WorldWideScience

Sample records for energy resources including

  1. Survey of Public Understanding on Energy Resources including Nuclear Energy (I)

    International Nuclear Information System (INIS)

    Park, Se-Moon; Song, Sun-Ja

    2007-01-01

    Women in Nuclear-Korea (WINK) surveyed the public understanding on various energy resources in early September 2006 to offer the result for establishment of the nuclear communication policy. The reason why this survey includes other energy resources is because the previous works are only limited on nuclear energy, and also aimed to know the public's opinion on the present communication skill of nuclear energy for the public understanding. The present study is purposed of having data how public understands nuclear energy compared to other energies, such as fossil fuels, hydro power, and other sustainable energies. The data obtained from this survey have shown different results according to the responded group; age, gender, residential area, etc. Responded numbers are more than 2,000 of general public and university students. The survey result shows that nuclear understanding is more negative in women than in men, and is more negative in young than older age

  2. Energy Resource Planning. Optimal utilization of energy resources

    International Nuclear Information System (INIS)

    Miclescu, T.; Domschke, W.; Bazacliu, G.; Dumbrava, V.

    1996-01-01

    For a thermal power plants system, the primary energy resources cost constitutes a significant percentage of the total system operational cost. Therefore a small percentage saving in primary energy resource allocation cost for a long term, often turns out to be a significant monetary value. In recent years, with a rapidly changing fuel supply situation, including the impact of energy policies changing, this area has become extremely sensitive. Natural gas availability has been restricted in many areas, coal production and transportation cost have risen while productivity has decreased, oil imports have increased and refinery capacity failed to meet demand. The paper presents a mathematical model and a practical procedure to solve the primary energy resource allocation. The objectives is to minimise the total energy cost over the planning period subject to constraints with regards to primary energy resource, transportation and energy consumption. Various aspects of the proposed approach are discussed, and its application to a power system is illustrated.(author) 2 figs., 1 tab., 3 refs

  3. Unconventional Energy Resources: 2015 Review

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  4. Western Energy Corridor -- Energy Resource Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Roberts; Michael Hagood

    2011-06-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  5. Western Energy Corridor -- Energy Resource Report

    International Nuclear Information System (INIS)

    Roberts, Leslie; Hagood, Michael

    2011-01-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  6. Including alternative resources in state renewable portfolio standards: Current design and implementation experience

    International Nuclear Information System (INIS)

    Heeter, Jenny; Bird, Lori

    2013-01-01

    As of October 2012, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). Each state policy is unique, varying in percentage targets, timetables, and eligible resources. Increasingly, new RPS polices have included alternative resources. Alternative resources have included energy efficiency, thermal resources, and, to a lesser extent, non-renewables. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation. - Highlights: • Increasingly, new RPS policies have included alternative resources. • Nearly all states provide a separate tier or cap on the quantity of eligible alternative resources. • Where allowed, non-renewables and energy efficiency are being heavily utilized

  7. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  8. World energy resources. International Geohydroscience and Energy Research Institute

    International Nuclear Information System (INIS)

    Brown, C.E.

    2002-01-01

    World Energy Resources is an explanatory energy survey of the countries and major regions of the world, their geographic and economic settings, and significant inter-relationships. This book attempts to combine several interacting energy themes that encompass a historical development, energy issues and forecasts, economic geography, environmental programs, and world energy use. The main thrust of this book -World Energy Resources - is based on principles of energy science, applied geology, geophysics, and other environmental sciences as they relate to the exploration, exploitation, and production of resources in this country and throughout the world. This work is an analysis of the United States (USA) and world oil, gas, coal, and alternative energy resources and their associated issues, forecasts, and related policy. This book could not have been attempted without a broad geological exposure and international geographic awareness. Much information is scattered among federal and state agencies, schools, and other institutions, and this book has attempted to combine some of the vast information base. This attempt can only skim the information surface at best, but its regional and topical coverage is broad in scope. Part I introduces conventional energy resources and their historical developments, and includes chapters 1 to 7. The basic concepts and supporting facts on energy sources are presented here for the general education of energy analysts, policy makers, and scientists that desire a brief review of advanced technologies and history. Part II includes chapters 8 to 14 and provides discussions of the renewable energy sources and the available alternative energy sources and technologies to oil, gas, coal, and nuclear sources. Part III includes chapters 15 to 20 and provides an analysis of United States energy markets and forecasts through the first quarter of the 21st century, while including some world energy data. Widely-used energy forecasting models are

  9. A pre-feasibility case study on integrated resource planning including renewables

    International Nuclear Information System (INIS)

    Yilmaz, Pelin; Hakan Hocaoglu, M.; Konukman, Alp Er S.

    2008-01-01

    In recent years, economical and environmental constraints force governments and energy policy decision-makers to change the prominent characteristics of the electricity markets. Accordingly, depending on local conditions on the demand side, usage of integrated resource planning approaches in conjunction with renewable technologies has gained more importance. In this respect, an integrated resource planning option, which includes the design and optimization of grid-connected renewable energy plants, should be evaluated to facilitate a cost-effective and green solution to a sustainable future. In this paper, an integrated resource planning case is studied for an educational campus, located in Gebze, Turkey. It is found that for the considered campus, the integrated resource planning scenario that includes renewables as a supply-side option with existing time-of-use tariff may provide a cost-effective energy production, particularly for the high penetration level of the renewables

  10. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  11. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  12. World energy resources

    Science.gov (United States)

    Clerici, A.; Alimonti, G.

    2015-08-01

    As energy is the main "fuel" for social and economic development and since energy-related activities have significant environmental impacts, it is important for decision-makers to have access to reliable and accurate data in an user-friendly format. The World Energy Council (WEC) has for decades been a pioneer in the field of energy resources and every three years publishes its flagship report Survey of Energy Resources. A commented analysis in the light of latest data summarized in such a report, World Energy Resources (WER) 2013, is presented together with the evolution of the world energy resources over the last twenty years.

  13. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    Science.gov (United States)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  14. World energy resources

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available As energy is the main “fuel” for social and economic development and since energy-related activities have significant environmental impacts, it is important for decision-makers to have access to reliable and accurate data in an user-friendly format. The World Energy Council (WEC has for decades been a pioneer in the field of energy resources and every three years publishes its flagship report Survey of Energy Resources. A commented analysis in the light of latest data summarized in such a report, World Energy Resources (WER 2013, is presented together with the evolution of the world energy resources over the last twenty years.

  15. Federal Energy Resources Modernization Coordinating Committee

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G. B.

    1992-07-01

    This report summarizes the broad range of activities supported by Federal Energy Management Program (FEMP) and other federal agencies focused on meeting the President's Executive Order on Federal Energy Management promulgated to meet energy savings goals and encourage more efficient management of all federal energy resources. These activities are reported semiannually under the auspices of the FERM Coordinating Committee, and as such include activities undertaken from October 1, 1991, through March 31, 1992. The activities reported are classified into four major categories: (1) technology-base support, which includes development of processes, software, metering and monitoring equipment and strategies, and other tools for the federal energy manager to better understand and characterize their energy resources; (2) federal energy systems testing and monitoring; (3) federal energy systems modernization projects at federal installations in cooperation with the utilities serving the sites; and (4) energy supply, distribution and end-use conservation assessment for federal agencies and/or facilities.

  16. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  17. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  18. The U.S.Geological Survey Energy Resources Program

    Science.gov (United States)

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  19. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  20. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  1. Education Program on Fossil Resources Including Coal

    Science.gov (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  2. Inventory of Canadian marine renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, A. [National Research Council of Canada, Ottawa, ON (Canada). Canadian Hydraulics Centre; Tarbotton, M. [Triton Consultants Ltd., Vancouver, BC (Canada)

    2006-07-01

    The future development of marine renewable energy sources was discussed with reference to an inventory of both wave energy and tidal current resources in Canada. Canada is endowed with rich potential in wave energy resources which are spatially and temporally variable. The potential offshore resource is estimated at 37,000 MW in the Pacific and 145,000 MW in the Atlantic. The potential nearshore resource is estimated at 9,600 MW near the Queen Charlotte Islands, 9,400 MW near Vancouver Island, 1,000 MW near Sable Island, and 9,000 MW near southeast Newfoundland. It was noted that only a fraction of the potential wave energy resource is recoverable and further work is needed to delineate important local variations in energy potential close to shore. Canada also has rich potential in the tidal resource which is highly predictable and reliable. The resource is spatially and temporally variable, with 190 sites in Canada with an estimated 42,200 MW; 89 sites in British Columbia with an estimated 4,000 MW; and, 34 sites in Nunavut with an estimated 30,500 MW. It was also noted that only a fraction of the potential tidal resource is recoverable. It was suggested that the effects of energy extraction should be evaluated on a case-by-case basis for both wave and tidal energy. This presentation provided a site-by site inventory as well as an analysis of buoy measurements and results from wind-wave hindcasts and tide models. Future efforts will focus on wave modelling to define nearshore resources; tidal modelling to fill gaps and refine initial estimates; assessing impacts of energy extraction at leading sites; and developing a web-enabled atlas of marine renewable energy resources. The factors not included in this analysis were environmental impacts, technological developments, climate related factors, site location versus power grid demand, hydrogen economy developments and economic factors. tabs., figs.

  3. Distributed energy resources scheduling considering real-time resources forecast

    DEFF Research Database (Denmark)

    Silva, M.; Sousa, T.; Ramos, S.

    2014-01-01

    grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper......, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used....

  4. Interconnection of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  5. Day-ahead resource scheduling including demand response for electric vehicles

    DEFF Research Database (Denmark)

    Soares, Joao; Morais, Hugo; Sousa, Tiago

    2014-01-01

    Summary form only given. The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering...

  6. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  7. Resources | Energy Plan

    Science.gov (United States)

    Skip to main content Navigate Up This page location is: Department for Energy Development and Independence Department for Energy Development and Independence Resources Pages EnergyPlan Sign In Ky.gov An Official Website of the Commonwealth of Kentucky Energy and Environment Cabinet Department for Energy

  8. Assessment of rural energy resources

    International Nuclear Information System (INIS)

    Rijal, K.; Bansal, N.K.; Grover, P.D.

    1990-01-01

    This article presents the methodological guidelines used to assess rural energy resources with an example of its application in three villages each from different physiographic zones of Nepal. Existing energy demand patterns of villages are compared with estimated resource availability, and rural energy planning issues are discussed. Economics and financial supply price of primary energy resources are compared, which provides insight into defective energy planning and policy formulation and implication in the context of rural areas of Nepal. Though aware of the formidable consequences, the rural populace continues to exhaust the forest as they are unable to find financially cheaper alternatives. Appropriate policy measures need to be devised by the government to promote the use of economically cost-effective renewable energy resources so as to change the present energy usage pattern to diminish the environmental impact caused by over exploitation of forest resources beyond their regenerative capacity

  9. Terminology Guideline for Classifying Offshore Wind Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conforming to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.

  10. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E. A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  11. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  12. Energy for lunar resource exploitation

    Science.gov (United States)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  13. Renewable energy resources: Opportunities and constraints 1990-2020

    International Nuclear Information System (INIS)

    1993-09-01

    This study examined the prospects for new renewable energy resources, from a global perspective, over the next three decades and beyond. The study is intended to support the work of the World Energy Council (WEC) Commission on Energy for Tomorrow's World. The new renewable resources investigated were: Solar; wind; geothermal; modern biomass; ocean; small hydro. Each of these areas was thoroughly researched and was the subject of a separate section of the report. Recent information on large-scale hydroelectric and traditional biomass is included for added perspective on total use of renewable energy, but both fall outside the definition of new renewable energy used in this report

  14. USGS research on energy resources, 1986; program and abstracts

    Science.gov (United States)

    Carter, Lorna M.H.

    1986-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the second V. E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Energy Resources-1986." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and Win foster closer cooperation between organizations and individuals. The Forum was named after former Director Vincent E. McKelvey in recognition of his lifelong contributions to research, development, and administration in mineral and energy resources, as a scientist, as Chief Geologist, and as Director of the U.S. Geological Survey. The Forum will be an annual event, and its subject matter will alternate between mineral and energy resources. We expect that the format will change somewhat from year to year as various approaches are tried, but its primary purpose will remain the same: to encourage direct communication between USGS scientists and the representatives of other earth-science related organizations. Energy programs of the USGS include oil and gas, coal, geothermal, uranium-thorium, and oil shale; work in these programs spans the national domain, including surveys of the offshore Exclusive Economic Zone. The topics selected for presentation at this McKelvey Forum represent an overview of the scientific breadth of USGS research on energy resources. They include aspects of petroleum occurrence in Eastern United States rift basins, the origin of magnetic anomalies over oil fields, accreted terranes and energy-resource implications, coal

  15. National Renewable Energy Laboratory 2001 Information Resources Catalog

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    The National Renewable Energy Laboratory's (NREL) eighth annual Information Resources Catalog can help keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. The catalog includes five main sections with entries grouped according to subject area.

  16. Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm

    International Nuclear Information System (INIS)

    Soheyli, Saman; Shafiei Mayam, Mohamad Hossein; Mehrjoo, Mehri

    2016-01-01

    Highlights: • Considering renewable energy resources as the main prime movers in CCHP systems. • Simultaneous application of FEL and FTL by optimizing two probability functions. • Simultaneous optimization the equipment and penalty factors by CC-MOPSO algorithm. • Reducing fuel consumption and pollution up to 263 and 353 times, respectively. - Abstract: Due to problems, such as, heat losses of equipment, low energy efficiency, increasing pollution and the fossil fuels consumption, combined cooling, heating, and power (CCHP) systems have attracted lots of attention during the last decade. In this paper, for minimizing fossil fuel consumption and pollution, a novel CCHP system including photovoltaic (PV) modules, wind turbines, and solid oxide fuel cells (SOFC) as the prime movers is considered. Moreover, in order to minimize the excess electrical and heat energy production of the CCHP system and so reducing the need for the local power grid and any auxiliary heat production system, following electrical load (FEL) and following thermal load (FTL) operation strategies are considered, simultaneously. In order to determine the optimal number of each system component and also set the penalty factors in the used penalty function, a co-constrained multi objective particle swarm optimization (CC-MOPSO) algorithm is applied. Utilization of the renewable energy resources, the annual total cost (ATC) and the CCHP system area are considered as the objective functions. It also includes constraints such as, loss of power supply probability (LPSP), loss of heat supply probability (LHSP), state of battery charge (SOC), and the number of each CCHP component. A hypothetical hotel in Kermanshah, Iran is conducted to verify the feasibility of the proposed system. 10 wind turbines, 430 PV modules, 11 SOFCs, 106 batteries and 2 heat storage tanks (HST) are numerical results for the spring as the best season in terms of decreasing cost and fuel consumption. Comparing the results

  17. 2007 Survey of Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This WEC study is a unique comprehensive compilation of global energy resources. Complementing the BP Statistical Review and the World Energy Outlook, it details 16 key energy resources with the latest data provided by 96 WEC Member Committees worldwide. This highly regarded publication is an essential tool for governments, NGOs, industry, academia and the finance community. This 21st edition is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy.

  18. 2007 Survey of Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This WEC study is a unique comprehensive compilation of global energy resources. Complementing the BP Statistical Review and the World Energy Outlook, it details 16 key energy resources with the latest data provided by 96 WEC Member Committees worldwide. This highly regarded publication is an essential tool for governments, NGOs, industry, academia and the finance community. This 21st edition is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy.

  19. Summary of the mineral- and energy-resource endowment, BLM roswell resource area, east-central New Mexico

    Science.gov (United States)

    Bartsch-Winkler, S.; Sutphin, D.M.; Ball, M.M.; Korzeb, S.L.; Kness, R.F.; Dutchover, J.T.

    1993-01-01

    In this summary of two comprehensive resource reports produced by the U.S. Bureau of Mines and the U.S. Geological Survey for the U.S. Bureau of Land Management, we discuss the mineral- and energyresource endowment of the 14-millon-acre Roswell Resource Area, New Mexico, managed by the Bureau of Land Management. The Bureau and Survey reports result from separate studies that are compilations of published and unpublished data and integrate new findings on the geology, geochemistry, geophysics, mineral, industrial, and energy commodities, and resources for the seven-county area. The reports have been used by the Bureau of Land Management in preparation of the Roswell Resource Area Resource Management Plan, and will have future use in nationwide mineral- and energy-resource inventories and assessments, as reference and training documents, and as public-information tools. In the Roswell Resource Area, many metals, industrial mineral commodities, and energy resources are being, or have been, produced or prospected. These include metals and high-technology materials, such as copper, gold, silver, thorium, uranium and/or vanadium, rare-earth element minerals, iron, manganese, tungsten, lead, zinc, and molybdenum; industrial mineral resources, including barite, limestone/dolomite, caliche, clay, fluorspar, gypsum, scoria, aggregate, and sand and gravel; and fuels and associated resources, such as oil, gas, tar sand and heavy oil, coal, and gases associated with hydrocarbons. Other commodities that have yet to be identified in economic concentrations include potash, halite, polyhalite, anhydrite, sulfur, feldspar, building stone and decorative rock, brines, various gases associated with oil and gas exploration, and carbon dioxide. ?? 1993 Oxford University Press.

  20. Western Energy Resources and the Environment: Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    This document on geothermal energy is the first in a series of summary reports prepared by the Office of Energy, Minerals and Industry of the Environmental Protection Agency. The series describes what environmental effects are known or expected from new energy resource development in the western third of the United States. The series indicates some of the research and development activities under way and reviews the non-environmental constraints to resource development. It also serves as a reference for planners and policymakers on the entire range of problems and prospects associated with the development of new energy resources. [DJE-2005

  1. National Renewable Energy Laboratory Information Resources Catalog 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-01-01

    NREL's ninth annual Information Resources Catalog can keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. It includes five main sections with entries grouped according to subject area.

