte Carlo simulation. In addition, the transverse momentum balance between a central and a forward jet in events with only two jets at high transverse momentum is used to set the jet energy uncertainty in the forward region. The obtained uncertainty is confirmed by in-situ measurements exploiting the transverse momentum balance between a jet and a well measured reference object like the photon transverse momentum in photon-jet events. Jets in the TeV-energy regime were tested using a system of well calibrated jets at low transverse momenta against a high-pt jet. Preliminary results from the 201...

  2. A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation

    Science.gov (United States)

    Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.

    2016-12-01

    Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.

  3. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  4. Report on the CSC project group meeting on alternative energy resources

    International Nuclear Information System (INIS)

    1977-11-01

    Under its coordinated R and D programme the Commonwealth Science Council in cooperation with the Ministry of Agriculture, Food and Consumer Affairs, Barbados, organized a meeting to identify suitable projects for inter-country collaboration. Specifically the meeting had three aims: 1. Review present state of activities in alternative energy resources and assess small scale energy needs in the region. 2. Identify specific projects for inter-country collaboration. 3. Draft joint project proposals for such collaboration. A small group of experts (Annex VII) from Britain, Canada, USA and CSC secretariat staff made detailed plans for the Barbados meeting. With a view to assessing real energy needs locally, the Group recommended that a study be undertaken in Barbados prior to the meeting. A report on such a study was presented at the meeting. Member countries were also invited to prepare country papers. In addition, following the planning Group's recommendation, several technical papers were prepared. These covered subjects ranging from conceptual aspects to clarify objectives, assumptions and criteria to a review of all alternative energy technologies

  5. Bill project introducing a progressive price fixing of energy - Nr 150

    International Nuclear Information System (INIS)

    Brottes, Francois; Le Roux, Bruno

    2012-01-01

    This bill project aims at speeding up energy transition by inciting households to reduce their consumption, and at accompanying the unavoidable increase of energy prices. It introduces a rather complex process to establish the energy tariff, and notably a bonus-malus principle. The objective is to incite households to better insulate their main housing. It also takes social tariffs into account, defines institutions and representative for energy regulation, proposes the implementation of a public service for housing energy performance, and addresses the issue of energy supply in winter to households in precarious situation

  6. Scaling-up public sector childhood diarrhea management program: Lessons from Indian states of Gujarat, Uttar Pradesh and Bihar.

    Science.gov (United States)

    Kumar, Sanjeev; Roy, Rajashree; Dutta, Sucharita

    2015-12-01

    Diarrhea remains a leading cause of death among children under five in India. Public health sector is an important source for diarrhea treatment with oral rehydration salts (ORS) and zinc. In 2010, Micronutrient Initiative started a project to improve service delivery for childhood diarrhea management through public health sector in Gujarat, Uttar Pradesh (UP) and Bihar. This paper aims to highlight feasible strategies, experiences and lessons learned from scaling-up zinc and ORS for childhood diarrhea management in the public sector in three Indian states. The project was implemented in six districts of Gujarat, 12 districts of UP and 15 districts of Bihar, which includes 10.5 million children. Program strategies included capacity building of health care providers, expanding service delivery through community health workers (CHWs), providing supportive supervision to CHWs, ensuring supplies and conducting monitoring and evaluation. The lessons described in this paper are based on program data, government documents and studies that were used to generate evidence and inform program scale-up. 140 000 health personnel, including CHWs, were trained in childhood diarrhea management. During three years, CHWs had sustained knowledge and have treated and reported more than three million children aged 2-59 months having diarrhea, of which 84% were treated with both zinc and ORS. The successful strategies were scaled-up. It is feasible and viable to introduce and scale-up zinc and ORS for childhood diarrhea treatment through public sector. Community-based service delivery, timely and adequate supplies, trained staff and pro-active engagement with government were essential for program success.

  7. Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries

    International Nuclear Information System (INIS)

    Hayashi, Daisuke; Krey, Matthias

    2007-01-01

    This paper assesses clean development mechanism (CDM) potential of large-scale energy efficiency measures in selected heavy industries (iron and steel, cement, aluminium, pulp and paper, and ammonia) taking India and Brazil as examples of CDM project host countries. We have chosen two criteria for identification of the CDM potential of each energy efficiency measure: (i) emission reductions volume (in CO 2 e) that can be expected from the measure and (ii) likelihood of the measure passing the additionality test of the CDM Executive Board (EB) when submitted as a proposed CDM project activity. The paper shows that the CDM potential of large-scale energy efficiency measures strongly depends on the project-specific and country-specific context. In particular, technologies for the iron and steel industry (coke dry quenching (CDQ), top pressure recovery turbine (TRT), and basic oxygen furnace (BOF) gas recovery), the aluminium industry (point feeder prebake (PFPB) smelter), and the pulp and paper industry (continuous digester technology) offer promising CDM potential

  8. Talking About The Smokes: a large-scale, community-based participatory research project.

    Science.gov (United States)

    Couzos, Sophia; Nicholson, Anna K; Hunt, Jennifer M; Davey, Maureen E; May, Josephine K; Bennet, Pele T; Westphal, Darren W; Thomas, David P

    2015-06-01

    To describe the Talking About The Smokes (TATS) project according to the World Health Organization guiding principles for conducting community-based participatory research (PR) involving indigenous peoples, to assist others planning large-scale PR projects. The TATS project was initiated in Australia in 2010 as part of the International Tobacco Control Policy Evaluation Project, and surveyed a representative sample of 2522 Aboriginal and Torres Strait Islander adults to assess the impact of tobacco control policies. The PR process of the TATS project, which aimed to build partnerships to create equitable conditions for knowledge production, was mapped and summarised onto a framework adapted from the WHO principles. Processes describing consultation and approval, partnerships and research agreements, communication, funding, ethics and consent, data and benefits of the research. The TATS project involved baseline and follow-up surveys conducted in 34 Aboriginal community-controlled health services and one Torres Strait community. Consistent with the WHO PR principles, the TATS project built on community priorities and strengths through strategic partnerships from project inception, and demonstrated the value of research agreements and trusting relationships to foster shared decision making, capacity building and a commitment to Indigenous data ownership. Community-based PR methodology, by definition, needs adaptation to local settings and priorities. The TATS project demonstrates that large-scale research can be participatory, with strong Indigenous community engagement and benefits.

  9. Seneca Compressed Air Energy Storage (CAES) Project

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  10. 76 FR 22719 - Cape Wind Energy Project

    Science.gov (United States)

    2011-04-22

    ... Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), Interior..., or disapprove a Construction and Operations Plan (COP) for the Cape Wind Energy Project located on..., easements, or rights-of-way for renewable energy projects on the OCS. The Secretary delegated that authority...

  11. Reference projection energy and emissions 2010-2020

    International Nuclear Information System (INIS)

    Daniels, B.; Kruitwagen, S.

    2010-12-01

    The Reference Projection 2010-2020 examines the future development of Dutch energy use, greenhouse gas emissions and air pollution up to 2020. The Reference projection is based on assumptions regarding economic, structural, technological and policy developments. With regard to the latter, the 'Schoon en Zuinig' (Clean and Efficient) policy programme for energy and climate, introduced in 2007, plays an important role. According to Schoon en Zuinig, greenhouse gas emissions have to be reduced by 30% in 2020 compared to 1990; the annual energy efficiency improvement has to increase to 2% and the target share of renewable energy production in total consumption in 2020 is 20%. To assess the effects of the policy measures from the 'Schoon en Zuinig' policy programme, the Reference projection explores three policy variants: one without policies introduced after 2007, one including only post-2007 policies that are already fixed, and one including proposed policy measures as well. Here, policies refer to Dutch as well as to European policies. The results indicate that the climate and energy targets will not be reached with the current instruments. Including proposed policy measures, the estimated greenhouse gas reduction will amount to 16-24% relative to 1990, the renewable energy share will rise to 13-16% and the annual energy efficiency improvement between 2011 and 2020 will amount to between 1.1 and 1.6%. European targets for greenhouse gas emissions can be reached, especially in the case of implementation of the proposed policies. As for renewable energy, the implementation of proposed policies is imperative for attaining the target, but likely to be insufficient. Current European targets for air pollutants are within reach. 2020 emission levels of most air pollutants are lower than the current 2010 National Emission Ceilings, with the exception of ammonia, where there is a substantial chance that the 2020 emissions will exceed the 2010 ceiling. However, ceilings are

  12. Energy research and development projects in the Nordic countries. Directory 1985. Energiforskningsprojekter i Norden. Katalog 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This is the third directory of research, development and demonstration projects in the Nordic countries within the field of energy. The 1985 directory includes projects running in 1985. 1757 projects are described and all of them are financed through special public funds (i.e. external funding). The directory is published at the request of the Nordic Council of Ministers and a special Energy Research Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  13. Regional Scale Modelling for Exploring Energy Strategies for Africa

    International Nuclear Information System (INIS)

    Welsch, M.

    2015-01-01

    KTH Royal Institute of Technology was founded in 1827 and it is the largest technical university in Sweden with five campuses and Around 15,000 students. KTH-dESA combines an outstanding knowledge in the field of energy systems analysis. This is demonstrated by the successful collaborations with many (UN) organizations. Regional Scale Modelling for Exploring Energy Strategies for Africa include Assessing renewable energy potentials; Analysing investment strategies; ) Assessing climate resilience; Comparing electrification options; Providing web-based decision support; and Quantifying energy access. It is conclude that Strategies required to ensure a robust and flexible energy system (-> no-regret choices); Capacity investments should be in line with national & regional strategies; Climate change important to consider, as it may strongly influence the energy flows in a region; Long-term models can help identify robust energy investment strategies and pathways that Can help assess future markets and profitability of individual projects

  14. Nuclear human resource projection up to 2030 in KOREA

    International Nuclear Information System (INIS)

    Min, Byung Joo; Lee, Man Ki; Nam, Kee Yung; Jeong, Ki Ho

    2011-01-01

    The prospects for growth of the nuclear power industry in Korea have improved remarkably as the demand for energy increases in stride with economic development. Meanwhile, as nuclear energy development is enhanced, nuclear technology has also improved evolutionarily and innovatively in the areas of reactor design and safety measures. As nuclear technology development in Korea advances, more human resources are required. Accordingly, the need for a well-managed program of human resource development (HRD) aimed at assuring needed capacities, skills, and knowledge and maintaining valuable human resources through education and training in various nuclear-related fields has been recognized. A well-defined and object-oriented human resource development and management (HRD and M) is to be developed in order to balance between the dynamics of supply and demand of the workforce in the nuclear industry. The HRD and M schemes include a broad base of disciplines, education, sciences, and technologies within a framework of national sustainable development goals, which are generally considered to include economics, environment, and social concerns. In this study, the projection methodology considering a variety of economic, social, and environmental factors was developed. Using the developed methodology, medium- and long-term nuclear human resources projections up to 2030 were conducted in compliance with the national nuclear technology development programmes and plans

  15. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up.

    Science.gov (United States)

    Kitching, Michael; Butler, Robin; Marsili, Enrico

    2017-01-01

    Sustainable energy supplies are needed to supplement and eventually replace fossil fuels. Molecular hydrogen H 2 is a clean burning, high-energy fuel that is also used as reducing gas in industrial processes. H 2 is mainly synthesized by steam reforming of natural gas, a non-renewable fuel. There are biosynthetic strategies for H 2 production; however, they are associated with poor yield and have high cost. The application of an electrochemical driving force in a microbial electrolysis cell (MEC) improves the yield of biological reactions. The performance of the MEC is influenced by experimental parameters such as the electrode material, reactor design, microbial consortia and the substrate. In this review, factors that affect the performance of MECs are discussed and critically analysed. The potential for scale-up of H 2 bioelectrosynthesis is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Progress in scale-up of second-generation HTS conductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Qiao, Y.; Reeves, J.; Rar, A.; Schmidt, R.; Lenseth, K.

    2007-01-01

    Tremendous progress has been recently made in the achievement of high-performance, high-speed, long-length second-generation (2G) HTS conductors. Using ion beam assisted deposition (IBAD) MgO and metal organic chemical vapor deposition (MOCVD), SuperPower has scaled up tape lengths to 427 m with a minimum critical current value of 191 A/cm corresponding to a critical current x length performance of 81,550 m. Tape speeds up to 120 m/h have been reached with IBAD MgO, up to 80 m/h with buffer deposition and up to 45 m/h with MOCVD, all in single pass processing of 12 mm wide tape. Critical current value of 227 A/cm has been achieved in a 203 m long tape produced in an all-high-speed fabrication process. Critical current values have been raised to 721 A/cm, 592 A/cm and 486 A/cm in short, reel-to-reel processed tape, over 1 m length and over 11.1 m, respectively, using thicker MOCVD HTS films. Finally, over 10,000 m of copper-stabilized, 4 mm wide conductor has been produced and tested for delivery to the Albany Cable project. The average critical current of the 10,000 m lot was 81 A

  17. Progress in scale-up of second-generation HTS conductor

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: vselva@igc.com; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Qiao, Y.; Reeves, J.; Rar, A.; Schmidt, R.; Lenseth, K. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2007-10-01

    Tremendous progress has been recently made in the achievement of high-performance, high-speed, long-length second-generation (2G) HTS conductors. Using ion beam assisted deposition (IBAD) MgO and metal organic chemical vapor deposition (MOCVD), SuperPower has scaled up tape lengths to 427 m with a minimum critical current value of 191 A/cm corresponding to a critical current x length performance of 81,550 m. Tape speeds up to 120 m/h have been reached with IBAD MgO, up to 80 m/h with buffer deposition and up to 45 m/h with MOCVD, all in single pass processing of 12 mm wide tape. Critical current value of 227 A/cm has been achieved in a 203 m long tape produced in an all-high-speed fabrication process. Critical current values have been raised to 721 A/cm, 592 A/cm and 486 A/cm in short, reel-to-reel processed tape, over 1 m length and over 11.1 m, respectively, using thicker MOCVD HTS films. Finally, over 10,000 m of copper-stabilized, 4 mm wide conductor has been produced and tested for delivery to the Albany Cable project. The average critical current of the 10,000 m lot was 81 A.

  18. Geothermal energy: an important but disregarded form of renewable energy; geological situation, projects and economy in Austria

    International Nuclear Information System (INIS)

    Walker-Hertkorn, S.

    2000-05-01

    This study deals with the topic geothermal energy. Although geothermal energy is an important energy sector within the area of the renewable energies, the European policy downgraded this important, promising energy sector in 1999. Normally, geothermal energy cannot be regarded as a renewable energy source because the heat content of the Earth, the gravitational heat, the source heat, frictional heat and the decay of radioactive isotopes in the further process of geologic history will eventually be exhausted. However, we are referring here to many millions of years. At the present time, geothermal energy can thus be regarded as an inexhaustible renewable energy source. This work is focused on the geothermal situation in Austria. For many people, the term 'geothermal energy' is associated with countries such as Iceland, Italy (Larderello) and New Zealand. However, in Austria there are also innovative projects in the geothermal energy sector that only very few people know about. Some of these trend-setting projects are presented here. Regarding the total situation in Austria, the geothermal potential is described specifically for the Calcareous Alpine nappe and the Vienna Basin. Furthermore, the first results concerning successful injection in Upper Austria and up to now unconsidered locations for geothermal energy plants are presented. This work attempts to present the attractiveness of geothermal energy projects to the public, thus emphasizing the importance of discussing it again on the political level. (author)

  19. Ensembl Genomes 2013: scaling up access to genome-wide data.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  20. Combining offshore wind energy and large-scale mussel farming: background & technical, ecological and economic considerations

    NARCIS (Netherlands)

    Lagerveld, S.; Rockmann, C.; Scholl, M.M.; Bartelings, H.; Burg, van den S.W.K.; Jak, R.G.; Jansen, H.M.; Klijnstra, J.; Leopold, M.F.; Poelman, M.; Smith, S.R.; Stavenuiter, J.; Veenstra, F.A.; Veltman, C.; Westra, C.

    2014-01-01

    This Blauwdruk project report presents background and technical, ecological and economic considerations of the potential combination of offshore wind energy production and large-scale mussel farming in offshore areas in the North Sea. The main objective of the Blauwdruk project was to study the

  1. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    Science.gov (United States)

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  2. The Energy Economics of Financial Structuring for Renewable Energy Projects

    Science.gov (United States)

    Rana, Vishwajeet

    2011-12-01

    This dissertation focuses on the various financial structuring options for the renewable energy sector. The projects in this sector are capital-intensive to build but have relatively low operating costs in the long run when compared to traditional energy resources. The large initial capital requirements tend to discourage investors. To encourage renewable investments the government needs to provide financial incentives. Since these projects ultimately generate returns, the government's monetary incentives go to the sponsors and tax equity investors who build and operate such projects and invest capital in them. These incentives are usually in the form of ITCs, PTCs and accelerated depreciation benefits. Also, in some parts of the world, carbon credits are another form of incentive for the sponsors and equity investors to invest in such turnkey projects. The relative importance of these various considerations, however, differs from sponsor to sponsor, investor to investor and from project to project. This study focuses mainly on the US market, the federal tax benefits and incentives provided by the government. This study focuses on the energy economics that are used for project decision-making and parties involved in the transaction as: Project Developer/Sponsor, Tax equity investor, Debt investor, Energy buyer and Tax regulator. The study fulfils the knowledge gap in the decision making process that takes advantage of tax monetization in traditional after-tax analysis for renewable energy projects if the sponsors do not have the tax capacity to realize the total benefits of the project. A case-study for a wind farm, using newly emerging financial structures, validates the hypothesis that these renewable energy sources can meet energy industry economic criteria. The case study also helps to validate the following hypotheses: a) The greater a sponsor's tax appetite, the tower the sponsor's equity dilution. b) The use of leverage increases the cost of equity financing

  3. Energy absorption build-up factors in teeth

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Rudraswamy, B.

    2012-01-01

    Geometric progression fitting method has been used to compute energy absorption build-up factor of teeth [enamel outer surface, enamel middle, enamel dentin junction towards enamel, enamel dentin junction towards dentin, dentin middle and dentin inner surface] for wide energy range (0.015-15 MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption build-up factor on incident photon energy, penetration depth, electron density and effective atomic number has also been studied. The energy absorption build-up factors increases with the penetration depth and electron density of teeth. So that the degree of violation of Lambert-Beer (I = I 0 e -μt ) law is less for least penetration depth and electron density. The energy absorption build-up factors for different regions of teeth are not same hence the energy absorbed by the different regions of teeth is not uniform which depends on the composition of the medium. The relative dose of gamma in different regions of teeth is also estimated. Dosimetric implication of energy absorption build-up factor in teeth has also been discussed. The estimated absorption build up factors in different regions of teeth may be useful in the electron spin resonance dosimetry. (author)

  4. South Louisiana Enhanced Oil Recovery/Sequestration R&D Project Small Scale Field Tests of Geologic Reservoir Classes for Geologic Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hite, Roger [Blackhorse Energy LLC, Houston, TX (United States)

    2016-10-01

    The project site is located in Livingston Parish, Louisiana, approximately 26 miles due east of Baton Rouge. This project proposed to evaluate an early Eocene-aged Wilcox oil reservoir for permanent storage of CO2. Blackhorse Energy, LLC planned to conduct a parallel CO2 oil recovery project in the First Wilcox Sand. The primary focus of this project was to examine and prove the suitability of South Louisiana geologic formations for large-scale geologic sequestration of CO2 in association with enhanced oil recovery applications. This was to be accomplished through the focused demonstration of small-scale, permanent storage of CO2 in the First Wilcox Sand. The project was terminated at the request of Blackhorse Energy LLC on October 22, 2014.

  5. Energy, electricity and nuclear power estimates for the period up to 2030. July 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    Reference Data Series No. 1 is an annual publication - currently in its twenty-second edition - containing estimates of energy, electricity and nuclear power trends up to the year 2020. Nuclear data presented in Table 1 are based on actual statistical data collected by the IAEA's Power Reactor Information System (PRIS). Energy and electricity data for 2001, however, are estimated, since the latest available information from the Department of Economic and Social Affairs of the United Nations is for 1999. Population data originate from the 'World Population Prospects' (2001 Revision), published by the Population Division of the UN Department of Economic and Social Affairs, and the 2001 values are estimates. The future growth of energy, electricity and nuclear power up to the year 2020 is presented as low and high estimates in order to encompass the uncertainties associated with the future. These estimates should be viewed as very general growth trends whose validity must constantly be subjected to critical review. The nuclear generating capacity estimates presented in Table are derived from a country by country bottom-up approach. They are established by a group of experts participating each year in the IAEA's consultancy on Nuclear Capacity Projections and based upon a review of nuclear power projects and programmes in Member States. The total energy consumption has been calculated by summing the primary energy consumption and the net secondary energy import

  6. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  7. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  8. 78 FR 17718 - Notice of Availability of the Record of Decision for the McCoy Solar Energy Project, Riverside...

    Science.gov (United States)

    2013-03-22

    ....LVRWB09B2510.FX0000] Notice of Availability of the Record of Decision for the McCoy Solar Energy Project... McCoy Solar Energy Project (MSEP), a photovoltaic solar electricity generation project. The Secretary of... proposed would have consisted of an up to 750-megawatt photovoltaic solar energy generation facility and...

  9. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  10. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  11. Integrated laboratory scale demonstration experiment of the hybrid sulphur cycle and preliminary scale-up

    International Nuclear Information System (INIS)

    Leybros, J.; Rivalier, P.; Saturnin, A.; Charton, S.

    2010-01-01

    The hybrid sulphur cycle is today one of the most promising processes to produce hydrogen on a massive scale within the scope of high temperature nuclear reactors development. Thus, the Fuel Cycle Technology Department at CEA Marcoule is involved in studying the hybrid sulphur process from a technical and economical performance standpoint. Based on mass and energy balance calculations, a ProsimPlus TM flow sheet and a commercial plant design were prepared. This work includes a study on sizing of the main equipment. The capital cost has been estimated using the major characteristics of main equipment based upon formulae and charts published in literature. A specific approach has been developed for electrolysers. Operational costs are also proposed for a plant producing 1000 mol/s H 2 . Bench scale and pilot experiments must focus on the electrochemical step due to limited experimental data. Thus, a pilot plant with a hydrogen capacity of 100 NL/h was built with the aim of acquiring technical and technological data for electrolysis. This pilot plant was designed to cover a wide range of operating conditions: sulphuric acid concentrations up to 60 wt.%, temperatures up to 100 deg. C and pressures up to 10 bar. New materials and structures recently developed for fuel cells, which are expected to yield significant performance improvements when applied to classical electrochemical processes, will be tested. All experiments will be coupled with phenomenological simulation tools developed jointly with the experimental programme. (authors)

  12. Growth kinetics and scale-up of Agrobacterium tumefaciens.

    Science.gov (United States)

    Leth, Ingrid K; McDonald, Karen A

    2017-06-01

    Production of recombinant proteins in plants through Agrobacterium-mediated transient expression is a promising method of producing human therapeutic proteins, vaccines, and commercial enzymes. This process has been shown to be viable at a large scale and involves growing large quantities of wild-type plants and infiltrating the leaf tissue with a suspension of Agrobacterium tumefaciens bearing the genes of interest. This study examined one of the steps in this process that had not yet been optimized: the scale-up of Agrobacterium production to sufficient volumes for large-scale plant infiltration. Production of Agrobacterium strain C58C1 pTFS40 was scaled up from shake flasks (50-100 mL) to benchtop (5 L) scale with three types of media: Lysogeny broth (LB), yeast extract peptone (YEP) media, and a sucrose-based defined media. The maximum specific growth rate (μ max ) of the strain in the three types of media was 0.46 ± 0.04 h -1 in LB media, 0.43 ± 0.03 h -1 in YEP media, and 0.27 ± 0.01 h -1 in defined media. The maximum biomass concentration reached at this scale was 2.0 ± 0.1, 2.8 ± 0.1, and 2.6 ± 0.1 g dry cell weight (DCW)/L for the three media types. Production was successfully scaled up to a 100-L working volume reactor with YEP media, using k L a as the scale-up parameter.

  13. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  14. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    .... Environmental Impacts of Wind-Energy Projects offers an analysis of the environmental benefits and drawbacks of wind energy, along with an evaluation guide to aid decision-making about projects...

  15. The Stokes number approach to support scale-up and technology transfer of a mixing process.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-09-01

    Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for the ability to break up agglomerates in order to achieve the desired blend uniformity. Agglomerate break up is often an abrasion process. In this study, the abrasion rate potential of agglomerates is described by the Stokes abrasion (St(Abr)) number of the system. The St(Abr) number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. In this study, the St(Abr) approach demonstrates to be a useful tool to predict the abrasion of agglomerates during blending when technology is transferred between mixer scales/types. Applying the St(Abr) approach revealed a transition point between parameters that determined agglomerate abrasion. This study gave evidence that (1) below this transition point, agglomerate abrasion is determined by a combination of impeller effects and by the kinetic energy density of the powder blend, whereas (2) above this transition point, agglomerate abrasion is mainly determined by the kinetic energy density of the powder blend.

  16. Social assessment of energy projects. How?

    International Nuclear Information System (INIS)

    Munksgaard, J.; Larsen, A.

    1997-08-01

    This is the final report of the project: Social assessment of Energy Projects. The aim of the project is to improve the basis of working out social assessments of energy projects in practice. The report raises the question: How should social assessments of energy projects be made? A social assessment is using a national perspective, i.e. it accounts the effects of the project for individuals and institutions in Denmark. The assessment is based on economics which means that effects generated by the project are valuated in DKK - as far as possible. The aim of the social assessment is to support a more effective use of the resources in Denmark. A social assessment should include an analysis of the distributional effects. The analysis can be made as an account including a social cash flow analysis. The distribution analysis will illustrate the gains and losses for the different groups of individuals affected carrying out the project. In that way the analysis will show who potentially will support the project and who will be against the project. (EG) EFP-92. 37 refs

  17. Sustainable Energy (SUSEN) project

    International Nuclear Information System (INIS)

    Richter, Jiri

    2012-01-01

    Research Centre Rez and University of West Bohemia started preparatory work on the 'Sustainable Energy' project, financed from EU structural funds. The goals and expected results of the project, its organization, estimated costs, time schedule and current status are described. (orig.)

  18. 75 FR 39926 - Deer Creek Station Energy Facility Project (DOE/EIS-0415)

    Science.gov (United States)

    2010-07-13

    ... when wind energy is not available. Water resources concerns are related to erosion and sedimentation... withdrawal at Project start-up to fill the on-site water storage tank. Monitoring will take place at least...

  19. Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach

    International Nuclear Information System (INIS)

    Strazzera, Elisabetta; Mura, Marina; Contu, Davide

    2012-01-01

    A choice experiment exercise is combined with psychometric scales in order: (1) to identify factors that explain support/opposition toward a wind energy development project; and (2) to assess (monetary) trade-offs between attributes of the project. A Latent Class estimator is fitted to the data, and different utility parameters are estimated, conditional on class allocation. It is found that the probability of class membership depends on specific psychometric variables. Visual impacts on valued sites are an important factor of opposition toward a project, and this effect is magnified when identity values are attached to the specific site, so much that no trade-off would be acceptable for a class of individuals characterized by strong place attachment. Conversely, other classes of individuals are willing to accept compensations, in form of private and/or public benefits. The distribution of benefits in the territory, and preservation of the option value related to the possible development of an archeological site, are important for a class of individuals concerned with the sustainability of the local economy. - Highlights: ► A Choice Experiment approach is used to assess acceptability of a wind farm project. ► Psychometric variables are used to model heterogeneity in a Latent Class model. ► No trade-off would be acceptable for a class of individuals. ► Another class of individuals is interested in private benefits. ► Other classes are interested in public benefits and sustainability of the development.

  20. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  1. Scaling-up antiretroviral therapy in Malawi.

    Science.gov (United States)

    Jahn, Andreas; Harries, Anthony D; Schouten, Erik J; Libamba, Edwin; Ford, Nathan; Maher, Dermot; Chimbwandira, Frank

    2016-10-01

    In Malawi, health-system constraints meant that only a fraction of people infected with human immunodeficiency virus (HIV) and in immediate need of antiretroviral treatment (ART) received treatment. In 2004, the Malawian Ministry of Health launched plans to scale-up ART nationwide, adhering to the principle of equity to ensure fair geographical access to therapy. A public health approach was used with standardized training and treatment and regular supervision and monitoring of the programme. Before the scale-up, an estimated 930 000 people in Malawi were HIV-infected, with 170 000 in immediate need of ART. About 3000 patients were on ART in nine clinics. By December 2015, cumulatively 872 567 patients had been started on ART from 716 clinics, following national treatment protocols and using the standard monitoring system. Strong national leadership allowed the ministry of health to implement a uniform system for scaling-up ART and provided benchmarks for implementation on the ground. New systems of training staff and accrediting health facilities enabled task-sharing and decentralization to peripheral health centres and a standardized approach to starting and monitoring ART. A system of quarterly supervision and monitoring, into which operational research was embedded, ensured stocks of drug supplies at facilities and adherence to national treatment guidelines.

  2. Laboratory investigation of constitutive property up-scaling in volcanic tuffs

    International Nuclear Information System (INIS)

    Tidwell, V.C.

    1996-08-01

    One of the critical issues facing the Yucca Mountain site characterization and performance assessment programs is the manner in which property up-scaling is addressed. Property up-scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another. A research program has been established to challenge current understanding of property up-scaling with the aim of developing and testing improved models that describe up-scaling behavior in a quantitative manner. Up-scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas-permeability data measured over a range of discrete scales. To date, up-scaling studies have been performed on a series of tuff and sandstone (used as experimental controls) blocks. Samples include a welded, anisotropic tuff (Tiva Canyon Member of the Paintbrush Tuff, upper cliff microstratigraphic unit), and a moderately welded tuff (Tiva Canyon Member of the Paintbrush Tuff, Caprock microstratigraphic unit). A massive fluvial sandstone (Berea Sandstone) was also investigated as a means of evaluating the experimental program and to provide a point of comparison for the tuff data. Because unsaturated flow is of prime interest to the Yucca Mountain Program, scoping studies aimed at investigating the up-scaling of hydraulic properties under various saturated conditions were performed to compliment these studies of intrinsic permeability. These studies focused on matrix sorptivity, a constitutive property quantifying the capillarity of a porous medium. 113 refs

  3. Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects: An Update to the 2002 Report

    International Nuclear Information System (INIS)

    Shonder, John A.; Hughes, Patrick; Atkin, Erica

    2006-01-01

    A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipment prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.

  4. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050. 2017 Ed

    International Nuclear Information System (INIS)

    2017-01-01

    Reference Data Series No. 1 (RDS-1) is an annual publication — currently in its thirty-seventh edition — containing estimates of energy, electricity and nuclear power trends up to the year 2050. RDS-1 starts with a summary of the status of nuclear power in IAEA Member States as of the end of 2016 based on statistical data collected by the IAEA’s Power Reactor Information System (PRIS). It then presents estimates of energy and electricity up to 2050 derived from various international studies, including the International Energy Agency’s World Energy Outlook 2016 and the United States Energy Information Administration’s International Energy Outlook 2016. The energy and electricity data for 2016 are estimated, as the latest information available from the United Nations Department of Economic and Social Affairs is for 2014. Population data originate from World Population Prospects (2015 revision), published by the Population Division of the United Nations Department of Economic and Social Affairs. The 2016 values again are estimates. As in previous editions of RDS-1, projections of nuclear power are presented as low and high estimates encompassing the uncertainties inherent in projecting trends. The projections are based on a critical review of (i) the global and regional energy, electricity and nuclear power projections made by other international organizations, (ii) national projections supplied by individual countries for a recent OECD Nuclear Energy Agency study and (iii) the estimates of the expert group participating in the IAEA’s yearly consultancy on nuclear capacity projections. The low and high estimates reflect contrasting, but not extreme, underlying assumptions on the different driving factors that have an impact on nuclear power deployment. These factors, and the ways they might evolve, vary from country to country. The estimates presented provide a plausible range of nuclear capacity growth by region and worldwide. They are not intended to be

  5. Offshore Wind Energy in Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Hvelplund, Frede

    for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource-economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between......Offshore wind energy has developed in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... availability of locations, driven by accelerating requirements of environmental concern, park size and public acceptance, is one important driver. Mounting risk of mega-projects and the infinite demand for renewable energy is another likely cause. The present paper addresses the scale of offshore wind parks...

  6. Analysis of Project Finance | Energy Analysis | NREL

    Science.gov (United States)

    Analysis of Project Finance Analysis of Project Finance NREL analysis helps potential renewable energy developers and investors gain insights into the complex world of project finance. Renewable energy project finance is complex, requiring knowledge of federal tax credits, state-level incentives, renewable

  7. Scale up of a luminescent solar concentrator based photomicroreactor via numbering-up

    NARCIS (Netherlands)

    Zhao, Fang; Cambié, Dario; Janse, Jeroen; Wieland, Eric W.; Kuijpers, Koen P.L.; Hessel, Volker; Debije, Michael G.; Noël, Timothy

    2018-01-01

    The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical

  8. Risk management in a large-scale CO2 geosequestration pilot project, Illinois, USA

    Science.gov (United States)

    Hnottavange-Telleen, K.; Chabora, E.; Finley, R.J.; Greenberg, S.E.; Marsteller, S.

    2011-01-01

    Like most large-scale infrastructure projects, carbon dioxide (CO 2) geological sequestration (GS) projects have multiple success criteria and multiple stakeholders. In this context "risk evaluation" encompasses multiple scales. Yet a risk management program aims to maximize the chance of project success by assessing, monitoring, minimizing all risks in a consistent framework. The 150,000-km2 Illinois Basin underlies much of the state of Illinois, USA, and parts of adjacent Kentucky and Indiana. Its potential for CO2 storage is first-rate among basins in North America, an impression that has been strengthened by early testing of the injection well of the Midwest Geological Sequestration Consortium's (MGSC's) Phase III large scale demonstration project, the Illinois Basin - Decatur Project (IBDP). The IBDP, funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL), represents a key trial of GS technologies and project-management techniques. Though risks are specific to each site and project, IBDP risk management methodologies provide valuable experience for future GS projects. IBDP views risk as the potential for negative impact to any of these five values: health and safety, environment, financial, advancing the viability and public acceptability of a GS industry, and research. Research goals include monitoring one million metric tonnes of injected CO2 in the subsurface. Risk management responds to the ways in which any values are at risk: for example, monitoring is designed to reduce uncertainties in parameter values that are important for research and system control, and is also designed to provide public assurance. Identified risks are the primary basis for risk-reduction measures: risks linked to uncertainty in geologic parameters guide further characterization work and guide simulations applied to performance evaluation. Formally, industry defines risk (more precisely risk criticality) as the product L*S, the Likelihood multiplied

  9. The status of US Teraflops-scale projects

    International Nuclear Information System (INIS)

    Mawhinney, R.D.

    1995-01-01

    The current status of United States projects pursuing Teraflops-scale computing resources for lattice field theory is discussed. Two projects are in existence at this time: the Multidisciplinary Teraflops Project, incorporating the physicists of the QCD Teraflops Collaboration, and a smaller project, centered at Columbia, involving the design and construction of a 0.8Teraflops computer primarily for QCD. ((orig.))

  10. Energy research and development projects in the Nordic countries. Directory 1986. Energiforskningsprojekter i Norden. Katalog 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This is the fourth directory of research, development and demonstration projects in the Nordic countries within the field of energy. The 1986 directory includes projects running in 1986. 2172 projects are described and all of them are financed through special public funds (i.e. external funding). The energy research organisation in each Nordic country is briefly reviewed in the appendixes, and a list of relevant newsletters are given. The directory is published at the request if the Nordic Council of Ministers and a special Energy Reseach Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  11. Up-scaling expectations among Pakistan's HIV bureaucrats: entrepreneurs of the self and job precariousness post-scale-up.

    Science.gov (United States)

    Qureshi, Ayaz

    2014-01-01

    Existing research has documented how the expansion of HIV programming has produced new subjectivities among the recipients of interventions. However, this paper contends that changes in politics, power and subjectivities may also be seen among the HIV bureaucracy in the decade of scale-up. One year's ethnographic fieldwork was conducted among AIDS control officials in Pakistan at a moment of rolling back a World Bank-financed Enhanced Programme. In 2003, the World Bank convinced the Musharraf regime to scale up the HIV response, offering a multimillion dollar soft loan package. I explore how the Enhanced Programme initiated government employees into a new transient work culture and turned the AIDS control programmes into a hybrid bureaucracy. However, the donor money did not last long and individuals' entrepreneurial abilities were tested in a time of crisis engendered by dependence on aid, leaving them precariously exposed to job insecurity, and undermining the continuity of AIDS prevention and treatment in the country. I do not offer a story of global 'best practices' thwarted by local 'lack of capacity', but an ethnographic critique of the transnational HIV apparatus and its neoliberal underpinning. I suggest that this Pakistan-derived analysis is more widely relevant in the post-scale-up decade.

  12. Renewable biomass energy: Understanding regional scale environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.; Downing, M.

    1993-12-31

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass.

  13. Renewable biomass energy: Understanding regional scale environmental impacts

    International Nuclear Information System (INIS)

    Graham, R.L.; Downing, M.

    1993-01-01

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level, the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in two multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass

  14. Small-scale CDM projects in a competitive electricity industry: How good is a simplified baseline methodology?

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Abeygunawardana, A.M.A.K.

    2007-01-01

    Setting baseline emissions is one of the principal tasks involved in awarding credits for greenhouse gas emission (GHG) mitigation projects under the Clean Development Mechanism (CDM). An emission baseline has to be project-specific in order to be accurate. However, project-specific baseline calculations are subject to high transaction costs, which disadvantage small-scale projects. For this reason, the CDM-Executive Board (CDM-EB) has approved simplified baseline methodologies for selected small-scale CDM project categories. While the simplified methods help reduce the transaction cost, they may also result in inaccuracies in the estimation of emission reductions from CDM projects. The purpose of this paper is to present a rigorous economic scheduling method for calculating the GHG emission reduction in a hypothetical competitive electricity industry due to the operation of a renewable energy-based power plant under CDM and compare the GHG emission reduction derived from the rigorous method with that obtained from the use of a simplified (i.e., standardized) method approved by the CDM-EB. A key finding of the paper is that depending upon the level of power demand, prices of electricity and input fuels, the simplified method can lead to either significant overestimation or substantial underestimation of emission reduction due to the operation of renewable energy-based power projects in a competitive electricity industry

  15. Colorado School of Mines low energy nuclear physics project

    International Nuclear Information System (INIS)

    Cecil, F.E.

    1991-01-01

    A major accomplishment of this project in the past year is the completion of a fairly comprehensive paper describing the survey of radiative capture reactions of protons on light nuclei at low energies. In addition we have completed a preliminary set of measurements of (d,p)/(d,α) cross section ratios on the charge symmetric nuclei 6 Li and 10 B as a test of the Oppenheimer-Phillips effect. While the 6 Li data remain inconclusive, the 10 B data show solid evidence for the Oppenheimer-Phillips enhancement of the (d,p) reaction relative to the (d,α) reaction for deuteron bombarding energies below about 100 keV. We have continued our investigation of fusion reaction products from deuterium-metal systems at room temperatures with the startling observation of intense burst of energetic charged particles from deuterium gas loaded thin titaium foils subject to non-equilibrium thermal and electrical conditions. We have completed two projects involving the application of the low energy particle accelerator to material science problems; firstly a study of the transformation of crystalline to amorphous Fe-Zr systems by proton irradiation and secondly the effects of ion bombardment on the critical temperature of YBCO high-temperature superconductors. Finally we have made progress in several instrumentation projects which will be used in some of the up-coming measurements of nuclear cross sections at very low energies

  16. Energy white paper 2007: the British strategy to take up the energy challenge; Energy white paper 2007: la strategie britannique pour relever le defi de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Following the energy policy review published in 2006 by the Department for Trade and Industry (DTI), the Energy White Paper 2007, published on May 23, 2007, gathers all measures preconized in this domain. This document recalls, first, the objectives and priorities of the British government at the international, national, regional and local scales, as already clearly explained in previous DTI publications. This white book announces also some new measures and the launching of new public hearings about other measures in view. All in all, 18 hearings are announced which deal with various topics, from the new nuclear power plants to the reform of renewables obligations, the organization of big energy projects or the dismantling of offshore energy facilities. This document recalls the objective of the government and describes the British international policy in the domain of energy. It presents the measures for the fight against climatic change (energy conservation, development of clean energies, decentralized energy production), for warranting the security of supplies (diversification of offer, improvement of networks, planning of energy projects) and, in particular, the proposals of the government concerning the transportation sector and the fight against energy paucity. It stresses also on the importance of R and D and on the British authority in energy technologies. Finally, it gathers the reactions of the most representative actors of the British energy sector. (J.S.)

  17. Softened Gravity and the Extension of the Standard Model up to Infinite Energy

    CERN Document Server

    Giudice, Gian F.; Salvio, Alberto; Strumia, Alessandro

    2015-02-23

    Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than $10^{11}$ GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfil these properties, we classify 4-dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions $g_1 = 0$, $M_t = 186$ GeV, $M_\\tau = 0$, $M_h = 163$ GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.

  18. Softened gravity and the extension of the standard model up to infinite energy

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Gian F. [CERN, Theory Division,CH-1211 Geneva 23 (Switzerland); Isidori, Gino [Physik-Institut, Universität Zürich,CH-8057, Zürich (Switzerland); INFN, Laboratori Nazionali di Frascati,I-00044 Frascati (Italy); Salvio, Alberto [Departamento de Física Teórica, Universidad Autónoma de Madridand Instituto de Física Teórica IFT-UAM/CSIC, Cantoblanco, Madrid 28049 (Spain); Strumia, Alessandro [INFN - Sezione di Pisa e Dipartimento di Fisica dell’Università di Pisa,I-56127 Pisa (Italy); National Institute of Chemical Physics and Biophysics,Akadeemia tee 23, 12618 Tallinn (Estonia)

    2015-02-23

    Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than 10{sup 11} GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfill these properties, we classify 4-dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions g{sub 1}=0, M{sub t}=186 GeV, M{sub τ}=0, M{sub h}=163 GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.

  19. Accuracy of past projections of US energy consumption

    International Nuclear Information System (INIS)

    O'Neill, B.C.; Desai, Mausami

    2005-01-01

    Energy forecasts play a key role in development of energy and environmental policy. Evaluations of the accuracy of past projections can provide insight into the uncertainty that may be associated with current forecasts. They can also be used to identify sources of inaccuracies, and potentially lead to improvements in projections over time. Here we assess the accuracy of projections of US energy consumption produced by the Energy Information Administration over the period 1982-2000. We find that energy consumption projections have tended to underestimate future consumption. Projections 10-13 years into the future have had an average error of about 4%, and about half that for shorter time horizons. These errors mask much larger, offsetting errors in the projection of GDP and energy intensity (EI). GDP projections have consistently been too high, and EI projection consistently too low, by more than 15% for projections of 10 years or more. Further work on the source of these sizable inaccuracies should be a high priority. Finally, we find no evidence of improvement in projections of consumption, GDP, or EI since 1982

  20. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Quinby, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caulfield, Emmet [Stanford Univ., CA (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Diffendorfer, Jay [U.S. Geological Survey, Boulder, CO (United States); Haines, Seth [U.S. Geological Survey, Boulder, CO (United States)

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  1. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  2. TRUE Block Scale Continuation Project. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Peter; Byegaard, Johan [Geosigma AB (Sweden); Billaux, Daniel [Itasca Consultants SA (France); Cvetkovic, Vladimir [Royal Inst. of Technology, Stockholm (Sweden); Dershowitz, William; Doe, Thomas [Golder Associates Inc. (United States); Hermanson, Jan [Golder Associates AB (Sweden); Poteri, Antti [VTT (Finland); Tullborg, Eva-Lena [Terralogica AB (Sweden); Winberg, Anders [Conterra AB (SE)] (ed.)

    2007-03-15

    The TRUE Block Scale project was carried out during 1996-2002. This project focused on site characterisation and building of hydrostructural and microstructural models, sorbing tracer experiments in single structures and networks of structures over distances ranging between 1 and 100 m and also involved a unified application of various model approaches for modelling the in situ experiments. In 2002, ANDRA, Posiva, JNC and SKB decided to pursue some remaining issues in the so-called TRUE Block Scale Continuation project (TRUE BS2). The specific objectives of BS2 can be summarised as: 'Improve understanding of transport pathways at the block scale, including assessment of effects of geology and geometry, macrostructure and microstructure'. In order to cater to addressing the stated objective a series of hypotheses were formulated which explored the importance of geological information for predicting transport and retention and the possible differences between transport and retention between transport paths dominated by faults and those dominated by non-fault fractures (background fractures). In the process, prospects for carrying out experiments in fracture networks over longer distances (c 20-100 m) were explored. It was identified that experiments with sorbing tracers over these distances were prohibitive because of the time frames involved and the projected low mass recoveries. Instead the experimental locus was shifted to a geological structure previously not investigated by tracer tests in the TRUE Block Scale experiments. The lower immobile zone retention material properties assigned to background fractures compared to those assigned to the fault-type Structure 19 have been verified by means of back-calculations. The evaluated Type 1 flow path (Structure 19, Flow path I) retention material properties, as expressed by {kappa} parameter, are one order of magnitude higher than for the background fracture flow path. This finding is consistent with the

  3. Future energy research in the EU under EIT conditions-pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Puehringer-Oppermann, Franziska; Bele, Petra; Bussar, Rainer; Stimming, Ulrich [TUM, Dept. of Physics, E19, James-Franck Str. 1, D-85748 Garching (Germany)

    2009-07-01

    The European Institute of Innovation and Technology (EIT) has been established in April 2008. It is an independent organisation with the administrative head in Budapest, a governing board, an executive committee and a chairman. The EIT budget until 2012 is 308 MEUR. EIT will operate through the formation of Knowledge and Innovation Communities (KICs). The first three KICs are foreseen in the areas sustainable energy, ICT and climate mitigation. The European Commission has sponsored four pilot projects (conducted 2008-2009) to help develop a suitable governance structure for cooperations on European scale such as the future KICs. They are Bridge, ComplexEIT, SUCCESS and Gast, dealing with different topics like nanomedicine (Bridge), integration of hardware and software (ComplexEIT), sustainable energy (SUCCESS) and green and safe road transportation (Gast). The strategic objective of these pilot projects is to design, implement and test new models of cooperation in the knowledge triangle. We are involved in SUCCESS and after benchmarking of 66 collaborations in the field sustainable energy, the state of the art of selected representative topics was asessed and shortcomings in governance evaluated by SWOT analysis. In parallel further existing collaborations were used to extract and establish a management structure for such collaborations on the European scale.

  4. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  5. Scaling up a Mobile Telemedicine Solution in Botswana: Keys to Sustainability.

    Science.gov (United States)

    Ndlovu, Kagiso; Littman-Quinn, Ryan; Park, Elizabeth; Dikai, Zambo; Kovarik, Carrie L

    2014-01-01

    Effective health care delivery is significantly compromised in an environment where resources, both human and technical, are limited. Botswana's health care system is one of the many in the African continent with few specialized medical doctors, thereby posing a barrier to patients' access to health care services. In addition, the traditional landline and non-robust Information Technology (IT) network infrastructure characterized by slow bandwidth still dominates the health care system in Botswana. Upgrading of the landline IT infrastructure to meet today's health care demands is a tedious, long, and expensive process. Despite these challenges, there still lies hope in health care delivery utilizing wireless telecommunication services. Botswana has recently experienced tremendous growth in the mobile telecommunication industry coupled with an increase in the number of individually owned mobile devices. This growth inspired the Botswana-UPenn Partnership (BUP) to collaborate with local partners to explore using mobile devices as tools to improve access to specialized health care delivery. Pilot studies were conducted across four medical specialties, including radiology, oral medicine, dermatology, and cervical cancer screening. Findings from the studies became vital evidence in support of the first scale-up project of a mobile telemedicine solution in Botswana, also known as "Kgonafalo." Some technical and social challenges were encountered during the initial studies, such as malfunctioning of mobile devices, accidental damage of devices, and cultural misalignment between IT and healthcare providers. These challenges brought about lessons learnt, including a strong need for unwavering senior management support, establishment of solid local public-private partnerships, and efficient project sustainability plans. Sustainability milestones included the development and signing of a Memorandum of Understanding (MOU) between the Botswana government and a private

  6. Reliable implementation of intelligent load control and decentralized power generation in the E-Energy project E-DeMa; Zuverlaessige Integration intelligenter Laststeuerung und dezentraler Energieerzeugung im E-Energy Projekt E-DeMa

    Energy Technology Data Exchange (ETDEWEB)

    Langhammer, N.; Kays, R. [Technische Univ. Dortmund (Germany). Lehrstuhl fuer Kommunikationstechnik; Mueller, C.; Wietfeld, C. [Technische Univ. Dortmund (Germany). Lehrstuhl fuer Kommunikationsnetze; Kreutz, S.; Belitz, H.J.; Koenig, D.; Rehtanz, C. [Technische Univ. Dortmund (Germany). Inst. fuer Energiesysteme, Energieeffizienz und Energiewirtschaft

    2012-07-01

    The authors of the contribution under consideration report on the integration of intelligent load control and distributed power producers into future smart grid energy systems. The authors present the approaches and innovations that have been developed in the framework of the E-Energy project E-DeMa. The focus of this paper is on the implementation of a communication infrastructure that has been built up in E-DeMa in a large-scale field test in two pilot regions and is currently being tested. Furthermore, the economic potential of the so-called aggregator is presented that summarizes a variety of loads in the retail sector in and intelligently controls remotely.

  7. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Macro-economics biobased synthesis report

    International Nuclear Information System (INIS)

    Hoefnagels, R.; Dornburg, V.; Faaij, A.; Banse, M.

    2009-03-01

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in this report

  8. Energy conservation in reheating furnaces by reducing scrap and scale formation; Kuumamuokkauksen energiasaeaestoet romun maeaeraeae ja hilseilyae vaehentaemaellae

    Energy Technology Data Exchange (ETDEWEB)

    Kivivuori, S.; Savolainen, P.; Fredriksson, J.; Paavola, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1996-12-31

    The main objective of the project `Energy Savings in Reheating Furnaces by Reducing Scrap and Scale Formation` is to reduce energy consumption and environmental harms in reheating and rolling of steel. This was done by analysing the different atmospheres in reheating furnaces of the steel companies participating in this project. These atmospheres were then simulated in a laboratory furnace. Scale formation tests with different steel grades were then carried out in these atmospheres. Scale removal tests were done to some steel grades too. The results showed that lower oxygen content - as expected - decreases oxidation despite the even higher carbondioxide content in the atmosphere. Lower oxygen content may cause difficulties in scale removal. This however is highly dependent on the steel grade. Heat treatment tests showed the effect of increased temperature and furnace time on decarburization. Some energy savings was obtained in fuel consumption by optimising the operation parameters and the atmosphere steadier in different reheating furnaces. (orig.)

  9. Energy conservation in reheating furnaces by reducing scrap and scale formation; Kuumamuokkauksen energiasaeaestoet romun maeaeraeae ja hilseilyae vaehentaemaellae

    Energy Technology Data Exchange (ETDEWEB)

    Kivivuori, S; Savolainen, P; Fredriksson, J; Paavola, J [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    The main objective of the project `Energy Savings in Reheating Furnaces by Reducing Scrap and Scale Formation` is to reduce energy consumption and environmental harms in reheating and rolling of steel. This was done by analysing the different atmospheres in reheating furnaces of the steel companies participating in this project. These atmospheres were then simulated in a laboratory furnace. Scale formation tests with different steel grades were then carried out in these atmospheres. Scale removal tests were done to some steel grades too. The results showed that lower oxygen content - as expected - decreases oxidation despite the even higher carbondioxide content in the atmosphere. Lower oxygen content may cause difficulties in scale removal. This however is highly dependent on the steel grade. Heat treatment tests showed the effect of increased temperature and furnace time on decarburization. Some energy savings was obtained in fuel consumption by optimising the operation parameters and the atmosphere steadier in different reheating furnaces. (orig.)

  10. Managing Risk and Uncertainty in Large-Scale University Research Projects

    Science.gov (United States)

    Moore, Sharlissa; Shangraw, R. F., Jr.