  2. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  3. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  4. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  5. Kalimantan energy resource management to support energy independence and industry growth

    International Nuclear Information System (INIS)

    Rizki Firmansyah Setya Budi; Wiku Lulus Widodo; Djati Hoesen Salimy

    2014-01-01

    There are a large number of energy resource in Kalimantan such as coal, oil, CBM, gas and nuclear. While the electricity consumption still low. That condition caused by the bad energy planning. The aim of the study are to know the number and the ability of energy resource to supply the energy demand that support the growth of Kalimantan industry. The methodology are collecting and processing data through calculation using MESSAGE Program. The result is energy resource in Kalimantan can support Kalimantan energy independence and industry growth in Kalimantan. The coal resource is 34,814 million ton consumption 835 million ton, gas resource is 31,814 BSCF consumption 3,281 BSCF, Oil resource is 920 MMSTB consumption 4406 MMSTB, CBM resource is 210 TCF consumption 2.1 TCF, U 3 O 8 resource is 12,409 ton consumption zero. Whereas for hydro and biomass, the resource are 256 and 138 MWyr, the maximum consumption 185 and 126 MWyr every year. Oil consumption will exceed the resource so need import from other island or replaced by others energy that have large resource such as gas, CBM, or coal. Potency to make cleaner environment can be done by used nuclear energy. (author)

  6. Day-ahead distributed energy resource scheduling using differential search algorithm

    DEFF Research Database (Denmark)

    Soares, J.; Lobo, C.; Silva, M.

    2015-01-01

    The number of dispersed energy resources is growing every day, such as the use of more distributed generators. This paper deals with energy resource scheduling model in future smart grids. The methodology can be used by virtual power players (VPPs) considering day-ahead time horizon. This method...... considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. This paper presents an application of differential search algorithm (DSA) for solving the day-ahead scheduling...

  7. Scope of fossil energy resources in Mexico and the Andean Group

    International Nuclear Information System (INIS)

    Figueroa Vega, F. de la; Boesl, B.

    1997-01-01

    The article focuses on fossil energy resources in the Andean Group and Mexico, and argues for a dynamic approach to calculating reserves to production ratios. Individual countries are surveyed in terms of estimated reserves of fossil energy, resources, current production rates and future prospects; energy policy options for individual countries are analysed. As a primary objective of energy policy is to ensure security of supply, it is important that that calculations of reserves to production ratios accurately, estimate the desired level of investment in exploration. The calculations need to take into account a variety of parameters, including different energy sources, availability and risk; geographic considerations including proximity, transport, storage capacity and commercial aspects; the competitive and environmental implications of developing indigenous resources; and the use of instruments to establish contingency plans for emergencies

  8. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    International Nuclear Information System (INIS)

    Pitchford, P.; Brown, T.

    2001-01-01

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels

  9. Exploring resource efficiency for energy, land and phosphorus use

    NARCIS (Netherlands)

    Berg, van den Maurits; Hermans, Kathleen; Vuuren, van Detlef P.; Bouwman, A.F.; Kram, Tom; Bakkes, Jan

    2016-01-01

    In this paper, we present four model-based scenarios exploring the potential for resource efficiency for energy, land and phosphorus use, and implications for resource depletion, climate change and biodiversity. The scenarios explored include technological improvements as well as structural

  10. Energy education resources: Kindergarten through 12th grade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Energy Education Resources: Kindergarten Through 12th Grade is published by the National Energy Information Center (NEIC) a service of the Energy Information Administration (EIA), to provide students, educators, and other information users, a list of generally available free or low-cost energy-related educational materials. Each entry includes the address, telephone number, and description of the organization and the energy-related materials available. Most of the entries also include Internet (Web) and electronic mail (E-Mail) addresses. Each entry is followed by a number, which is referenced in the subject index in the back of this book.

  11. Renewable energy resources

    CERN Document Server

    Twidell, John

    2015-01-01

    Renewable Energy Resources is a numerate and quantitative text covering the full range of renewable energy technologies and their implementation worldwide. Energy supplies from renewables (such as from biofuels, solar heat, photovoltaics, wind, hydro, wave, tidal, geothermal, and ocean-thermal) are essential components of every nation's energy strategy, not least because of concerns for the local and global environment, for energy security and for sustainability. Thus in the years between the first and this third edition, most renewable energy technologies have grown from fledgling impact to s

  12. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Science.gov (United States)

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  13. Wind Energy Resource Atlas of Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-07-01

    This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

  14. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  15. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  16. Substitute energy resource policy in Japan

    International Nuclear Information System (INIS)

    Umehara, Katsuhiko

    1980-01-01

    Japan depends 88% of energy resources and 99.8% of petroleum on imports. The solution of energy problems is now made internationally. As the means for Japan, there are the substitution of other resources for petroleum and its promotion. However, this involves the considerable funds for the development and utilization, which must be borne by the people in the form of tax. For governmental financing, a special account must be set up for the particular purpose. In the research and development of new energy resources, new institution is required. The following matters are described: petroleum shortage coming even in 1980s, the international need of substitute energy development, the need for establishing measures for substitute energy resources, acquisition of the funds, special-account governmental financing, and an institute of new energy development. (author)

  17. Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, Mariah [BEC Environmental, Inc., Las Vegas, NV (United States)

    2016-02-28

    In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "all resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.

  18. Wind Energy Resource Atlas of Oaxaca

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  19. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    Science.gov (United States)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  20. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  1. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Kang, Jihoon

    2013-01-01

    Highlights: • We estimated green energy production in a municipal wastewater treatment plant. • Engineered approaches in mining multiple green energy resources were presented. • The estimated green energy production accounted for 6.5% of energy independence in the plant. • We presented practical information regarding green energy projects in water infrastructures. - Abstract: Increasing energy prices and concerns about global climate change highlight the need to improve energy independence in municipal wastewater treatment plants (WWTPs). This paper presents methodologies for estimating the energy independence of a municipal WWTP with a design capacity of 30,000 m 3 /d incorporating various green energy resources into the existing facilities, including different types of 100 kW photovoltaics, 10 kW small hydropower, and an effluent heat recovery system with a 25 refrigeration ton heat pump. It also provides guidance for the selection of appropriate renewable technologies or their combinations for specific WWTP applications to reach energy self-sufficiency goals. The results showed that annual energy production equal to 107 tons of oil equivalent could be expected when the proposed green energy resources are implemented in the WWTP. The energy independence, which was defined as the percent ratio of green energy production to energy consumption, was estimated to be a maximum of 6.5% and to vary with on-site energy consumption in the WWTP. Implementing green energy resources tailored to specific site conditions is necessary to improve the energy independence in WWTPs. Most of the applied technologies were economically viable primarily because of the financial support under the mandatory renewable portfolio standard in Korea

  2. The renewable energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Lingova, S.; Trifonova, L.

    1996-01-01

    The paper presents the results from the joint study between the National Laboratory of Renewable Energy Resources of USA and the National Institute of Meteorology and Hydrology, Sofia (BG). The geographical distribution of solar and wind energy potential in Bulgaria as well as inventory of biomass is studied. Calculation of total, available and reserve solar and wind resources is performed. Comparative data on all kind of renewable energy resources in Bulgaria are presented. The evaluation of economically accessible resources and feasibility of implementation of specific technologies is given. 7 refs., 1 tab

  3. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    Directory of Open Access Journals (Sweden)

    Shahin Abdollahy

    2014-01-01

    Full Text Available A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building. Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.

  4. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  5. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  6. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  7. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  8. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  9. Renewable Energy Resources: Solutions to Nigeria power and energy needs

    International Nuclear Information System (INIS)

    Ladan-Haruna, A.

    2011-01-01

    Power and energy, with particularly electricity remains the pivot of economical and social development of any country. In view of this fact, a research on how renewable energy resources can solve Nigeria power and energy needs was carried out. It has identified main issues such as inconsistence government policies, corruptions and lack of fund hindering the development of renewable and power sectors for sustainable energy supply. The capacity of alternative energy resources and technology [hydropower, wind power, biomass, photovoltaic (solar), and geothermal power] to solve Nigerian energy crisis cannot be over-emphasized as some countries of the world who have no petroleum resources, utilizes other alternatives or options to solves their power and energy requirement. This paper reviews the prospects, challenges and solutions to Nigeria energy needs using renewable sources for development as it boost industrialization and create job opportunities

  10. An Aggregation Model for Energy Resources Management and Market Negotiations

    Directory of Open Access Journals (Sweden)

    Omid Abrishambaf

    2018-03-01

    Full Text Available Currently the use of distributed energy resources, especially renewable generation, and demand response programs are widely discussed in scientific contexts, since they are a reality in nowadays electricity markets and distribution networks. In order to benefit from these concepts, an efficient energy management system is needed to prevent energy wasting and increase profits. In this paper, an optimization based aggregation model is presented for distributed energy resources and demand response program management. This aggregation model allows different types of customers to participate in electricity market through several tariffs based demand response programs. The optimization algorithm is a mixed-integer linear problem, which focuses on minimizing operational costs of the aggregator. Moreover, the aggregation process has been done via K-Means clustering algorithm, which obtains the aggregated costs and energy of resources for remuneration. By this way, the aggregator is aware of energy available and minimum selling price in order to participate in the market with profit. A realistic low voltage distribution network has been proposed as a case study in order to test and validate the proposed methodology. This distribution network consists of 25 distributed generation units, including photovoltaic, wind and biomass generation, and 20 consumers, including residential, commercial, and industrial buildings.

  11. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  12. Tidal current energy resource assessment in Ireland: Current status and future update

    International Nuclear Information System (INIS)

    O'Rourke, Fergal; Boyle, Fergal; Reynolds, Anthony

    2010-01-01

    Interest in renewable energy in Ireland has increased continually over the past decade. This interest is due primarily to security of supply issues and the effects of climate change. Ireland imports over 90% of its primary energy consumption, mostly in the form of fossil fuels. The exploitation of Ireland's vast indigenous renewable energy resources is required in order to reduce this over-dependence on fossil fuel imports to meet energy demand. Various targets have been set by the Irish government to incorporate renewable energy technologies into Ireland's energy market. As a result of these targets, the development in wind energy has increased substantially over the past decade; however this method of energy extraction is intermittent and unpredictable. Ireland has an excellent tidal current energy resource and the use of this resource will assist in the development of a sustainable energy future. Energy extraction using tidal current energy technologies offers a vast and predictable energy resource. This paper reviews the currently accepted tidal current energy resource assessment for Ireland. This assessment was compiled by Sustainable Energy Ireland in a report in 2004. The assessment employed a 2-dimensional numerical model of the tidal current velocities around Ireland, and from this numerical model the theoretical tidal current energy resource was identified. With the introduction of constraints and limitations, the technical, practical, accessible and viable tidal current energy resources were obtained. The paper discusses why the assessment needs updating including the effect on the assessment of the current stage of development of tidal current turbines and their deployment technology. (author)

  13. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    Science.gov (United States)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  14. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers and the public

    Science.gov (United States)

    Carr, N.B.; Babel, N.; Diffendorfer, J.; Ignizio, D.; Hawkins, S.; Latysh, N.; Leib, K.; Linard, J.; Matherne, A.

    2012-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of oil, gas (including shale gas and coal-bed methane), and uranium, as well as renewable energy resources such as geothermal, solar, and wind. Much of the development in the West is occurring on public lands, including those under Federal and State jurisdictions. In Colorado and New Mexico, these public lands make up about 40 percent of the land area. Both states benefit from the revenue generated by energy production, but resource managers and other decisionmakers must balance the benefits of energy development with the potential consequences for ecosystems, recreation, and other resources. Although a substantial amount of geospatial data on existing energy development and energy potential is available, much of this information is not readily accessible to natural resource decisionmakers, policymakers, or the public. Furthermore, the data often exist in varied formats, requiring considerable processing before these datasets can be used to evaluate tradeoffs among resources, compare development alternatives, or quantify cumulative impacts. To allow for a comprehensive evaluation among different energy types, an interdisciplinary team of U.S. Geological Survey (USGS) scientists has developed an online Interactive Energy Atlas for Colorado and New Mexico. The Energy and Environment in the Rocky Mountain Area (EERMA) interdisciplinary team includes investigators from several USGS science centers1. The purpose of the EERMA Interactive Energy Atlas is to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The Atlas is designed to meet the needs of various users, including GIS analysts, resource managers, policymakers, and the public, who seek information about energy in the western United States. Currently, the Atlas has two primary capabilities, a GIS data viewer and an

  15. Multi-objective optimal dispatch of distributed energy resources

    Science.gov (United States)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  16. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  17. Handbook of natural resource and energy economics. Volume III

    International Nuclear Information System (INIS)

    Kneese, A.V.; Sweeney, J.L.

    1993-01-01

    The last of a three-volume series of handbooks focuses on the economics of energy, minerals and exhaustible resources, and the forecasting issues. The relationship between energy, the environment and economic growth is also examined. Chapter headings are: economic theory of depletable resources; the optimal use of exhaustible resources; intertemporal consistency issues in depletable resources; buying energy and non-fuel minerals; mineral resource stocks and information; strategies for modelling exhaustible resource supply; natural resources in an age of substitutability; natural resource cartels; the economics of energy security; natural resource use and the environment; and energy, the environment and economic growth

  18. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  19. The global resource balance table, an integrated table of energy, materials and the environment

    International Nuclear Information System (INIS)

    Tsuchiya, Haruki

    2013-01-01

    This paper introduces the Global Resource Balance Table (GRBT), which is an extension of the energy balance tables that expresses the relationships between energy, materials and the environment. The material division of the GRBT includes steel, cement, paper, wood and grain. In contrast, the environmental division of the GRBT includes oxygen, CO 2 and methane. The transaction division rows in the GRBT include production, conversion, end use and stock. Each cell of the GRBT contains the quantities of the respective resources that were generated or consumed. The relationships between the cells were constructed from the laws of conservation of the materials and energy. We constructed a GRBT for 2007 and discussed the increasing air temperature due to waste heat and the CO 2 equivalent from human breathing. The GRBT is a comprehensive integrated table that represents the resources that are consumed by human activities and is useful for energy and environmental studies. - Highlights: • We extended energy balance table and introduced Global Resource Balance Table. • It shows relationships between energy, materials and the environment. • The material division includes steel, cement, paper, wood and grain. • The environmental division includes oxygen, CO 2 and methane. • We discussed on waste heat and CO 2 emission by human breathing

  20. Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

  1. Energy and other resources

    International Nuclear Information System (INIS)

    Rosenqvist, I.Th.

    It is pointed out that inorganic mineral raw materials, usually called ores, do not form a separate geological class, with a strictly defined limit in quantity. The raw materials are in fact present in continuously variable concentrations and amounts with differing geographical distribution. It is only the richest occurrences which are regarded as resources and exploited. The cone concept of available material is presented, where the amount of material available increases as the work invested is increased, but the profitable ore is represented only by the apex of the cone. In applying this idea to fossil fuels the concept must be modified to a 'pear', since the energy invested in retrieving the fuel must not exceed the energy content of the fuel. Renewable energy sources are also discussed, and it is pointed out that geothermal energy should not be regarded as renewable. It is pointed out, too, that, unless breeder reactors are introduced, the fossil fuel resources will give more energy than uranium, and probably cheaper. (JIW)Ψ

  2. Moon Prospective Energy and Material Resources

    CERN Document Server

    2012-01-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration.   In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative optio...

  3. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1980-01-01

    The paper is aimed at making a theoretical analysis on optimal shift from finite energy resources like presently used oil toward advanced energy sources like nuclear and solar. First, the value of conventional energy as a finite resource is derived based on the variational principle. Second, a simplified model on macroeconomy is used to obtain and optimal relationship between energy production and consumption and thereby the optimality on energy price is provided. Third, the meaning of research and development of advanced energy is shown by taking into account resource constraints and technological progress. Finally, an optimal timing of the shift from conventional to advanced energies is determined by making use of the maximum principle. The methematical model employed there is much simplified but can be used to conclude that in order to make an optimal shift some policy-oriented decision must be made prior to when an economically competitive condition comes and that, even with that decision made, some recession of energy demand is inevitable during the transitional phase. (author)

  4. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  5. Depletion of energy or depletion of knowledge alternative use of energy resources

    International Nuclear Information System (INIS)

    Arslan, M.

    2011-01-01

    This research paper is about the depletion of Energy resources being a huge problem facing the world at this time. As available energy sources are coming to a shortage and measures are be taken in order to conserve the irreplaceable energy resources that leads to sustainability and fair use of energy sources for future generations. Alternative energy sources are being sought; however no other energy source is able to provide even a fraction of energy as that of fossil fuels. Use of the alternative energy resources like wind corridors (Sindh and Baluchistan), fair use of Hydro energy (past monsoon flooding can produce enough energy that may available for next century). Uranium Resources which are enough for centuries energy production in Pakistan (Dhok Pathan Formation) lying in Siwalick series from Pliocene to Pleistocene. Among all of these, my focus is about energy from mineral fuels like Uranium from Sandstone hosted deposits in Pakistan (Siwalik Series in Pakistan). A number of uranium bearing mineralized horizons are present in the upper part of the Dhok Pathan Formation. These horizons have secondary uranium mineral carnotite and other ores. Uranium mineralization is widely distributed throughout the Siwaliks The purpose of this paper was to introduce the use of alternative energy sources in Pakistan which are present in enough amounts by nature. Pakistan is blessed with wealth of natural resources. Unfortunately, Pakistan is totally depending on non renewable energy resource. There are three main types of fossil fuels: coal, oil and natural gas. After food, fossil fuel is humanity's most important source of energy. Pakistan is among the most gas dependent economies of the world. Use of fossil fuel for energy will not only increase the demand of more fossils but it has also extreme effects on climate as well as direct and indirect effects to humans. These entire remedial thinking can only be possible if you try to use alternative energy resources rather than

  6. Meta-analysis of non-renewable energy resource estimates

    International Nuclear Information System (INIS)

    Dale, Michael

    2012-01-01

    This paper offers a review of estimates of ultimately recoverable resources (URR) of non-renewable energy sources: coal, conventional and unconventional oil, conventional and unconventional gas, and uranium for nuclear fission. There is a large range in the estimates of many of the energy sources, even those that have been utilized for a long time and, as such, should be well understood. If it is assumed that the estimates for each resource are normally distributed, then the total value of ultimately recoverable fossil and fissile energy resources is 70,592 EJ. If, on the other hand, the best fitting distribution from each of the resource estimate populations is used, a the total value is 50,702 EJ, a factor of around 30% smaller. - Highlights: ► Brief introduction to categorization of resources. ► Collated over 380 estimates of ultimately recoverable global resources for all non-renewable energy sources. ► Extensive statistical analysis and distribution fitting conducted. ► Cross-energy source comparison of resource magnitudes.