    2011-01-01

    Both publicly and privately funded research projects managed by universities are growing in size and scope. Complex, large-scale projects (over $50 million) pose new management challenges and risks for universities. This paper explores the relationship between project success and a variety of factors in large-scale university projects. First, we…

  11. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  12. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  13. Concerns in Marine Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Sharon; Previsic, Mirko; Nelson, Peter; Woo, Sheri

    2010-06-17

    To accelerate the adoption of these emerging marine hydrokinetic technologies, navigational and environmental issues and concerns must be identified and addressed. As hydrokinetic projects move forward, various stakeholders will need to be engaged; one of the key issues that project proponents face as they engage stakeholders is that many conflicting uses and environmental issues are not well-understood. Much of this lack of understanding comes from a limited understanding of the technologies themselves. To address this issue, in September 2008, RE Vision consulting, LLC, was selected by the Department of Energy, under their market acceleration program, to apply a scenario-based assessment approach to the emerging hydrokinetic technology sector. The goal was to improve understanding of potential environmental and navigation impacts of these technologies and focus stakeholders on the critical issues. To meet this goal, the study established baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios captured variations in technical approaches and deployment scales and thus grounded the analysis in realistic constraints. The work conducted under this award provides an important foundation to other market acceleration activities carried out by the DOE and other stakeholders in this sector. The scenarios were then evaluated using a framework developed by H.T. Harvey & Associates to identify and characterize key environmental concerns and uncertainties. In collaboration with PCCI and the U.S. Coast Guard, navigation issues were assessed and guidelines developed to assure the safe operation of these systems. Finally, the work highlights “next steps” to take to continue development and adoption of marine hydrokinetic energy. Throughout the project, close collaboration with device developers, project developers and regulatory stakeholders was pursued to ensure that assumptions and constraints are realistic. Results concur

  14. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Song, K. C.; Kim, Y. I.; Kim, Y. G.

    2011-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  15. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050. 2012 Ed

    International Nuclear Information System (INIS)

    2012-01-01

    Reference Data Series No. 1 (RDS-1) is an annual publication - currently in its thirty-second edition - containing estimates of energy, electricity and nuclear power trends up to the year 2050. RDS-1 starts with a summary of the situation of nuclear power in IAEA Member States as of the end of 2011. The data on nuclear power presented in Tables 1 and 2 are based on actual statistical data collected by the IAEA's power Reactor Information System (pRIS). however, energy and electricity data for 2011 are estimated, as the latest information available from the united Nations Department of Economic and Social Affairs is for 2009 only. population data originate from the world population prospects (2010 revision), published by the population Division of the united Nations Department of Economic and Social Affairs. The 2011 values again are estimates. As in previous editions, projections of future energy and electricity demand and the role of nuclear power are presented as low and high estimates encompassing the inherent uncertainties involved in projecting trends. The RDS-1 estimates should be viewed as very general growth trends whose validity must be constantly subjected to critical review. Many international, national and private organizations routinely engage in energy demand and supply projections, including nuclear power. These projections are based on a multitude of different assumptions and aggregating procedures, which make a straightforward comparison and synthesis very difficult. The basic differences refer to such fundamental input assumptions as: - Economic growth; - Correlation of economic growth and energy use; -Technology performance and costs; - Energy resource availability and future fuel prices; - Energy policy and physical, environmental and economic constraints. The projections presented in this publication are based on a compromise between: - National projections supplied by each country for a recent OECD/NEA study; - Indicators of development

  16. Washoe Tribe Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and Ca

    2014-11-06

    The Washoe Tribe of Nevada and California was awarded funding from the Department of Energy to complete the Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project. The main goal of the project was to enhance the capacity of the Nevada Inter-Tribal Energy Consortium (NITEC) to effectively assist tribes within Nevada to technically manage tribal energy resources and implement tribal energy projects.

  17. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  18. Financing green energy projects in Malaysia

    International Nuclear Information System (INIS)

    Eddynor Manshor; Yvonne Lunsong; Norhayati Kamaruddin

    2000-01-01

    Kyoto Protocol is the first global commitment to reduce greenhouse gas (GHG) emissions. Malaysia, which signed the Protocol on 12 March 1999, must also take steps to address the climate change concerns. The use of renewable energy sources is seen as a feasible way to address the issue. Despite their environment-friendliness, these sources of energy are grossly under-utilised even though Malaysia is amply endowed with renewable energies, particularly biomass and solar. As a unique domestic resource, recurring energy savings from energy efficiency could also qualify as renewable energy. At present, the contribution of renewable energy in the country's energy mix is very small compared to its large potential. The Malaysian Government recognizes the potential of this form of energy. As part of its fuel diversification policy, the government plans to expand the four-fuel strategy to include renewable energy as the fifth fuel. Due to all year constant sunshine and vast oil palm cultivation, both solar and palm oil residues are identified as the most promising green energy option. Efforts are underway to embark on programs to demonstrate and evaluate the viability of these emerging green technologies. A few organizations are given grants to undertake pre-feasibility studies of pre-commercialization demonstration projects. When approved, viable projects could also qualify for technical and financial assistance from foreign partners. However, grants are limited and under World Trade Organization rules such subsidies should not exceed 30 percent in most cases. Commercialization of green energy projects must therefore involve full participation of private developers and financial institutions. Yet, virtually no attempt is made to promote financing of such projects in Malaysia. In most cases, financial institutions are not aware of the economic potential of these unique and under exploited sources. This paper will discuss problems in financing green energy projects and then

  19. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  20. Pilot project wind power - Large scale wind power in northern Sweden; Pilotprojekt vindkraft - Storskalig vindkraft i norra Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Swedish Energy Agency granted 2009-04-20 Svevind AB financial aid to implement {sup P}ilot project wind power- Large scale wind power in northern Sweden{sup .} The purpose of the aid is to implement pilot sub-projects in wind power, to to increase knowledge for the larger establishments. The Energy Agency said in its decision that the projects Dragaliden and Gabriel Mountain is of 'great importance for future large-scale development of wind power in Sweden'. The special conditions prevailing in the project, forest environment and cold climate, gives the possibility of studies of wind turbines on birds, reindeer herding and hunting and the more technical aspects, such as de-icing and obstacle lighting. The objectives of the project, in addition to the construction and operation of 32 wind turbines, has been to include evaluating the permit process, studying the social effects around the wind power, to study the impact on small game hunting, perform tests of the de-icing system, investigate impacts on reindeer herding and explain the outcome of the project-generated rural funds. Some of the above sub-projects have been completed, which are reported in this report. For the sub-projects still in progress, the report presents the results to date, until the completion.

  1. Challenges of Implementing Renewable Energy Policies at Community Scale: The Case of Strategic Energy Plans in Denmark

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2017-01-01

    The implementation of national energy efficiency targets requires policies at the local scale. It is widely acknowledged that local communities play an important tole to implement these policies: as arena where renewable energy technologies can be combined with socio-economic interests of local...... stakeholders. Although a vast amount of demo projects are well-documented, insufficient attention has been given to the average performing municipalities and their challenges in linking technical energy scenarios with their socio-economic realities in practice. This paper analyses the Strategic Energy Plans...... (SEP) of 17 Danish municipalities on their development, inclusion of local communities, affected stakeholders, and on their impact on the municipalities’ working procedures. The main technical, physical, organisational and socio-economic challenges for local energy policy implementation are illustrated...

  2. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050. 2016 Ed

    International Nuclear Information System (INIS)

    2016-01-01

    Reference Data Series No. 1 (RDS-1) is an annual publication — currently in its thirty-sixth edition — containing estimates of energy, electricity and nuclear power trends up to the year 2050. RDS-1 starts with a summary of the situation of nuclear power in IAEA Member States as of the end of 2015. The data on nuclear power presented in Tables 1 and 2 are based on actual statistical data collected by the IAEA’s Power Reactor Information System (PRIS). However, energy and electricity data for 2015 are estimated, as the latest information available from the United Nations Department of Economic and Social Affairs is for 2013. Population data originate from the World Population Prospects (2012 revision), published by the Population Division of the United Nations Department of Economic and Social Affairs. The 2015 values again are estimates. As in previous editions, projections of future energy and electricity demand and the role of nuclear power are presented as low and high estimates encompassing the inherent uncertainties involved in projecting trends. The RDS-1 estimates should be viewed as very general growth trends whose validity must be constantly subjected to critical review. Many international, national and private organizations routinely engage in energy demand and supply projections, including projections for nuclear power. These projections are based on a multitude of different assumptions and aggregating procedures, making a straightforward comparison and synthesis very difficult. The basic differences relate to such fundamental input assumptions as: • Economic growth; • Correlation of economic growth and energy use; • Technology performance and costs; • Energy resource availability and future fuel prices; •• Energy policy and physical, environmental and economic constraints

  3. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Fix, N. J.

    2008-01-01

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project

  4. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  5. Smarter finance for cleaner energy: open up master limited partnerships (MLPs) and real estate investment trusts (REITs) to renewable energy investment

    Energy Technology Data Exchange (ETDEWEB)

    Mormann, Feliz; Reicher, Dan

    2012-11-15

    Master Limited Partnerships (MLPs) and Real Estate Investment Trusts (REITs)—both well-established investment structures—should be opened up to renewable energy investment. MLPs and, more recently, REITs have a proven track record for promoting oil, gas, and other traditional energy sources. When extended to renewable energy projects these tools will help promote growth, move renewables closer to subsidy independence, and vastly broaden the base of investors in America’s energy economy. The extension of MLPs and REITs to renewables enjoys significant support from the investment and clean energy communities. In addition, MLPs for renewables also enjoy bipartisan political backing in Congress.

  6. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-02-01

    Full Text Available Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs.

  7. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050. 2011 Edition

    International Nuclear Information System (INIS)

    2011-01-01

    Reference Data Series No. 1 (RDS-1) is an annual publication - currently in its thirty first edition - containing estimates of energy, electricity and nuclear power trends up to the year 2050. RDS-1 starts with a summary of the situation of nuclear power in IAEA Member States as of the end of 2010. The data on nuclear power presented in Tables 1 and 2 are based on actual statistical data collected by the IAEA's power Reactor Information System (pRIS). However, energy and electricity data for 2010 are estimated, as the latest information available from the united Nations Department of Economic and Social Affairs is for 2008 only. population data originate from the world population prospects (2010 revision), published by the population Division of the united Nations Department of Economic and Social Affairs. The 2010 values again are estimates. As in previous editions, projections of future energy and electricity demand and the role of nuclear power are presented as low and high estimates encompassing the inherent uncertainties involved in projecting trends. The RDS-1 estimates should be viewed as very general growth trends whose validity must be constantly subjected to critical review. Beginning with the 30th edition of this publication, however, the end-point of the estimates was extended up to the year 2050 (instead of 2030). Looking beyond 2030 has been prompted by the interest expressed by numerous Member States currently without nuclear power in adding nuclear energy to their future national energy supply mixes. Given the extensive lead times in planning and implementing nuclear power programmes, a fair share of these are likely to result in actual plant commissioning and grid connection after 2030. Many international, national and private organizations routinely engage in energy demand and supply projections, including nuclear power. These projections are based on a multitude of different assumptions and aggregating procedures, which make a straightforward

  8. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ

  9. Energy Efficient Community Development in California: Chula Vista Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing

  10. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and

  11. Biofuels in Africa: growing small-scale opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Sulle, Emmanuel [Tanzania Natural Resources Forum (Tanzania, United Republic of); Fauveaud, Swan [Renewable Energy Group, Environment and Solidarity (France); Vermeulen, Sonja

    2009-11-15

    Global demand for climate-friendly transport fuels is driving vast commercial biofuels projects in developing countries. At the opposite end of the spectrum is small-scale bioenergy production. This offers a way for the poor to meet their energy needs and diversify their livelihoods without compromising food security or environmental integrity. Governments hope that it will be possible to combine the advantages of both large- and small-scale production of biofuels to generate energy security and GDP at the national level, while opening up local opportunities. In Africa, most governments are keen to attract foreign direct investment, and see big business as a strategic means of scaling up rural development. But there is a middle way. By encouraging business models that bridge large and small enterprise, African governments could show that commercial competition can go hand in hand with a range of real local benefits.

  12. HyLights: Preparation of the Large-Scale Demonstration Projects on Hydrogen for Transport in Europe

    International Nuclear Information System (INIS)

    Ulrich Bunger; Volker Blandow; Volker Jaensch; Harm Jeeninga; Cristina Morte Gomez

    2006-01-01

    The strategically important project HyLights has been launched by the European Commission in preparation of the large scale demonstration projects in transition to hydrogen as a fuel and long-term renewable energy carrier. HyLights, monitors concluded/ongoing demonstration projects and assists the planning of the next demonstration project phase, putting a clear focus on hydrogen in transport. HyLights is a coordination action that comprises 5 tasks to: 1) develop an assessment framework for concluded/ongoing demonstration projects, 2) analyse individual projects and establish a project database, 3) carry out a gaps analysis and prepare a requirement profile for the next stage projects, 4) assess and identify necessary financial and legal steps in preparation of the new projects, and 5) develop a European Initiative for the Growth of Hydrogen for Transport (EIGHT). (authors)

  13. Quarterly status of Department of Energy projects

    International Nuclear Information System (INIS)

    1982-01-01

    This Quarterly Status of Department of Energy Projects is prepared by the Office of project and Facilities Management, MA-30. The report is designed to provide Department of Energy (DOE) management officials with a summary of the important baseline data that exists in the DOE project data base. This data base is maintained chiefly from periodic field management reports required by DOE Order 5700.4. Since most of the current estimates in this report are from field project managers, they do not necessarily have full Headquarters approval. The current budget data sheet estimates that appear in the report are considered appropriate for reporting external to the Department and reflect the President's FY 1983 Budget to Congress. Moneys allocated and estimated costs, and the construction status are tabulated for projects under the subject categories of: conservation and renewable energy; defense programs; environmental protection, safety and emergency preparedness; energy research; defense programs; nuclear energy; and management and administration

  14. Scaling the quality of clinical audit projects: a pilot study.

    Science.gov (United States)

    Millard, A D

    1999-06-01

    To pilot the development of a scale measuring the quality of audit projects through audit project reports. Statements about clinical audit projects were selected from existing instruments, assessing the quality of clinical audit projects, to form a Likert scale. The audit facilitators were based in Scottish health boards and trusts. The participants were audit facilitators known to have over 2 years experience of supporting clinical audit. The response at first test was 11 out of 14 and at the second test it was 27 out of 46. The draft scale was tested by 27 audit facilitators who expressed their strength of agreement or disagreement with each statement for three reports. Validity was assessed by test-re-test, item-total, and total-global indicator correlations. Of the 20 statements, 15 had satisfactory correlations with scale totals. Scale totals had good correlations with global indicators. Test-re-test correlation was modest. The wide range of responses means further research is needed to measure the consistency of audit facilitators' interpretations, perhaps comparing a trained group with an untrained group. There may be a need for a separate scale for reaudits. Educational impact is distinct from project impact generally. It may be more meaningful to treat the selection of projects and aims, methodology and impact separately as subscales and take a project profiling approach rather than attempting to produce a global quality index.

  15. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    Science.gov (United States)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  16. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  17. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  18. World energy projections to 2030

    International Nuclear Information System (INIS)

    Criqui, P.; Kouvaritakis, N.

    2000-01-01

    This paper provides a description of the international energy projections elaborated with the POLES energy model for the purpose of analysing, in other papers of this issue, the impacts of technological change at world level and to 2030. Section 2 describes the key exogenous hypotheses on population and economic growth used for this projection, as well as the main resulting changes for the world energy system and in terms of CO 2 emissions. In Section 3 the dynamics of the energy systems are further analysed for four main world regions, while Section 4 is dedicated to the identification of the key uncertainties and of their possible impacts on future energy development. Finally, the last section presents the key messages of this outlook, which shows a rapidly growing world economy and energy consumption with increasing oil and gas prices, although this last feature remains subject to uncertainties on resource endowment estimates. (orig.)

  19. Systems of Systems: Scaling Up the Development Process

    National Research Council Canada - National Science Library

    Humphrey, Watts

    2006-01-01

    ... of massive systems into system-of-systems structures Section 3 points out how large-scale systems development efforts have typically failed because of project-management and not technical problems...

  20. A manganese-hydrogen battery with potential for grid-scale energy storage

    Science.gov (United States)

    Chen, Wei; Li, Guodong; Pei, Allen; Li, Yuzhang; Liao, Lei; Wang, Hongxia; Wan, Jiayu; Liang, Zheng; Chen, Guangxu; Zhang, Hao; Wang, Jiangyan; Cui, Yi

    2018-05-01

    Batteries including lithium-ion, lead-acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese-hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of 1.3 V, a rate capability of 100 mA cm-2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of 139 Wh kg-1 (volumetric energy density of 210 Wh l-1), with the theoretical gravimetric energy density of 174 Wh kg-1 (volumetric energy density of 263 Wh l-1) in a 4 M MnSO4 electrolyte. The manganese-hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.

  1. Project finance and international energy development

    International Nuclear Information System (INIS)

    Pollio, G.

    1998-01-01

    This paper explores the preference for and the features unique to project finance, one of the favoured vehicles for funding energy development. Our main focus is on the interests of project sponsors, commercial banks and host governments. Inclusion of the latter reflects the fact host governments are often leading participants in primary energy and energy-related projects; more recently, they have come to use limited recourse structures to finance local infrastructure development. Traditional analyses, whilst providing useful insights into the interests of leading project participants, are incapable of isolation a single motive or set of motives that can comprehensively account for all of the features common to this form of debt. Within an options-theoretic framework, most of these ambiguities are resolved. Risk management, long recognised as one of the primary reasons for choosing project finance over rival debt structures, is affirmed as a key explanatory factor. One the other hand, options pricing theory provides a radically different perspective on how to project finance contributes to the realisation of these objectives. (author)

  2. Scale and the acceptability of nuclear energy

    International Nuclear Information System (INIS)

    Wilbanks, T.J.

    1984-01-01

    A rather speculative exploration is presented of scale as it may affect the acceptability of nuclear energy. In our utilization of this energy option, how does large vs. small relate to attitudes toward it, and what can we learn from this about technology choices in the United States more generally. In order to address such a question, several stepping-stones are needed. First, scale is defined for the purposes of the paper. Second, recent experience with nuclear energy is reviewed: trends in the scale of use, the current status of nuclear energy as an option, and the social context for its acceptance problems. Third, conventional notions about the importance of scale in electricity generation are summarized. With these preliminaries out of the way, the paper then discusses apparent relationships between scale and the acceptance of nuclear energy and suggests some policy implications of these preliminary findings. Finally, some comments are offered about general relationships between scale and technology choice

  3. Energy, electricity and nuclear power estimates for the period up to 2020. July 2002 ed

    International Nuclear Information System (INIS)

    2002-01-01

    Reference Data Series No. 1 is an annual publication - currently in its twenty-second edition - containing estimates of energy, electricity and nuclear power trends up to the year 2020. Nuclear data presented in Table 1 are based on actual statistical data collected by the IAEA's Power Reactor Information System (PRIS). Energy and electricity data for 2001, however, are estimated, since the latest available information from the Department of Economic and Social Affairs of the United Nations is for 1999. Population data originate from the 'World Population Prospects' (2001 Revision), published by the Population Division of the UN Department of Economic and Social Affairs, and the 2001 values are estimates. The future growth of energy, electricity and nuclear power up to the year 2020 is presented as low and high estimates in order to encompass the uncertainties associated with the future. These estimates should be viewed as very general growth trends whose validity must constantly be subjected to critical review. The nuclear generating capacity estimates presented in Table 3 are derived from a country by country bottom-up approach. They are established by a group of experts participating each year in the IAEA's consultancy on Nuclear Capacity Projections and based upon a review of nuclear power projects and programmes in Member States. The total energy consumption has been calculated by summing the primary energy consumption and the net secondary energy import. The values shown in Table 9 refer to primary energy consumed for the generation of electricity. Owing to differences in conversion efficiencies, the percentage values are different from the shares of electricity generation presented in Tables 1 and 5

  4. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050. 2013 Ed

    International Nuclear Information System (INIS)

    2013-01-01

    Reference Data Series No. 1 (RDS-1) is an annual publication - currently in its thirty-third edition - containing estimates of energy, electricity and nuclear power trends up to the year 2050. RDS-1 starts with a summary of the situation of nuclear power in IAEA Member States as of the end of 2012. The data on nuclear power presented are based on actual statistical data collected by the IAEA's power Reactor Information System (PRIS). However, energy and electricity data for 2012 are estimated, as the latest information available from the united Nations Department of Economic and Social Affairs is for 2010 only. Population data originate from the world population prospects (2010 revision), published by the population Division of the united Nations Department of Economic and Social Affairs. The 2012 values again are estimates. As in previous editions, projections of future energy and electricity demand and the role of nuclear power are presented as low and high estimates encompassing the inherent uncertainties involved in projecting trends. The RDS-1 estimates should be viewed as very general growth trends whose validity must be constantly subjected to critical review. Many international, national and private organizations routinely engage in energy demand and supply projections, including nuclear power. These projections are based on a multitude of different assumptions and aggregating procedures, which make a straightforward comparison and synthesis very difficult. The basic differences refer to such fundamental input assumptions as: - Economic growth; - Correlation of economic growth and energy use; - Technology performance and costs; - Energy resource availability and future fuel prices; - Energy policy and physical, environmental and economic constraints

  5. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  6. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  7. Final Report. Forest County Potawatomi Community, Community-Scale Solar Project

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Sara M. [Forest County Potawatomi Community, Crandon, WI (United States)

    2016-03-31

    The Forest County Potawatomi Community (“FCPC” or “Tribe”) is a federally recognized Indian tribe with a membership of over 1400. The Tribe has a reservation in Forest County, Wisconsin, and also holds tribal trust and fee lands in Milwaukee, Oconto, and Fond du Lac Counties, Wisconsin. The Tribe has developed the long-term goal of becoming energy independent using renewable resources. In order to meet this goal, the Tribe has taken a number of important steps including energy audits leading to efficiency measures, installation of solar PV, the construction of a biodigester and the purchase of Renewable Energy Certificates to offset its current energy use. To further its energy independence goals, FCPC submitted an application to the Department of Energy (“DOE”) and was awarded a Community-Scale Clean Energy Projects in Indian Country grant, under funding opportunity DE-FOA-0000852. The Tribe, in collaboration with Pewaukee, Wisconsin based SunVest Solar Inc. (SunVest), installed approximately 922.95 kW of solar PV systems at fifteen tribal facilities in Milwaukee and Forest Counties. The individual installations ranged from 9.0 kW to 447.64 kW and will displace between 16.9% to in some cases in excess of 90% of each building’s energy needs.

  8. Sustainable energy for cashew production chain using innovative clean technology project developments

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Nandenha, Julio; Santiago, Brunno Henrique de Souza; Silva, Rosalia Tatiane da [Universidade Federal do Rio Grande do Norte (GPEC/DEQ/UFRN), Lagoa Nova, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: pannirbr@gmail.com

    2006-07-01

    The main objective is to develop a new process synthesis based on the residual biomass waste for the energy production applied to the fruit processing plant with co-production of hot, cold thermal energy using biogas from the wood biomass and animal wastes. After carried out the bibliographical research about the current state of art technology, an engineering project had been developed with the use of the software Super Pro Designer V 4.9. Some simulations of processes of the fast pyrolysis, gasification, bio digestion, generation of energy have been realized including the system integration of energy production as innovation of the present work. Three cases study have been developed: first, the current process of conventional energy using combustion, another one using combined pyrolysis and gasification, and the last one with bio digestion for combined power, heat and chilling. The results about the project investment and the cost analysis, economic viability and cash balance were obtained using software Orc 2004. Several techno-economic parameters of the selected cases study involving process innovation were obtained and compared, where a better energy and materials utilization were observed in relation to conventional process. This project which is still in development phase, involves small scale energy integrated system design. The energy and the process integration cashew fruit production chain, based on the clean technology process design, has enable significant improvement in terms of economic and environmental using optimal system configurations with viability and sustainability. (author)

  9. Education in Sustainable Energy by European Projects

    Science.gov (United States)

    Stanescu, Corina; Stefureac, Crina

    2010-05-01

    Our schools have been involved in several European projects having with the primary objective of educating the young generation to find ways for saving energy and for using the renewable energy. Small changes in our behaviour can lead to significant energy savings and a major reduction in emissions. In our presentation we will refer to three of them: - The Comenius 1 project "Energy in the Consumers' Hands" tried to improve the quality of education for democratic citizenship in all participant schools by creating a model of curricula concerning the integrative teaching of democratic citizenship using the topic approaches based on key concept - energy as important element of the community welfare. The students studied on the following topics: • Sources of energy • The clean use of fossil based resources; • The rational use of energyEnergy and the environment - The project "Solar Schools Forum" (SSF) focuses on environmental education in schools, in particular addressing the topics of Renewable Energy (RE) and Energy Efficiency (EE). The youth need to become more aware of energy-related problems, and how they can change their own lifestyles to limit environmental damage caused by the daily use of energy. As the decision-makers of tomorrow we need to empower them to make the right choices. The SSF is aimed at improving knowledge about RE and EE among children and young people, using a fun approach and aimed at generating greater enthusiasm for clean energy. The youth will also be encouraged to help raise awareness and so act as multipliers in their own communities, starting with their families and friends. As a result of this project we involved in developing and implementing an optional course for high school students within the Solar Schools Forum project. The optional course entitled "Sustainable energy and the environment" had a great deal of success, proof of this success being the fact that it is still taught even today, three years after its

  10. Characteristics of the Operational Noise from Full Scale Wave Energy Converters in the Lysekil Project: Estimation of Potential Environmental Impacts

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-05-01

    Full Text Available Wave energy conversion is a clean electric power production technology. During operation there are no emissions in the form of harmful gases. However there are unsolved issues considering environmental impacts such as: electromagnetism; the artificial reef effect and underwater noise. Anthropogenic noise is increasing in the oceans worldwide and wave power will contribute to this sound pollution in the oceans; but to what extent? The main purpose of this study was to examine the noise emitted by a full scale operating Wave Energy Converter (WEC in the Lysekil project at Uppsala University in Sweden. A minor review of the hearing capabilities of fish and marine mammals is presented to aid in the conclusions of impact from anthropogenic sound. A hydrophone was deployed to the seabed in the Lysekil research site park at distance of 20 and 40 m away from two operational WECs. The measurements were performed in the spring of 2011. The results showed that the main noise was a transient noise with most of its energy in frequencies below 1 kHz. These results indicate that several marine organisms (fish and mammals will be able to hear the operating WECs of a distance of at least 20 m.

  11. Creation of Nuclear Data Base up to 150 MeV and corresponding scaling approach for ADS

    International Nuclear Information System (INIS)

    Shubin, Y. N.; Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.

    1997-01-01

    The status of nuclear data in the energy region up to 150 MeV is outlined. The specific physical reasons for the detailed investigations of nuclear structure effects is noted out. The necessity of the development of Nuclear Data System for ADS is stressed. The program for the creation of nuclear data base up to 150 MeV and corresponding scaling approach for ADS is proposed. (Author) 14 refs

  12. Scaling up complex interventions: insights from a realist synthesis.

    Science.gov (United States)

    Willis, Cameron D; Riley, Barbara L; Stockton, Lisa; Abramowicz, Aneta; Zummach, Dana; Wong, Geoff; Robinson, Kerry L; Best, Allan

    2016-12-19

    Preventing chronic diseases, such as cancer, cardiovascular disease and diabetes, requires complex interventions, involving multi-component and multi-level efforts that are tailored to the contexts in which they are delivered. Despite an increasing number of complex interventions in public health, many fail to be 'scaled up'. This study aimed to increase understanding of how and under what conditions complex public health interventions may be scaled up to benefit more people and populations.A realist synthesis was conducted and discussed at an in-person workshop involving practitioners responsible for scaling up activities. Realist approaches view causality through the linkages between changes in contexts (C) that activate mechanisms (M), leading to specific outcomes (O) (CMO configurations). To focus this review, three cases of complex interventions that had been successfully scaled up were included: Vibrant Communities, Youth Build USA and Pathways to Education. A search strategy of published and grey literature related to each case was developed, involving searches of relevant databases and nominations from experts. Data extracted from included documents were classified according to CMO configurations within strategic themes. Findings were compared and contrasted with guidance from diffusion theory, and interpreted with knowledge users to identify practical implications and potential directions for future research.Four core mechanisms were identified, namely awareness, commitment, confidence and trust. These mechanisms were activated within two broad scaling up strategies, those of renewing and regenerating, and documenting success. Within each strategy, specific actions to change contexts included building partnerships, conducting evaluations, engaging political support and adapting funding models. These modified contexts triggered the identified mechanisms, leading to a range of scaling up outcomes, such as commitment of new communities, changes in relevant

  13. 34 CFR 75.250 - Project period can be up to 60 months.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Project period can be up to 60 months. 75.250 Section... Are Made Approval of Multi-Year Projects § 75.250 Project period can be up to 60 months. The Secretary may approve a project period of up to 60 months. (Authority: 20 U.S.C. 1221e-3 and 3474) [45 FR 22497...

  14. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  15. A SCALE-UP Mock-Up: Comparison of Student Learning Gains in High- and Low-Tech Active-Learning Environments

    Science.gov (United States)

    Soneral, Paula A. G.; Wyse, Sara A.

    2017-01-01

    Student-centered learning environments with upside-down pedagogies (SCALE-UP) are widely implemented at institutions across the country, and learning gains from these classrooms have been well documented. This study investigates the specific design feature(s) of the SCALE-UP classroom most conducive to teaching and learning. Using pilot survey data from instructors and students to prioritize the most salient SCALE-UP classroom features, we created a low-tech “Mock-up” version of this classroom and tested the impact of these features on student learning, attitudes, and satisfaction using a quasi-­experimental setup. The same instructor taught two sections of an introductory biology course in the SCALE-UP and Mock-up rooms. Although students in both sections were equivalent in terms of gender, grade point average, incoming ACT, and drop/fail/withdraw rate, the Mock-up classroom enrolled significantly more freshmen. Controlling for class standing, multiple regression modeling revealed no significant differences in exam, in-class, preclass, and Introduction to Molecular and Cellular Biology Concept Inventory scores between the SCALE-UP and Mock-up classrooms. Thematic analysis of student comments highlighted that collaboration and whiteboards enhanced the learning experience, but technology was not important. Student satisfaction and attitudes were comparable. These results suggest that the benefits of a SCALE-UP experience can be achieved at lower cost without technology features. PMID:28213582

  16. Systems of Systems: Scaling up the Development Program

    National Research Council Canada - National Science Library

    Humphrey, Watts

    2006-01-01

    ... into system-of-systems structures. Section 3 points out how large-scale systems development efforts have typically failed because of project-management and not technical problems, and that the solutions to these problems...

  17. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    International Nuclear Information System (INIS)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs

  18. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  19. Scaling up ITO-Free solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E.W.C.; Zimmermann, B.; Slooff, L.H.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.; Jørgensen, M.; Krebs, F.C.; Andriessen, H.A.J.M.

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm and

  20. Evaluation model of project complexity for large-scale construction projects in Iran - A Fuzzy ANP approach

    Directory of Open Access Journals (Sweden)

    Aliyeh Kazemi

    2016-09-01

    Full Text Available Construction projects have always been complex. By growing trend of this complexity, implementations of large-scale constructions become harder. Hence, evaluating and understanding these complexities are critical. Correct evaluation of a project complication can provide executives and managers with good source to use. Fuzzy analytic network process (ANP is a logical and systematic approach toward defining, evaluation, and grading. This method allows for analyzing complex systems, and determining complexity of them. In this study, by taking advantage of fuzzy ANP, effective indexes for development of complications in large-scale construction projects in Iran have been determined and prioritized. The results show socio-political, project system interdependencies, and technological complexity indexes ranked top to three. Furthermore, in comparison of three main huge projects: commercial-administrative, hospital, and skyscrapers, the hospital project had been evaluated as the most complicated. This model is beneficial for professionals in managing large-scale projects.

  1. UP-scaling of inverted small molecule based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Madsen, Morten

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced...... during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoperiflanthene (DBP) and Fullerenes (C70), as electron donor and acceptor respectively, with cell area...

  2. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  3. Program encourages use of renewable energies in Algeria-20 co-operative projects by sonelgaz in one year

    International Nuclear Information System (INIS)

    Khiat, Z.; Stambouli, A. Boudghene

    2006-01-01

    The renewable energy projects are tools for the management of reserves and sustainable development of desert communities. These are generally areas wher a diesel or gas-powered generator present a problem of fuel transportation and may potentially harm the environment. Tremendous opportunities exist in Algeria for growth in the use of renewable energy technologies in particular photovoltaic solar power. According to some estimates, more than five million Algerians do not have access to grid electricity, while many rural communities are in need of drinking water and water for livestock or irrigation. Given Algerian's abundant solar resource, these rural needs represent a potential market for renewable energy technologies. Nowadays a growing number of people in the south of Algeria are using renewable energy to irrigate their land, light their houses, pump well water and then improve their lives, thanks to the 'Ministere de l'Energie et des Mines' and the Sonelgaz (Societe Nationale de l'Electricite et du Gaz) R and D office. From 1999 up 2002. Sonelgaz Renewable Energy Program, and the above mentioned ministry have collaborated and sponsored several photovoltaic projects in 20 villages of the desert of Algeria concerning this renewable energy program aiming at increasing the use of renewable energy technologies, thus providing green power to isolated villages. Sonelgaz's role in the project is to initiate renewable energy pilot projects that could be easily replicated by area residents and provide training with technical assistance. Based on its feasibility, potential projecs are initially identified and selected by the Sonelgaz R and D office which develops system requirements, provides technical review, evaluates and monitors the projects following their installation. Since 1999, Sonelgaz has received 988 millions of DA (Algerian Dinars) to operate the program. Most activities focus on house lighting and implementing water pumping systems. For most of these

  4. Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2015-12-01

    Full Text Available Increasing energy efficiency by the smart recovery of waste energy is the scope of the CELSIUS Project (Combined Efficient Large Scale Integrated Urban Systems. The CELSIUS consortium includes a world-leading partnership of outstanding research, innovation and implementation organizations, and gather competence and excellence from five European cities with complementary baseline positions regarding the sustainable use of energy: Cologne, Genoa, Gothenburg, London, and Rotterdam. Lasting four-years and coordinated by the City of Gothenburg, the project faces with an holistic approach technical, economic, administrative, social, legal and political issues concerning smart district heating and cooling, aiming to establish best practice solutions. This will be done through the implementation of twelve new high-reaching demonstration projects, which cover the most major aspects of innovative urban heating and cooling for a smart city. The Genoa demonstrator was designed in order to recover energy from the pressure drop between the main supply line and the city natural gas network. The potential mechanical energy is converted to electricity by a turboexpander/generator system, which has been integrated in a combined heat and power plant to supply a district heating network. The performed energy analysis assessed natural gas saving and greenhouse gas reduction achieved through the smart systems integration.

  5. INFORMATION TECHNOLOGIES IN MANAGEMENT OF ENERGY SAVING PROJECTS

    Directory of Open Access Journals (Sweden)

    Дмитро Валерійович МАРГАСОВ

    2015-06-01

    Full Text Available The information technology structure is considered of energy saving projects. The project management diagram of energy saving projects is developed, using GIS, ICS, BIM and other control and visual systems.

  6. Simulation in full-scale mock-ups: an ergonomics evaluation method?

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2014-01-01

    This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities.......This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities....

  7. First Joint Workshop on Energy Management for Large-Scale Research Infrastructures

    CERN Document Server

    2011-01-01

      CERN, ERF (European Association of National Research Facilities) and ESS (European Spallation Source) announce the first Joint Workshop on Energy Management for Large-Scale Research Infrastructures. The event will take place on 13-14 October 2011 at the ESS office in Sparta - Lund, Sweden.   The workshop will bring together international experts on energy and representatives from laboratories and future projects all over the world in order to identify the challenges and best practice in respect of energy efficiency and optimization, solutions and implementation as well as to review the challenges represented by potential future technical solutions and the tools for effective collaboration. Further information at: http://ess-scandinavia.eu/general-information

  8. Internationalization Measures in Large Scale Research Projects

    Science.gov (United States)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  9. Improving laboratory efficiencies to scale-up HIV viral load testing.

    Science.gov (United States)

    Alemnji, George; Onyebujoh, Philip; Nkengasong, John N

    2017-03-01

    Viral load measurement is a key indicator that determines patients' response to treatment and risk for disease progression. Efforts are ongoing in different countries to scale-up access to viral load testing to meet the Joint United Nations Programme on HIV and AIDS target of achieving 90% viral suppression among HIV-infected patients receiving antiretroviral therapy. However, the impact of these initiatives may be challenged by increased inefficiencies along the viral load testing spectrum. This will translate to increased costs and ineffectiveness of scale-up approaches. This review describes different parameters that could be addressed across the viral load testing spectrum aimed at improving efficiencies and utilizing test results for patient management. Though progress is being made in some countries to scale-up viral load, many others still face numerous challenges that may affect scale-up efficiencies: weak demand creation, ineffective supply chain management systems; poor specimen referral systems; inadequate data and quality management systems; and weak laboratory-clinical interface leading to diminished uptake of test results. In scaling up access to viral load testing, there should be a renewed focus to address efficiencies across the entire spectrum, including factors related to access, uptake, and impact of test results.

  10. Being affected by large-scale projects - considerations on the protection of rights in Atomic Energy Law

    International Nuclear Information System (INIS)

    Baumann, W.

    1982-01-01

    This is the final part of an article published in Bay. (VBL 1982, 257). The author comes to the following conclusions: Proposals for reducing the protection of rights frames against a certain background of interests and partly taken over in practice by administrative courts meet with a variety of dogmatic and political considerations relating to these rights. This does not only hold for the attempt to restrict the rights of all those under public and substantive law who are affected by construction and operation, but also for making it harder for the complainants to pursue their rights, and especially for efforts intended to further limit the fact-finding of courts in case of large-scale projects. The judicature is called to review the individual licences issued for large-scale projects, especially because of the inherent symptomatic collisions of basic rights. The judge has a confidence-building advantage; i.e. his independence, which is gaining in importance in the struggle between hardened fronts and economic interests. (orig./HSCH) [de

  11. The bill project on energy transition: what will happen to renewable energies

    International Nuclear Information System (INIS)

    Darson, Alice

    2015-01-01

    The author comments and discusses the content of the French bill project on energy transition, and the controversies on this bill project within the French Parliament. She addresses the objectives of the bill project (share of renewable energies, case of overseas territories), the issue of building construction and renovation, the issue of transports (fleet size, electric vehicles, use of renewable energy), the development of renewable energies (notably for overseas territories, issue of mandatory purchase, issue of connection), the simplification and clarification of procedures, and the possibility for citizen, enterprises, territories and State to act together

  12. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    Science.gov (United States)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  13. Opening up the solar box: Cultural resource management and actor network theory in solar energy projects in the Mojave Desert

    Science.gov (United States)

    Gorrie, Bryan F.

    This project considers the ways that Actor-Network Theory (ANT) can be brought to bear upon Cultural Resource Management (CRM) practices on renewable energy projects. ANT is a way of making inquiry into scientific knowledge practices and as CRM is intended to preserve environmental, historic, and prehistoric resources, it necessarily involves certain kinds of knowledge generation about regions in which projects are being developed. Because the practice of CRM is complex, involving a range of actors from developers to biologists, native peoples to academics, private landholders to environmental and cultural activists, it is imperative to account for the interests of all stakeholders and to resist devolving into the polemical relations of winners and losers, good and bad participants, or simple situations of right and wrong. This project intends to account for the "matters of concern" of various actors, both primary and secondary, by examining the case study of a single solar installation project in the Mojave Desert. A theoretical description of ANT is provided at the beginning and the concerns of this theory are brought to bear upon the case study project through describing the project, discussing the laws governing CRM on federal lands and in the state of California, and providing the points of view of various interviewees who worked directly or indirectly on various aspects of CRM for the solar project. The creators of ANT claim that it is not a methodology but it does speak to ethnomethodologies in that it insists that there is always something more to learn from inquiring into and describing any given situation. These descriptions avoid generalizations, providing instead various points of entry, from diverse perspectives to the project. There is an invitation to avoid assuming that one knows all there is to know about a given situation and to choose instead to continue investigating and thus give voice to the more obscure, often marginalized, voices in the

  14. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  15. A model-based framework for incremental scale-up of wastewater treatment processes

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Sin, Gürkan

    Scale-up is traditionally done following specific ratios or rules of thumb which do not lead to optimal results. We present a generic framework to assist in scale-up of wastewater treatment processes based on multiscale modelling, multiobjective optimisation and a validation of the model at the new...... large scale. The framework is illustrated by the scale-up of a complete autotropic nitrogen removal process. The model based multiobjective scaleup offers a promising improvement compared to the rule of thumbs based emprical scale up rules...

  16. Examining the impacts of Feed-in-Tariff and the Clean Development Mechanism on Korea's renewable energy projects through comparative investment analysis

    International Nuclear Information System (INIS)

    Koo, Bonsang

    2017-01-01

    Renewable energy projects in Korea have two avenues that provide subsidies to increase their financial viability. Feed-in-Tariffs (FITs) offer cost based prices for renewable electricity to compete with conventional energy producers. The Clean Development Mechanism (CDM) issues certified emission reduction (CER) credits that generate additional revenues, enhancing renewable projects’ return on investment. This study investigated how these subsidies impact the financial returns on Korea's CDM projects. An investment analysis was performed on four cases including solar, hydropower, wind and landfill gas projects. Revenues from electricity sales, FITs and CERs were compared using financial indicators to measure their relative contributions on profitability. Results indicate that CDM is partial towards large scale projects with high emission reductions. Moreover, conflicts with FIT schemes can deter small scale, capital intensive projects from pursuing registration. The analysis highlights CDM's bias for particular project types, which is in part due to its impartiality towards carbon credit prices. It also reveals that Korea, a key benefactor of CDM, is susceptible to such biases, as demonstrated by the disproportionate distribution of issued CERs. Improving incentives for bundled, small scale projects, CER price differentiation, and excluding domestic subsidies during additionality testing are proposed as possible reforms. - Highlights: • Korea constitute 8.2% of total CERs issued, third largest in the world after China and India. • CDM favors commercially competitive projects of large scale and high emissions. • 91% of issued CERs from GWP gas; of renewables, 88% from landfill gas and wind. • CER revenues marginal for small scale, commercially less attractive projects. • Conflicts with FIT potentially deters small scale projects from registration.

  17. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050. 2014 Ed

    International Nuclear Information System (INIS)

    2014-01-01

    Reference Data Series No. 1 (RDS-1) is an annual publication — currently in its thirty-fourth edition — containing estimates of energy, electricity and nuclear power trends up to the year 2050. RDS-1 starts with a summary of the situation of nuclear power in IAEA Member States as of the end of 2013. The data on nuclear power presented in Tables 1 and 2 are based on actual statistical data collected by the IAEA’s Power Reactor Information System (PRIS). However, energy and electricity data for 2013 are estimated, as the latest information available from the United Nations Department of Economic and Social Affairs is for 2011. Population data originate from the World Population Prospects (2010 revision), published by the Population Division of the United Nations Department of Economic and Social Affairs. The 2013 values again are estimates. As in previous editions, projections of future energy and electricity demand and the role of nuclear power are presented as low and high estimates encompassing the inherent uncertainties involved in projecting trends. The RDS-1 estimates should be viewed as very general growth trends whose validity must be constantly subjected to critical review. Many international, national and private organizations routinely engage in energy demand and supply projections, including nuclear power. These projections are based on a multitude of different assumptions and aggregating procedures, making a straightforward comparison and synthesis very difficult. The basic differences relate to such fundamental input assumptions as: • Economic growth; • Correlation of economic growth and energy use; • Technology performance and costs; • Energy resource availability and future fuel prices; • Energy policy and physical, environmental and economic constraints

  18. Benchmarking of wind farm scale wake models in the EERA - DTOC project

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Hansen, Kurt Schaldemose; Barthelmie, R.J.

    2013-01-01

    -flow to combine wind farm (micro) and cluster (meso) scale wake models. For this purpose, a benchmark campaign is organized on the existing wind farm wake models available within the project, in order to identify which model would be the most appropriate for this coupling. A number of standardized wake cases......Designing offshore wind farms next to existing or planned wind farm clusters has recently become a common practice in the North Sea. These types of projects face unprecedented challenges in term of wind energy siting. The currently ongoing European project FP7 EERA - DTOC (Design Tool for Offshore...... wind farm Clusters) is aiming at providing a new type of model work-flow to address this issue. The wake modeling part of the EERA - DTOC project is to improve the fundamental understanding of wind turbine wakes and modeling. One of these challenges is to create a new kind of wake modeling work...

  19. New tuberculosis technologies: challenges for retooling and scale-up.

    Science.gov (United States)

    Pai, M; Palamountain, K M

    2012-10-01

    The availability of new tools does not mean that they will be adopted, used correctly, scaled up or have public health impact. Experience to date with new diagnostics suggests that many national tuberculosis programmes (NTPs) in high-burden countries are reluctant to adopt and scale up new tools, even when these are backed by evidence and global policy recommendations. We suggest that there are several common barriers to effective national adoption and scale-up of new technologies: global policy recommendations that do not provide sufficient information for scale-up, complex decision-making processes and weak political commitment at the country level, limited engagement of and support to NTP managers, high cost of tools and poor fit with user needs, unregulated markets and inadequate business models, limited capacity for laboratory strengthening and implementation research, and insufficient advocacy and donor support. Overcoming these barriers will require enhanced country-level advocacy, resources, technical assistance and political commitment. Some of the BRICS (Brazil, Russia, India, China, South Africa) countries are emerging as early adopters of policies and technologies, and are increasing their investments in TB control. They may provide the first opportunities to fully assess the public health impact of new tools.

  20. Can we combine symptom scales for collaborative research projects?

    LENUS (Irish Health Repository)

    Lyne, John P

    2012-02-01

    Collaborative research projects have the potential to answer important research questions, which may otherwise require huge resources, funding, and time to complete. There are several scales for measuring psychotic symptoms in schizophrenia and other psychotic disorders, with the Scale for Assessment of Positive Symptoms (SAPS), Scale for Assessment of Negative Symptoms (SANS), Positive and Negative Symptom Scale (PANSS), and the Brief Psychiatric Rating Scale (BPRS) being among the most commonly used. High quality research efforts have used these three scales in different projects, and in order to merge study efforts, some means of combining data from these scales may be necessary. We reviewed correlations in published studies for these three scales, finding them to be highly correlated, however on comparison of the three scales there were considerable clinical differences between them. The paper discusses potential methods for combining the scales in collaborative research, including use of the recently developed standardised remission criteria for schizophrenia.

  1. Introduction to the Asian Energy Security project: Project organization and methodologies

    International Nuclear Information System (INIS)

    Hippel, David von; Savage, Timothy; Hayes, Peter

    2011-01-01

    The spectacular recent economic growth in the Asia-Pacific region in general, and in many of the economies of Northeast Asia in particular, has spurred a vast expansion in the need for energy services, and an expansion in the demand for the fuels that help to supply these services. Future projections suggest that the growth of fossil fuel use in Northeast Asia, especially in China, will have major consequences for financial and fuel markets and pollution both regionally and globally. Before the project described in this paper was initiated, there was no ongoing forum for energy experts from all of the countries of the region to meet, informally and in an unofficial capacity, to discuss openly and in a targeted fashion the energy situations in their countries, and to work together to evaluate the energy efficiency costs and benefits of different ways of meeting regional demand. The Asian Energy Security (AES) project provides such a forum, and as such constitutes a unique resource in the engagement of the countries of Northeast Asia on the topic of energy security.

  2. TeV. The dream energy scale

    International Nuclear Information System (INIS)

    Murayama, Hitoshi

    2006-01-01

    In this talk, I'd like to explain why the TeV, 1,000,000,000,00 electron volt, is a particularly interesting energy scale in physics. I being recapitulating what particle physics is all about, citing two big questions: what the Universe is made of, and Einstein's dream of unification. TeV energy appears to be relevant to both questions, suggesting rich and complex physics at this energy. I outline how two facilities, LHC and ILC, will work together with reveal what is going on at this exciting energy scale. (author)

  3. Projection of future transport energy demand of Thailand

    International Nuclear Information System (INIS)

    Limanond, Thirayoot; Jomnonkwao, Sajjakaj; Srikaew, Artit

    2011-01-01

    The objective of this study is to project transport energy consumption in Thailand for the next 20 years. The study develops log-linear regression models and feed-forward neural network models, using the as independent variables national gross domestic product, population and the numbers of registered vehicles. The models are based on 20-year historical data between years 1989 and 2008, and are used to project the trends in future transport energy consumption for years 2010-2030. The final log-linear models include only gross domestic product, since all independent variables are highly correlated. It was found that the projection results of this study were in the range of 54.84-59.05 million tonnes of oil equivalent, 2.5 times the 2008 consumption. The projected demand is only 61-65% of that predicted in a previous study, which used the LEAP model. This major discrepancy in transport energy demand projections suggests that projects related to this key indicator should take into account alternative projections, because these numbers greatly affect plans, policies and budget allocation for national energy management. - Research highlights: → Thailand transport energy consumption would increase to 54.4-59.1 MTOE in Year 2030. → The log-linear models yield a slightly higher projection than the ANN models. → The elasticity of transport energy demand with respect to GDP is 0.995.

  4. Projection of future transport energy demand of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Limanond, Thirayoot, E-mail: tlimanond@yahoo.co [School of Transportation Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jomnonkwao, Sajjakaj [School of Transportation Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Srikaew, Artit [School of Electrical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2011-05-15

    The objective of this study is to project transport energy consumption in Thailand for the next 20 years. The study develops log-linear regression models and feed-forward neural network models, using the as independent variables national gross domestic product, population and the numbers of registered vehicles. The models are based on 20-year historical data between years 1989 and 2008, and are used to project the trends in future transport energy consumption for years 2010-2030. The final log-linear models include only gross domestic product, since all independent variables are highly correlated. It was found that the projection results of this study were in the range of 54.84-59.05 million tonnes of oil equivalent, 2.5 times the 2008 consumption. The projected demand is only 61-65% of that predicted in a previous study, which used the LEAP model. This major discrepancy in transport energy demand projections suggests that projects related to this key indicator should take into account alternative projections, because these numbers greatly affect plans, policies and budget allocation for national energy management. - Research highlights: {yields} Thailand transport energy consumption would increase to 54.4-59.1 MTOE in Year 2030. {yields} The log-linear models yield a slightly higher projection than the ANN models. {yields} The elasticity of transport energy demand with respect to GDP is 0.995.

  5. Biorthogonal projected energies of a Gutzwiller similarity transformed Hamiltonian.

    Science.gov (United States)

    Wahlen-Strothman, J M; Scuseria, G E

    2016-12-07

    We present a method incorporating biorthogonal orbital-optimization, symmetry projection, and double-occupancy screening with a non-unitary similarity transformation generated by the Gutzwiller factor [Formula: see text], and apply it to the Hubbard model. Energies are calculated with mean-field computational scaling with high-quality results comparable to coupled cluster singles and doubles. This builds on previous work performing similarity transformations with more general, two-body Jastrow-style correlators. The theory is tested on 2D lattices ranging from small systems into the thermodynamic limit and is compared to available reference data.

  6. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  7. Electroville: Grid-Scale Batteries: High Amperage Energy Storage Device—Energy for the Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT’s battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don’t mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allows more space for storing energy than conventional batteries offer. MIT’s battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.

  8. Energy Perspectives of Montenegro up to 2030

    International Nuclear Information System (INIS)

    Vujosevic, I.

    2008-01-01

    In this paper some key indicators of the actual state in the energy sector, as well as some results of the Strategy of Energy Development in Montenegro up to 2025 year with emphasis on the electricity sector, are presented. An approximate energy balance forecast in Montenegro up to 2030 is given. With an insight in the proper resource basis, the option of transfer part of Tara River's waters in Moraca River (HPP Kostanica) is especially tackled, which was, unfortunately, due to reasons of opportunism, left out from the adopted Energy Strategy.(author)

  9. Designing the Nuclear Energy Attitude Scale.

    Science.gov (United States)

    Calhoun, Lawrence; And Others

    1988-01-01

    Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)

  10. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  11. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  12. Exponential-Six Potential Scaling for the Calculation of Tree Energies in Molecular Simulations

    Czech Academy of Sciences Publication Activity Database

    Sellers, M.S.; Lísal, Martin; Brennan, J.K.