  7. From energy efficiency towards resource efficiency within the Ecodesign Directive

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie; Mosgaard, Mette; Remmen, Arne

    2017-01-01

    on the most significant environmental impact has often resulted in a focus on energy efficiency in the use phase. Therefore, the Ecodesign Directive should continue to target resource efficiency aspects but also consider environ- mental aspects with a large improvement potential in addition to the most...... significant environmental impact. For the introduction of resource efficiency requirements into the Ecodesign Directive, these requirements have to be included in the preparatory study. It is therefore recommended to broaden the scope of the Methodology for the Ecodesign of Energy-related products and the Eco......The article examines the integration of resource efficiency into the European Ecodesign Directive. The purpose is to analyse the processes and stakeholder interactions, which formed the basis for integrating resource efficiency requirements into the implementing measure for vacuum cleaners...

  8. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leow, Woei Ling [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Yan [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  9. Wind energy resource atlas. Volume 9. The Southwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  10. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  11. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  12. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  13. Distribution System Pricing with Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hledik, Ryan [The Brattle Group, Cambridge, MA (United States); Lazar, Jim [The Regulatory Assistance Project, Montpelier, VT (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-16

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoids unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.

  14. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    International Nuclear Information System (INIS)

    Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z.

    2015-01-01

    Highlights: • Definition fuel shifting demand response programs applied to the electric vehicles. • Integration of the proposed fuel shifting in energy resource management algorithm. • Analysis of fuel shifting contribution to support the consumption increasing. • Analysis of fuel shifting contribution to support the electric vehicles growing. • Sensitivity analysis considering different electric vehicles penetration levels. - Abstract: In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required

  15. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  16. Future directions for nuclear energy policy according to the changing circumstances surrounding energy resources

    International Nuclear Information System (INIS)

    Lee, Chang Ki

    2007-01-01

    Since the industrial revolution, the consumption of energy resources throughout the world has increased in geometrical progression, depleting the reserves of the fossil fuels including petroleum. It is predicted that the known reserves of the petroleum and the natural gas will be exhausted within 40 and 60 years, respectively. Massive consumption of energy resources has aggravated the quality of air and water, with the result that environmental pollution of the world has reached a critical stage Emission of green house gases such as carbon dioxide has caused global warming and climate change, endangering the sustainability of the life. Mainland China and East Asian countries pursuing rapid economic growth are expected to confront a shortage of energy in the near future, leading them to face difficulties in achieving expected economic growth

  17. Energy efficiency and integrated resource planning - lessons drawn from the Californian model

    International Nuclear Information System (INIS)

    Baudry, P.

    2008-01-01

    The principle of integrated resource planning (IRP) is to consider, on the same level, investments which aim to produce energy and those which enable energy requirements to be reduced. According to this principle, the energy efficiency programmes, which help to reduce energy demand and CO 2 emissions, are considered as an economically appreciated resource. The costs and gains of this resource are evaluated and compared to those relating to energy production. California has adopted an IRP since 1990 and ranks energy efficiency highest among the available energy resources, since economic evaluations show that the cost of realizing a saving of one kWh is lower than that which corresponds to its production. Yet this energy policy model is not universally widespread over the world. This can be explained by several reasons. Firstly, a reliable economic appreciation of energy savings presupposes that great uncertainties will be raised linked to the measurement of energy savings, which emanates in articular from the different possible options for the choice of base reference. This disinterest for IRP in Europe can also be explained by an institutional context of energy market liberalization which does not promote this type of regulation, as well as by the concern of making energy supply security the policies' top priority. Lastly, the remuneration of economic players investing in the energy efficiency programmes is an indispensable condition for its quantitative recognition in national investment planning. In France, the process of multi-annual investment programming is a mechanism which could lead to energy efficiency being included as a resource with economically appreciated investments. (author)

  18. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers

    Science.gov (United States)

    Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.

    2013-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.

  19. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  20. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  1. Moon. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Polytechnic Univ. of Bucharest (Romania). Candida Oancea Inst.

    2012-07-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers. (orig.)

  2. Renewable energy and integrated resource planning

    International Nuclear Information System (INIS)

    Porter, K.L.

    1992-01-01

    Integrated resource planning, or IRP, is a new means of comparing resource choices for electric and gas utilities. Since its inception in 1986, at least 15 states have implemented IRP, and more are considering adopting IRP or have limited IRP processes in place. Some of the characteristics of IRP, such as increased public participation and an expanded analysis of the costs and benefits of energy resources, can contribute to addressing some of the technical and market barriers that hinder the increased deployment of renewable energy technologies. This paper looks at the status of some of these issues

  3. Auctions for coastal energy resources

    Science.gov (United States)

    Griffin, Robert M.

    It is becoming increasingly common to allocate public resources to the private sector for the purpose of developing these resources. One of the earliest uses of auctions in the U.S. for allocating rights to public resources was in the offshore oil and gas industry. The U.S. Federal government, through the Department of Interior (DOI), has used auctions to allocate development rights to offshore oil and gas resources to the private sector since the 1950's. Since then many things have changed. Oil and gas markets have gone through boom and bust cycles, giant technological advances in extraction and assessment have taken place, and alternative energy based in the coastal zone is now in demand in markets as well. There has been an enormous amount of research into the drivers of bidder behavior in auctions and optimal auction design in the last 60 years as well. Throughout all of this, the DOI has continued to use basically the same exact auction design to allocate oil and gas leases. The U.S. offshore oil and gas resources sold by the Department of Interior have accounted for more than $65 billion in revenue since the program started. These offshore resources are an important source of government revenue and national wealth. Additionally, the expansion of the energy sector offshore has enormous potential for electricity generation in the U.S., estimated by the National Renewable Energy Laboratory as approaching 54 gigawatts by 2030 (U.S. Department of Energy, 2008). Taken together, the DOI controls access to a large part of the future of energy in the U.S. The research herein assesses the auction formats used to allocate both fossil fuels and renewable resources on the Outer Continental Shelf (OCS). The first manuscript looks at the current method used by the DOI to allocate oil and gas leases on the OCS, and is primarily interested in how bidders behave in this environment. Using latent class estimation techniques to separate distinct bidding behavior in a laboratory

  4. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource, (2)

    International Nuclear Information System (INIS)

    Ohkubo, Hiroo; Suzuki, Atsuyuki; Kiyose, Ryohei

    1983-01-01

    This is an extension of the Suzuki model (base model) on optimal transition from resource-limited energy (oil) to advanced energy with virtually unlimited resource. The finite length of plant life, fuel cost, technological progress factor of advanced energy and the upper limit upon annual consumption rate of oil are taken into account for such an extension. The difference in optimal solutions obtained from extended and base models is shown by an application of the maximum principle. The implication of advanced energy R and D andenergy conservation effort is also discussed. (author)

  5. Hydrokinetic energy resource estimates of River ERO at Lafiagi ...

    African Journals Online (AJOL)

    Hydrokinetic energy resource estimates of River ERO at Lafiagi, Kwara State, ... cost-effective renewable energy solution without requiring the construction of a ... Keywords: Hydrokinetic Power, Energy Resource, River Ero, Water Resources ... (14); Eritrea (1); Ethiopia (30); Ghana (27); Kenya (29); Lesotho (1); Libya (2) ...

  6. Grid of the Future: Quantification of Benefits from Flexible Energy Resources in Scenarios With Extra-High Penetration of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bebic, Jovan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Hinkle, Gene [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Matic, Slobodan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Schmitt, William [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting

    2015-01-15

    The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy. The quantified benefits include savings in thermal energy and reduction of CO2 emissions. Both are primarily a result of displacement of conventional thermal generation by renewable energy production, but there are secondary improvements that arise from lowering operating reserves, removing transmission constraints, and by partially removing energy-delivery losses due to energy production by distributed solar. The flexible energy resources in the context of this study include energy storage and adjustable loads. The flexibility of both was constrained to a time horizon of one day. In case of energy storage this means that the state of charge is restored to the starting value at the end of each day, while for load this means that the daily energy consumed is maintained constant. The extra-high penetration of renewable energy in the context of this study means the level of penetration resulting in significant number of hours where instantaneous power output from renewable resources added to the power output from baseload nuclear fleet surpasses the instantaneous power consumption by the load.

  7. Task 2 Report - A GIS-Based Technical Potential Assessment of Domestic Energy Resources for Electricity Generation.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grue, Nicholas W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rosenlieb, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    The purpose of this report is to support the Lao Ministry of Energy and Mines in assessing the technical potential of domestic energy resources for utility scale electricity generation in the Lao PDR. Specifically, this work provides assessments of technical potential, and associated maps of developable areas, for energy technologies of interest. This report details the methodology, assumptions, and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resources for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources. This report is the second output of the Energy Alternatives Study for the Lao PDR, a collaboration led by the Lao Ministry of Energy and Mines and the United States Agency for International Development under the auspices of the Smart Infrastructure for the Mekong program. The Energy Alternatives Study is composed of five successive tasks that collectively support the project's goals. This work is focused on Task 2 - Assess technical potential of domestic energy resources for electricity generation. The work was carried out by a team from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in collaboration with the Lao Ministry of Energy

  8. Efforts for nuclear energy human resource development by industry-government-academic sectors cooperation. Nuclear Energy Human Resource Development Council Report

    International Nuclear Information System (INIS)

    Yamamoto, Shinji

    2009-01-01

    The report consists of eighteen sections such as the present conditions of nuclear energy, decreasing students in the department of technology and decreasing numbers of nuclear-related subjects, The Nuclear Energy Human Resources Development Program (HRD Program), The Nuclear Energy Human Resources Development Council (HRD Council), the industry-academia partnership for human resource development, the present situation of new graduates in the nuclear field, new workers of nuclear industry, the conditions of technical experts in the nuclear energy industry, long-range forecast of human resource, increasing international efforts, nuclear energy human resources development road map, three points for HRD, six basic subjects for HRD, the specific efforts of the industrial, governmental and academic sectors, promoting a better understanding of nuclear energy and supporting job hunting and employment, students to play an active part in the world, and support of the elementary and secondary schools. Change of numbers of nuclear-related subjects of seven universities, change of number of new graduates in nuclear field of various companies from 1985 to 2006, number of people employed by nuclear industries from 1998 to 2007, number of technical experts in the electric companies and the mining and manufacturing industries and forecast of number of technical experts in total nuclear industries are illustrated. (S.Y.)

  9. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  10. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  11. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    Science.gov (United States)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  12. Energy efficiency resource modeling in generation expansion planning

    International Nuclear Information System (INIS)

    Ghaderi, A.; Parsa Moghaddam, M.; Sheikh-El-Eslami, M.K.

    2014-01-01

    Energy efficiency plays an important role in mitigating energy security risks and emission problems. In this paper, energy efficiency resources are modeled as efficiency power plants (EPP) to evaluate their impacts on generation expansion planning (GEP). The supply curve of EPP is proposed using the production function of electricity consumption. A decision making framework is also presented to include EPP in GEP problem from an investor's point of view. The revenue of EPP investor is obtained from energy cost reduction of consumers and does not earn any income from electricity market. In each stage of GEP, a bi-level model for operation problem is suggested: the upper-level represents profit maximization of EPP investor and the lower-level corresponds to maximize the social welfare. To solve the bi-level problem, a fixed-point iteration algorithm is used known as diagonalization method. Energy efficiency feed-in tariff is investigated as a regulatory support scheme to encourage the investor. Results pertaining to a case study are simulated and discussed. - Highlights: • An economic model for energy efficiency programs is presented. • A framework is provided to model energy efficiency resources in GEP problem. • FIT is investigated as a regulatory support scheme to encourage the EPP investor. • The capacity expansion is delayed and reduced with considering EPP in GEP. • FIT-II can more effectively increase the energy saving compared to FIT-I

  13. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  14. Regional renewable energy and resource planning

    International Nuclear Information System (INIS)

    Lam, Hon Loong; Varbanov, Petar Sabev; Klemes, Jiri Jaromir

    2011-01-01

    The exploitation of the energy potential in biomass in a specific geographical region is frequently constrained by high production costs and the amount of land required per unit of energy generated. In addition, the distributed nature of the biomass resource and its normally low energy density may result in large transportation costs. Biomass also requires large land areas to collect and process the incoming solar radiation before the energy can be harvested. Previously published works on regional energy clustering (REC) and the Regional Resources Management Composite Curve, RRMCC (in this paper shortened to RMC), have been extended in this paper to tackle simultaneously the issues of the biomass supply chain, transportation, and land use. The RMC is a tool for supporting decision making in regional resource management. It provides a complete view of energy and land availability in a region, displaying their trade-offs in a single plot. The extension presented in this work has been developed in two steps. The first step presents the Regional Energy Cascade Analysis, which estimates the energy target within regional supply chains and provides the result for energy exchange flows between zones, the quantity of energy required to be imported/exported, and the locations of the demands. In the second step, the initial results are analysed against potential measures for improving the energy and land use targets by using the RMC and a set of rules for its manipulation. The presented method provides the option to assess the priorities: either to produce and sell the surplus energy on the fuel market or use the land for other purposes such as food production. This extended approach is illustrated with a comprehensive case study demonstrating that with the RMC application it is possible to maximise the land use and to maximise the biofuel production for the requested energy demand.

  15. Wind Energy Resource Atlas of the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  16. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  17. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  18. Energy resource allocation using multi-objective goal programming: the case of Lebanon

    International Nuclear Information System (INIS)

    Mezher, T.; Chedid, R.; Zahabi, W.

    1998-01-01

    The traditional energy-resources allocation problem is concerned with the allocation of limited resources among the end-uses such that the overall return is maximized. In the past, several techniques have been used to deal with such a problem. In this paper, the energy allocation process is looked at from two points of view: economy and environment. The economic objectives include costs, efficiency, energy conservation, and employment generation. The environmental objectives consider environmental friendliness factors. The objective functions are first quantified and then transformed into mathematical language to obtain a multi-objective allocation model based upon pre-emptive goal programming techniques. The proposed method allows decision-makers to encourage or discourage specific energy resources for the various household end-uses. The case of Lebanon is examined to illustrate the usefulness of the proposed technique. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Modeling of customer adoption of distributed energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-08-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a

  20. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  1. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  2. Feedback control and adaptive control of the energy resource chaotic system

    International Nuclear Information System (INIS)

    Sun Mei; Tian Lixin; Jiang Shumin; Xu Jun

    2007-01-01

    In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results

  3. Distributed Energy Resource (DER) Cybersecurity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Danish [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnson, Jay [Sandia National Laboratories

    2017-11-08

    This presentation covers the work that Sandia National Laboratories and National Renewable Energy Laboratory are doing for distributed energy resource cybersecurity standards, prepared for NREL's Annual Cybersecurity & Resilience Workshop on October 9-10, 2017.

  4. Criteria for evaluating alternative uses of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hogg, R. J.

    1977-10-15

    Criteria that should be considered in evaluating the alternative use of energy resources are examined, e.g., energy policies must be compatible with overall national objectives; the demands of the energy sector must be sustainable; energy supplies must be reliable; resource depletion rates must be minimized; community interests must be protected; and economic costs must be minimized. Case studies using electricity and natural gas for the application of these criteria are presented.

  5. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  6. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  7. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  8. EU's forest fuel resources, energy technology market and international bioenergy trade

    International Nuclear Information System (INIS)

    Asikainen, A.; Laitila, J.; Parikka, H.

    2006-01-01

    The aim of the project is to provide for the Finnish bioenergy technology, machine and appliance manufactures information about forest fuel resources in the EU and international bioenergy trade mechanisms. The projects results act as an instrument for market potential assessments and provide information to the local energy producer about biomass as an energy source. The possibilities to use forest chips in CHP and heating plants will be investigated in the case studies. Total number of case studies will be 3-4, and they will mainly be located in Eastern Europe, where also large forest resources and utilisation potential are found. Case studies include three main tasks: 1) Assessment of forest fuel resources around the CHP or heating plant. 2) Forest fuel procurement cost study and 3) Study on the economics forest fuel based energy production. The project will be carried out as cooperation between Finnish research institutes and companies, and local actors. First case study was carried out at Poland. (orig.)

  9. GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Korkali, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Min, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-30

    The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.

  10. Future petroleum energy resources of the world

    Science.gov (United States)

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  11. How energy technology innovation affects transition of coal resource-based economy in China

    International Nuclear Information System (INIS)

    Guo, Pibin; Wang, Ting; Li, Dan; Zhou, Xijun

    2016-01-01

    The aim of this research paper is to investigate factors and mechanisms that may facilitate the transition from coal resource-based economy to sustainability. Based on the energy technology innovation theory, factors that may influence the transition of coal resource-based economy were categorized into four types, including: innovation policy, innovation input, innovation ability, and innovation organization. Hypotheses were proposed regarding the mechanisms of these factors. Data were collected from surveys administered to 314 Chinese energy firms, and a structural equation model (SEM) was employed to test the hypotheses. Ten of fifteen hypotheses were retained based on the reliability tests, validity tests, and SEM. The results show that the four proposed factors are crucial in transforming the coal resource-based economy, and the effects become statistically significant through three intermediate variables, namely, transition of energy consumption structure, correction of resource wealth investment, and improvement of transition environment. - Highlights: •Approximately, 66% of energy relies on coal in China. •Serious environment problems have occurred in many coal-based regions. •Energy technology innovation can promote the transition of coal-based economy. •China should accelerate the development of clean energy.