    2015-01-01

    Roč. 113, č. 1 (2015), s. 45-54 ISSN 0026-8976 R&D Projects: GA MŠk LH12020 Grant - others:US ARL(US) W911NF-10-2-0039 Institutional support: RVO:67985858 Keywords : exponential-six potential * free energy * potential scaling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.837, year: 2015

  13. Modified scaling function projective synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Xu Yu-Hua; Zhou Wu-Neng; Fang Jian-An

    2011-01-01

    This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point, a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method. (general)

  14. Basic survey for promoting energy efficiency in developing countries. Database development project directory of energy conservation technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    In order to promote energy conservation in developing countries, the gist of Japanese energy saving technologies was edited into a database. The Asian territory is expected of remarkable economic development and increased energy consumption including that for fossil fuels. Therefore, this project of structuring a database has urgent importance for the Asian countries. New and wide-area discussions were given to revise the 1995 edition. The committee was composed of members from high energy consuming areas such as iron and steel, paper and pulp, chemical, oil refining, cement, electric power, machinery, electric devices, and industrial machinery industries. Technical literatures and reports were referred to, and opinions were heard from specialists and committee members representing the respective areas. In order to reflect the current status and particular conditions in specific industrial areas, additions were given under the assistance and guidance from the specialists. The energy saving technologies recorded in the database may be called small to medium scale technologies, with the target placed on saving energy by 10% or more. Small-scale energy saving technologies were omitted. Flow charts for manufacturing processes were also added. (NEDO)

  15. Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Sharon; Previsic, Mirko; Nelson, Peter; Woo, Sheri

    2010-06-17

    Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: 4 wave energy generation technologies 3 tidal energy generation technologies 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal

  16. Evaluation of energy saving in large scale projects in domestic lighting; Evaluacion del ahorro de energia en proyectos de gran escala en alumbrado domestico

    Energy Technology Data Exchange (ETDEWEB)

    Valera Negrete, Adrian [Comision Federal de Electricidad, Mexico, D.F. (Mexico)

    2001-07-01

    The present work shows the methodology and the necessary parameters are indicated to evaluate the energy saving and the reduction of power demand obtained, by the large scale projects of substitution of incandescent lamps by compact, circular fluorescent and globe type lamps in the domestic sector. [Spanish] El presente trabajo muestra la metodologia y se indican los parametros necesarios para evaluar el ahorro de energia y reduccion de la demanda de potencia obtenidos, por los proyectos de gran escala de sustitucion de focos incandescentes por lamparas fluorescentes compactas, circulares y tipo globo en el sector domestico.

  17. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    International Nuclear Information System (INIS)

    Wittreich, C.D.

    1994-05-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume

  18. Scaling-Up the Functional Diagnostic Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    Functional diagnostic systems received a lot of attention in the last decade. They have proven their powerful for diagnosis the new faults of some complex systems. But, they still have some complexity in both the representation and reasoning about the large-scale systems. This paper introduces a new functional diagnostic system that can divide its small functions into main and auxiliary ones. This process enables the diagnostic system to scale -up the representation of the tested system and simplify the diagnostic mechanism tasks. Thus, it can improve both the representation and reasoning complexity. Also,it can decrease the required analysis, cost, and time. Proposed system can be applied for a wide area of the large-scale systems. It has been proven its acceptance to be applied practically for the Complex real-time systems

  19. New England Wind Energy Education Project (NEWEEP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing

  20. The low-energy electron accelerator LEA for pilot scale operations

    International Nuclear Information System (INIS)

    Mehnert, R.; Klenert, P.

    1990-01-01

    An electron processor equipped with a linear cathode has been developed for use in pilot scale radiation processing. It can provide electron beam powers up to 6 kW at energies between 150 and 200 keV. The design of some components of the processor system and first results of its operation as part of a pilot unit for curing of furniture elements will be discussed. (author)

  1. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  2. Optimal sampling plan for clean development mechanism energy efficiency lighting projects

    International Nuclear Information System (INIS)

    Ye, Xianming; Xia, Xiaohua; Zhang, Jiangfeng

    2013-01-01

    Highlights: • A metering cost minimisation model is built to assist the sampling plan for CDM projects. • The model minimises the total metering cost by the determination of optimal sample size. • The required 90/10 criterion sampling accuracy is maintained. • The proposed metering cost minimisation model is applicable to other CDM projects as well. - Abstract: Clean development mechanism (CDM) project developers are always interested in achieving required measurement accuracies with the least metering cost. In this paper, a metering cost minimisation model is proposed for the sampling plan of a specific CDM energy efficiency lighting project. The problem arises from the particular CDM sampling requirement of 90% confidence and 10% precision for the small-scale CDM energy efficiency projects, which is known as the 90/10 criterion. The 90/10 criterion can be met through solving the metering cost minimisation problem. All the lights in the project are classified into different groups according to uncertainties of the lighting energy consumption, which are characterised by their statistical coefficient of variance (CV). Samples from each group are randomly selected to install power meters. These meters include less expensive ones with less functionality and more expensive ones with greater functionality. The metering cost minimisation model will minimise the total metering cost through the determination of the optimal sample size at each group. The 90/10 criterion is formulated as constraints to the metering cost objective. The optimal solution to the minimisation problem will therefore minimise the metering cost whilst meeting the 90/10 criterion, and this is verified by a case study. Relationships between the optimal metering cost and the population sizes of the groups, CV values and the meter equipment cost are further explored in three simulations. The metering cost minimisation model proposed for lighting systems is applicable to other CDM projects as

  3. Projected photovoltaic energy impacts on US CO2 emissions: an integrated energy environmental-economic analysis

    International Nuclear Information System (INIS)

    Lee, J.C.; Fthenakis, V.M.; Morris, S.C.; Goldstein, G.A.; Moskowitz, P.D.

    1997-01-01

    The potential role of photovoltaic technologies in reducing carbon dioxide (CO 2 ) emissions in the USA was evaluated using an energy-environment-economic systems model. With a range of assumptions about future scenarios up to 2030, the model results provide an objective quantitative assessment of the prospects for photovoltaics in a competitive market. With the projected improvements in cost and efficiency, photovoltaics will compete favourably as a general source of electricity supply to the grid by about 2010 in southwestern USA. This analysis indicates that photovoltaics has the potential to reach a total installed capacity of 140 GW by the year 2030, and to displace a cumulative 450 million metric tons of carbon emissions from 1995 to 2030. At the projected 2030 capacity, photovoltaics could displace over 64 million metric tons of carbon emissions a year. Under constraints on carbon emissions, photovoltaics becomes more cost effective and would further reduce carbon emissions from the US energy system. (author)

  4. Wind energy projects: Some reservations

    International Nuclear Information System (INIS)

    Veldkamp, H.F.; Goezinne, F.

    1991-01-01

    Among people directly involved in wind energy great optimism about the use of windpumps is not uncommon. Projects show that often this is not justified. Why do windpump projects fail? Errors seen by the authors are: 1. Windpumps are installed only because policy makers or researchers want it and not because there is a need felt for them by the users; 2. There is too much attention for the technical side and not for other, more important problems; 3. Experimental (and hence unreliable) windpumps are used in projects; and 4. Too much weight is attached to small, long term economic advantages, which do not count in reality. Although the windmill has its place, it should be recognized that in many cases wind energy is not a good option. 15 refs

  5. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  6. Energy and direction distribution of neutrons in workplace fields: Implication of the results from the EVIDOS project for the set-up of simulated workplace fields

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Lacoste, V.; Reginatto, M.; Zimbal, A.

    2007-01-01

    Workplace neutron spectra from nuclear facilities obtained within the European project EVIDOS are compared with those of the simulated workplace fields CANEL and SIGMA and fields set-up with radionuclide sources at the PTB. Contributions of neutrons to ambient dose equivalent and personal dose equivalent are given in three energy intervals (for thermal, intermediate and fast neutrons) together with the corresponding direction distribution, characterised by three different types of distributions (isotropic, weakly directed and directed). The comparison shows that none of the simulated workplace fields investigated here can model all the characteristics of the fields observed at power reactors. (authors)

  7. Public opinion and communicative action around renewable energy projects

    Science.gov (United States)

    Fast, Stewart

    This thesis investigates how rural communities negotiate the development of renewable energy projects. Public and local community acceptance of these new technologies in rural areas around the world is uncertain and spatially uneven and represents an area of emerging public policy interest and one where scholarly theory is rapidly developing. This thesis uses Habermasian concepts of public sphere, communicative action and deliberative democracy, as well as the concept of "wicked problems" from the planning studies literature combined with geographical concepts of place and scale to advance theoretical and empirical understanding of how public opinion on renewable energy technologies is formed in place. It documents energy use patterns, attitudes and socio-political relations at a time when considerable state and business efforts are directed at the construction of solar, wind, biomass and small-hydro technologies in rural regions. These concepts and theories are applied in a case study of rural communities in the Eastern Ontario Highlands, an impoverished area undergoing rapid restructuring driven by centralization of services and amenity migration but with abundant natural resources in form of forests, numerous waterways and open space which have attracted a broad range of new energy developments. Overall high levels of support for alternative energy development particularly for solar power were found, albeit for reasons of local energy security and not for reasons of preventing climate change. There was some evidence that seasonal residents are less supportive of hydro and biomass projects than permanent residents possibly reflecting broader trends in rural economies away from productive uses of land to consumptive appreciation of rural landscapes. The thesis suggests that collective action to advance energy projects in the case study area require agreement along three world-claims (truth, rightness and truthfulness) and that communication leading to discourse

  8. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  9. Community energy case studies: Alderney 5 energy project, Dartmouth, NS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    In 2007, the Halifax Regional Municipality (HRM) approved the Alderney 5 energy project, an energy-efficiency retrofit of five municipal buildings on the Dartmouth, Nova Scotia, waterfront. The buildings concerned are: the Alderney landing complex, the Alderney gate office, the library, the Dartmouth ferry terminal and the old Dartmouth city hall building. The project has five major components: a mini-district-energy system of heating and cooling pipes that will connect all buildings to one central energy centre in Alderney gate; new gas conversion and high-efficiency boilers; new lighting; new seawater cooling; and an advanced coaxial energy storage system, saving $350,000 per year in energy costs. Construction, started in 2008, was funded through an innovative public private partnership between the Halifax Regional Municipality (HRM: $1 million), the federal government's technology early action measures program, and a company called High Performance Energy Systems.

  10. Impact of Financial Structure on the Cost of Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

    2012-03-01

    To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

  11. PLANNING QUALITY ASSURANCE PROCESSES IN A LARGE SCALE GEOGRAPHICALLY SPREAD HYBRID SOFTWARE DEVELOPMENT PROJECT

    Directory of Open Access Journals (Sweden)

    Святослав Аркадійович МУРАВЕЦЬКИЙ

    2016-02-01

    Full Text Available There have been discussed key points of operational activates in a large scale geographically spread software development projects. A look taken at required QA processes structure in such project. There have been given up to date methods of integration quality assurance processes into software development processes. There have been reviewed existing groups of software development methodologies. Such as sequential, agile and based on RPINCE2. There have been given a condensed overview of quality assurance processes in each group. There have been given a review of common challenges that sequential and agile models are having in case of large geographically spread hybrid software development project. Recommendations were given in order to tackle those challenges.  The conclusions about the best methodology choice and appliance to the particular project have been made.

  12. Millions Learning: Scaling up Quality Education in Developing Countries

    Science.gov (United States)

    Robinson, Jenny Perlman; Winthrop, Rebecca

    2016-01-01

    "Millions Learning: Scaling up Quality Education in Developing Countries" tells the story of where and how quality education has scaled in low- and middle-income countries. The story emerges from wide-ranging research on scaling and learning, including 14 in-depth case studies from around the globe. Ultimately, "Millions…

  13. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  14. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  15. Scaling up Effects in the Organic Laboratory

    Science.gov (United States)

    Persson, Anna; Lindstrom, Ulf M.

    2004-01-01

    A simple and effective way of exposing chemistry students to some of the effects of scaling up an organic reaction is described. It gives the student an experience that may encounter in an industrial setting.

  16. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  17. Quantifying the impact cosmetic make-up has on age perception and the first impression projected.

    Science.gov (United States)

    Dayan, Steven H; Cho, Katherine; Siracusa, Mary; Gutierrez-Borst, Selika

    2015-04-01

    First impressions are lasting, consequential and defined as the immediate judgment made of another from zero acquaintance. Multiple studies have reported the benefits of cosmetic make-up. We set out to investigate the psychosocial and aesthetic effects of cosmetic make-up in order to better understand why women wear it. Twenty-seven women were recruited in order to examine the effects of cosmetic make-up on first impressions. The photographs of individual subjects wearing the control cosmetics, their own make-up, and no make-up were randomly assigned to three binders (A, B, and C). Three hundred evaluators participated (100 evaluators per book) and completed a 10-point First Impression Scale for each of the 27 photos in their binder. Statistical analysis of the collected data was conducted in SPSS using two-tailed t-tests to determine the statistical significance of the differences between first impressions of Own Make-up vs No Make-up, No Make-up vs Control Make-up, and Own Makeup vs Control Make-up. There was a significant difference in improvement in all pairings across all 8 categories in the First Impressions questionnaire particularly in perceived age between own make-up, no make-up, control make-up (41, 42, 38; Pfirst impressions, age perception, self-esteem, and the quality of life impact that cosmetic makeup has on women's appearance and confidence. Subjects wearing cosmetic make-up appeared 4 years younger than those wearing no make-up. And the control cosmetic make-up subjects on average projected a 37% better first impression than subjects wearing no make-up. We objectively quantified and qualified the benefits of applying cosmetic make-up. Make-up can reduce the perceived age, improve the first impression projected and increase the self-esteem of those who apply it.

  18. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  19. A SCALE-UP Mock-Up: Comparison of Student Learning Gains in High- and Low-Tech Active-Learning Environments.

    Science.gov (United States)

    Soneral, Paula A G; Wyse, Sara A

    2017-01-01

    Student-centered learning environments with upside-down pedagogies (SCALE-UP) are widely implemented at institutions across the country, and learning gains from these classrooms have been well documented. This study investigates the specific design feature(s) of the SCALE-UP classroom most conducive to teaching and learning. Using pilot survey data from instructors and students to prioritize the most salient SCALE-UP classroom features, we created a low-tech "Mock-up" version of this classroom and tested the impact of these features on student learning, attitudes, and satisfaction using a quasi--experimental setup. The same instructor taught two sections of an introductory biology course in the SCALE-UP and Mock-up rooms. Although students in both sections were equivalent in terms of gender, grade point average, incoming ACT, and drop/fail/withdraw rate, the Mock-up classroom enrolled significantly more freshmen. Controlling for class standing, multiple regression modeling revealed no significant differences in exam, in-class, preclass, and Introduction to Molecular and Cellular Biology Concept Inventory scores between the SCALE-UP and Mock-up classrooms. Thematic analysis of student comments highlighted that collaboration and whiteboards enhanced the learning experience, but technology was not important. Student satisfaction and attitudes were comparable. These results suggest that the benefits of a SCALE-UP experience can be achieved at lower cost without technology features. © 2017 P. A. G. Soneral and S. A. Wyse. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. FY 2000 report on the survey project on the policy for international energy utilization rationalization, etc. - model project on the heightening of international energy consumption efficiency. Viability survey of the project on energy conservation in the urea synthesis process in India; 2000 nendo kokusai energy shiyo gorika nado taisaku jigyo - kokusai energy shohi koritsuka nado model jigyo chosa hokokusho. Indo ni okeru nyoso gosei process sho energy jigyo jisshi kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of conserving energy and reducing greenhouse effect gas, a remodeling project was studied of urea plants constructed from the 1960s to the 1970s. Conditions for being companies for study are as follows: company has a production scale of more than 0.2 million t/y, adopts the complete circulation method, and will continue operation. And, Duncans Industries Ltd. (DIL) was selected. DIL owns the ammonia plant of 3 series x 400 t/d and the urea plant of 3 series x 682 t/d. In the modeling, stripper and carbamate condenser are added to the existing reactor as the main equipment. As a result of the study, the energy conservation effect was 13,667 toe/y, and the amount of reduction in greenhouse effect gas was 42,289 t-CO2/y. The total amount of this project was roughly estimated at 1.517 billion yen. By carrying out the project, the urea production cost is reduced approximately $9/t, but the project becomes unprofitable if the urea price is based on $188.1/t. (NEDO)

  1. DOE Energy Challenge Project

    Energy Technology Data Exchange (ETDEWEB)

    Frank Murray; Michael Schaepe

    2009-04-24

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  2. Preparation and scale up of extended-release tablets of bromopride

    Directory of Open Access Journals (Sweden)

    Guilherme Neves Ferreira

    2014-04-01

    Full Text Available Reproducibility of the tablet manufacturing process and control of its pharmaceutics properties depends on the optimization of formulation aspects and process parameters. Computer simulation such as Design of Experiments (DOE can be used to scale up the production of this formulation, in particular for obtaining sustained-release tablets. Bromopride formulations are marketed in the form of extended-release pellets, which makes the product more expensive and difficult to manufacture. The aim of this study was to formulate new bromopride sustained release formulations as tablets, and to develop mathematical models to standardize the scale up of this formulation, controlling weight and hardness of the tablets during manufacture according to the USP 34th edition. DOE studies were conducted using Minitab(tm software. Different excipient combinations were evaluated in order to produce bromopride sustained-release matrix tablets. In the scale-up study, data were collected and variations in tableting machine parameters were measured. Data were processed by Minitab(tm software, generating mathematical equations used for prediction of powder compaction behavior, according to the settings of the tableting machine suitable for scale-up purposes. Bromopride matrix tablets with appropriate characteristics for sustained release were developed. The scale-up of the formulation with the most suitable sustained release profile was established by using mathematical models, indicating that the formulation can be a substitute for the pellets currently marketed.

  3. Scaling-up an efficacious school-based physical activity intervention: Study protocol for the ?Internet-based Professional Learning to help teachers support Activity in Youth? (iPLAY) cluster randomized controlled trial and scale-up implementation evaluation

    OpenAIRE

    Lonsdale, Chris; Sanders, Taren; Cohen, Kristen E.; Parker, Philip; Noetel, Michael; Hartwig, Tim; Vasoncellos, Diego; Kirwan, Morwenna; Morgan, Philip; Salmon, Jo; Moodie, Marj; McKay, Heather; Bennie, Andrew; Plotnikoff, Ron; Cinelli, Renata L.

    2016-01-01

    Abstract Background Despite the health benefits of regular physical activity, most children are insufficiently active. Schools are ideally placed to promote physical activity; however, many do not provide children with sufficient in-school activity or ensure they have the skills and motivation to be active beyond the school setting. The aim of this project is to modify, scale up and evaluate the effectiveness of an intervention previously shown to be efficacious in improving children’s physic...

  4. Grid scale energy storage in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Crotogino, F.; Donadei, S.

    2011-05-15

    Fossil energy sources require some 20% of the annual consumption to be stored to secure emergency cover, cold winter supply, peak shaving, seasonal swing, load management and energy trading. Today the electric power industry benefits from the extreme high energy density of fossil and nuclear fuels. This is one important reason why e.g. the German utilities are able to provide highly reliable grid operation at a electric power storage capacity at their pumped hydro power stations of less then 1 hour (40 GWh) related to the total load in the grid - i.e. only 0,06% compared to 20% for natural gas. Along with the changeover to renewable wind-and to a lesser extent PV-based electricity production this 'outsourcing' of storage services to fossil and nuclear fuels will decline. One important way out will be grid scale energy storage in geological formations. The present discussion, research projects and plans for balancing short term wind and solar power fluctuations focus primarily on the installation of Compressed Air Energy Storages (CAES) if the capacity of existing pumped hydro plants cannot be expanded, e.g. because of environmental issues or lack of suitable topography. Because of their small energy density, these storage options are, however, generally less suitable for balancing for longer term fluctuations in case of larger amounts of excess wind power, wind flaws or even seasonal fluctuations. One important way out are large underground hydrogen storages which provide a much higher energy density because of chemical energy bond. Underground hydrogen storage is state of the art since many years in Great Britain and in the USA for the (petro-) chemical industry. (Author)

  5. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    International Nuclear Information System (INIS)

    Walkowicz, K.

    2001-01-01

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies

  6. Forest energy project in Central Finland; Keski-Suomen metsaeenergia -projekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M [Association of Central Finland, Jyvaeskylae (Finland); Kuitto, P J [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    The Forest Energy Project of Central Finland is one of the topleading regional demonstration project in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilization. It is a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains are formed of the best machine and method alternatives, and they are also demonstrated. The project offers hence a wide test field for regional and national techno/economical wood fuel development. The target of this provincial project is to collect and demonstrate the most promising energy wood procurement technologies and methods for utilization of energy producers, forest industry and small and medium sized industries co-operating with forest owners, contractors and forest organizations. An essential target of the project is to direct the know-how, concentrated in the project, to development of the energy field. The project is directed to international information delivery, to concrete widening of cooperation, on transfer of testing and training activities and utilization experiences in the field of wood energy. The Forest Energy Project of Central Finland is a demonstration project supervised by the Regional Council of Central Finland. The project is a part of the national Bioenergy Research Programme. A large number of provincial partners interested in wood fuels, e.g. energy wood suppliers, energy producers, communes, forest industry, forestry boards, forestry associations, wood delivery contractors, and equipment producers, take part in the project

  7. Forest energy project in Central Finland; Keski-Suomen metsaeenergia -projekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M. [Association of Central Finland, Jyvaeskylae (Finland); Kuitto, P.J. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    The Forest Energy Project of Central Finland is one of the topleading regional demonstration project in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilization. It is a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains are formed of the best machine and method alternatives, and they are also demonstrated. The project offers hence a wide test field for regional and national techno/economical wood fuel development. The target of this provincial project is to collect and demonstrate the most promising energy wood procurement technologies and methods for utilization of energy producers, forest industry and small and medium sized industries co-operating with forest owners, contractors and forest organizations. An essential target of the project is to direct the know-how, concentrated in the project, to development of the energy field. The project is directed to international information delivery, to concrete widening of cooperation, on transfer of testing and training activities and utilization experiences in the field of wood energy. The Forest Energy Project of Central Finland is a demonstration project supervised by the Regional Council of Central Finland. The project is a part of the national Bioenergy Research Programme. A large number of provincial partners interested in wood fuels, e.g. energy wood suppliers, energy producers, communes, forest industry, forestry boards, forestry associations, wood delivery contractors, and equipment producers, take part in the project

  8. Environmental agreements in Canada : Aboriginal participation, EIA follow-up and environmental management of major projects

    Energy Technology Data Exchange (ETDEWEB)

    O' Faircheallaigh, C. [Griffith Univ., Brisbane (Australia). Dept. of Politics and Public Policy

    2006-05-15

    Attempts are now being made to address the historic marginalization of indigenous peoples from the management of resource projects located on their ancestral lands through the use of environmental agreements. However, the rapid pace of resource development in certain regions of Canada has meant that there is an increased need to ensure effective follow-up procedures for Environmental Impact Assessment (EIA) processes in order to achieve meaningful Aboriginal participation in the management of large-scale resource projects. Lack of effective follow-up has made it difficult for the relevant agencies to manage risks and uncertainties. This book discussed the use of new policy environmental agreements between industry, government, and Aboriginal peoples. Case studies where environmental agreements were used in the Northwest Territories, Alberta, and Newfoundland were presented in order to demonstrate their efficacy. It was concluded that structures and processes must be designed to encourage Aboriginal participation in consultation processes. refs., tabs.

  9. Annual Energy Outlook 2016 With Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-01

    The Annual Energy Outlook 2016 (AEO2016), prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2040. The projections, focused on U.S. energy markets, are based on results from EIA’s National Energy Modeling System (NEMS). NEMS enables EIA to make projections under alternative, internallyconsistent sets of assumptions. The analysis in AEO2016 focuses on the Reference case and 17 alternative cases. EIA published an Early Release version of the AEO2016 Reference case (including U.S. Environmental Protection Agency’s (EPA) Clean Power Plan (CPP)) and a No CPP case (excluding the CPP) in May 2016.

  10. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  11. Gaussian-3 theory using scaled energies

    International Nuclear Information System (INIS)

    Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.; Pople, John A.

    2000-01-01

    A modification of Guassian-3 (G3) theory using multiplicative scale factors, instead of the additive higher level correction, is presented. In this method, referred to as G3S, the correlation energy is scaled by five parameters and the Hartree-Fock energy by one parameter. The six parameters are fitted to the G2/97 test set of 299 energies and the resulting mean absolute deviation from experiment is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. The G3S method has the advantage compared to G3 theory in that it can be used for studying potential energy surfaces where the products and reactants have a different number of paired electrons. In addition, versions of the computationally less intensive G3(MP3) and G3(MP2) methods that use scaled energies are also presented. These methods, referred to as G3S(MP3) and G3S(MP2), have mean absolute deviations of 1.16 and 1.35 kcal/mol, respectively. (c) 2000 American Institute of Physics

  12. Summing up of the measured wind power. Quarterly information bulletin about the ToTem project; Totalisation de l'energie eolienne mesuree. Bulletin d'information trimestriel sur le projet ToTem

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In order to validate the objectives established for 2005 and 2010 in the framework of the French national programs of development of wind power (Eole) and of improvement of energy efficiency (PNA2E), it is necessary to analyze precisely the real performances of the wind farms already connected to the national grid. This is the main goal of the ToTem project which aims at summing-up the measured power produced by the different French wind farms. This dossier presents the historical context of the project, its main steps (feasibility study, field studies, production and performances follow-up, data diffusion and exploitation), its actors, and answers some practical questions. A presentation of similar programs in Europe is briefly evoked. (J.S.)

  13. Large-scale instability in interacting dark energy and dark matter fluids

    International Nuclear Information System (INIS)

    Väliviita, Jussi; Majerotto, Elisabetta; Maartens, Roy

    2008-01-01

    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyse the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime

  14. Floating attenuator wave energy device. Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Wavegen Project which set out to develop a floating externally tensioned articulated wave-energy generator based on work carried out at RMCS Shrivenham in the 1980s has been abandoned until further notice. The computer modelling carried out in the early days indicated much promise, but the promise turned to disappointment when difficulties cropped-up in attempting to put the design into practice. A particular problem arose in matching the external tension to an equivalent beam stiffness to tune the natural bending frequency of the raft to that of the driving waves. A further eleven practical problems encountered are discussed.

  15. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  16. Project finance for alternative energy

    International Nuclear Information System (INIS)

    Mills, S.J.