  12. An enviro-economic function for assessing energy resources for district energy systems

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    District energy (DE) systems provide an important means of mitigating greenhouse gas emissions and the significant related concerns associated with global climate change. DE systems can use fossil fuels, renewable energy and waste heat as energy sources, and facilitate intelligent integration of energy systems. In this study, an enviro-economic function is developed for assessing various energy sources for a district energy system. The DE system is assessed for the considered energy resources by considering two main factors: CO 2 emissions and economics. Using renewable energy resources and associated technologies as the energy suppliers for a DE system yields environmental benefits which can lead to financial advantages through such instruments as tax breaks; while fossil fuels are increasingly penalized by a carbon tax. Considering these factors as well as the financial value of the technology, an analysis approach is developed for energy suppliers of the DE system. In addition, the proposed approach is modified for the case when thermal energy storage is integrated into a DE system. - Highlights: • Developed a function to assess various energy sources for a district energy system. • Considered CO 2 emissions and economics as two main factors. • Applied renewable energy resources technologies as the suppliers for a DE system. • Yields environmental benefits can lead to financial benefits by tax breaks. • Modified enviro-economic function for the TES integrated into a DE system

  13. Unused Energy Resources of the Republic of Croatia

    International Nuclear Information System (INIS)

    Potocnik, V.

    2008-01-01

    Croatia has very modest fossil fuels resources and relatively large unused potentials of increasing energy efficiency and renewable energy sources. Energy import dependency is close to 60 percent and constantly rising, thus increasing already considerable Croatian foreign debt. By using potential of these resources until the year 2020 Croatia could almost totally eliminate fossil fuels import, reduce foreign debt as well as energy systems' harmful influences on environment, climate and health, and increase domestic employment.(author)

  14. Spatiotemporal variability of marine renewable energy resources in Norway

    NARCIS (Netherlands)

    Varlas, George; Christakos, Konstantinos; Cheliotis, Ioannis; Papadopoulos, A.; Steeneveld, G.J.

    2017-01-01

    Marine Renewable Energy (MRE) resources such as wind and wave energy depend on the complex behaviour of weather and climatic conditions which determine the development of MRE technologies, energy grid, supply and prices. This study investigates the spatiotemporal variability of MRE resources along

  15. Innovation excellence. Creating market success in the energy and natural resources sector

    Energy Technology Data Exchange (ETDEWEB)

    Scholtissek, Stephan

    2011-07-01

    In this book, author Stephan Scholtissek examines innovations as they relate to companies in the energy and natural resources sector, which contrary to popular opinion are indeed innovative. These companies are undergoing massive change as the balance of power shifts towards emerging economies and as the world looks to a range of low carbon technologies. Scholtissek sheds light on different forms of innovation and argues that R and D resources must be extended across all these forms. He includes a number of detailed case studies from the energy and natural resources industries that have shown a remarkable capacity to innovate: BP, Dow Corning, Evonik Industries, Iberdrola, Marathon Oil, Perrier, Schott and Siemens. (orig.)

  16. Energy resources for mankind considered from the earth evolution

    International Nuclear Information System (INIS)

    Ohno, Shin-ich; Shimizu, Saburo

    2005-01-01

    The amount of energy resources contained in Earth and that we mankind can use in future can be estimated on the basis of the information given by astrophysical and geochemical considerations. The kind of resources includes geothermal, nuclear, solar, and fossil energy. We believe that the results of these considerations, especially the method of thinking, may be taken into curriculum in high schools or introductory courses of university education. In school education relating to energy and environmental problems we think that it is more important for the students to learn how to think or estimate and how to solve the problems than to be given any established knowledge itself from the teachers and reference books or journals. Students are easily discouraged by teachers who are talking that petroleum will be exhausted in 40 years or that uranium-235 will be also exhausted unless we develop the nuclear fuel system utilizing uranium-238 breading. They seem afraid of insufficient left when they grow old. In this report we call the readers attention that the amount of energy resources contained in Earth is such that the mankind can never exhaust them and that they are waiting to be exploited or for the time to come when the technology for their utilization is developed. We also pay attention that too much consumption of energy surely affect the earth environment (heat pollution) - the limit will be the consumption rate of about 0.1 W/m 2 of the earth surface which equals to the heat emission rate from the earth surface toward the space. (author)

  17. Optimal resource allocation and load scheduling for a multi-commodity smart energy system

    NARCIS (Netherlands)

    Blaauwbroek, N.; Nguyen, H.P.; Shi, H.; Kamphuis, I.G.; Kling, W.L.; Konsman, M.J.

    2015-01-01

    The increasing introduction of district heating systems together with hybrid energy appliances as heat pumps and micro-combined heat and power installations, results in new opportunities for optimizing the available resources in multi-commodity smart energy systems, including electricity, heat and

  18. Developing green energy resources - a case study in B.C

    International Nuclear Information System (INIS)

    McKenna, J.; Thompson, P.

    2001-01-01

    British Columbia Hydro, a Crown Corporation embarked on a strategy to become a sustainable energy company in 2001. An integral part of that strategy was to include reliable green and alternative energy sources in its power generation mix. In this framework, green and alternative energy contributes substantially to future investment decisions, revenue and competitive positioning in the market place. This paper presents a case study for green energy resources in the context of British Columbia Hydro. It discusses methods to quantify Greenhouse Emissions and ways to reduce Greenhouse Gases by choosing cleaner power with examples from a demonstration project on Vancouver Island

  19. Stochastic Resource Allocation for Energy-Constrained Systems

    Directory of Open Access Journals (Sweden)

    Sachs DanielGrobe

    2009-01-01

    Full Text Available Battery-powered wireless systems running media applications have tight constraints on energy, CPU, and network capacity, and therefore require the careful allocation of these limited resources to maximize the system's performance while avoiding resource overruns. Usually, resource-allocation problems are solved using standard knapsack-solving techniques. However, when allocating conservable resources like energy (which unlike CPU and network remain available for later use if they are not used immediately knapsack solutions suffer from excessive computational complexity, leading to the use of suboptimal heuristics. We show that use of Lagrangian optimization provides a fast, elegant, and, for convex problems, optimal solution to the allocation of energy across applications as they enter and leave the system, even if the exact sequence and timing of their entrances and exits is not known. This permits significant increases in achieved utility compared to heuristics in common use. As our framework requires only a stochastic description of future workloads, and not a full schedule, we also significantly expand the scope of systems that can be optimized.

  20. Energy Policy Case Study - California: Renewables and Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Homer, Juliet S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Major challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.

  1. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    Science.gov (United States)

    Shakya, Bibhakar

    consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.

  2. Resource file: practical publications for energy management, edition III

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The Resource File is an in-depth bibliography of 166 practical and action-oriented energy conservation publications and materials. It is a reference tool, designed for Federal, state, and local energy managers or people who are asked to recommend how-to conservation guides to the public. Each listing describes a publication's intended audience and provides a summary of its contents. Included are operations and maintenance manuals, life-cycle costing handbooks, home insulation manuals, films on fuel-saving driving techniques, and courses devoted exclusively to home weatherization. 166 items.

  3. 2016 Offshore Wind Energy Resource Assessment for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  4. Canada's conventional natural gas resources : a status report : an energy market assessment

    International Nuclear Information System (INIS)

    2004-04-01

    The National Energy Board monitors the supply of all energy commodities in Canada as well as the demand for Canadian energy commodities in domestic and export markets. Energy market assessment reports examine different facets of the Canadian energy market and include long term-assessments of Canada's supply and demand as well as near-term energy market issues. This report examines the geological potential for conventional natural gas resources. An estimate of those resources for Canada was also presented. The main objective of the report is to set the groundwork for future partnerships between provincial, territorial and federal agencies. The size of Alberta's conventional natural gas resources is being examined in partnership with the Alberta Energy and Utilities Board (EUB). The ultimate potential for conventional natural gas in British Columbia is being assessed by the British Columbia Ministry of Energy and Mines. The Board's internal assessment for 2004 has revealed an estimate of 207 trillion cubic feet for the ultimate of conventional natural gas in Alberta. This estimate is higher than the estimate provided by the Canadian Gas Potential Committee in 2001 and higher than the 1992 assessment of the EUB. It was noted that most undiscovered resources in Alberta will be found in the shallow Cretaceous zones, not in deep Devonian zones. The Board also revised its estimate for the Mackenzie Delta-Beaufort Sea region and the East Newfoundland Basin. The current estimate for ultimate potential of conventional natural gas in Canada is 501 trillion cubic feet, with the following distribution of the resources by basin: Western Canada Sedimentary Basin (54.5 per cent), Northern Canada (23.1 per cent), East Coast (18.3 per cent), West Coast (3.4 per cent), Ontario (0.5 per cent), and Gulf of St. Lawrence (0.3 per cent). 39 refs., 7 tabs., 13 figs

  5. Biomass energy - Definitions, resources and transformation processes

    International Nuclear Information System (INIS)

    Damien, Alain

    2013-01-01

    Biomass energy is today considered as a new renewable energy source, and thus, has entered a regulatory framework aiming at encouraging its development for CO 2 pollution abatement. This book addresses the constraints, both natural and technological, of the exploitation of the biomass resource, and then the economical and regulatory aspects of this industry. This second edition provides a complement about the plants used and the new R and D progresses made in this domain. Content: 1 - Definitions and general considerations: natural organic products, regulatory and standardized definitions, energy aspects of biomass fuels; 2 - Resources: energy production dedicated crops, biomass by-products, biomass from wastes; 3 - Biomass to energy transformation processes: combustion, gasification, pyrolysis, torrefaction, methanation, alcoholic fermentation, landfill biogas, Fischer-Tropsch synthesis, methanol synthesis, trans-esterification, synthetic natural gas production, bio-hydrogen production; 4 - Biofuels: solid fuels, solid automotive biofuels, gaseous biofuels, liquid biofuels, comparative efficiency; 5 - Situation of biomass energy: regulations, impact on non-energy purpose biomass, advantages and drawbacks

  6. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  7. Federal Energy Resources Modernization Coordinating Committee. Semiannual Report, October 1, 1991 Through March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B

    1992-07-01

    This report summarizes the broad range of activities supported by Federal Energy Management Program (FEMP) and other federal agencies focused on meeting the President`s Executive Order on Federal Energy Management promulgated to meet energy savings goals and encourage more efficient management of all federal energy resources. These activities are reported semiannually under the auspices of the FERM Coordinating Committee, and as such include activities undertaken from October 1, 1991, through March 31, 1992. The activities reported are classified into four major categories: (1) technology-base support, which includes development of processes, software, metering and monitoring equipment and strategies, and other tools for the federal energy manager to better understand and characterize their energy resources; (2) federal energy systems testing and monitoring; (3) federal energy systems modernization projects at federal installations in cooperation with the utilities serving the sites; and (4) energy supply, distribution and end-use conservation assessment for federal agencies and/or facilities.

  8. Territorial autonomy, energy resources administration and regalia regime in Colombia

    International Nuclear Information System (INIS)

    Henao Rodriguez, Alberto

    2000-01-01

    The paper includes topics like the territorial organization in Colombia, the energy administration, the organization of the Colombian system of regalia, options of the not-renewable natural resources administration, reorganization of the Colombian system of regalia, articulation to the territorial organization of the country and an administration proposal is made

  9. Renewable energy resources and their role in the energy balance of the country

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    2001-01-01

    The role of the renewable energy sources in the energy production sector is discussed. The main features of solar, wind and biomass energy are reviewed. Studies for Bulgaria show a total solar radiation above 1600 kWh/m 2 for the Southern regions. The assessment of the solar resources, made by the DOE gives about 170 000 TWh/y for the whole territory. The economically advantageous resources for passive heating are 10.6 TWh till 2020. For the same period the utilization of 0.92 TWh solar energy is possible. Solar installations with surface about 14 000 m 2 are currently in operation. 54% of them are in the tourism sphere and only 8% are in industry (due to some economical difficulties about 44% of the industrial installations are shut down). On the base of processing of the data from more that 100 meteorological stations on the country territory, a spatial assessment of the resources has been done. For the whole territory the wind potential is estimated to about 15800 GW. Theoretical average annual wind resources at 10 km above the surface are 125 000 TWh. There are several areas with wind velocity 5-6 m/s which are suitable for wind energy production. The energy resources of biomass for the country are large - around 35.5 TWh. Under the programmes 'Country Study Project' and PHARE, different scenarii for the renewable energy source utilization till 2020 are developed. Estimation for the possibilities for wider application of the renewable sources in the market are done

  10. 2010 survey of energy resources. 22nd edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    This, the 22nd edition of the World Energy Council's Survey of Energy Resources (SER), is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy. The Survey is a flagship publication of the World Energy Council (WEC), prepared triennially and timed for release at each World Energy Congress. It is a unique document in that no entity other than the WEC compiles such wideranging information on a regular and consistent basis. This highly regarded publication is an essential tool for governments, industry, investors, NGOs and academia.

  11. 2010 survey of energy resources. 22nd edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    This, the 22nd edition of the World Energy Council's Survey of Energy Resources (SER), is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy. The Survey is a flagship publication of the World Energy Council (WEC), prepared triennially and timed for release at each World Energy Congress. It is a unique document in that no entity other than the WEC compiles such wideranging information on a regular and consistent basis. This highly regarded publication is an essential tool for governments, industry, investors, NGOs and academia.

  12. Local government involvement in long term resource planning for community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  13. Nuclear Energy Center Site Survey, 1975. Part V. Resource availability and site screening

    International Nuclear Information System (INIS)

    1976-01-01

    Resource requirements for nuclear energy centers are discussed and the large land areas which meet these requirements and may contain potential sites for a nuclear energy center (NEC) are identified. Maps of the areas are included that identify seismic zones, river flow rates, and population density

  14. Modeling of customer adoption of distributed energy resources; TOPICAL

    International Nuclear Information System (INIS)

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-01-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ((mu)Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a(mu)Grid can operate independent of the macrogrid (the utility power network), the(mu)Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into(mu)Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular(mu)Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a(mu)Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible example

  15. Energy Resources Performance Report, FY 1991 and FY 1992.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-07-01

    Once the Federal Columbia River Power System provided all the power our customers needed and surplus energy, which we sold to others. However, we planned for the time when the surplus would disappear. With our customers, we developed centralized, region-wide conservation programs to conserve energy and build the knowledge and ability to save more energy when needed. We began to look at conservation as a resource, comparing it with supply-side alternatives. Much was accomplished. In Bonneville`s service area in the 1980s, our customers acquired 300 average megawatts (aMW) of conservation savings. How? By weatherizing about 240,000 homes, by making aluminum plants, other industrial plants and commercial buildings more efficient, and also by encouraging states to adopt energy-efficient building codes. Now, our energy surplus is gone. Our customers need energy, and in a hurry. While we plan how much energy will be needed, when and by which customers, we must concurrently accelerate our efforts to acquire resources. Our 1990 Resource Program launched a strategy to do just that, starting in 1991 and 1992, with continuing activities in 1993--1995. The goals and plans of the 1990 Resource Program are still being implemented.

  16. Development of synthetic analysis program concerning on the safety of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. H.; Choi, S. S.; Cheong, Y. H.; Ahn, S. H.; Chang, W. J. [Atomic Creative Technology, Daejeon (Korea, Republic of)

    2007-03-15

    Methodology development of synthetic analysis of energy resources: build system methodology of synthetic analysis of energy resources. Development of web-based enquete program, develop web-based enquete program to support synthetic analysis of energy resources. Aggregation Software development, develop AHP algorithm and aggregation software for the synthetic analysis of energy resources.

  17. A Fair Resource Allocation Algorithm for Data and Energy Integrated Communication Networks

    Directory of Open Access Journals (Sweden)

    Qin Yu

    2016-01-01

    Full Text Available With the rapid advancement of wireless network technologies and the rapid increase in the number of mobile devices, mobile users (MUs have an increasing high demand to access the Internet with guaranteed quality-of-service (QoS. Data and energy integrated communication networks (DEINs are emerging as a new type of wireless networks that have the potential to simultaneously transfer wireless energy and information via the same base station (BS. This means that a physical BS is virtualized into two parts: one is transferring energy and the other is transferring information. The former is called virtual energy base station (eBS and the latter is named as data base station (dBS. One important issue in such setting is dynamic resource allocation. Here the resource concerned includes both power and time. In this paper, we propose a fair data-and-energy resource allocation algorithm for DEINs by jointly designing the downlink energy beamforming and a power-and-time allocation scheme, with the consideration of finite capacity batteries at MUs and power sensitivity of radio frequency (RF to direct current (DC conversion circuits. Simulation results demonstrate that our proposed algorithm outperforms the existing algorithms in terms of fairness, beamforming design, sensitivity, and average throughput.

  18. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  19. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  20. Energy resources in Arab countries: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Al-Lababidi, M. Mukhtar [Organization of Arab Petroleum Exporting Countries, Technical Affairs Dept., Safat (Kuwait)

    1999-12-01

    The author examines the energy resources of Middle East and North African countries under the headings: oil (proven reserves, undiscovered potential recovery, improved recovery techniques, production capacities), natural gas (reserves, undiscovered potential gas recovery), shale oil and tar sand, coal, uranium, hydro, wind energy, solar energy and biomass. (UK)

  1. Package of online Teacher Resources for Generate, the EPA Energy Game

    Science.gov (United States)

    These materials will enable teachers to make and utilize their own copy of the energy board game, called Generate, that has been developed in ORD and used in local EPA-RTP STEM outreach. The teacher resource package includes: (1) Webinar presentation for National Science Teach...

  2. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  3. Results at Mallik highlight progress in gas hydrate energy resource research and development

    Science.gov (United States)

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  4. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  5. Biomass energy resource enhancement: the move to modern secondary energy forms

    Energy Technology Data Exchange (ETDEWEB)

    Craig, K; Overend, R P [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-12-01

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  6. Biomass energy resource enhancement: the move to modern secondary energy forms

    International Nuclear Information System (INIS)

    Craig, K.; Overend, R.P.

    1995-01-01

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  7. Assessment of the human resources infrastructure for nuclear energy program in Macedonia

    International Nuclear Information System (INIS)

    Chaushevski, A.; Spasevska, H.; Nikolova-Poceva, S.; Popov, P.

    2015-01-01

    Macedonia is a country with no nuclear power and research reactors. The nuclear application is currently only in the medical industry, agriculture and food industry, accompanied by radiation measuring and protection activities in these sectors. On the other side the energy needs have been increasing in the last ten years, which resulted in electrical energy import of about 20–30% (around 3000 GWh). Nuclear power is one of the options for satisfying energy needs in the next 50 years. One of the crucial problems in nuclear energy implementation are human resources needs and educational infrastructure development in this field. No matter what will be the future energy scenario in the Republic of Macedonia, the nuclear educational program is the first step to have HR in the field of nuclear energy. This paper presents the proposed direction for having HR in nuclear energy program in a small country such as the Republic of Macedonia. Taking into account the existing national education program related to nuclear topics and in particular to nuclear power, and following the guidance and recommendations from the international nuclear educational programs at the IAEA, EHRO and others, the planning of the educational nuclear programs and human resources development in the Republic of Macedonia has been carried out. This includes the enhancing the capabilities of the national regulatory body in the Republic of Macedonia. (authors) Keywords: NEP (Nuclear Energy Program), HR (Human Resources), NEPIO (Nuclear Energy Program Implementation Organization), NRB (Nuclear Regulatory Body), NPP

  8. Resources and Energy Management: the case of the Agropoli Urban Plan

    Directory of Open Access Journals (Sweden)

    Francesco Domenico Moccia

    2013-07-01

    Full Text Available The theme of the resources management, of the energy-environment retrofitting framed in strategies to mitigate and adapt to climate change, aimed at energy saving, energy generating from alternative sources, metabolism and natural resources is one of the central topics the City Urban Planning of the City of Agropoli, currently approved by Resolution of the City Council no. 110 of 18.04.2013.The plan is part of the wider system of actions taken by the Municipality to achieve the objectives on the environment posed by the European Union with the Directive " EP seals climate change package 20-20-20". In particular the planning tool provides a series of actions aimed at containing the uses energy through measures to rationalize, do not waste and reduce the use of non-renewable resources, by promoting "best practices" from the management of public assets, the use of innovative technologies in all sectors and activities; the diffusion of renewable energy production, with care to avoid impacts and interference with the historical landscape, including the promotion of programs and interventions of public management. The different strategic projects will take care of specific actions also for the experimental use of innovative technologies.The article proposes, within the framework of strategies and actions at the European level for small municipalities, the example of the City of Agropoli drawing conclusions and reflections on the theme of energy saving relative to the housing stock.

  9. Making ''unconventional'' energy resources conventional

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, D A; Bresee, J C; Cooper, M J; Herwig, L O; Kintner, E E

    1977-01-01

    Three ''unconventional'' energy technologies - geothermal, solar and fusion - looked upon in the United States as possessing significant potential for the large scale production of energy. Both fusion and solar energy promise virtually inexhaustible supplies in the long term while geothermal resources offer a relatively near term prospect for more modest, but still significant, energy contributions. Realizing energy production from any of these technologies will require: (1) a great deal of scientific information and/or engineering development; (2) a significant effort to achieve and insure attractive economics; and (3) the development of adequate industrial capacity and technological infrastructure. Here the status of the United States Energy Research and Development Administration's technology development programs in geothermal, solar and fusion energy systems is reviewed. Recent advances in overcoming significant technological barriers are discussed and future directions are described. Special needs and unique opportunities for contributions to each technology are also set forth.

  10. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    Science.gov (United States)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  11. Renewable energy resources and technologies practice in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Rofiqul Islam, M.; Rafiqul Alam Beg, M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Rabiul Islam, M. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh)

    2008-02-15

    Bangladesh has very limited nonrenewable energy resources of its own. She is facing energy crisis and serious desertification problem in rural areas. These issues could be removed if renewable energy is used as a primary source of energy in rural areas. It is essential for scientists and researchers to find out the renewable energy resources and effective technologies. Bangladesh is endowed with vast renewable energy resources such as biomass and solar insolation. Besides, hydro and wind power can be considered as potential renewable energy resources. Harnessing these resources appears to be a promising solution for improving the quality of life of rural villagers. The government and many non-governmental organizations (NGOs) have tried to comprehend and have strived to address the problem of energy. This paper reviews the renewable energy resources and renewable energy technologies (RETs) practicing in Bangladesh in terms of its implementation, research and development activities. The development and trial of systems are mostly funded so far by donor agencies in collaboration with government and NGOs. Biomass energy sources are traditionally used for domestic cooking and in small rural industries. Approximately 60% of total energy demand of the country is supplied by indigenous biomass based fuels. Activities on the development and promotion of biomass technologies have been going on for one decade. Some national and international funds have been available for biogas technology, improved biomass cookers and production of biomass briquettes. At the time, around 25,000 biogas plants exist all over the country in rural areas and educational institutes, etc. More than 0.20 million improve stoves have been installed to save biomass fuel. Over 900 briquetting machines have been operating in the country on commercial basis. The annual solar radiation availability in Bangladesh is as high as 1700 kWh/m{sup 2}. Research and demonstration activities carried out for one

  12. Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China

    International Nuclear Information System (INIS)

    Zhang Jianjun; Fu Meichen; Geng Yuhuan; Tao Jin

    2011-01-01

    The small or middle coal mines with illegal operations in developing countries or regions can cause bad energy waste and environmental disruption. The project of coal-resource integration in Shanxi Province of China gives a new idea or an approach to energy saving and emission reduction. It is a social- and economic-ecological project. The paper shows the targets of energy saving and emission reduction in Shanxi Province, and analyses the aims, significance, design process and implementation of the integration project. Based on that, the paper discusses the challenges and opportunities the project brings. The analysis shows that the project of coal-resource integration in developing countries or regions can effectively improve mining technologies, collect capital and impel international cooperation and exchange. Finally, the paper analyses the concerns about the future, including the possible problems of implementation period, industrial updating, environmental impact and re-employment. However, the successful integration of coal resources can mitigate energy crisis and climate crisis and promote cleaner production effectively. - Highlights: → Coal-resource integration gives a new idea or an approach to energy saving and emission reduction. → Coal-resource integration mitigates climate crisis and promotes cleaner production. → Coal-resource integration brings challenges and opportunities to traditional mining industries.

  13. Reducing LTE Uplink Transmission Energy by Allocating Resources

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben

    2011-01-01

    The effect of physical resource block (PRB) allocation on an LTE modem's transmit power and total modem energy consumption is examined. In this paper the uplink resource blocks are scheduled in either a Frequency Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA) manner......, to determine if low transmission power & long transmission time or high transmission power & short transmission time is most energy efficient. It is important to minimize the LTE modem's energy consumption caused by uplink transmission because it affects phone battery time, and because researchers rarely focus...

  14. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  15. Teachers Environmental Resource Unit: Energy and Power.

    Science.gov (United States)

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  16. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  17. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  18. Arctic Energy Resources: Security and Environmental Implications

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2012-08-01

    Full Text Available n recent years, there has been considerable interest in the Arctic as a source for resources, as a potential zone for commercial shipping, and as a region that might experience conflict due to its strategic importance. With regards to energy resources, some studies suggest that the region contains upwards of 13 percent of global undiscovered oil, 30 percent of undiscovered gas, and multiples more of gas hydrates. The decreasing amount and duration of Arctic ice cover suggests that extraction of these resources will be increasingly commercially viable. Arctic and non-arctic states wish to benefit from the region's resources and the potential circum-polar navigation possibilities. This has led to concerns about the environmental risks of these operations as well as the fear that competition between states for resources might result in conflict. Unresolved offshore boundaries between the Arctic states exacerbate these fears. Yet, the risk of conflict seems overstated considering the bilateral and multilateral steps undertaken by the Arctic states to resolve contentious issues. This article will examine the potential impact of Arctic energy resources on global security as well as the regional environment and examine the actions of concerned states to promote their interests in the region.

  19. Profit-based conventional resource scheduling with renewable energy penetration

    Science.gov (United States)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  20. Unconventional energy resources in a crowded subsurface: Reducing uncertainty and developing a separation zone concept for resource estimation and deep 3D subsurface planning using legacy mining data.

    Science.gov (United States)

    Monaghan, Alison A

    2017-12-01

    Over significant areas of the UK and western Europe, anthropogenic alteration of the subsurface by mining of coal has occurred beneath highly populated areas which are now considering a multiplicity of 'low carbon' unconventional energy resources including shale gas and oil, coal bed methane, geothermal energy and energy storage. To enable decision making on the 3D planning, licensing and extraction of these resources requires reduced uncertainty around complex geology and hydrogeological and geomechanical processes. An exemplar from the Carboniferous of central Scotland, UK, illustrates how, in areas lacking hydrocarbon well production data and 3D seismic surveys, legacy coal mine plans and associated boreholes provide valuable data that can be used to reduce the uncertainty around geometry and faulting of subsurface energy resources. However, legacy coal mines also limit unconventional resource volumes since mines and associated shafts alter the stress and hydrogeochemical state of the subsurface, commonly forming pathways to the surface. To reduce the risk of subsurface connections between energy resources, an example of an adapted methodology is described for shale gas/oil resource estimation to include a vertical separation or 'stand-off' zone between the deepest mine workings, to ensure the hydraulic fracturing required for shale resource production would not intersect legacy coal mines. Whilst the size of such separation zones requires further work, developing the concept of 3D spatial separation and planning is key to utilising the crowded subsurface energy system, whilst mitigating against resource sterilisation and environmental impacts, and could play a role in positively informing public and policy debate. Copyright © 2017 British Geological Survey, a component institute of NERC. Published by Elsevier B.V. All rights reserved.

  1. Energy analysis applied to uranium resource estimation

    International Nuclear Information System (INIS)

    Mortimer, N.D.

    1980-01-01

    It is pointed out that fuel prices and ore costs are interdependent, and that in estimating ore costs (involving the cost of fuels used to mine and process the uranium) it is necessary to take into account the total use of energy by the entire fuel system, through the technique of energy analysis. The subject is discussed, and illustrated with diagrams, under the following heads: estimate of how total workable resources would depend on production costs; sensitivity of nuclear electricity prices to ore costs; variation of net energy requirement with ore grade for a typical PWR reactor design; variation of average fundamental cost of nuclear electricity with ore grade; variation of cumulative uranium resources with current maximum ore costs. (U.K.)

  2. An analysis of wind and solar energy resources for the State of Kuwait

    Science.gov (United States)

    Alhusainan, Haya Nasser

    Kuwait is an important producer of oil and gas. Its rapid socio-economic growth has been characterized by increasing population, high rates of urbanization, and substantial industrialization, which is transforming it into a large big energy consumer as well. In addition to urbanization, climatic conditions have played an important function in increasing demand for electricity in Kuwait. Electricity for thermal cooling has become essential in the hot desert climate, and its use has developed rapidly along with the economic development, urbanization, and population growth. This study examines the long-term wind and solar resources over the Kuwait to determine the feasibility of these resources as potential sustainable and renewable energy sources. The ultimate goal of this research is to help identify the potential role of renewable energy in Kuwait. This study will examine the drivers and requirements for the deployment of these energy sources and their possible integration into the electricity generation sector to illustrate how renewable energy can be a suitable resource for power production in Kuwait and to illustrate how they can also be used to provide electricity for the country. For this study, data from sixteen established stations monitored by the meteorological department were analyzed. A solar resource map was developed that identifies the most suitable locations for solar farm development. A range of different relevant variables, including, for example, electric networks, population zones, fuel networks, elevation, water wells, streets, and weather stations, were combined in a geospatial analysis to predict suitable locations for solar farm development and placement. An analysis of recommendations, future energy targets and strategies for renewable energy policy in Kuwait are then conducted. This study was put together to identify issues and opportunities related to renewable energy in the region, since renewable energy technologies are still limited in

  3. Energy needs, uses, and resources in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Palmedo, P.F.; Nathans, R.; Beardsworth, E.; Hale, S. Jr.

    1978-03-01

    The report identifies the energy needs, uses, and resources in the developing countries of the world and examines the energy options available to them for their continued social and economic growth. If traditional patterns of development are to continue, oil consumption in the non-OPEC LDCs will grow steadily to become comparable with current U.S. consumption between 2000 and 2020. Attempts to exploit indigenous hydrocarbon resources even in those LDCs with untapped reserves will be limited by shortages of capital and technical manpower. In the absence of major actions to replace noncommercial fuels or to increase the effectiveness with which they are used, a large fraction of the 3 to 4 billion LDC rural population in the year 2000 will not be able to raise their energy usage above subsistence levels. There is a wide variety of solutions to these problems, many of them emerging directly from the changed economics of energy. For example, most LDCs have not adequately explored and developed their own indigenous resources; in virtually all energy conversion and utilization processes there are opportunities for improvements in efficiency and substitution of renewable energy forms. In virtually all these areas there are opportunities for effective assistance activities.

  4. Energy management in a microgrid with distributed energy resources

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Gari, Nicolae; Hmurcik, Lawrence V.

    2014-01-01

    Highlights: • A performance metric is proposed with the consideration of price, environment effect, and service quality. • Models of a microgrid and a microgrid network are designed with distribute energy resources and storage. • Different cases in MG operation are discussed. - Abstract: A smart grid power system with renewable energy resources and distributed energy storage shows significant improvement in the power system’s emission reduction, reliability, efficiency, and security. A microgrid is a smart grid in a small scale which can be stand-alone or grid-tied. Multi microgrids form a network with energy management and operational planning through two-way power flow and communication. To comprehensively evaluate the performance of a microgrid, a performance metric is proposed with consideration of the electricity price, emission, and service quality, each of them is given a weighting factor. Thus, the performance metric is flexible according to the consumers’ preference. With the weighting factors set in this paper, this performance metric is further applied on microgrids operated as stand-alone, grid-tied, and networked. Each microgrid consists of a solar panel, a hydrogen fuel cell stack, an electrolyzer, a hydrogen storage tank, and a load. For a stand-alone system, the load prediction lowers down the daily electricity consumption about 5.7%, the quantity of H 2 stored fluctuates in a wide range, and overall performance indexes increase with the solar panel size. In a grid-tied MG, the load prediction has a significant effect on the daily consumed electricity which drops 25% in 4 days, some day-time loads are shifted to the night time, and the capacity of hydrogen tank is lower than that in a stand-alone MG. In a network with multiple MGs, the control of the power distribution strongly affects the MG’s performance. However, the overall performance index instead of any specific index increases with the MG’s power generated from renewable energy

  5. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  6. The Final Report: 1975 Energy Resource Alternatives Competition.

    Science.gov (United States)

    Radtke, Mark L.; And Others

    This publication describes the projects entered in the Energy Resource Alternatives competition in 1975. Teams of engineering students were given a year to develop non-conventional or alternative energy systems that produced useful energy outputs. Besides an overview of energy sources and uses and discussions of the competitions development, the…

  7. Distributed Control and Management of Renewable Electric Energy Resources for Future Grid Requirements

    DEFF Research Database (Denmark)

    Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Nourbakhsh, Ghavameddin

    2016-01-01

    strategy is a promising approach to manage and utilise the resources in future distribution networks to effectively deal with grid electric quality issues and requirements. Jointly, utility and customers the owners of the resources in the network are considered as part of a practical coordination strategy......It is anticipated that both medium- and low-voltage distribution networks will include high level of distributed renewable energy resources, in the future. The high penetration of these resources inevitably can introduce various power quality issues, including; overvoltage and overloading....... This book chapter provides the current research state of the art concepts and techniques in dealing with these potential issues. The methods provided in this chapter are based on distributed control approach, tailored and suitable particularly for the future distribution composition. The distributed control...

  8. Value of sensitive in-situ environmental assets in energy resource extraction

    International Nuclear Information System (INIS)

    Thampapillai, Dodo J.

    2011-01-01

    The extraction of energy resources and the preservation of sensitive in-situ environmental assets are invariably mutually exclusive alternatives. The opportunity cost value of preserving the environmental assets can be assessed by recourse to resource rent taxes, and threshold values. The case study analysis carried out in this paper suggests that the preservation of these assets could be justifiable on the grounds of “acceptable sacrifice”. - Highlights: ► Resource rents owed to the state from energy resource extraction can be significant. ► Benefits if mining energy resources are over-stated when the role of sensitive environmental assets is ignored. ► Threshold values could help to resolve conflicts between environmental preservation and resource extraction.

  9. Nuclear Power and Resource Efficiency—A Proposal for a Revised Primary Energy Factor

    Directory of Open Access Journals (Sweden)

    Ola Eriksson

    2017-06-01

    Full Text Available Measuring resource efficiency can be achieved using different methods, of which primary energy demand is commonly used. The primary energy factor (PEF is a figure describing how much energy from primary resources is being used per unit of energy delivered. The PEF for nuclear power is typically 3, which refers to thermal energy released from fission in relation to electricity generated. Fuel losses are not accounted for. However; nuclear waste represents an energy loss, as current plans for nuclear waste management mostly include final disposal. Based on a literature review and mathematical calculations of the power-to-fuel ratio for nuclear power, PEF values for the open nuclear fuel cycle (NFC option of nuclear power and different power mixes are calculated. These calculations indicate that a more correct PEF for nuclear power would be 60 (range 32–88; for electricity in Sweden (41% nuclear power PEF would change from 1.8 to 25.5, and the average PEF for electricity in the European Union (EU would change from 2.5 to 18. The results illustrate the poor resource efficiency of nuclear power, which paves the way for the fourth generation of nuclear power and illustrates the policy implication of using PEFs which are inconsistent with current waste management plans.

  10. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  11. Secondary Power Resources of the Fuel and Energy Complex in Ukraine

    Directory of Open Access Journals (Sweden)

    Shkrabets F.P.

    2016-04-01

    Full Text Available This article describes the types of secondary energy resources that occur during or as a result of mining or of technological processes at metallurgical, coke and chemical enterprises. The research of opportunities to use them directly at industrial enterprises, in case when an energy resource or the energy generated “is not a commodity” was carried out. To generate electricity from secondary sources, the use of diesel power plants and gas–turbine facilities was offered. The values ​​of investments in the construction of thermal power plants (TPP based on different types of secondary energy resources were calculated. Tentative capacities of power plants, which utilize the energy of secondary sources were also computed. The figures used for assessing the release and use of secondary energy resources were given. The necessity of using secondary sources of energy to reduce harmful effects on the environment was emphasized.

  12. A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles

    DEFF Research Database (Denmark)

    Sousa, Tiago; Vale, Zita; Carvalho, Joao Paulo

    2014-01-01

    The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed...... to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated...... annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA...