    1993-01-01

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It will set out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximise their prospects of raising bank finance. (author)

  17. Aquatic Species Project report, FY 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.M.; Sprague, S.

    1992-01-01

    This report summarizes the progress and research accomplishments of the Aquatic Species Project. The four articles included are summaries of individual research projects and are entered into the EDB as such. The goal of the Aquatic Species Project is to develop the technology base for large-scale production of oil-rich microalgae. The project is also developing methods to convert the microalgal lipids into liquid fuels needed for industry and transportation. Researchers in the Aquatics Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels such as diesel. It is important for the United States to develop alternative renewable oil sources because 42% of the current energy market in the United States is for liquid fuels, and 38% of these fuels are imported. In 1979, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) initiated the Aquatic Species Project as part of the overall effort in biofuels. The project began to focus exclusively on fuels from microalgae in 1982. Estimates show that the technology being developed by the project can provide as much as 7% of the total current energy demand. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  18. Giving up nuclear energy. Obstacles, conditions, consequences

    International Nuclear Information System (INIS)

    Koegel-Dorfs, H.

    1990-01-01

    Life on this earth is not possible without using energy. The resources of the energies used so far are limited and their utilization carries certain risks which have now become obvious: climatic problems on the one hand, safety problems on the other. Chernobyl, Wackersdorf, tornados and population growth are issues mentioned all the time in the fight for the best solution. Even church synodes have spoken up and demanded to give up nuclear energy. The energy issue, however, has become a question of survival. This study, worked out by a group of scientists (natural science, energy science, lawyers, theologians) analyses the obstacles, conditions and consequences of such a step. The possible solution of rational energy utilization and substitution of energy services and regenerative energies is discussed in depth. The book concludes that problems can only be coped with if there is a feeling of joint responsibility and global social consensus. (orig./HP) [de

  19. Assessing the role of renewable energy policies in landfill gas to energy projects

    International Nuclear Information System (INIS)

    Li, Shanjun; Yoo, Han Kyul; Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang

    2015-01-01

    Methane (CH 4 ) is the second most prevalent greenhouse gas and has a global warming potential at least 28 times as high as carbon dioxide (CO 2 ). In the United States, Municipal Solid Waste (MSW) landfills are reported to be the third-largest source of human-made methane emissions, responsible for 18% of methane emissions in 2011. Capturing landfill gas (LFG) for use as an energy source for electricity or heat produces alternative energy as well as environmental benefits. A host of federal and state policies encourage the development of landfill gas to energy (LFGE) projects. This research provides the first systematic economic assessment of the role of these policies on adoption decisions. Results suggest that Renewable Portfolio Standards and investment tax credits have contributed to the development of these projects, accounting for 13 of 277 projects during our data period from 1991 to 2010. These policy-induced projects lead to 10.4 MMTCO 2 e reductions in greenhouse gas emissions and a net benefit of $41.8 million. - Highlights: • Examine the role of renewable energy policies in landfill gas to energy projects • Renewable Portfolio Standards and investment tax credit had impacts. • Investment tax credit policy is cost-effectiveness in promoting these projects. • Policy-induced projects lead to significant environmental benefits

  20. Scale Dependence of Dark Energy Antigravity

    Science.gov (United States)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  1. Forest Energy Project of Central Finland; Keski-Suomen metsaeenergiaprojekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M [Regional Council of Central Finland, Jyvaeskylae (Finland); Kuitto, P J [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    The Forest Energy Project of Central Finland (1994 - 1996) was one of the leading regional demonstration projects in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilisation. The target of this provincial project was to collect and demonstrate the most promising energy wood procurement technologies and methods for utilisation of energy producers, forest industry and small and medium sized industries co- operating with forest owners, contractors and forest organisations. The project was a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains were formed of the best machine and method alternatives, and they were also demonstrated. The project offered hence a wide test field for regional and national techno / economical wood fuel development. The Forest Energy Project of Central Finland was a demonstration project supervised by the Regional Council of Central Finland. The project was a part of the national Bioenergy Research Programme. VTT Energy and the Forestry Board of Central Finland were responsible for the practical development work. A large number of provincial partners interested in wood fuels took part in the project. The project were carried out during the years 1994 - 1996. The total costs were 4.4 million FIM. The aim is to create a practical model for the entire system, by which enables the economically profitable increment of the utilisation of chip fuels in Central Finland by 100 GWh/1996 and 500 GWh/a (about 250 000 m{sup 3}) to the end of the decade. (orig.)

  2. Challenges in scaling up biofuels infrastructure.

    Science.gov (United States)

    Richard, Tom L

    2010-08-13

    Rapid growth in demand for lignocellulosic bioenergy will require major changes in supply chain infrastructure. Even with densification and preprocessing, transport volumes by mid-century are likely to exceed the combined capacity of current agricultural and energy supply chains, including grain, petroleum, and coal. Efficient supply chains can be achieved through decentralized conversion processes that facilitate local sourcing, satellite preprocessing and densification for long-distance transport, and business models that reward biomass growers both nearby and afar. Integrated systems that are cost-effective and energy-efficient will require new ways of thinking about agriculture, energy infrastructure, and rural economic development. Implementing these integrated systems will require innovation and investment in novel technologies, efficient value chains, and socioeconomic and policy frameworks; all are needed to support an expanded biofuels infrastructure that can meet the challenges of scale.

  3. Quality Assessment of Physical and Organoleptic Instant Corn Rice on Scale-Up Process

    Science.gov (United States)

    Kumalasari, R.; Ekafitri, R.; Indrianti, N.

    2017-12-01

    Development of instant corn rice product has been successfully conducted on a laboratory scale. Corn has high carbohydrate content but low in fiber. The addition of fiber in instant corn rice, intended to improve the functioning of the product, and replace fiber loss during the process. Scale up process of Instant corn rice required to increase the production capacity. Scale up was the process to get identic output on a larger scale based on predetermined production scale. This study aimed to assess the changes and differences in the quality of instant corn rice during scale up. Instant corn rice scale up was done on production capacity 3 kg, 4 kg and 5 kg. Results showed that scale up of instant corn rice producing products with rehydration ratio ranges between 514% - 570%, the absorption rate ranged between 414% - 470%, swelling rate ranging between 119% - 134%, bulk density ranged from 0.3661 to 0.4745 (g/ml) and porosity ranging between 30-37%. The physical quality of instant corn rice on scale up were stable from the ones at laboratory scale on swelling rate, rehydration ratio, and absorption rate but not stable on bulk density and porosity. Organoleptic qualities were stable at increased scale compared on a laboratory scale. Bulk density was higher than those at laboratory scale, and the porosity was lower than those at laboratory scale.

  4. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects, National Research Council

    2007-01-01

    .... Although the use of wind energy to generate electricity is increasing rapidly in the United States, government guidance to help communities and developers evaluate and plan proposed wind-energy projects is lacking...

  5. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  6. Risk management tools from the traditional energy industry to wind energy projects

    International Nuclear Information System (INIS)

    Randall, G.; Marks, R.

    2010-01-01

    Risk-based analysis techniques are used to quantify and prioritize a wide variety of problems within the traditional fossil fuel and nuclear power industries. This poster presentation evaluated some of the risk analysis tools and methods used by the energy industry to quantify and manage wind energy development risks. A comprehensive risk-based approach for identifying the probability and consequences of potential concerns was presented for a sample wind energy project. The process determined objectives in relation to the project's net present value. Contributing domains included the energy production, prices, and operating costs of the project. Decision criteria used to evaluate the desirability of the wind project were then developed. Monte Carlo simulations were the used to aggregate individual risks into an overall total. The contribution of each element to the decision objective was calculated separately. The element outputs were than combined into a measure of aggregate risk exposure. Aggregate results were used to calculate the decision criteria. The decision objective was to determine if the energy cost was less than the avoided cost of other project options. The study showed that the approach can allow decision-makers to mitigate risks. However, the results are dependent on the quality of the input data. tabs., figs.

  7. Clean and efficient energy conversion processes (Cecon-project). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The objectives of the work programme reported are the development and testing of two optimised energy conversion processes, both consisting of a radiant surface gas burner and a ceramic heat exchanger. The first sub-objective of the programme is related to industrial heating, drying and curing processes requireing low and medium heat fluxes. It is estimated that around one tenth of the total EC industrial energy use is associated with such processes. The majority of these processes currently use convection and conduction as the main heat transfer mechanisms and overall energy efficiencies are typically below 25%. For many drying and finishing processes (such as curing powder coatings and drying paints, varnishes, inks, and for the fabrication of paper and textiles), radiant heating can achieve much faster dyring rates and higher energy efficiency than convective heating. In the project new concepts of natural gas fired radiant heating have been investigated which would be much more efficient than the existing processes. One element of the programme was the evelopment of gas burners having enhanced radiant efficiencies. A second concerned the investigation of the safety of gas burners containing significant volumes of mixed gas and air. Finally the new gas burners were tested in combination with the high temperature heat exchanger to create highly efficient radiant heating systems. The second sub-objective concerned the development of a compact low cost heat exchanger capable of achieving high levels of heat recovery (up to 60%) which could be easily installed on industrial processes. This would make heat recovery a practical proposition on processes where existing heat recovery technology is currently not cost effective. The project will have an impact on industrial processes consuming around 80 MTOE of energy per year within EU countries (1 MTOE equals 41.8 PJ). The overall energy saving potential of the project is estimated to be around 22 MTOE which is around 10

  8. Utility-Scale Solar 2014. An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MWAC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the next few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.

  9. Financing of wind energy projects

    International Nuclear Information System (INIS)

    Harland, S.

    1991-01-01

    This paper looks at what banks need to know to enable them to consider a wind energy project. The major experiences of banks in financing wind energy have been in the US where governmentally inspired long term sales contracts (PURPA Contracts) have given a security to sponsors and banks not available elsewhere. (Author)

  10. Integration of bottom-up and top-down models for the energy system. A practical case for Denmark

    International Nuclear Information System (INIS)

    Jacobsen, H.; Morthorst, P.E.; Nielsen, L.; Stephensen, P.

    1996-07-01

    The main objective of the project was to integrate the Danish macro economic model ADAM with elements from the energy simulation model BRUS, developed at Risoe. The project has been carried out by Risoe National Laboratory with assistance from the Ministry of Finance. A theoretical part focuses on the differences between top-down and bottom-up modelling of the energy-economy interaction. A combined hybrid model seems a relevant alternative to the two traditional approaches. The hybrid model developed is called Hybris and includes models for: supply of electricity and heat, household demand for electricity, and household demand for heat. These three models interact in a iterative procedure with the macro economic model ADAM through a number of links. A reference case as well as a number of scenarios illustrating the capabilities of the model has been set up.Hybris is a simulation model which is capable of analyzing combined CO 2 reduction initiatives as regulation of the energy supply system and a CO 2 tax in an integrated and consistent way. (au) 32 tabs., 98 ills., 55 refs

  11. Thermal Energy Corporation Combined Heat and Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E. Bruce [Thermal Energy Corporation, Houston, TX (United States); Brown, Tim [Thermal Energy Corporation, Houston, TX (United States); Mardiat, Ed [Burns and McDonnell Engineering Company, Inc., Kansas City, MI (United States)

    2011-12-31

    outages. TECO's operation is the largest Chilled Water District Energy System in the United States. The company used DOE's funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMC's growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nation's healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  12. Scaling Up Improved Legume Technologies in Tanzania (CIFSRF ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The project team will train at least 30 hub agro dealers on the technologies so they can instruct a larger number of smaller-scale agro dealers operating across the target regions. Research partners ... Addressing Africa's unmet need for family planning by intensifying sexual and reproductive and adolescent health research.

  13. Scaling violations at ultra-high energies

    International Nuclear Information System (INIS)

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  14. Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach

    International Nuclear Information System (INIS)

    Mosannenzadeh, Farnaz; Di Nucci, Maria Rosaria; Vettorato, Daniele

    2017-01-01

    Successful implementation of smart energy city projects in Europe is crucial for a sustainable transition of urban energy systems and the improvement of quality of life for citizens. We aim to develop a systematic classification and analysis of the barriers hindering successful implementation of smart energy city projects. Through an empirical approach, we investigated 43 communities implementing smart and sustainable energy city projects under the Sixth and Seventh Framework Programmes of the European Union. Validated through literature review, we identified 35 barriers categorized in policy, administrative, legal, financial, market, environmental, technical, social, and information-and-awareness dimensions. We prioritized these barriers, using a novel multi-dimensional methodology that simultaneously analyses barriers based on frequency, level of impact, causal relationship among barriers, origin, and scale. The results indicate that the key barriers are lacking or fragmented political support on the long term at the policy level, and lack of good cooperation and acceptance among project partners, insufficient external financial support, lack of skilled and trained personnel, and fragmented ownership at the project level. The outcome of the research should aid policy-makers to better understand and prioritize implementation barriers to develop effective action and policy interventions towards more successful implementation of smart energy city projects. - Highlights: • A solid empirical study on the implementation of European smart energy city projects. • We found 35 barriers in nine dimensions; e.g. policy, legal, financial, and social. • We suggested a new multi-dimensional methodology to prioritize barriers. • Lacking or fragmented political support on the long term is a key barrier. • We provided insights for action for project coordinators and policy makers.

  15. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity

  16. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  17. Project finance for renewable energy

    International Nuclear Information System (INIS)

    Mills, S.J.; Taylor, M.

    1994-01-01

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It sets out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximize their prospects of raising bank finance. The watchword for sponsors approaching banks must be ''Be Prepared'' . (author)

  18. Ergo project builds up to full production

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The East Rand Gold and Uranium Company (Ergo) - planned on a massive scale to recover gold, uranium and sulphuric acid from the slimes dams of the East Rand - captured imaginations both from a financial and a technical viewpoint. Operationally, the commissioning of the project is now well under way and satisfying profits have already been recorded. A broad look at the background and the design is given

  19. Ergo project builds up to full production

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The East Rand Gold and Uranium Company (ERGO) - planned on a massive scale to recover gold, uranium and sulphuric acid from the slimes dams of the East Rand - captured imaginations both from a financial and a technical viewpoint. Operationally, the commissioning of the project is now well under way and satisfying profits have already been recorded. A broad look at the background and the design is given

  20. 75 FR 81637 - Commercial Lease for the Cape Wind Energy Project

    Science.gov (United States)

    2010-12-28

    ... Commercial Lease for the Cape Wind Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and... Renewable Energy Development on the Outer Continental Shelf (``OCS'') for the Cape Wind Energy Project... requirements of 30 CFR 285.231. The Lease is for the Cape Wind Energy Project (``Project'') which grants Cape...

  1. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P [PA Energy, Malling (Denmark); Vedde, J [SiCon. Silicon and PV consulting, Birkeroed (Denmark)

    2011-04-15

    Large scale PV (LPV) plants, plants with a capacity of more than 200 kW, has since 2007 constituted an increasing share of the global PV installations. In 2009 large scale PV plants with cumulative power more that 1,3 GWp were connected to the grid. The necessary design data for LPV plants in Denmark are available or can be found, although irradiance data could be improved. There seems to be very few institutional barriers for LPV projects, but as so far no real LPV projects have been processed, these findings have to be regarded as preliminary. The fast growing number of very large scale solar thermal plants for district heating applications supports these findings. It has further been investigated, how to optimize the lay-out of LPV plants. Under the Danish irradiance conditions with several winter months with very low solar height PV installations on flat surfaces will have to balance the requirements of physical space - and cost, and the loss of electricity production due to shadowing effects. The potential for LPV plants in Denmark are found in three main categories: PV installations on flat roof of large commercial buildings, PV installations on other large scale infrastructure such as noise barriers and ground mounted PV installations. The technical potential for all three categories is found to be significant and in the range of 50 - 250 km2. In terms of energy harvest PV plants will under Danish conditions exhibit an overall efficiency of about 10 % in conversion of the energy content of the light compared to about 0,3 % for biomass. The theoretical ground area needed to produce the present annual electricity consumption of Denmark at 33-35 TWh is about 300 km2 The Danish grid codes and the electricity safety regulations mention very little about PV and nothing about LPV plants. It is expected that LPV plants will be treated similarly to big wind turbines. A number of LPV plant scenarios have been investigated in detail based on real commercial offers and

  2. Energy education: breaking up the rational energy use barriers

    International Nuclear Information System (INIS)

    Dias, R.A.; Mattos, C.R.; Balestieri, J.A.P.

    2004-01-01

    Human development is associated directly or indirectly with the energy use, and because of this the energetic sources were dealt with in the recent past, as fully available to human necessities. The reality shows that the energy availability, considering the non-renewable sources, is limited, and beyond that, the exploration, the processing and the use of energy impose considerable impacts on the environment. There is not a system which operates with no losses and without imposing changes to the environment. Therefore, the energy conservation incorporates the concepts and the actions applied to the research of sustainable balance between nature and the energy availability and use. Such actions can be presented both in the short term, in which the energy system is close to a collapse, or in the medium/long term, in which those responsible for the energy policies are concerned with the structure of the socio-economic development. Such a situation requires more responsibility in the treatment of energy questions, mainly through education, which represents long-term investments. This paper discusses barriers that are present in the projects applied to energy conservation, by making clear that education is one of the best ways to transform the human behavior in for the rational use of energy

  3. Wave Run-up on the Zeebrugge Rubble Mound Breakwater

    DEFF Research Database (Denmark)

    De Rouck, Julien; Van de Walle, Björn; Troch, Peter

    2007-01-01

    A clear difference between full-scale wave run-up measurements and small-scale model test results had been noticed during a MAST II project. This finding initiated a thorough study of wave run-up through the European MAST III OPTICREST project. Full-scale measurement have been carried out...... on the Zeebrugge rubble mound breakwater. This breakwater has been modeled in three laboratories: two 2D models at a scale of 1:30 and one 3D model at a scale of 1:40 have been buildt at Flanders Hydraulics (Belgium), at Universidad Politécnica de Valencia (Spain), and at Aalborg University (Denmark). Wave run......-up has been measured by a digital run-up gauge. This gauge has proven to measure wave run-up more accurately than the traditional wire gauge. Wave spectra measured in Zeebrugge have been reproduced in the laboratories. Results of small-scale model tests and full-scale measurements results have been...

  4. Integrated project delivery methods for energy renovation of social housing

    Directory of Open Access Journals (Sweden)

    Tadeo Baldiri Salcedo Rahola

    2015-11-01

    architect’s office and the maintenance company involved in both cases; and the evaluation reports produced by project managers at the SHOs. The results demonstrate that it is possible to engage design companies, construction companies and maintenance companies to achieve energy savings that exceed those stipulated by the SHO and to obtain a guarantee of results. This approach also makes it possible to shorten the duration of a project, while limiting the costs involved to approximately the equivalent of those incurred in DBB renovation projects. The collaborative set-up of the DBM process also results in improved relations between the actors involved. However, an analysis of these relationships indicated that there is still room for improvement, particularly with regard to the maintenance company. In order to guarantee the benefits of implementing a DBM process, it is necessary for the SHO to put in place the following: realistic but ambitious minimum requirements; clear and measurable award criteria that stress the importance of achieving high energy savings; and a guarantee mechanism that is fair and robust. Moreover, the SHO needs to ensure that the scale of the contract is large enough to guarantee that any compensation paid to non-selected candidates does not adversely affect the total cost of the project and that the SHO’s maintenance strategy must be flexible enough to handle maintenance contracts that are project-related as well as maintenance stock-related contracts. Competitive tenders for integrated contracts for social housing renovation projects The study, which is based on an analysis of eight renovation projects undertaken by SHOs in the Netherlands, shows that Dutch SHOs apply a range of mechanisms in order to influence the ambition, collaboration and long-term view of the consortia that participate in competitive tenders for integrated renovation projects. Their aim is to improve the quality of the construction process and thereby enhance the quality of

  5. 77 FR 25469 - Applications for New Awards; Investing in Innovation Fund, Scale-Up Grants

    Science.gov (United States)

    2012-04-30

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Investing in Innovation Fund, Scale- Up Grants Catalog of Federal Domestic Assistance (CFDA) Number: 84.411A (Scale-up grants). AGENCY: Office of... fiscal year 2012 for the Investing in Innovation (i3) Scale-up grant competition (March 27 i3 Scale-up...

  6. VUJE experience with large scale projects and their applicability to the future of the Slovak energy system

    International Nuclear Information System (INIS)

    Ferenc, M.

    2004-01-01

    In this presentation author deals with participation of VUJE Trnava, Inc. on the reconstruction of the Bohunice V1 NPP, on modernisation of the Bohunice V2 NPP, and on of the projects in nuclear energy industry including of decommissioning of the Bohunice A1 NPP

  7. Energy Strategic Planning & Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  8. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    Directory of Open Access Journals (Sweden)

    Dongxu Ren

    2016-04-01

    Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  9. Characterisation of representative building typologies for social housing projects in Brazil and its energy performance

    International Nuclear Information System (INIS)

    Triana, Maria Andrea; Lamberts, Roberto; Sassi, Paola

    2015-01-01

    In Brazil the housing deficit is around 5.5 million houses. To address this need, the government created a programme called “My house, My life”. The main subsidies of the programme are for families earning up to three times the minimum wage. In order to formulate strategies for more energy efficiency buildings, it is necessary to understand the thermal and energy performance of what is being built. This article defines representative projects for typologies being built in the Brazilian social housing sector through the analysis of 108 projects considering two groups of income levels and investigates the thermal and energy performance of the representative projects in relation to the Regulation for Energy Efficiency Labelling of Residential Buildings in Brazil for two bioclimatic zones. Five representative building models were defined. Considering the most common features found on the sample, the study suggests the importance of addresing energy efficiency measures on the sector since current building techniques for social housing shows a tendency towards a low performance in relation to the thermal and energy performance criteria of the Energy Labelling especially for lower income projects. This provides a basis for future policy and allows for more in depth studies within the sector. - Highlights: • Characterisation of representative typologies built for social housing in Brazil. • More recurrent building physics characteristics considered. • Energy efficiency and thermal performance of Brazilian social housing analysed. • Regulation for Energy Efficiency Labelling of Residential Buildings in Brazil used for analysis.

  10. Selection of projects in the regional energy planning

    International Nuclear Information System (INIS)

    Ramirez P, R.; Navas M, F.

    1993-01-01

    The processes of regional energy planning have changed vastly in the last years and it will continue changing in the future for the new norm of the State. This work tries to show the use of systematic tools in the selection of regional energy projects. It discusses a methodology of selection of projects based on a multivariate technical. It is applied in the Southwestern region of Colombia and both selection and priority results are obtained. The designed methodology allows to make the selection of projects in an automatic way with a software designed for such an end. In the case of Southwestern it arrives to a briefcase of projects for an energy plan and made for other races

  11. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  12. International Energy Outlook 2016 With Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    Conti, John [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Petroleum, Natural Gas, and Biofuels Analysis; Holtberg, Paul [USDOE Energy Information Administration (EIA), Washington, DC (United States). Analysis Integration Team; Diefenderfer, Jim [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Electricity, Coal, Nuclear, and Renewables Analysis; LaRose, Angelina [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Integrated and International Energy Analysis; Turnure, James T. [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Consumption and Efficiency Analysis; Westfall, Lynn [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Markets and Financial Analysis

    2016-05-01

    The International Energy Outlook 2016 (IEO2016) presents an assessment by the U.S. Energy Information Administration (EIA) of the outlook for international energy markets through 2040. U.S. projections appearing in IEO2016 are consistent with those published in EIA’s Annual Energy Outlook 2015 (AEO2015). IEO2016 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, federal and state governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2016 energy consumption projections are divided according to Organization for Economic Cooperation and Development members (OECD) and nonmembers (non-OECD). OECD members are divided into three basic country groupings: OECD Americas (United States, Canada, and Mexico/Chile), OECD Europe, and OECD Asia (Japan, South Korea, and Australia/New Zealand). Non-OECD countries are divided into five separate regional subgroups: non-OECD Europe and Eurasia (which includes Russia); non-OECD Asia (which includes China and India); Middle East; Africa; and non-OECD Americas (which includes Brazil). In some instances, the IEO2016 energy production models have different regional aggregations to reflect important production sources (for example, Middle East OPEC is a key region in the projections for liquids production). Complete regional definitions are listed in Appendix M. IEO2016 focuses exclusively on marketed energy. Nonmarketed energy sources, which continue to play an important role in some developing countries, are not included in the estimates. The IEO2016 projections are based on existing U.S. and foreign government laws and regulations. In general, IEO2016 reflects the effects of current policies—often stated through regulations—within the projections. EIA analysts attempt to interpret the

  13. Sea testing and optimisation of power production on a scale 1:4.5 test rig of the offshore wave energy converter wave dragon. Summary of final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-15

    -term fieldtest documentation. Power production price of 0.11 EUR/kWh has been documented at project finalisation with a long-term production price of 0.04 EUR/kWh foreseen. The project opens up the potential for large-scale exploitation of offshore wave power, which will contribute to improving European self-sufficiency and diversification of energy supply. The deployment of Wave Dragon will establish a completely new industry, like the wind industry, utilizing the people released from the declining the European oil and gas offshore industry. The long-term employment in Europe is foreseen to 6,000, with an installed power of 2,400 MW expected by 2016. (au)

  14. Scaling-up Support for Emergency Response Organizations

    NARCIS (Netherlands)

    Oomes, A.H.J.; Neef, R.M.

    2005-01-01

    We present the design of an information system that supports the process of scaling-up of emergency response organizations. This process is vital for effective emergency response but tends to go awry in practice. Our proposed system consists of multiple distributed agents that are capable of

  15. Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook

    International Nuclear Information System (INIS)

    Chang, Yusang; Lee, Jinsoo; Yoon, Hyerim

    2012-01-01

    A projection of future energy consumption is a vital input to many analyses of economic, energy, and environmental policies. We provide a benchmark projection which can be used to evaluate any other projection. Specifically, we base our projection of future energy consumption on its historical trend, which can be identified by an experience model. We compare our projection with forecasts by the U.S. Energy Information Administration (EIA) for eight countries—U.S., China, India, Brazil, Japan, South Korea, Canada, and Mexico. We find that the EIA's projections are lower than ours in the case of China, the U.S., India, Japan, and Mexico. This indicates that for these five countries, the EIA uses assumptions which cannot be rationalized by historical data.