  13. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  14. Decentralized Energy Management with Profile Steering : Resource Allocation Problems in Energy Management

    NARCIS (Netherlands)

    van der Klauw, Thijs

    2017-01-01

    Our energy supply chain is changing rapidly, driven by a societal push towards clean and renewable resources. However, these resources are often uncontrollable (e.g., wind and sun) and are increasingly being exploited on smaller scales (e.g., rooftop photovoltaic). This poses a reliability challenge

  15. The Energy Commission's notice to the Minister of Natural Resources regarding the place of wind energy in Quebec's energy portfolio

    International Nuclear Information System (INIS)

    Dumais, A.; Frayne, A.; Tanguay, F.

    1998-01-01

    In December 1997 Quebec's Minister of Natural Resources requested that the Energy Commission advise him on the quota given to wind energy in the future energy development plans of Hydro-Quebec. The Commission's report to the Minister includes 18 recommendations. Among these is a recommendation that an assessment of wind resources be conducted as soon as possible to identify suitable sites for the installation of wind turbines. A provincial program for the development of wind energy is also recommended, to be initiated by the year 2002, and that it should proceed over the next nine years to reach a target production capacity of 450 MW by the year 2011. This production would come from the yearly installation of 60 to 70 wind turbines of 750 kV. The Commission also recommended that in the initial years costs for this wind energy not exceed that of the Le Nordais project, i.e. 5.8 cents per kWh. Any additional costs incurred in the generation of wind electricity over conventional hydro power should be assumed by the Quebec Government. Conversely, in instances where the wind power is sold to consumers outside of the province, Hydro-Quebec should pay for the full cost of this power. 8 tabs., 1 appendix

  16. Part I. Alternative fuel-cycle and deployment strategies: their influence on long-term energy supply and resource usage

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Rudolph, R.R.

    1980-01-01

    This report examines the implications of alternative fast breeder fuel cycles and deployment strategies on long-term energy supply and uranium resource utilization. An international-aggregate treatment for nuclear energy demand and resource base assumptions was adopted where specific assumptions were necessary for system analyses, but the primary emphasis was placed on understanding the general relationships between energy demand, uranium resource and breeder deployment option. The fast breeder deployment options studied include the reference Pu/U cycle as well as alternative cycles with varying degrees of thorium utilization

  17. Peat - The sustainable energy resource in Finland

    International Nuclear Information System (INIS)

    1994-01-01

    In Finland the level of energy consumption for heating, transportation and industry is higher than in many other European countries. This is due to the northern position of the country and also to the fact that Finland is sparsely inhabited. Peat is one of the Finnish domestic energy resources. This brochure provides a compact package of background information on fuel peat. All the data presented concerning the production and use of peat, employment, investments in the peat industry, emission levels resulting from the production and use of peat, new combustion technologies and peatland resources, have been collected from documents and other sources that are accessible to the general public

  18. Wave energy resource assessment and review of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan Nik, W.B.: Sulaiman, O.O. [Maritime Technology Department, Universiti Malaysia Terengganu, 21030, Kuala Terengganu (Malaysia); Rosliza, R. [TATI University College, Teluk Kalong, 24000 Kemaman, Terengganu, (Malaysia); Prawoto, Y. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Muzathik, A.M. [Institute of Technology, University of Moratuwa (Sri Lanka)

    2011-07-01

    Increase in human population has increased the demand for more energy. Technical improvement in transport and electrical appliances gives a lot of facilities to our life nowadays. Still we need to generate or convert this energy. Energy generation based on conventional technologies is always accompanied by environmental pollution. It gives overheating and greenhouse effects that later result in biosphere degradation. Nowadays sea wave energy is being increasingly regarded in many countries as a major and promising resource. It is renewable and environmentally friendly. In this paper wave parameters related to wave energy is analyzed. Then the paper describes the development of many different types of wave-energy converters. Several topics are addressed; the characterization of the wave energy resource, range of devices and how such devices can be organized into classes.

  19. Thorium Energy Resources and its Potential of Georgian Republic, The Caucasus

    Science.gov (United States)

    Gogoladze, Salome; Okrostsvaridze, Avtandil

    2017-04-01

    /t); 3- in magnetite ore bodies of Vakijvari ore field (Th concentrations vary between 185 g/t - 1600 g/t); 4- in the black sand (magnetite sand) of the Black Sea Guria region coast (Th concentrations vary between 200 g/t - 450 g/t). Based on these data and on the correlation of these information on the other thorium deposit of the world, the Georgian thorium ore occurrences should be treated as a prospective objects. Because of this, we consider that complex investigation of thorium resources of Georgia should be included into the sphere of strategic interests of the state. REFERENCES Martin R., 2009. "Uranium is So Last Centure - Enter Thorium , the New Green Nuke", Weird Magazine, Dec. 21. Kazimi M. S., 2003. "Thorium fuel for nuclear energy", American Scientist, 91, pp. 305-313. Okrostsvaridze A. V., 2014. Torium - Future Energy of Modern Civilization? and its Ore Occurrences in Georgia Republic. Bull.Georg. Natl. Acad. Sci., vol. 8., no 3, pp. 48-55.

  20. Energy principle with included boundary conditions

    International Nuclear Information System (INIS)

    Lehnert, B.

    1994-01-01

    Earlier comments by the author on the limitations of the classical form of the extended energy principle are supported by a complementary analysis on the potential energy change arising from free-boundary displacements of a magnetically confined plasma. In the final formulation of the extended principle, restricted displacements, satisfying pressure continuity by means of plasma volume currents in a thin boundary layer, are replaced by unrestricted (arbitrary) displacements which can give rise to induced surface currents. It is found that these currents contribute to the change in potential energy, and that their contribution is not taken into account by such a formulation. A general expression is further given for surface currents induced by arbitrary displacements. The expression is used to reformulate the energy principle for the class of displacements which satisfy all necessary boundary conditions, including that of the pressure balance. This makes a minimization procedure of the potential energy possible, for the class of all physically relevant test functions which include the constraints imposed by the boundary conditions. Such a procedure is also consistent with a corresponding variational calculus. (Author)

  1. World mineral energy resources and their distribution in time and space

    International Nuclear Information System (INIS)

    Toens, P.D.; Camisani-Calzolari, F.A.G.M.; Van der Merwe, P.J.; Andreoli, M.A.G.

    1985-01-01

    If the estimated total geological potential of the world mineral energy resources is reduced to a common denominator, then the total resources are estimated at 20 600 terawatt years (TWyr). Assuming that all these resources are recoverable, and applying today's technology, they would suffice for 1 700 years under no-growth conditions and approximately 130 years assuming an annual growth rate of 3%. It should, however, be borne in mind that only about 15% (or 3 100 TWry) of the world's resources can be regarded as proved or partly proved and recoverable at current price levels and with current technology. Assuming a no-growth scenario, these resources will meet future energy requirements for a period of approximately 260 years. At a 3% annual growth rate resources will last for about 70 years. From these figures it is clear that the known mineral energy resources will be depleted in the near future. The challenge to the geologist to locate additional energy potential is enormous and in order to do so, the distribution of known resources in time and space was reappraised. The present investigation confirms the time-bound character of the mineralising processes. These took place in a series of clearly defined rhythms ranging from the early Proterozoic to the Recent. Uranium and thorium constitute the only energy resources of the Proterozoic. In contrast, the Phanerozoiceon contains the totality of fossil fuels and at least 60% of the nuclear resources; strata younger than 600 Ma therefore represent the most favourable target areas for prospecting

  2. Caspian energy: Oil and gas resources and the global market

    NARCIS (Netherlands)

    Amineh, M.P.; Houweling, H.

    2003-01-01

    his article develops several concepts of critical geopolitics and relates them to the energy resources of the Caspian Region. Energy resources beyond borders may be accessed by trade, respectively by conquest, domination and changing property rights. These are the survival strategies of human groups

  3. Women and energy resources management. A UNIFEM perspective

    International Nuclear Information System (INIS)

    Marks, I.

    1996-01-01

    Women need access to energy resources in order to meet their basic needs for food, shelter, clean water, health care and employment and to improve their family's living conditions. Due to population growth and economic development the demand for the main energy sources in low-income rural areas, biomass, is far greater than the supply, and women have no choice but to overexploit the increasingly scarce resources just to survive. Improvements in energy efficiency and an increased use of renewable energy sources could help women to balance their immediate livelihood needs and the long-term ecological needs. However, women generally lack access to these improved energy technologies. This article explores the causes of women's limited access to improved energy technologies and why energy polices and programmes often fail to address women's specific needs and concerns. Strategies of the United Nations Development Fund for Women (UNIFEM) are outlined as examples of approaches aiming at improving women's access to information and sustainable technologies and promoting women's full participation in environmental decision and policy making. (author). 23 refs

  4. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  5. Managing human resources in the field of nuclear energy

    International Nuclear Information System (INIS)

    2009-01-01

    The nuclear field, comprising industry, government authorities, regulators, R and D organizations and educational institutions, relies heavily on a specialized, highly trained and motivated workforce for its sustainability. An ageing workforce, declining student enrolment and the resultant risk of losing accumulated nuclear knowledge and experience for expanding or newly established nuclear programmes are all serious challenges that influence the management of human resources (HR) in the nuclear field. The management of human resources requires particular attention in the field of nuclear energy, both because of the high standards of performance expected in this field and the considerable time needed to develop such specialists. The peaceful uses of nuclear energy were primarily developed during the second half of the twentieth century. The nuclear field is now at a mature stage of development, with those who were pioneers in the field having retired and their responsibilities handed over to subsequent generations. For those aspects of the nuclear field related to nuclear power, a great deal of effort has been devoted to managing and continuing to improve the safety and operational performance of existing facilities. However, indications are that the next decades may see considerable expansion to meet increasing energy needs, while responding to concerns about the environment, including global warming. Thus, in the nuclear field, those Member States with existing nuclear power programmes may be forced to replace a large part of their current workforce, while also attracting, recruiting and preparing a fresh workforce for the new facilities being planned. At the same time, those who will be initiating nuclear power programmes, or other peaceful applications, will be developing HR for their programmes. In the past, the development of human resources in the nuclear field has depended on considerable support from organizations in the country of origin of the technology

  6. Resource analysis of the Chinese society 1980-2002 based on energy-Part 5: Resource structure and intensity

    International Nuclear Information System (INIS)

    Chen, G.Q.; Chen, B.

    2007-01-01

    This paper is the continuation of the fourth part on fishery and rangeland. The total resource inflow to the Chinese society from 1980 to 2002 is investigated in four parts published afore. The total resource energy input corresponds to GDP is presented in comparison with the purchasing power parity in this paper. The structure of the resource energy inflow is also outlined. Finally, a novel concept referred to as resource intensity is suggested to serve as a basic indicator to illustrate the real status of the economic development in China

  7. Mass and energy-capital conservation equations to study the price evolution of non-renewable energy resources

    International Nuclear Information System (INIS)

    Gori, F.

    2006-01-01

    Mass conservation equation of non-renewable resources is employed to study the resources remaining in the reservoir according to the extraction policy. The energy conservation equation is transformed into an energy-capital conservation equation. The Hotelling rule is shown to be a special case of the general energy-capital conservation equation when the mass flow rate of extracted resources is equal to unity. Mass and energy-capital conservation equations are then coupled and solved together. It is investigated the price evolution of extracted resources. The conclusion of the Hotelling rule for non-extracted resources, i.e. an exponential increase of the price of non-renewable resources at the rate of current interest, is then generalized. A new parameter, called 'Price Increase Factor', PIF, is introduced as the difference between the current interest rate of capital and the mass flow rate of extraction of non-renewable resources. The price of extracted resources can increase exponentially only if PIF is greater than zero or if the mass flow rate of extraction is lower than the current interest rate of capital. The price is constant if PIF is zero or if the mass flow rate of extraction is equal to the current interest rate. The price is decreasing with time if PIF is smaller than zero or if the mass flow rate of extraction is higher than the current interest rate. (author)

  8. Optimal allocation of international atomic energy agency inspection resources

    International Nuclear Information System (INIS)

    Markin, J.T.

    1987-01-01

    Each year the Department of Safeguards of the International Atomic Energy Agency (IAEA) conducts inspections to confirm that nuclear materials and facilities are employed for peaceful purposes. Because of limited inspection resources, however, the IAEA cannot fully attain its safeguards goals either quantitatively as measured by the inspection effort negotiated in the facility attachments or qualitatively as measured by the IAEA criteria for evaluating attainment of safeguards goals. Under current IAEA procedures the allocation of inspection resources assigns essentially equal inspection effort to facilities of the same type. An alternative approach would incorporate consideration of all material categories and facilities to be assigned inspection resources when allocating effort to a particular facility. One such method for allocating inspection resources is based on the IAEA criteria. The criteria provide a framework for allocating inspection effort that includes a ranking of material types according to their safeguards importance, an implicit definition of inspection activities for each material and facility type, and criteria for judging the attainment of safeguards goals in terms of the quality and frequency of these inspection activities. This framework is applicable to resource allocation for an arbitrary group of facilities such as a state's fuel cycle, the facilities inspected by an operations division, or all of the facilities inspected by the IAEA

  9. System Integration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Nyeng, Preben

    units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development....... It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small......, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market...

  10. Wind energy resource assessment in Madrid region

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Jimenez, Angel; Garcia, Javier; Manuel, Fernando [Laboratorio de Mecanica de Fluidos, Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2-28006, Madrid (Spain)

    2007-07-15

    The Comunidad Autonoma de Madrid (Autonomous Community of Madrid, in the following Madrid Region), is a region located at the geographical centre of the Iberian Peninsula. Its area is 8.028 km{sup 2}, and its population about five million people. The Department of Economy and Technological Innovation of the Madrid Region, together with some organizations dealing on energy saving and other research institutions have elaborated an Energy Plan for the 2004-12 period. As a part of this work, the Fluid Mechanics Laboratory of the Superior Technical School of Industrial Engineers of the Polytechnic University of Madrid has carried out the assessment of the wind energy resources [Crespo A, Migoya E, Gomez Elvira R. La energia eolica en Madrid. Potencialidad y prospectiva. Plan energetico de la Comunidad de Madrid, 2004-2012. Madrid: Comunidad Autonoma de Madrid; 2004]; using for this task the WAsP program (Wind Atlas Analysis and Application Program), and the own codes, UPMORO (code to study orography effects) and UPMPARK (code to study wake effects in wind parks). Different kinds of data have been collected about climate, topography, roughness of the land, environmentally protected areas, town and village distribution, population density, main facilities and electric power supply. The Spanish National Meteorological Institute has nine wind measurement stations in the region, but only four of them have good and reliable temporary wind data, with time measurement periods that are long enough to provide representative correlations among stations. The Observed Wind Climates of the valid meteorological stations have been made. The Wind Atlas and the resource grid have been calculated, especially in the high wind resource areas, selecting appropriate measurements stations and using criteria based on proximity, similarity and ruggedness index. Some areas cannot be used as a wind energy resource mainly because they have environmental regulation or, in some cases, are very close

  11. Distributed energy resources in grid interactive AC microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Guerrero, Josep; Chen, Zhe

    2010-01-01

    Increased penetration of distributed energy resources (DER) and large-scale deployment of renewable energy sources are challenging the entire architecture of traditional power system. Microgrid, featuring higher flexibility and reliability, becomes an attractive candidate for the configuration...

  12. Energy reserves and energy resources: situation in 1980

    International Nuclear Information System (INIS)

    Bauer, L.

    1981-01-01

    Following an explanation of the main relevant technical terms and units, the author discusses the world energy consumption over the last few years and its structural development. This is supplemented by an analysis of energy consumption in Austria. Based on this, the author gives a forecast of the further growth of the world energy consumption figures to the year 2020 and compares these with the world's reserves of raw materials for energy production. A similar comparison is made for Austria. Outlining the irregularity in the distribution of the reserves over the earth and a short explanation of the dependence on the respective technology of the utilisation of nuclear fuels, the author discusses the possibilities of developing the energy resources all over the world as well as in Austria. The quantitative assessment is based on IIASA studies and on corresponding investigations carried out in Austria. By way of summary, he presents an outlook on the possibilities of upgrading solid fuels as a temporary remedy against future difficulties in the supply of crude oil or natural gas and underlines the importance of nuclear energy for the future. (Auth.)

  13. Renewable Energy Resources in Lebanon

    Science.gov (United States)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  14. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    Science.gov (United States)

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  15. A regional-scale assessment of local renewable energy resources in Cumbria, UK

    International Nuclear Information System (INIS)

    Gormally, A.M.; Whyatt, J.D.; Timmis, R.J.; Pooley, C.G.

    2012-01-01

    There is increasing focus on the role small-scale decentralised renewable energy developments could play in helping the UK meet its target of over 15% renewable energy by the year 2020 and alter energy behaviours through active community engagement. Upland areas are considered key areas where such community-based developments could occur due to their natural resources and range of community scales. This study uses GIS-based techniques to develop a methodology that assesses the regional-scale potential for community-based renewable electricity across Cumbria and whether a combination of these developments at the community-scale could make a significant contribution to local electricity consumption. This methodology looks at a range of technologies including hydro-power, wind-power, solar PV and bioenergy. The results suggest there is ample resource available for small communities by combining a mix of localised renewable electricity developments, which is highlighted through energy scenarios for a selected community. Further work will investigate whether this potential can be realised in reality by looking at resource resilience and community-level acceptability. - Highlights: ► A mix of wind, solar, bioenergy and hydro-power options are presented for Cumbria, UK. ► High resolution spatial analysis is conducted focussing on localised developments. ► Locations with sufficient renewable electricity potential were identified. ► Renewable options are explored further through a town case study. ► Scenarios consider different scales, mixes and contributions to local energy demand.

  16. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    Science.gov (United States)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  17. The role of natural resource and environmental economics in determining the trade-offs in consumption and production of energy inputs: The case of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M.; Graham, R.L.

    1993-12-31

    Natural resource economics issues deal with flows and funds of renewable and nonrenewable resources over time. These issues include topics concerned with management of fisheries, forests, mineral, energy resources, the extinction of species and the irreversibility of development over time. Environmental economics issues deal with regulation of polluting activities and the valuation of environmental amenities. In this study we outline a framework for studying both natural resource and environmental economics issues for any renewable or nonrenewable resource. Valuation from both the cost and benefit sides are addressed as they relate to the valuation of environmental programs or policies. By using this top-down approach to analyze and determine the costs and benefits of using renewable or nonrenewable resources, policy-makers on the global, national and local scales may be better informed as to the probable nonmarket and market ramifications of their natural resource and environmental policy decisions. This general framework for analysis is then focused to address biomass energy crops and their usage as inputs to energy production. As with any energy technology, a complete analysis must include an examination of the entire fuel cycle; specifically both production and consumption sides. From a production standpoint, market valuation issues such as crop management techniques, inputs to production, and community economics issues must be addressed as well as nonmarket valuation issues such as soil erosion, ground water effects and carbon sequestration. On the consumption side, market valuation considerations such as energy fuel efficiency and quality, cost of conversion and employment of labor are important factors while the critical nonmarket valuation factors are ambient air visibility, greenhouse gas release, and disposal of the by-products of conversion and combustion.

  18. The role of natural resource and environmental economics in determining the trade-offs in consumption and production of energy inputs: The case of biomass energy crops

    International Nuclear Information System (INIS)

    Downing , M.; Graham, R.L.

    1993-01-01

    Natural resource economics issues deal with flows and funds of renewable and nonrenewable resources over time. These issues include topics concerned with management of fisheries, forests, mineral, energy resources, the extinction of species and the irreversibility of development over time. Environmental economics issues deal with regulation of polluting activities and the valuation of environmental amenities. In this study we outline a framework for studying both natural resource and environmental economics issues for any renewable or nonrenewable resource. Valuation from both the cost and benefit sides are addressed as they relate to the valuation of environmental programs or policies. By using this top-down approach to analyze and determine the costs and benefits of using renewable or nonrenewable resources, policy-makers on the global, national and local scales may be better informed as to the probable nonmarket and market ramifications of their natural resource and environmental policy decisions. The general framework for analysis is then focused to address biomass energy crops and their usage as inputs to energy production. As with any energy technology, a complete analysis must include an examination of the entire fuel cycle; specifically both production and consumption sides. From a production standpoint, market valuation issues such as crop management techniques, inputs to production, and community economics issues must be addressed as well as nonmarket valuation issues such as soil erosion, ground water effects and carbon sequestration. On the consumption side, market valuation considerations such as energy fuel efficiency and quality, cost of conversion and employment of labor are important factors while the critical nonmarket valuation factors are ambient air visibility, greenhouse gas release, and disposal of the by-products of conversion and combustion

  19. The development and utilization of biomass energy resources in China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lin [Energy Research Institute of the State Planning Commission, Beijing (China)

    1995-12-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author) 4 refs, 2 figs, 4 tabs

  20. Sustainable resource planning in energy markets

    International Nuclear Information System (INIS)

    Kamalinia, Saeed; Shahidehpour, Mohammad; Wu, Lei

    2014-01-01

    Highlights: • Sustainable resource planning with the consideration of expected transmission network expansion. • Incomplete information non-cooperative game-theoretic method for GEP. • Maximizing utility value whiling considering merits of having various generation portfolios. • Minimizing risk of investment using renewable generation options. • Application of the stochastic approach for evaluating the unpredictability of opponent payoffs and commodity values. - Abstract: This study investigates the role of sustainable energy volatility in a market participant’s competitive expansion planning problem. The incomplete information non-cooperative game-theoretic method is utilized in which each generation company (GENCO) perceives strategies of other market participants in order to make a decision on its strategic generation capacity expansion. Sustainable generation incentives, carbon emission penalties, and fuel price forecast errors are considered in the strategic decisions. The market clearing process for energy and reserves is simulated by each GENCO for deriving generation expansion decisions. A merit criterion (i.e., the utility value) is proposed for a more realistic calculation of the expected payoff of a GENCO with sustainable energy resources. Finally, the impact of transmission constraints is investigated on the GENCO’s expansion planning decision. The case studies illustrate the effectiveness of the proposed method

  1. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Energy Resources of Iran and Their Environmental Impacts

    Directory of Open Access Journals (Sweden)

    V. P. Bubnov

    2013-01-01

    Full Text Available The paper presents an analysis of main sources of energy resource production and their sale  in the domestic and export markets. The authors have analyzed type of domestic energy consumers and estimated their environmental impacts. The paper shows that the shift to alternative energy sources will reduce an ecological impact on the environment.

  3. Northeast Asian economy cooperation: study on energy resource cooperation in Northeast Asian region

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Woo Jin [Korea Energy Economics Institute, Euiwang (Korea)

    1999-12-01

    In Northeast Asian region, there are East Russia with abundant resources, Japan a large energy consumption country, Korea and China with rapidly increasing energy consumption due to their economic development, but the utilization rate of East Russian resources are very low and the resource trading and investment among Korea, China and Japan are also low. Korea and Japan use most of energy imported from Middle East. It is expected that import of petroleum and gas except coal will be increasing in China and most of imported energy will be imported mainly from the Middle East. For Korea, with not much energy resources and foreign-oriented economic system, if investment on resource development among Northeast Asian countries is active and energy transportation among these countries is liberalized, the enhancement of energy cooperation in Northeast Asia has a high possibility to provide North and South Korean energy cooperation as well as to secure energy security and to develop energy industry. Therefore, Korean government needs to promote Northeast Asian energy cooperation by taking its lead. (author). 28 refs., 8 figs., 44 tabs.

  4. Renewable energy resources and management appliances-use of smart technologies in the energy

    International Nuclear Information System (INIS)

    Kultan, J.

    2012-01-01

    The contribution is aimed at analyzing the impact of renewable energy resources to power system steady modes and the possibility of using smart technology to reduce the impact of inequalities and the variance of the energies and the quality of energy supplied. The use of smart technologies in the form of active dynamic appliances in response to network conditions to reduce effects of stochastic renewable resources dynamic impacts / wind blasts, quickly changing sunlight emissions on solar panels, increasing the amount of water in flow-based water power plants /or a change in network status. Active response appliances, depending on network conditions, improves parameters of economic power generation, transmission, distribution and consumption. (Authors)

  5. Prediction of Wind Energy Resources (PoWER) Users Guide

    Science.gov (United States)

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER

  6. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  7. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  8. The Texas Energy-Only Resource Adequacy Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Eric S.; Hurlbut, David; Adib, Parviz; Oren, Shmuel

    2006-12-15

    On Sept. 13, 2006, the Public Utility Commission of Texas put into effect a new Resource Adequacy and Market Power Rule which establishes an Energy-Only resource adequacy mechanism in the ERCOT electricity market, relaxes the $1,000 per MWh offer cap, and replaced existing market mitigation procedures with more market transparency and prompt information disclosure. The authors describe the motivation and rationale underlying the new rule, its development process, and its implementation details. (author)

  9. The Texas Energy-Only Resource Adequacy Mechanism

    International Nuclear Information System (INIS)

    Schubert, Eric S.; Hurlbut, David; Adib, Parviz; Oren, Shmuel

    2006-01-01

    On Sept. 13, 2006, the Public Utility Commission of Texas put into effect a new Resource Adequacy and Market Power Rule which establishes an Energy-Only resource adequacy mechanism in the ERCOT electricity market, relaxes the $1,000 per MWh offer cap, and replaced existing market mitigation procedures with more market transparency and prompt information disclosure. The authors describe the motivation and rationale underlying the new rule, its development process, and its implementation details. (author)

  10. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  11. Assessment of grid-friendly collective optimization framework for distributed energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Pensini, Alessandro; Robinson, Matthew; Heine, Nicholas; Stadler, Michael; Mammoli, Andrea

    2015-11-04

    Distributed energy resources have the potential to provide services to facilities and buildings at lower cost and environmental impact in comparison to traditional electric-gridonly services. The reduced cost could result from a combination of higher system efficiency and exploitation of electricity tariff structures. Traditionally, electricity tariffs are designed to encourage the use of ‘off peak’ power and discourage the use of ‘onpeak’ power, although recent developments in renewable energy resources and distributed generation systems (such as their increasing levels of penetration and their increased controllability) are resulting in pressures to adopt tariffs of increasing complexity. Independently of the tariff structure, more or less sophisticated methods exist that allow distributed energy resources to take advantage of such tariffs, ranging from simple pre-planned schedules to Software-as-a-Service schedule optimization tools. However, as the penetration of distributed energy resources increases, there is an increasing chance of a ‘tragedy of the commons’ mechanism taking place, where taking advantage of tariffs for local benefit can ultimately result in degradation of service and higher energy costs for all. In this work, we use a scheduling optimization tool, in combination with a power distribution system simulator, to investigate techniques that could mitigate the deleterious effect of ‘selfish’ optimization, so that the high-penetration use of distributed energy resources to reduce operating costs remains advantageous while the quality of service and overall energy cost to the community is not affected.

  12. Four Essays on the Economics of Energy and Resource Markets

    OpenAIRE

    Hecking, Harald

    2015-01-01

    The thesis at hand seeks to improve the understanding of resource and energy markets, their specific characteristics and their interaction with each other. Therefore, the thesis includes four research papers on the markets for natural gas, coking coal, iron ore, electricity and heat. Each paper, representing one chapter of this thesis, addresses one or more of the specific characteristics outlined above. Chapter 2 assesses the effects of a supply shock on the world market for natural gas....

  13. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    Science.gov (United States)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  14. Simulated Annealing Approach Applied to the Energy Resource Management Considering Demand Response for Electric Vehicles

    DEFF Research Database (Denmark)

    Sousa, Tiago; Vale, Zita; Morais, Hugo

    2013-01-01

    The aggregation and management of Distributed Energy Resources (DERs) by an Virtual Power Players (VPP) is an important task in a smart grid context. The Energy Resource Management (ERM) of theses DERs can become a hard and complex optimization problem. The large integration of several DERs......, including Electric Vehicles (EVs), may lead to a scenario in which the VPP needs several hours to have a solution for the ERM problem. This is the reason why it is necessary to use metaheuristic methodologies to come up with a good solution with a reasonable amount of time. The presented paper proposes...

  15. Local government involvement in long term resource planning for community energy systems. Demand side management

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  16. Regional energy resource development and energy security under CO2 emission constraint in the greater Mekong sub-region countries (GMS)

    International Nuclear Information System (INIS)

    Watcharejyothin, Mayurachat; Shrestha, Ram M.

    2009-01-01

    The paper evaluates effects of energy resource development within the Greater Mekong Sub-region (GMS) on energy supply mix, energy system cost, energy security and environment during 2000-2035. A MARKAL-based integrated energy system model of the five GMS countries was developed to examine benefits of regional energy resource development for meeting the energy demand of these countries. The study found that an unrestricted energy resource development and trade within the region would reduce the total-regional energy systems cost by 18% and would abate the total CO 2 emission by 5% as compared to the base case. All the five countries except Myanmar would benefit from the expansion of regional energy resource integration in terms of lower energy systems costs and better environmental qualities. An imposition of CO 2 emission reduction constraint by 5% on each of the study countries from that of the corresponding emissions under the unrestricted energy resource development in the GMS is found to improve energy security, reduce energy import and fossil fuels dependences and increase volume of power trade within the region. The total energy system cost under the joint CO 2 emission reduction strategy would be less costly than that under the individual emission targets set for each country.

  17. Effective management of combined renewable energy resources in Tajikistan.

    Science.gov (United States)

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  18. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  19. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    Science.gov (United States)

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  20. Situational analysis of the Canadian renewable energy sector with a focus on human resource issues : 2007 final report

    International Nuclear Information System (INIS)

    2007-01-01

    Several factors are steering world energy supplies away from traditional fossil fuel sources and toward renewable energy technologies. As a result, renewable energy markets are experiencing significant growth, and experts predict this trend will continue. As of 2004, 2 per cent of Canada's total electricity generation capacity was provided from emerging renewable technologies, excluding large scale hydro which represents 56 per cent of Canada's electricity generation capacity. The development of renewable energy sources in Canada is expected to contribute to Canada's economic prosperity by providing diversified energy supply to industrial buyers, generating direct economic advantages and employment to local communities, as well as direct benefits such as improved air quality and lower greenhouse gas emissions. Human Resources and Social Development Canada contracted the Delphi Group to provide information on the labour market for the renewable energy sector in Canada in order to identify the steps needed to help the sector in developing a human resource strategy. This report provided an overview of key characteristics defining the renewable energy subsectors in Canada along with anticipated changes in the near term. The study focused on the following technologies: wind turbines; photovoltaics; active solar thermal; geoexchange/earth energy; small scale hydropower; bioenergy; and, ocean energy. A reliable estimate of the labour demands in the subsectors over the next 5 to 10 year was presented along with a review of the human resource issues affecting the sector. This project was guided by an advisory committee of members from 4 sector councils; 3 government agencies including Environment Canada, Industry Canada and Natural Resources Canada; 4 industry associations representing bioenergy, geothermal energy, solar energy and wind energy; and other organizations including the Association of Canadian Community Colleges, the Canadian Council of Technicians and

  1. Remapping of the Wind Energy Resource in the Midwestern United States: Preprint

    International Nuclear Information System (INIS)

    Schwartz, M.; Elliot, D.

    2001-01-01

    A recent increase in interest and development of wind energy in the Midwestern United States has focused the need for updating wind resource maps of this area. The wind resource assessment group at the National Renewable Energy Lab., a U.S. Department of Energy (DOE) laboratory, has produced updated high-resolution (1-km) wind resource maps for several states in this region. This abstract describes the computerized tools and methodology used by NREL to create the higher resolution maps

  2. Recommended Resources for Planning to Evaluate Program Improvement Efforts (Including the SSIP)

    Science.gov (United States)

    National Center for Systemic Improvement at WestEd, 2015

    2015-01-01

    This document provides a list of recommended existing resources for state Part C and Part B 619 staff and technical assistance (TA) providers to utilize to support evaluation planning for program improvement efforts (including the State Systemic Improvement Plan, SSIP). There are many resources available related to evaluation and evaluation…

  3. Natural resources and energy systems: a strategic perspective

    International Nuclear Information System (INIS)

    Lee, T.H.; Schmidt, E.; Anderer, J.

    1986-06-01

    Oil prices falls to below ten dollar a barrel. US synfuel program cancelled after billions of dollars are invested. Tennessee Valley Authority tries to sell unfinished nuclear plants to China. Completed nuclear plant stands idle in Austria. Canadians seek uses for excess power from Candu plants. A glut of cheap oil, a general excess of operating nuclear capacity, an ever growing number of mothballed or not quite completed non-operating nuclear plants. Today the formidable challenge is to use abundant energy sources in ways that support social and economic development and protect the environment. In this paper we seek to provide a strategic perspective on how to meet this challenge. Toward this end, we explore the misconceptions of the past that led to costly errors in energy planning. The issue here is to dispel the myth of resource depletion as the driving force for the shift from one energy source to another. To gain insight into the actual basis for energy substitution, we turn our attention to energy patterns, viewing these in retrospect and prospect. This review of energy development provides an opportunity to consider some of the environmental implications of the expanded use of energy resources. These findings are then drawn together in an attempt to highlight certain R and D options that we believe offer a sound basis for strategic energy management. (Author, shortened by G.Q.)

  4. Global impacts of energy demand on the freshwater resources of nations.

    Science.gov (United States)

    Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-12-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

  5. Is development of geothermal energy resource in Macedonia justified or not?

    International Nuclear Information System (INIS)

    Popovski, Kiril; Popovska Vasilevska, Sanja

    2007-01-01

    During the 80-ies of last century, Macedonia has been one of the world leaders in development of direct application of geothermal energy. During a period of only 6-7 years a participation of 0,7% in the State energy balance has been reached. However, situation has been changed during the last 20 years and the development of this energy resource has been not only stopped but some of the existing projects have been abandoned leading to regression. This situation is illogical, due the fact that it practically proved of being technically feasible and absolutely economically justified. A summary of the present situation with geothermal projects in Macedonia is made in the paper, and possibilities for their improvement and possibilities and justifications for development of new resources foreseen. Final conclusion is that the development of direct application of geothermal energy in Macedonia offer (in comparison with other renewable energy resources) the best energy and economic effects. (Author)

  6. Managing nuclear knowledge: IAEA activities and international coordination. Including resource material full text CD-ROM

    International Nuclear Information System (INIS)

    2005-06-01

    The present CD-ROM summarizes some activities carried out by the Departments of Nuclear Energy and Nuclear Safety and Security in the area of nuclear knowledge management in the period 2003-2005. It comprises, as open resource, most of the relevant documents in full text, including policy level documents, reports, presentation material by Member States and meeting summaries. The collection starts with a reprint of the report to the IAEA General Conference 2004 on Nuclear Knowledge [GOV/2004/56-GC(48)/12] summarizing the developments in nuclear knowledge management since the 47th session of the General Conference in 2003 and covers Managing Nuclear Knowledge including safety issues and Information and Strengthening Education and Training for Capacity Building. It contains an excerpt on Nuclear Knowledge from the General Conference Resolution [GC(48)/RES/13] on Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications. On the CD-ROM itself, all documents can easily be accessed by clicking on their titles on the subject pages (also printed at the end of this Working Material). Part 1 of the CD-ROM covers the activities in the period 2003-2005 and part 2 presents a resource material full text CD-ROM on Managing Nuclear Knowledge issued in October 2003

  7. A study of the development of bio-energy resources and the status of eco-society in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Huang, Yongmei; Gong, Jirui [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Zhang, Xinshi [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Institute of Botany, CAS, Beijing 100093 (China)

    2010-11-15

    Industrialization of bio-energy relies on the supply of resources on a large scale. The theoretical biomass resources could reach 2.61-3.51 billion tce (tons of coal equivalent)/a in China, while the available feedstock is about 440-640 million tce/a, however, among this only 1.5-2.5% has been transferred into energy at present. Marginal land utilization has great prospects of supplying bio-energy resources in China, with co-benefits, such as carbon sequestration, water/soil conservation, and wind erosion protection. There is a large area of marginal land in China, especially in northern China, including about 263 million ha of desertification land, 173 million ha of sand-land, and 17 million ha of salinizatin land. The plant species suitable to be grown in marginal lands, including some species in Salix, Hippophae, Tamarix, Caragana, and Prunus is also abundant Biomass feedstock in marginal lands would be 100 million tce/a in 2020, and 200 million tce/a in 2050. As a result, a win-win situation of eco-society and bio-energy development could be realized, with an expected 4-5% reduction of total CO{sub 2} emission in China in 2020-2050. Although much progress has been made in the field of bio-energy research in China, yet significant efforts should be taken in the future to fulfill large-scale industrialization of bio-energy. (author)

  8. Resource area environment/energy

    International Nuclear Information System (INIS)

    1994-01-01

    The document comprises a detailed analysis of the business economics of resources related to energy and the environment. Non-domestic and domestic conditions influencing the business economics of this subject area, its infrastructure, problems and future perspectives are dealt with. Tables (amongst other forms of information) indicate the turnover, exports, and numbers of involved employees, workplaces and firms involved in supply, general production, consultancy and production connected with the building sector. The energy sector is the most significant in this respect, giving 30,000 employed (18% in state institutions), a turnover of 63 billion Danish kroner, and with an export of 16 billion Danish kroner. The environmental sector employs 15,000 (29% in the public sector), the total turnover is 20 billion Danish kroner and of this 3 billion Danish kroner is related to export. Many firms are relatively small. A number of firms could compete internationally and this number is growing. (AB) (79 refs.)