  16. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  17. Chapter 6. Scaling Up Solutions to State, National and Global Levels

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2016-12-01

    Full Text Available Scaling-up solutions require learning and adapting lessons between locations and at different scales. To accomplish this, common metrics are vital to building a shared language. For California, this has meant careful financial, cradle-to-grave life-cycle assessment methods leading to carbon accounting in many avenues of government (via the Low Carbon Fuel Standard or the Cap and Trade program. These methods themselves interact, such as the use of carbon accounting for the resources needed to manage water and other key resources; the use of criteria air pollution monitoring to identify environmental injustices; and the use of carbon market revenues to address these inequalities, through investment in best available abatement technologies (BACT and in job creation in disadvantaged communities anticipated in the emerging clean energy sector.  Creating interdisciplinary partnerships across the UC Campuses and the National Laboratories to innovate science and technology is critical to scalable carbon neutrality solutions. As an example, we can build coordinated research and development programs across UC and California, with strong partnerships with the Federal government to coordinate and “multiply” resources that accelerate development and deployment. These partnerships should be strongly goal-focused, i.e., they are created to solve specific, large problems, to enable quantitatively measurable outcomes within energy generation, efficiency and CO2 abatement categories. Intersectoral partnerships should be fostered across campuses, laboratories, with state, federal and multi-lateral organizations funding to develop technologies and deploy solutions at scale. Integrated partnerships with industry are required to influence markets, deploy solutions, and create new industries and jobs.  Beyond California, we need to establish consortia with industry and foundations to deploy solutions at the regional, state, national, and international scale to

  18. Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up

    Science.gov (United States)

    Greenman, John; Ieropoulos, Ioannis A.

    2017-07-01

    This case study reports for the first time on the comparison between allometric scaling of lifeforms and scale-up of microbial fuel cell entities; enlarging individual units in volume, footprint and electrode surface area but also multiplying a static size/footprint and electrode surface area to scale-up by stacking. A study published in 2010 by DeLong et al. showed for the first time that Kleiber's law does not apply uniformly to all lifeforms, and that in fact growth rate for prokaryotes is superlinear, for protists is linear and for metazoa is sublinear. The current study, which is utilising data from previous experiments, is showing for the first time that for individual MFC units, which are enlarged, growth rate/power is sublinear, whereas for stacks this is superlinear.

  19. Ponnequin Wind Energy Project Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  20. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  1. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  2. Scale-up of mixer-settler for uranium extraction

    International Nuclear Information System (INIS)

    Santana, A.O. de.

    1990-05-01

    The aim of this work was to obtain scale-up relations for a box type mixer-settler used in uranium extraction process for chloridric leaches. Three box type units with different sizes and with the same geometry were used for scale-up of the mixer. The correlation between extraction rate and specific power input, D/T ratio (stirrer diameter/mixer length) and residence time were experimentally obtained. The results showed that the extraction increases with power input for a constant value of D/T equal to 1/3, remaining however independent from mixer sizes for a specific value of power input. This behavior was observed for power input values ranging from 100 to 750 w/m 9 . (author). 23 refs, 22 figs, 23 tabs

  3. Progress in AMSC scale-up of second generation HTS wire

    International Nuclear Information System (INIS)

    Zhang, W.; Rupich, M.W.; Schoop, U.; Verebelyi, D.T.; Thieme, C.L.H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S.

    2007-01-01

    American Superconductor has successfully scaled up its low-cost, high volume second generation (2G) HTS wire process into pre-pilot scale production, with performance approaching first generation (1G) HTS wire. AMSC's manufacturing approach is based on RABiTS TM /MOD wide strip technology, with metal organic deposition (MOD) process for the YBCO layer and the Rolling Assisted Biaxially Textured Substrate (RABiTS) process for the template. In this paper, we review the status of the 2G manufacturing scale up at AMSC and describe the properties and architecture of the 2G wire being manufactured and developed for various applications

  4. The Nabucco Project and Communicating about Energy Security

    Directory of Open Access Journals (Sweden)

    Victor Negrescu

    2013-07-01

    Full Text Available Energy Security was considered by many of the Eastern European countries a priority in their fight for breaking the ties with the former Soviet Union. The dependence of the Eastern European countries to the Russian gas and petroleum generated for most of the local governments a feeling of inferiority that they were willing to replace if the opportunity will be offered. One of the main alternative projects to the Russian gas is the Nabucco Project designed to enable the access to Caspian gas for all the European countries. Knowing that a decision on the realization of the pipeline should be made by the end of June 2013, our article will try to illustrate the importance of the Nabucco Project for the regional and European energy security by studying the history of the project, the competing projects and the recent political evolutions of the project. This will enable researchers, decision makers and policy makers in the energy sector to better evaluate the Nabucco project and better act into promoting it.

  5. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  6. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    2012-01-01

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  7. Project Finance and Projects in the Energy Sector in Developing Countries

    OpenAIRE

    ERMELA KRIPA; HALIT XHAFA

    2013-01-01

    The purpose of this study is to show the importance of using project finance in infrastructure investments in developing countries. The paper will be focused only on one infrastructure sector, which is energy. Structurally, power project finance has involved largely buildown-transfer (BOT) project structures and long-term contracts. The projects largely reflect a rational allocation of risks among public and private participants. Private sponsors and lenders generally assume risks for complet...

  8. Economics and environment wrap-up panel : energy management revolving fund

    International Nuclear Information System (INIS)

    2001-01-01

    This Power Point presentation provided the historical overview of the energy management program of the City of Edmonton, Alberta. The energy crisis of the early 1980s prompted the City to initiate an energy management plan, and a one million dollar revolving fund was created in 1995, later increased to five million dollars in 1999, to support the initiative. The operating funds were used for small projects, while capital funding limited use with other capital improvements. At times, third party/private financing was used. The revolving fund approach was selected for a number of reasons: (1) it was self-liquidating, (2) had a lesser impact on the budget and tax levy, (3) reduced competition for capital, (4) the money was obtained at competitive rates from the Alberta Municipal Finance Corporation, (5) reduced operating costs, (6) saved energy and non-renewable resources, and (7) it proved flexible. The process was explained, from the potential project proposal to its approval. The criteria used to evaluate the proposals were listed and discussed. A total of 37 projects have been initiated to date, with a value of 3.2 million dollars. The projected utility cost savings are about 900,000 dollars annually, and the total projected carbon dioxide emissions avoided are 8,300 tonnes annually. Accelerating the implementation might be required in light of the recent increase in energy costs. There are difficulties encountered in finding energy consultants and skilled trades people. The scope of the projects is limited by the standard five year payback. The Revolving Fund is one component of the Environmental Strategic Plan of the City of Edmonton. figs

  9. Approximate scaling properties of RNA free energy landscapes

    Science.gov (United States)

    Baskaran, S.; Stadler, P. F.; Schuster, P.

    1996-01-01

    RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.

  10. Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project

    Science.gov (United States)

    Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.

    2012-04-01

    Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.

  11. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  12. Carbon credit of renewable energy projects in Malaysia

    Science.gov (United States)

    Lim, X.; Lam, W. H.; Shamsuddin, A. H.

    2013-06-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  13. Carbon credit of renewable energy projects in Malaysia

    International Nuclear Information System (INIS)

    Lim, X; Lam, W H; Shamsuddin, A H

    2013-01-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  14. Prototype solar house. Study of the scientific evaluation and feasibility of a research and development project

    Science.gov (United States)

    Bundschuh, V.; Grueter, J. W.; Kleemann, M.; Melis, M.; Stein, H. J.; Wagner, H. J.; Dittrich, A.; Pohlmann, D.

    1982-08-01

    A preliminary study was undertaken before a large scale project for construction and survey of about a hundred solar houses was launched. The notion of solar house was defined and the use of solar energy (hot water preparation, heating of rooms, heating of swimming pool, or a combination of these possibilities) were examined. A coherent measuring program was set up. Advantages and inconveniences of the large scale project were reviewed. Production of hot water, evaluation of different concepts and different fabrications of solar systems, coverage of the different systems, conservation of energy, failure frequency and failures statistics, durability of the installation, investment maintenance and energy costs were retained as study parameters. Different solar hot water production systems and the heat counter used for measurements are described.

  15. Project management for economical nuclear energy

    International Nuclear Information System (INIS)

    Majerle, P.P.

    2005-01-01

    The price of electricity is significantly influenced by the cost of the initial generation asset. The cost of the initial nuclear generation asset is significantly influenced by the design and construction duration. Negative variations in the cost and duration of actual design and construction have historically impacted the early relative economics of nuclear power generation. Successful management of plant design information will mitigate the risks of the design and construction of future nuclear plants. Information management tools that can model the integrated delivery of large complex projects enable the project owners to accurately evaluate project progress, as well as the economic impact of regulatory, political, or market activities not anticipated in the project execution plan. Significant differences exist in the electrical energy markets, project delivery models, and fuel availability between continents and countries. However, each market and project delivery model is challenged by the need to produce economical electrical energy. The information management system presented in this paper provides a means to capture in a single integrated computerized database the design information developed during plant design, procurement, and construction and to allow this information to be updated and retrieved in real time by all project participants. Utilization of the information management system described herein will enable diverse project teams to rapidly and reliably input, share, and retrieve power plant information, thereby supporting project management's goal to make good on its commitment to the economic promise of tomorrow's nuclear electrical power generation by achieving cost-effective construction. (authors)

  16. Thermochemical Process Integration, Scale-Up, and Piloting Publications |

    Science.gov (United States)

    ) Material and Energy Balances Capital and Operating Cost Estimates Discounted Cash Flow Analysis Minimal Estimates; and Project Financing Assumptions Discounted Cash Flow Analysis. Enlarge image Process Design and model at lower alcohol synthesis pressure with respect to the design case. Costs include Capital

  17. Energy absorption and exposure build-up factors in teeth

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Rudraswamy, B.

    2010-01-01

    Full text: Gamma and X-radiation are widely used in medical imaging and radiation therapy. The user of radioisotopes must have knowledge about how radiation interacts with matter, especially with the human body, because when photons enter the medium/body, they degrade their energy and build up in the medium, giving rise to secondary radiation which can be estimated by a factor which is called the 'build-up factor'. It is essential to study the exposure build up factor in radiation dosimetry. G.P. fitting method has been used to compute energy absorption and exposure build-up factor of teeth (enamel outer surface (EOS), enamel middle (EM), enamel dentin junction towards enamel (EDJE), enamel dentin junction towards dentin (EDJD), dentin middle (DM) and dentin inner surface (DIS)) for wide energy range (0.015 MeV-15 MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption and exposure build up factor on incident photon energy, Penetration depth and effective atomic number has also been assessed. The relative dose distribution at a distance r from the point source is also estimated. The computed exposure and absorption build-up factors are useful to estimate the gamma and Bremsstrahlung radiation dose distribution teeth which is useful in clinical dosimetry

  18. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr

    2016-08-01

    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  19. Office of Electricity Delivery and Energy Reliability (OE) National Energy Technology Laboratory (NETL) American Recovery and Reinvestment Act 2009 United States Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mohit [Seeo, Incorporated, Hayward, CA (United States); Grape, Ulrik [Seeo, Incorporated, Hayward, CA (United States)

    2014-07-29

    The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validate the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.

  20. Scaling-Up the Impact of Aflatoxin Research in Africa. The Role of Social Sciences

    Directory of Open Access Journals (Sweden)

    Francois Stepman

    2018-03-01

    Full Text Available At the interface between agriculture and nutrition, the aflatoxin contamination of food and feed touches on agriculture, health, and trade. For more than three decades now, the problem of aflatoxin has been researched in Africa. The interest of development cooperation for aflatoxin and the support to aflatoxin mitigation projects has its ups and downs. The academic world and the development world still seem to operate in different spheres and a collaboration is still challenging due to the complexity of the contamination sources at pre-harvest and post-harvest levels. There is a growing call by research funders and development actors for the impact of solutions at a scale. The solutions to mitigate aflatoxin contamination require new ways of working together. A more prominent role is to be played by social scientists. The role of social scientists in scaling-up the impact of aflatoxin research in Africa and the proposed mitigation solutions is to ensure that awareness, advantage, affordability, and access are systematically assessed. Aflatoxin-reduced staple foods and feed would be an agricultural result with a considerable health and food safety impact.

  1. Scaling up and out as a Pathway for Food System Transitions

    Directory of Open Access Journals (Sweden)

    Hannah Pitt

    2016-10-01

    Full Text Available This paper contributes to the understanding of sustainability transitions by analysing processes of scaling up and out as change pathway. It defines scaling up and out as a distinct form of policy transfer focused on programme implementation, with continuity of actors across jurisdictions. We detail how scaling up and out occurs, introducing a new mechanism to policy transfer frameworks. This is explicated through the case study of Food for Life (FFL, a civil society innovation programme promoting sustainable healthy food in public settings. We highlight why FFL was scaled up and out, how this was achieved, by whom, and the results and success factors. The case study demonstrates the importance of interrogating motivations for transferring policies, and how these influence whether successful outcomes are achieved. This requires a revised framework for analysing policy transfer, with greater attention to the links between motives and outcomes, and a less binary understanding of agents’ roles. Where scaling is the mode of policy transfer, we suggest that continuous involvement of at least one transfer agent across the process is significant to success. We conclude by highlighting implications for future research into policy transfer and food system transitions.

  2. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Appendix 2. Macro-economic Scenarios

    International Nuclear Information System (INIS)

    Banse, M.

    2009-03-01

    The Bio-based Raw Materials Platform (known as PGG), which is part of the Energy Transition programme in the Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to study the macro-economic impact of large-scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including techno-economic projections of fossil and bio-based conversion technologies and a top-down study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down study (part 2) including macro-economic modelling of (global) trade of biomass and fossil resources, are presented in this report

  3. Development and scale-up of the production process of NovoCell fuel cells; Desenvolvimento e 'scale-up' do processo de producao de celulas a combustivel NovoCell

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Dayse Caldas de; Souza, Adler de; Ferreira, Valdemar Stelita [NovoCell Sistemas de Energia S.A., Santa Barbara D' Oeste, SP (Brazil)

    2008-07-01

    Fuel cells present the potentiality to substitute the engines of internal combustion in vehicles and to supply energy for stationary use. This potentiality, however, not yet reflected in its introduction in the market with regular lines of production, because of its high cost and lack of criteria that demonstrate its reliability and durability. These subjects are the main goals of the programs of development of fuel cells worldwide. NovoCell is a Brazilian company whose objective is to develop and to produce hydrogen/air fuel cells for stationary generation. All the project is guided by the use of technologies/processes and materials that allow production in large scale and to a competitive cost, giving support to a continuous program of innovation and development of the product. In this work the technological solutions developed by the company are presented. (author)

  4. Technology-base research project for electrochemical storage report for 1981

    Science.gov (United States)

    McLarnon, F.

    1982-06-01

    The technology base research (TBR) project which provides the applied reseach base that supports all electrochemical energy storage applications: electric vehicles, electric load leveling, storage of solar electricity, and energy and resource conservation is described. The TBR identifies electrochemical technologies with the potential to satisfy stringent performance and economic requirements and transfer them to industry for further development and scale up. The TBR project consists of four major elements: electrochemical systems research, supporting research, electrochemical processes, and fuel cells for transportation. Activities in these four project elements during 1981 are summarized. Information is included on: iron-air batteries; aluminum-air batteries; lithium-metal sulfide cells; materials development for various batteries; and the characteristics of an NH3-air alkaline fuel cell in a vehicle.

  5. Energy Efficiency Measures to Incorporate into Remodeling Projects

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C. [Building America Research Alliance, Kent, WA (United States)

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of U.S. households compared to piecemeal remodeling efforts. In this report, the U.S Department of Energy Building America Retrofit Alliance research team examines the improvement of a home’s energy performance in an opportunistic way by examining what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for energy efficiency upgrades to occur at the same time as remodeling proejcts. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home’s energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  6. Financing of Renewable Energy Projects

    International Nuclear Information System (INIS)

    Santizo, Rodolfo; Berganza, Jose

    2000-01-01

    The paper describes the role of the Banco Centroamericano de Integracion Economica in financing renewable energy projects in Central America. Also decribes the different financing modes to the goverment and private sectors

  7. Bottom-Up Accountability Initiatives and Large-Scale Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    fuel/energy, climate, and finance has occurred and one of the most ... this wave of large-scale land acquisitions. In fact, esti- ... Environmental Rights Action/Friends of the Earth,. Nigeria ... map the differentiated impacts (gender, ethnicity,.

  8. Consequences of large-scale implementation of nuclear energy in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Brune, D.; Coenen, R.; Conrad, F.; Klein, S.; Paschen, H.

    1979-02-01

    In this part of the study, selected questions concerning the economic aspects of the large-scale implementation of nuclear energy are discussed. First, the future contribution of nuclear energy towards covering total expected energy demand is defined within the framework of model projections designed with a view to fulfilling important overall economic goals. A comparison of these model projections with the present situation regarding reveals discrepancies which might, in the case of prolonged delays, result in shortages of electricity supply in the mid-eighties. The potential impacts of such delays, especially with regard to the situation on the labour market, as well as strategies to avoid difficulties in the supply of electricity, are analysed. This is followed by a comparison of the costs of electricity generation by coal-fired and nuclear power plants and by an analysis of the problem of financing the further implementation of nuclear energy. In a final chapter, the importance of the export of nuclear power plants for the German nuclear industry and for the economy as a whole is discussed. (orig.) [de

  9. Progress in AMSC scale-up of second generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, 2 Technology Drive, Westborough, MA 01545 (United States)], E-mail: wzhang@amsuper.com; Rupich, M.W.; Schoop, U.; Verebelyi, D.T.; Thieme, C.L.H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S. [American Superconductor Corporation, 2 Technology Drive, Westborough, MA 01545 (United States)

    2007-10-01

    American Superconductor has successfully scaled up its low-cost, high volume second generation (2G) HTS wire process into pre-pilot scale production, with performance approaching first generation (1G) HTS wire. AMSC's manufacturing approach is based on RABiTS{sup TM}/MOD wide strip technology, with metal organic deposition (MOD) process for the YBCO layer and the Rolling Assisted Biaxially Textured Substrate (RABiTS) process for the template. In this paper, we review the status of the 2G manufacturing scale up at AMSC and describe the properties and architecture of the 2G wire being manufactured and developed for various applications.

  10. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  11. Behavioral responses of birds of prey to large scale energy development in southcentral Washington

    International Nuclear Information System (INIS)

    Fitzner, R.E.

    1985-02-01

    The types of raptorial and semi-raptorial birds that use the Hanford environs are discussed along with the impacts of past operations and the recent WPPSS project on their populations. These findings add to our understanding of the population dynamics of the birds of prey community at the Hanford Site and the expected impacts of the WPPSS energy facilities. The results may have implications toward other large scale energy facilities, and may aid us in management of bird of prey communities throughout the grasslands of the western United States. 110 refs., 5 figs., 4 tabs

  12. Low energy probes of PeV scale sfermions

    Energy Technology Data Exchange (ETDEWEB)

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  13. Energy transition is an opportunity to be seized. Proposals and actual measures to speed up energy transition in France - May 2017

    International Nuclear Information System (INIS)

    2017-05-01

    After having outlined that energy transition could bring actual answers to essential concerns perceived by French people (economy revitalisation, purchasing power, employment, safety, life quality, democracy), this publication contains proposals and suggests measures which aim at making the energy sector evolve, can be either transverse, sector-based or specific, and could give an impulse to the French energy transition. More particularly, these measures and proposals aim at amplifying and speeding up the evolutions of the legal framework, at setting the initiative of economic actors free, at organising the financing of energy transition, at improving the quality of life for all citizen, at ensuring the sharing of benefits, and at considering the different relevant scales (from the local one to the global one)

  14. NEDO geothermal energy subcommittee. 18th project report meeting; NEDO chinetsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Reporting on geothermal energy-related efforts, Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, explains the promotion of researches on geothermal energy exploitation, researches on small and medium scale geothermal binary power system utilization, researches on geothermal exploration technology verification, and joint researches on small scale geothermal exploration on remote islands. Achievement reports are delivered concerning geothermal survey technology verification involving the development of reservoir fluctuation probing technology, deep-seated geothermal resources survey, and international joint projects. Concerning the research cooperation promotion project, a joint research program is reported involving a comprehensive geothermal resources analysis system for a remote island in the eastern part of Indonesia. In relation with the development of thermal water power plants, reports are delivered on the development of a 10MW class demonstration plant, development of technologies (study of elements) for a hot dry rock power system, development of a hole bottom data detection system for drilling in thermal water, and the development of deep-seated geothermal resources sampling technologies. (NEDO)

  15. The success factors of scaling-up Estonian sexual and reproductive health youth clinic network--from a grassroots initiative to a national programme 1991-2013.

    Science.gov (United States)

    Kempers, Jari; Ketting, Evert; Chandra-Mouli, Venkatraman; Raudsepp, Triin

    2015-01-08

    A growing number of middle-income countries are scaling up youth-friendly sexual and reproductive health pilot projects to national level programmes. Yet, there are few case studies on successful national level scale-up of such programmes. Estonia is an excellent example of scale-up of a small grassroots adolescent sexual and reproductive health initiative to a national programme, which most likely contributed to improved adolescent sexual and reproductive health outcomes. This study; (1) documents the scale-up process of the Estonian youth clinic network 1991-2013, and (2) analyses factors that contributed to the successful scale-up. This research provides policy makers and programme managers with new insights to success factors of the scale-up, that can be used to support planning, implementation and scale-up of adolescent sexual and reproductive health programmes in other countries. Information on the scale-up process and success factors were collected by conducting a literature review and interviewing key stakeholders. The findings were analysed using the WHO-ExpandNet framework, which provides a step-by-step process approach for design, implementation and assessment of the results of scaling-up health innovations. The scale-up was divided into two main phases: (1) planning the scale-up strategy 1991-1995 and (2) managing the scaling-up 1996-2013. The planning phase analysed innovation, user organizations (youth clinics), environment and resource team (a national NGO and international assistance). The managing phase examines strategic choices, advocacy, organization, resource mobilization, monitoring and evaluation, strategic planning and management of the scale-up. The main factors that contributed to the successful scale-up in Estonia were: (1) favourable social and political climate, (2) clear demonstrated need for the adolescent services, (3) a national professional organization that advocated, coordinated and represented the youth clinics, (4) enthusiasm

  16. Coming up: energy from hot water wells

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.

    1982-06-17

    Britain's first commercial exploitation of geothermal energy, located at Southampton, is discused. The project will use a large aquifer with a temperature of 70/sup 0/C to heat a large shopping mall and office complex; the first heat should be produced in 1985. Also discussed is geothermal energy in the USA, Italy, Japan, Mexico, New Zealand, El Salvadore, Iceland, France, Hungary, and the USSR. (MJF)

  17. Derivatives in energy project finance

    International Nuclear Information System (INIS)

    Spencer, Lloyd

    1999-01-01

    This chapter focuses on risk management of merchant power generation projects and describes project finance as balancing risk and reward over time. The historical background to risk management is traced, and the case for derivatives in energy project finance is put forward with the hedging of forward output, and forwards and power purchase agreements discussed. Current and prospective usage, and the implementation issues of market liquidity, margin calls, letters of credit, derivative counterparty credit risk, and accounting policy are considered. A detailed example of a gas-fired plant in the US is presented with details given of the distribution of project earnings before tax. Oil field operating cashflows are examined, with reserved flow models, leverage effects, and price hedging addressed

  18. Scaling-up voluntary medical male circumcision - what have we learned?

    Science.gov (United States)

    Ledikwe, Jenny H; Nyanga, Robert O; Hagon, Jaclyn; Grignon, Jessica S; Mpofu, Mulamuli; Semo, Bazghina-Werq

    2014-01-01

    In 2007, the World Health Organization (WHO) and the joint United Nations agency program on HIV/AIDS (UNAIDS) recommended voluntary medical male circumcision (VMMC) as an add-on strategy for HIV prevention. Fourteen priority countries were tasked with scaling-up VMMC services to 80% of HIV-negative men aged 15-49 years by 2016, representing a combined target of 20 million circumcisions. By December 2012, approximately 3 million procedures had been conducted. Within the following year, there was marked improvement in the pace of the scale-up. During 2013, the total number of circumcisions performed nearly doubled, with approximately 6 million total circumcisions conducted by the end of the year, reaching 30% of the initial target. The purpose of this review article was to apply a systems thinking approach, using the WHO health systems building blocks as a framework to examine the factors influencing the scale-up of the VMMC programs from 2008-2013. Facilitators that accelerated the VMMC program scale-up included: country ownership; sustained political will; service delivery efficiencies, such as task shifting and task sharing; use of outreach and mobile services; disposable, prepackaged VMMC kits; external funding; and a standardized set of indicators for VMMC. A low demand for the procedure has been a major barrier to achieving circumcision targets, while weak supply chain management systems and the lack of adequate financial resources with a heavy reliance on donor support have also adversely affected scale-up. Health systems strengthening initiatives and innovations have progressively improved VMMC service delivery, but an understanding of the contextual barriers and the facilitators of demand for the procedure is critical in reaching targets. There is a need for countries implementing VMMC programs to share their experiences more frequently to identify and to enhance best practices by other programs.

  19. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    International Nuclear Information System (INIS)

    Rai, Varun; Victor, David G.; Thurber, Mark C.

    2010-01-01

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO 2 -scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  20. Carbon capture and storage at scale. Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun; Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost. (author)

  1. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun, E-mail: varun@stanford.ed [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States); Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  2. Financial Energy Conservation Projects at Independent Colleges and Universities.

    Science.gov (United States)

    Morrell, L. R.

    1981-01-01

    Factors affecting financial decisions for energy conservation projects at independent colleges and universities and methods that may be used when making a financial investment decision are examined, along with sources of funding for the projects. Projects that result in the conservation of energy resources might, in a time of extreme shortages,…

  3. Regional new energy vision formulation project for Kanai Town. Fiscal 2001 report; 2001 nendo Kanai machi chiiki shin energy vision sakutei tou jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For promoting the introduction of new energy and for enhancing people's consciousness of such at Kanai Town, Niigata Prefecture, surveys and studies were conducted involving energy demand of the town, the amount of new energy resources in existence, and new energy introduction projects, and a vision was formulated. The town demands 541,062 GJ/year in energy, with the residential/commercial sector requiring approximately 46%, the industrial sector approximately 30%, and the transportation sector approximately 25%. The energy types are kerosene, heavy oils, gas oil, electric power, gasoline, and LPG, mentioned in the descending order in terms of magnitude of requirement. The resultant amount of carbon dioxide is estimated at 11,449 t-C. New energy introduction projects were discussed, which included photovoltaic power generation for primary and junior high schools, the town office, and the Dorin stock farm; a solar heat utilization system for the school meal center; wind power generation for Hometown Kimpoku, primary schools, and the Dorin stock farm; mini-scale hydroelectric power generation on the Shimpo river; use of forestry biomass (pellet stoves) at nursery schools; introduction of clean-energy automobiles for public use; and the introduction of cogeneration into Sado Hospital. (NEDO)

  4. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  5. European project Educa-RUE: An example of energy efficiency paths in educational buildings

    International Nuclear Information System (INIS)

    Desideri, Umberto; Leonardi, Daniela; Arcioni, Livia; Sdringola, Paolo

    2012-01-01

    Highlights: ► European project aimed at improving energy performance in educational buildings. ► Development and updating of technical competence through training courses. ► Development of “Educa-RUE method”, a model of energy management for public buildings. ► Local Energy Plans, based on environmentally friendly criteria. ► Results obtained by testing and proving Educa-RUE method in different regional areas. -- Abstract: The aim of Educa-RUE project is to improve energy performance in building sector at local level and with particular attention to educational buildings, by promoting the ability of local players to guide and orient initiatives, designed to encourage energy saving by means of specific measures and integrated tools. The project is therefore focused to speed up the implementation of European Directive on Energy Performance in Buildings, EPBD (2002/91/EC), in Member States at local government level and to ensure its operability, within the various national legislations of reference. Educa-RUE lasted 30 months, from January 2008 to June 2010, and involved the following eight partners: for Italy, Provinces of Potenza (project leader), Perugia, Rieti and Palermo; for other Countries, Climate Energy Ltd. Essex and Energy Solutions North West London (UK), Associación Aragonesa de Entidades Locales ASAEL (Spain), Municipality of Prenzlau (Germany). A number of closely interconnected actions were carried on in eight Work Packages (WPs) to face the energy efficiency aspects identified as primary problems by the partners. The project developed a model process, known as “Educa-RUE method”, to assess possible policies of intervention on educational buildings, owned or managed by each Partner. In particular the Province of Perugia, leader of WP 2 and 5, provided guide lines and tools in order to: identify the state of the art of EPBD implementation and the main non-technological barriers, which are preventing its application at local level

  6. Pinon Pine power project nears start-up

    Energy Technology Data Exchange (ETDEWEB)

    Tatar, G.A. [Sierra Pacific Power Co., Reno, NV (United States); Gonzalez, M. [Foster Wheeler USA Corp., Clinton, NJ (United States); Mathur, G.K. [M.W. Kellogg Co., Houston, TX (United States)

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing of the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.

  7. Laguna Verde: a 120% extended power up-rate project developed by Iberdrola

    International Nuclear Information System (INIS)

    Merino Teillet, A.; Garcia-Serrano Tapia, J. L.; Ruiz Gutierrez, L.

    2010-01-01

    The experience which this document wants to present, describes the work being developed by IBERDROLA Ingenieria y Construccion, for the Laguna Verde plant in Mexico, owned by the Federal Electricity Commission (CFE). This generation plant consists of two light boiling water type units (BWR) design by General Electric in the 80's. The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Up-rate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power, whilst upgrading and renovating plant equipment and installations to achieve a license renewal from 40 to 60 years of operation The consortium formed in 97% by IBERDROLA Ingenieria y Construccion SAU and in 3% by ALSTOM Mexicana, S.A. de CV, was awarded the contract in an international bid, competing against General Electric and Siemens. The project began in March 2007 and is scheduled to finalize in December 2010. At this point the work carried out include modifications of the main condenser replacement, moisture separator reheaters (MSR's) and feedwater heaters no. 5 and 6 in the two units, therefore having executed two out of four scheduled outages. The scope, development and organization of this project, whose basic elements include the design, engineering, training, supply of equipment, dismantling, installation, testing, commissioning, treatment and delivery of radioactive waste generated during the project implementation to CFE, is aimed to ensure a safe and reliable operation of the plant under the new conditions of increased thermal power of the reactor, with a thermal cycle optimized so that the gross power of the generator increase from the current 686.7 MWe to a value of 817.1 MWe in both units. An Extended Power Up-rate means an opportunity to modernize equipments, to improve maintenance, to get a better plant knowledge and to motivate the employees facing a challenging project. This project, being the

  8. Environmental impact evaluation from large energy projects; Avaliacao de impacto ambiental de grandes projetos energeticos

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Alberto [Bahia Univ., Salvador, BA (Brazil)

    1985-12-31

    This paper builds up theoretical framework and methodological approaches to assess environmental impacts from large energy projects. It aims towards the definition of concrete tools, and technical proceedings to allow identification and quantification (or weighing) of effects on the natural and social environment. The environmental impacts assessment, (EIA), studies are described as important instruments in planning and in the choice of alternative energy policies. (author). 15 refs., 2 figs

  9. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 3: converting wood fuel to energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  10. Key aspects to perform a project on energy management

    International Nuclear Information System (INIS)

    Bachini, R.

    1993-01-01

    A general overview on elements and organisms playing a key role to launch a new industrial project is given, taking as base case an energy management project. Likewise the problematic of training personnel involved in the project is analyzed. Energy management becomes crucial in industries where energy costs represent a big portion of the whole production cost. Main aspects to be analyzed are: - Adequate production procedures to be competitive - Environment protection regarding waste management - Maximization of safety at production installations. (Author)

  11. Floating attenuator wave energy device: Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes research funded by the Department of Trade and Industry (DTI) into the feasibility of developing and constructing a floating attenuator wave energy device known as HYDRA following initial studies by Wavegen. HYDRA is a floating externally tensioned articulated raft wave energy generator based on work by Professor FJM Farley and colleagues during the 1980s. The project's first four work tasks confirmed the theoretical potential of the device but also highlighted significant practical problems in translating that potential into a viable design. It was therefore decided not to proceed further, i.e. not to construct and test a prototype device. The report provides a general description of the device and describes the results of the initial analysis and the first series of model tests. It then discusses device design and component testing and explains the methodology for determining device performance at a particular site and mathematical modelling of a one-third scale device. To help future research and development programmes, the report emphasises the generic problems associated with the development of wave devices.

  12. Attractiveness Evaluation of Investment in Wind Energy Projects

    Directory of Open Access Journals (Sweden)

    Paulius Rudzkis

    2012-07-01

    Full Text Available Last decade as prices of fossil energy resources were almost constantly going upwards, increasing flow of investments is directed to renewable energy resources. Development and application of green energy became one of priority objectives in many countries. While in the context of wind energy production Lithuania lags behind the EU average, its potential of wind energy usage has great perspective. In this article using random processes, cost-benefit and financial analysis, attractiveness of investment in wind energy projects is examined. Given the stochastic nature of wind energy and by looking into investment profitableness and risk factors, effectiveness of wind turbine is evaluated. Analysis showed that wind energy projects could be considered as having high profit-to-risk factor and should generate significant interest of investment community.

  13. Energy reduction through voltage scaling and lightweight checking

    Science.gov (United States)

    Kadric, Edin

    As the semiconductor roadmap reaches smaller feature sizes and the end of Dennard Scaling, design goals change, and managing the power envelope often dominates delay minimization. Voltage scaling remains a powerful tool to reduce energy. We find that it results in about 60% geomean energy reduction on top of other common low-energy optimizations with 22nm CMOS technology. However, when voltage is reduced, it becomes easier for noise and particle strikes to upset a node, potentially causing Silent Data Corruption (SDC). The 60% energy reduction, therefore, comes with a significant drop in reliability. Duplication with checking and triple-modular redundancy are traditional approaches used to combat transient errors, but spending 2--3x the energy for redundant computation can diminish or reverse the benefits of voltage scaling. As an alternative, we explore the opportunity to use checking operations that are cheaper than the base computation they are guarding. We devise a classification system for applications and their lightweight checking characteristics. In particular, we identify and evaluate the effectiveness of lightweight checks in a broad set of common tasks in scientific computing and signal processing. We find that the lightweight checks cost only a fraction of the base computation (0-25%) and allow us to recover the reliability losses from voltage scaling. Overall, we show about 50% net energy reduction without compromising reliability compared to operation at the nominal voltage. We use FPGAs (Field-Programmable Gate Arrays) in our work, although the same ideas can be applied to different systems. On top of voltage scaling, we explore other common low-energy techniques for FPGAs: transmission gates, gate boosting, power gating, low-leakage (high-Vth) processes, and dual-V dd architectures. We do not scale voltage for memories, so lower voltages help us reduce logic and interconnect energy, but not memory energy. At lower voltages, memories become dominant

  14. Estimating the electricity prices, generation costs and CO_2 emissions of large scale wind energy exports from Ireland to Great Britain

    International Nuclear Information System (INIS)

    Cleary, Brendan; Duffy, Aidan; Bach, Bjarne; Vitina, Aisma; O’Connor, Alan; Conlon, Michael

    2016-01-01

    The share of wind generation in the Irish and British electricity markets is set to increase by 2020 due to renewable energy (RE) targets. The United Kingdom (UK) and Ireland have set ambitious targets which require 30% and 40% of electricity demand to come from RE, mainly wind, by 2020, respectively. Ireland has sufficient indigenous onshore wind energy resources to exceed the RE target, while the UK faces uncertainty in achieving its target. A possible solution for the UK is to import RE directly from large scale onshore and offshore wind energy projects in Ireland; this possibility has recently been explored by both governments but is currently on hold. Thus, the aim of this paper is to estimate the effects of large scale wind energy in the Irish and British electricity markets in terms of wholesale system marginal prices, total generation costs and CO_2 emissions. The results indicate when the large scale Irish-based wind energy projects are connected directly to the UK there is a decrease of 0.6% and 2% in the Irish and British wholesale system marginal prices under the UK National Grid slow progression scenario, respectively. - Highlights: • Modelling the Irish and British electricity markets. • Investigating the impacts of large scale wind energy within the markets. • Results indicate a reduction in wholesale system marginal prices in both markets. • Decrease in total generation costs and CO_2 emissions in both markets.

  15. Scaling Up Cortical Control Inhibits Pain

    Directory of Open Access Journals (Sweden)

    Jahrane Dale

    2018-05-01

    Full Text Available Summary: Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain. : Dale et al. find that acute pain increases activity levels in the prefrontal cortex. Chronic pain reduces both basal spontaneous and pain-evoked activity in this region, whereas neurostimulation to restore basal activities can in turn enhance nociception-evoked prefrontal activities to inhibit pain. Keywords: chronic pain, neuromodulation, prefrontal cortex, PFC, cortical gain control

  16. An efficient permeability scaling-up technique applied to the discretized flow equations

    Energy Technology Data Exchange (ETDEWEB)

    Urgelli, D.; Ding, Yu [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  17. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  18. Renewable Energy Project Development Assistance (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  19. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    Directory of Open Access Journals (Sweden)

    A. Paulin Florence

    2016-01-01

    Full Text Available Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  20. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  1. Energy Design Plugin: An EnergyPlus Plugin for SketchUp; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P. G.; Torcellini, P. A.; Crawley, D. B.

    2008-08-01

    This paper describes the Energy Design Plugin, a new software plugin that aims to integrate simulation as a tool during the earliest phases of the design process. The plugin couples the EnergyPlus whole-building simulation engine to the Google SketchUp drawing program.

  2. Renewable energy projects in small island countries funded under the United Nation trust found for new and renewable source of energy (NRSE)

    International Nuclear Information System (INIS)

    Gururaja, J.

    1999-01-01

    The NRSE trust fund established with financial support from the Italian Government has succeeded in catalyzing a number of energy projects in small island developing countries. These projects have elicited a great deal of interest by local communities and opened up prospects for further utilization of locally available energy resources. The projects have created a positive impact on the quality of life of people in dispersed locations in small island developing countries by focusing on provision of renewable energy based electricity services such as solar PV lighting for homes, schools, and hospitals; radio, TV, VCR as well as medicine refrigerators. Thus it has become evident that renewable energy technologies such as solar and wind systems can have an important role to play in improving the quality of life of people in these small island countries. Market potential for these technologies is indeed substantial. However constraints and barriers still exist. One of the principal barriers is still the high initial cost of solar devices. Innovative financing including microcredit facilities needs to be explored. Efforts are also needed to strengthen local capacity to undertake assembly of components and systems, and also in the installation, maintenance, and service of renewable energy devices. Entrepreneurial activities need to be fostered through further strengthening of skills in this area. (EHS)

  3. Renewable energy projects in small island countries funded under the United Nation trust found for new and renewable source of energy (NRSE)

    Energy Technology Data Exchange (ETDEWEB)

    Gururaja, J. [Energy and Transport Branch, Division for Sustainabel Development, Department of Economic and Social Affairs, United Nations, NY (United States)

    1999-11-01

    The NRSE trust fund established with financial support from the Italian Government has succeeded in catalyzing a number of energy projects in small island developing countries. These projects have elicited a great deal of interest by local communities and opened up prospects for further utilization of locally available energy resources. The projects have created a positive impact on the quality of life of people in dispersed locations in small island developing countries by focusing on provision of renewable energy based electricity services such as solar PV lighting for homes, schools, and hospitals; radio, TV, VCR as well as medicine refrigerators. Thus it has become evident that renewable energy technologies such as solar and wind systems can have an important role to play in improving the quality of life of people in these small island countries. Market potential for these technologies is indeed substantial. However constraints and barriers still exist. One of the principal barriers is still the high initial cost of solar devices. Innovative financing including microcredit facilities needs to be explored. Efforts are also needed to strengthen local capacity to undertake assembly of components and systems, and also in the installation, maintenance, and service of renewable energy devices. Entrepreneurial activities need to be fostered through further strengthening of skills in this area. (EHS)

  4. Dimensionless energy confinement scaling in W7-AS

    International Nuclear Information System (INIS)

    Preuss, R.; Dose, V.

    2001-01-01

    Energy confinement in W7-AS has been analyzed in terms of dimensionally exact form free functions employing Bayesian probability theory. The confinement function was set up as a linear combination of dimensionally exact power law terms as already proposed very early by Connor and Taylor. Generation of this expansion basis is dictated by the basic plasma model which one assumes. Based upon data accumulated in W7-AS, which contains the energy content for a wide variety of variable settings, predictions for single variable scans are made. The scaling functions for density and power scans, respectively, are in quantitative agreement with data collected in W7-AS. The result of a single variable scan is therefore already hidden in the data obtained for arbitrary variable choices and can be extracted from the latter by a proper data analysis. Furthermore, the optimal model for the description of the global transport in W7-AS is identified as the collisional low beta kinetic model. (author)

  5. Dimensionless energy confinement scaling in W7-AS

    International Nuclear Information System (INIS)

    Preuss, R.; Dose, V.; Linden, W. von der

    1999-01-01

    Energy confinement in W7-AS has been analyzed in terms of dimensionally exact form free functions employing Bayesian probability theory. The confinement function was set up as a linear combination of dimensionally exact power law terms as already proposed very early by Connor and Taylor. Generation of this expansion basis is dictated by the basic plasma model which one assumes. Based upon data accumulated in W7-AS, which contains the energy content for a wide variety of variable settings, predictions for single variable scans are made. The scaling functions for density and power scans, respectively, are in quantitative agreement with data collected in W7-AS. The result of a single variable scan is therefore already hidden in the data obtained for arbitrary variable choices and can be extracted from the latter by a proper data analysis. Furthermore, the optimal model for the description of the global transport in W7-AS is identified as the collisional low beta kinetic model. (author)

  6. Scaling up success to improve health: Towards a rapid assessment guide for decision makers

    Directory of Open Access Journals (Sweden)

    Jason Paltzer

    2015-01-01

    Full Text Available Introduction Evidence-based health interventions exist and are effectively implemented throughout resource-limited settings. The literature regarding scale-up strategies and frameworks is growing. The purpose of this paper is to identify and systematically document the variation in scale-up strategies to develop a rapid assessment tool for decision-makers looking to identify the most appropriate strategy for their organizational and environmental contexts. Methods A list of scale-up strategies and frameworks were identified through an in-depth literature review and conversations with scale-up and quality improvement leaders. The literature search included a broad range of terms that might be used interchangeably with scale-up of best practices. Terms included: implementation research, knowledge translation, translational research, quality improvement research, health systems improvement, scale-up, best practices, improvement collaborative, and community based research. Based on this research, 18 strategies and frameworks were identified, and nine met our inclusion criteria for scale-up of health-related strategies. We interviewed the key contact for four of the nine strategies to obtain additional information regarding the strategy’s scale-up components, targets, underlying theories, evaluation efforts, facilitating factors, and barriers. A comparative analysis of common elements and strategy characteristics was completed by two of the authors on the nine selected strategies. Key strategy characteristics and common factors that facilitate or hinder the strategy’s success in scaling up health-related interventions were identified. Results Common features of scale-up strategies include: 1 the development of context-specific evidence; 2 collaborative partnerships; 3 iterative processes; and 4 shared decision-making. Facilitating factors include strong leadership, community engagement, communication, government collaboration, and a focus on

  7. Review of Tank Lay-Up Status at US Department of Energy Radioactive Waste Tank Sites

    International Nuclear Information System (INIS)

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    During fiscal year (FY) 2001 as part of a Tanks Focus Area strategic initiative, tank lay-up options were developed and evaluated for the two high-level waste (HLW) storage tanks at the West Valley Demonstration Project. As follow-on task, a list of key waste tank contacts throughout the US Department of Energy complex was developed. Visits were then made to the primary DOE sites with radioactive waste storage tanks to discuss the concept and applicability of tank lay-up. This report documents the results of individual discussions with tank closure staff at the four DOE Sites concerning tank closure status and plans as well as lay-up options and activities

  8. Improved parametrization of K+ production in p-Be collisions at low energy using Feynman scaling

    International Nuclear Information System (INIS)

    Mariani, C.; Cheng, G.; Shaevitz, M. H.; Conrad, J. M.

    2011-01-01

    This paper describes an improved parametrization for proton-beryllium production of secondary K + mesons for experiments with primary proton beams from 8.89 to 24 GeV/c. The parametrization is based on Feynman scaling in which the invariant cross section is described as a function of x F and p T . This method is theoretically motivated and provides a better description of the energy dependence of kaon production at low beam energies than other parametrizations such as the commonly used modified Sanford-Wang model. This Feynman scaling parametrization has been used for the simulation of the neutrino flux from the Booster Neutrino Beam at Fermilab and has been shown to agree with the neutrino interaction data from the SciBooNE experiment. This parametrization will also be useful for future neutrino experiments with low primary beam energies, such as those planned for the Project X accelerator.

  9. 77 FR 31037 - Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in...

    Science.gov (United States)

    2012-05-24

    ...; AZA34425] Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in... of up to 2 years. This is for the purpose of processing one solar energy right-of-way (ROW) application submitted by Pacific Solar Investments, LLC, to construct and operate the Hyder Valley Solar...

  10. Inflation in random landscapes with two energy scales

    Science.gov (United States)

    Blanco-Pillado, Jose J.; Vilenkin, Alexander; Yamada, Masaki

    2018-02-01

    We investigate inflation in a multi-dimensional landscape with a hierarchy of energy scales, motivated by the string theory, where the energy scale of Kahler moduli is usually assumed to be much lower than that of complex structure moduli and dilaton field. We argue that in such a landscape, the dynamics of slow-roll inflation is governed by the low-energy potential, while the initial condition for inflation are determined by tunneling through high-energy barriers. We then use the scale factor cutoff measure to calculate the probability distribution for the number of inflationary e-folds and the amplitude of density fluctuations Q, assuming that the low-energy landscape is described by a random Gaussian potential with a correlation length much smaller than M pl. We find that the distribution for Q has a unique shape and a preferred domain, which depends on the parameters of the low-energy landscape. We discuss some observational implications of this distribution and the constraints it imposes on the landscape parameters.

  11. Scale-up operations of CuSOB4B-NaB2BSOB4B electrolytic ...

    African Journals Online (AJOL)

    Scale-up techniques were established for an Inclined Cathode Electrochemical Cell (ICEC) for the removal of copper ions from a CuSOB4B-NaB2BSOB4B solution at reduced operation power consumption. The scale-up relationshi-ps were derived and applied in conjunction with scale-up factors. With a scale-up factor of 2, ...

  12. Cooperation and communication challenges in small-scale eHealth development projects.

    Science.gov (United States)

    Petersen, Lone Stub; Bertelsen, Pernille; Bjørnes, Charlotte

    2013-12-01

    In eHealth development there is an increasing focus on user participation inspired by the information systems field of practice and research. There are, however, many other challenges in developing information systems that fit healthcare practices. One of these is the challenge of cooperation and communication in development projects that are initiated and managed by clinicians e.g. cooperating with IT professionals in 'bottom up' health informatics projects that have been initiated and are managed by healthcare professional project managers. The analysis and results are drawn from a qualitative case study on a systems development project that was managed by a local, non-technical, healthcare professional and the complex blend and interactions with the IT professionals in the phases of ideas, design, development, implementation, maintenance and distribution. We analyze the challenges of cooperation and communication using perspectives from information systems research and the concepts of 'language-games' and 'shared design spaces', and thereby exploring the boundaries between the different communication, practice and culture of the IT professionals and the healthcare professionals. There is a need to (a) develop a better understanding of the development process from the point of view of the 'user' and (b) tools for making technical knowledge explicit in the development process. Cooperative and communicative methods are needed that support and develop the shared design spaces between IT professionals and the clinical context in order to strengthen small-scale health information systems projects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Make-up wells drilling cost in financial model for a geothermal project

    Science.gov (United States)

    Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun

    2017-12-01

    After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.

  14. Regional energy projects in the Eurasian Area

    Directory of Open Access Journals (Sweden)

    Vesić Dobrica

    2012-03-01

    Full Text Available The Eurasian area has a very rich energy reserves, and is characterized by a complex network of relationships between major suppliers and consumers. The central place in this area has Russia as a country richest in energy resources in Eurasia. Beside her, the European Union is the largest economic and political grouping in the world, and a huge consumer of energy. The dynamic development of Chinese economy requires more energy imports by China. Dependence of the European Union and China on imported energy is high and will grow in the future. Russia is the world's dominant natural gas producer and one of the two largest oil producers in the world. Russia is the largest natural gas supplier of the EU and a significant oil and natural gas supplier of China. Energy projects in Eurasia are the result of the need to strengthen the stability of energy supplies, efforts to diversify sources of supply, and the geographic redistribution of Russian oil and gas exports. Although the interests of the main actors often do not agree, the reasons of energy security affect the development of joint energy projects.

  15. Renewable energy sources (RES) projects and their barriers on a regional scale: The case study of wind parks in the Dodecanese islands, Greece

    International Nuclear Information System (INIS)

    Oikonomou, Emmanouil K.; Kilias, Vassilios; Goumas, Aggelos; Rigopoulos, Alexandrous; Karakatsani, Eirini; Damasiotis, Markos; Papastefanakis, Dimitrios; Marini, Natassa

    2009-01-01

    The increasing energy challenges faced, in particular, by isolated communities, such as insular communities, call for an integrated, flexible and easy-to-apply methodology aiming at providing a list of renewable energy sources) (RES) projects capable to reduce green house gas (GHG) emissions, satisfy future energy forecasts and reach the objectives of international/national energy directives and obligations, as, for example, the ones set by the Kyoto Protocol by 2010. The EU project EMERGENCE 2010 developed such a methodology that is implemented here in the case study of wind parks in the Dodecanese islands in Greece. The results obtained consist of a final list of financially viable RES wind projects, for which various barriers have been previously identified and assessed. The additional advantages of the proposed methodology is that besides providing as an end result a comprehensive list of RES projects adopted to specific criteria and regional priorities, it also allows space for involving - from early stages - the local community and stakeholders in the decision-making process (participatory planning); in this way, the EMERGENCE 2010 methodology may assist towards the RES promotion and public acceptance, the profitability of RES investments and the regional sustainable development.

  16. Mapping practices of project management – merging top-down and bottom-up perspectives

    DEFF Research Database (Denmark)

    Thuesen, Christian

    2015-01-01

    This paper presents a new methodology for studying different accounts of project management practices based on network mapping and analysis. Drawing upon network mapping and visualization as an analytical strategy top-down and bottom-up accounts of project management practice are analysed...... and compared. The analysis initially reveals a substantial difference between the top-down and bottom-up accounts of practice. Furthermore it identifies a soft side of project management that is central in the bottom-up account but absent from the top-down. Finally, the study shows that network mapping...

  17. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. A Large Scale Problem Based Learning inter-European Student Satellite Construction Project

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Alminde, Lars; Bisgaard, Morten

    2006-01-01

    that electronic communication technology was vital within the project. Additionally the SSETI EXPRESS project implied the following problems it didn’t fit to a standard semester - 18 months for the satellite project compared to 5/6 months for a “normal” semester project. difficulties in integrating the tasks......A LARGE SCALE PROBLEM BASED LEARNING INTER-EUROPEAN STUDENT SATELLITE CONSTRUCTION PROJECT This paper describes the pedagogical outcome of a large scale PBL experiment. ESA (European Space Agency) Education Office launched January 2004 an ambitious project: Let students from all over Europe build....... The satellite was successfully launched on October 27th 2005 (http://www.express.space.aau.dk). The project was a student driven project with student project responsibility adding at lot of international experiences and project management skills to the outcome of more traditional one semester, single group...

  20. Regional new energy vision formulation project for Takarabe Town. Report; 2001 nendo Takarabe cho chiiki shin energy vision sakutei tou jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    For promoting the introduction of new energy and for elevating people's consciousness of such in Takarabe Town, Kagoshima Prefecture, surveys and studies were conducted concerning the energy consumption profile of the town, the amount of new energy resources in existence, and new energy introduction plans, and then a vision was formulated. The town's energy consumption is estimated at 879.350-million MJ/year, with the transportation sector responsible for 46.6%, the industrial sector for 23.0%, the residential sector for 18.7%, and the people's livelihood-related business sector for 11.7%. Oil-based fuels occupy 70.4%, electric power 18.9%, and LP gas 8.4%. New energy introduction projects were studied, which included the introduction of photovoltaic power into the town office; photovoltaic power and hybrid power-lighted light for an oasis-on-the-road project and school facilities; introduction of cogeneration, wind power, and photovoltaic power into a hot spa health center and a water-friendly park; small-scale hydropower in the Okawara valley; wind power generation on Mount Shiraga and Jingaoka; introduction of clean energy vehicles for official use; and compost manufacturing and power generation using livestock waste. (NEDO)