  9. Optimal Resources Planning of Residential Complex Energy System in a Day-ahead Market Based on Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    P. Αhmadi

    2017-10-01

    Full Text Available This paper deals with optimal resources planning in a residential complex energy system, including FC (fuel cell, PV (Photovoltaic panels and the battery. A day-ahead energy management system (EMS based on invasive weed optimization (IWO algorithm is defined for managing different resources to determine an optimal operation schedule for the energy resources at each time interval to minimize the operation cost of a smart residential complex energy system. Moreover, in this paper the impacts of the sell to grid and purchase from grid are also considered. All practical constraints of the each energy resources and utility policies are taken into account. Moreover, sensitivity analysis are conducted on electricity prices and sell to grid factor (SGF, in order to improve understanding the impact of key parameters on residential CHP systems economy. It is shown that proposed system can meet all electrical and thermal demands with economic point of view. Also enhancement of electricity price leads to substantial growth in utilization of proposed CHP system.

  10. Climate and Offshore Energy Resources.

    Science.gov (United States)

    1980-12-30

    SECuRITY CL.ASSIPIcaTIoN OF, TIns PA@elm VaeVa CLMATE ANID OFFSHORE ENERGY RESOUACES A distinguished group of government officials, scientists, engineers...about the mech- anisms of climatic systems, and gaining a better understanding of the impact of climatic change on human resources.* He continued by...atmospheric constit- uents, but he particularly emphasized " changes " in C02. He suggested that the atmospheric conditions may be better now than they were half

  11. Renewable resources and renewable energy a global challenge

    CERN Document Server

    Fornasiero, Paolo

    2011-01-01

    As energy demands continue to surge worldwide, the need for efficient and environmentally neutral energy production becomes increasingly apparent. In its first edition, this book presented a well-rounded perspective on the development of bio-based feedstocks, biodegradable plastics, hydrogen energy, fuel cells, and other aspects related to renewable resources and sustainable energy production. The new second edition builds upon this foundation to explore new trends and technologies. The authors pay particular attention to hydrogen-based and fuel cell-based technologies and provide real-world c

  12. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    Science.gov (United States)

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  13. Annotated bibliography: overview of energy and mineral resources for the Nevada nuclear-waste-storage investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bell, E.J.; Larson, L.T.

    1982-09-01

    This Annotated Bibliography was prepared for the US Department of Energy as part of the Environmental Area Characterization for the Nevada Nuclear Waste Storage Investigations (NNWSI) at the Nevada Test Site (NTS). References were selected to specifically address energy resources including hydrocarbons, geothermal and radioactive fuel materials, mineral resources including base and precious metals and associated minerals, and industrial minerals and rock materials which occur in the vicinity of the NNWSI area

  14. 75 FR 45623 - Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil LLC; and PSEG Power LLC...

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-79-000] Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil LLC; and PSEG Power LLC; Notice of Complaint...) filed a complaint against PSEG Energy Resources & Trade, LLC, PSEG Fossil LLC and PSEG Power LLC (PSEG...

  15. Energy-efficient cloud computing : autonomic resource provisioning for datacenters

    OpenAIRE

    Tesfatsion, Selome Kostentinos

    2018-01-01

    Energy efficiency has become an increasingly important concern in data centers because of issues associated with energy consumption, such as capital costs, operating expenses, and environmental impact. While energy loss due to suboptimal use of facilities and non-IT equipment has largely been reduced through the use of best-practice technologies, addressing energy wastage in IT equipment still requires the design and implementation of energy-aware resource management systems. This thesis focu...

  16. Sparse Beamforming for Real-time Resource Management and Energy Trading in Green C-RAN

    OpenAIRE

    Wan Ariffin, Wan Nur Suryani Firuz; Zhang, Xinruo; Nakhai, Mohammad Reza

    2017-01-01

    This paper considers cloud radio access network with simultaneous wireless information and power transfer and finite capacity fronthaul, where the remote radio heads are equipped with renewable energy resources and can trade energy with the grid. Due to uneven distribution of mobile radio traffic and inherent intermittent nature of renewable energy resources, the remote radio heads may need real-time energy provisioning to meet the users’ demands. Given the amount of available energy resource...

  17. A decision model for energy resource selection in China

    International Nuclear Information System (INIS)

    Wang Bing; Kocaoglu, Dundar F.; Daim, Tugrul U.; Yang Jiting

    2010-01-01

    This paper evaluates coal, petroleum, natural gas, nuclear energy and renewable energy resources as energy alternatives for China through use of a hierarchical decision model. The results indicate that although coal is still the major preferred energy alternative, it is followed closely by renewable energy. The sensitivity analysis indicates that the most critical criterion for energy selection is the current energy infrastructure. A hierarchical decision model is used, and expert judgments are quantified, to evaluate the alternatives. Criteria used for the evaluations are availability, current energy infrastructure, price, safety, environmental impacts and social impacts.

  18. Regional energy resource development and energy security under CO{sub 2} emission constraint in the greater Mekong sub-region countries (GMS)

    Energy Technology Data Exchange (ETDEWEB)

    Watcharejyothin, Mayurachat; Shrestha, Ram M. [School of Environment, Resources and Development, Asian Institute of Technology (Thailand)

    2009-11-15

    The paper evaluates effects of energy resource development within the Greater Mekong Sub-region (GMS) on energy supply mix, energy system cost, energy security and environment during 2000-2035. A MARKAL-based integrated energy system model of the five GMS countries was developed to examine benefits of regional energy resource development for meeting the energy demand of these countries. The study found that an unrestricted energy resource development and trade within the region would reduce the total-regional energy systems cost by 18% and would abate the total CO{sub 2} emission by 5% as compared to the base case. All the five countries except Myanmar would benefit from the expansion of regional energy resource integration in terms of lower energy systems costs and better environmental qualities. An imposition of CO{sub 2} emission reduction constraint by 5% on each of the study countries from that of the corresponding emissions under the unrestricted energy resource development in the GMS is found to improve energy security, reduce energy import and fossil fuels dependences and increase volume of power trade within the region. The total energy system cost under the joint CO{sub 2} emission reduction strategy would be less costly than that under the individual emission targets set for each country. (author)

  19. Visual Resource Analysis for Solar Energy Zones in the San Luis Valley

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Abplanalp, Jennifer M. [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Zvolanek, Emily [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Brown, Jeffery [Bureau of Land Management, Washington, DC (United States). Dept. of the Interior

    2016-01-01

    This report summarizes the results of a study conducted by Argonne National Laboratory’s (Argonne’s) Environmental Science Division for the U.S. Department of the Interior Bureau of Land Management (BLM). The study analyzed the regional effects of potential visual impacts of solar energy development on three BLM-designated solar energy zones (SEZs) in the San Luis Valley (SLV) in Colorado, and, based on the analysis, made recommendations for or against regional compensatory mitigation to compensate residents and other stakeholders for the potential visual impacts to the SEZs. The analysis was conducted as part of the solar regional mitigation strategy (SRMS) task conducted by BLM Colorado with assistance from Argonne. Two separate analyses were performed. The first analysis, referred to as the VSA Analysis, analyzed the potential visual impacts of solar energy development in the SEZs on nearby visually sensitive areas (VSAs), and, based on the impact analyses, made recommendations for or against regional compensatory mitigation. VSAs are locations for which some type of visual sensitivity has been identified, either because the location is an area of high scenic value or because it is a location from which people view the surrounding landscape and attach some level of importance or sensitivity to what is seen from the location. The VSA analysis included both BLM-administered lands in Colorado and in the Taos FO in New Mexico. The second analysis, referred to as the SEZ Analysis, used BLM visual resource inventory (VRI) and other data on visual resources in the former Saguache and La Jara Field Offices (FOs), now contained within the San Luis Valley FO (SLFO), to determine whether the changes in scenic values that would result from the development of utility-scale solar energy facilities in the SEZs would affect the quality and quantity of valued scenic resources in the SLV region as a whole. If the regional effects were judged to be significant, regional

  20. The route to resource: marine energy support

    International Nuclear Information System (INIS)

    Hay, M.

    2005-01-01

    A case is made for the inclusion of marine-derived energy to be a part of the energy mix which will deliver clean secure energy in the future. But at present, in Europe, only the United Kingdom and Portugal are offering the necessary incentives to realise the marine renewable energy potential. The UK government's views were expressed in May 2005 in a paper called Wave and Tidal Energy Demonstration Scheme. The government's policy is to encourage a large number of small diverse projects rather than a small number of large projects. Details of the financial incentives on offer are given. It is concluded that in the UK at least, policymakers must guarantee a smooth path to resource for first arrays or risk losing what could be their last chance to build an indigenous energy industry for a significant international market

  1. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    Science.gov (United States)

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  2. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    Science.gov (United States)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  3. Technical and economic viability of electric power plants on the basis of renewable energy resources regarding hierarchical structure

    Directory of Open Access Journals (Sweden)

    Balzannikov Mikhail

    2017-01-01

    Full Text Available The article deals with power stations working on the basis of non-renewable energy resources and finite resources which will inevitably come to depletion in the future. These installations produce considerable negative impact on the environment, including air pollution. It is noted that considerable amounts of emissions of harmful substances accounts for the share of small thermal installations which aren’t always considered in calculations of pollution. The author specifies that emission reduction of harmful substances should be achieved due to wider use of environmentally friendly renewable energy resources. It is recommended to use hierarchical structure with the priority of ecological and social conditions of the region for technical and economic viability of consumers’ power supply systems and installations, based on renewable energy resources use. At the same time the author suggests considering federal, regional and object levels of viability. It is recommended to consider the main stages of lifecycle of an object for object level: designing, construction, operation, reconstruction of an object and its preservation. The author shows the example of calculation of power plant efficiency, based on renewable energy resources during its reconstruction, followed by power generation increase.

  4. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  5. Resources and Energy Management: the case of the Agropoli Urban Plan

    OpenAIRE

    Francesco Domenico Moccia

    2013-01-01

    The theme of the resources management, of the energy-environment retrofitting framed in strategies to mitigate and adapt to climate change, aimed at energy saving, energy generating from alternative sources, metabolism and natural resources is one of the central topics the City Urban Planning of the City of Agropoli, currently approved by Resolution of the City Council no. 110 of 18.04.2013.The plan is part of the wider system of actions taken by the Municipality to achieve the objectives on ...

  6. European resource assessment for geothermal energy and CO2 storage

    NARCIS (Netherlands)

    Wees, J.D. van; Neele, F.

    2013-01-01

    Geothermal Energy and CO2 Capture and Storage (CCS) are both considered major contributors to the global energy transition. Their success critically depends on subsurface resource quality, which in turn depends on specific subsurface parameters. For CCS and Geothermal Energy these in some respect

  7. Mankind and energy: Needs - resources - hopes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A study-week, promoted by the Pontifical Academy of Sciences (PAS) and held in the Vatican City on 10-15 November 1980, examined thoroughly the theme: ''Mankind and Energy: Needs - Resources - Hopes''. The study-week was sponsored by the PAS, organized by the French physicist Prof. Andre Blanc-Lapierre, and was presided over by the well-known biophysicist Prof. Carlos Chagas, who is also President of the same Pontifical Academy of Sciences. The volume ''Humanite et Energie: Besoins - Ressources - Espoirs'', with all the proceedings of the study-week, may be obtained on request from the Cancelleria della Pontificia Accademia delle Scienze, Casina Pio IV, Citta del Vaticano. (author)

  8. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    Science.gov (United States)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  9. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  10. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  11. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr M.

    2016-07-26

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  12. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y; Monteith, H [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  13. Integrative real-time geographic visualization of energy resources

    International Nuclear Information System (INIS)

    Sorokine, A.; Shankar, M.; Stovall, J.; Bhaduri, B.; King, T.; Fernandez, S.; Datar, N.; Omitaomu, O.

    2009-01-01

    'Full text:' Several models forecast that climatic changes will increase the frequency of disastrous events like droughts, hurricanes, and snow storms. Responding to these events and also to power outages caused by system errors such as the 2003 North American blackout require an interconnect-wide real-time monitoring system for various energy resources. Such a system should be capable of providing situational awareness to its users in the government and energy utilities by dynamically visualizing the status of the elements of the energy grid infrastructure and supply chain in geographic contexts. We demonstrate an approach that relies on Google Earth and similar standard-based platforms as client-side geographic viewers with a data-dependent server component. The users of the system can view status information in spatial and temporal contexts. These data can be integrated with a wide range of geographic sources including all standard Google Earth layers and a large number of energy and environmental data feeds. In addition, we show a real-time spatio-temporal data sharing capability across the users of the system, novel methods for visualizing dynamic network data, and a fine-grain access to very large multi-resolution geographic datasets for faster delivery of the data. The system can be extended to integrate contingency analysis results and other grid models to assess recovery and repair scenarios in the case of major disruption. (author)

  14. Explanatory Resources on Energy in High School Physics Classes: A Case Study

    Directory of Open Access Journals (Sweden)

    María Alejandra Domínguez

    2013-08-01

    Full Text Available This paper examines and reflects on the explanatory resources that are used in high school physics classes for studying the topic of energy. Explanatory resources are a means of constructing and negotiating meaning. The research is an instrumental case study focusing on four years of high school physics classes on energy. The theoretical principles of sociocultural approaches and conversation analysis are taken as benchmarks for understanding how we construct and reconstruct meanings (on energy. The identification of the resources used in the process of meaning construction is of importance for understanding certain scientific phenomena addressed in the curricula. Among the resources most commonly employed to enhance explanation were definitions and the causes of phenomena. We also found that teachers’ interventions, either through verbal explanations or instructional proposals, were crucial for certain kinds of explanations and for the presence or absence of other resources associated with explanations.

  15. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  16. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems; water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.

  17. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization, DMS Integration of Distributed Energy Resources and Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ravindra [Argonne National Lab. (ANL), Argonne, IL (United States); Reilly, James T. [Reilly Associates, Pittston, PA (United States); Wang, Jianhui [Argonne National Lab. (ANL), Argonne, IL (United States); Lu, Xiaonan [Argonne National Lab. (ANL), Argonne, IL (United States); Kang, Ning [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    Deregulation of the electric utility industry, environmental concerns associated with traditional fossil fuel-based power plants, volatility of electric energy costs, Federal and State regulatory support of “green” energy, and rapid technological developments all support the growth of Distributed Energy Resources (DERs) in electric utility systems and ensure an important role for DERs in the smart grid and other aspects of modern utilities. DERs include distributed generation (DG) systems, such as renewables; controllable loads (also known as demand response); and energy storage systems. This report describes the role of aggregators of DERs in providing optimal services to distribution networks, through DER monitoring and control systems—collectively referred to as a Distributed Energy Resource Management System (DERMS)—and microgrids in various configurations.

  18. Economic Impact of CDM Implementation through Alternate Energy Resource Substitution

    Directory of Open Access Journals (Sweden)

    K.J. Sreekanth

    2013-02-01

    Full Text Available Since the Kyoto protocol agreement, Clean Development Mechanism (CDM hasgarnered large emphasis in terms of certified emission reductions (CER not only amidst the globalcarbon market but also in India. This paper attempts to assess the impact of CDM towardssustainable development particularly in rural domestic utility sector that mainly includes lightingand cooking applications, with electricity as the source of energy. A detailed survey has undertakenin the state of Kerala, in southern part of India to study the rural domestic energy consumptionpattern. The data collected was analyzed that throws insight into the interrelationships of thevarious parameters that influence domestic utility sector pertaining to energy consumption byusing electricity as the source of energy. The interrelationships between the different parameterswere modeled that optimizes the contribution of electricity on domestic utility sector. The resultswere used to estimate the feasible extent of CO2 emission reduction through use of electricity as theenergy resources, vis-à-vis its economic viability through cost effectiveness. The analysis alsoprovides a platform for implementing CDM projects in the sector and related prospects withrespects to the Indian scenario.

  19. US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    White, D.L. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

    1993-12-17

    The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

  20. Reschedule of Distributed Energy Resources by an Aggregator for Market Participation

    Directory of Open Access Journals (Sweden)

    Pedro Faria

    2018-03-01

    Full Text Available Demand response aggregators have been developed and implemented all through the world with more seen in Europe and the United States. The participation of aggregators in energy markets improves the access of small-size resources to these, which enables successful business cases for demand-side flexibility. The present paper proposes aggregator’s assessment of the integration of distributed energy resources in energy markets, which provides an optimized reschedule. An aggregation and remuneration model is proposed by using the k-means and group tariff, respectively. The main objective is to identify the available options for the aggregator to define tariff groups for the implementation of demand response. After the first schedule, the distributed energy resources are aggregated into a given number of groups. For each of the new groups, a new tariff is computed and the resources are again scheduled according to the new group tariff. In this way, the impact of implementing the new tariffs is analyzed in order to support a more sustained decision to be taken by the aggregator. A 180-bus network in the case study accommodates 90 consumers, 116 distributed generators, and one supplier.

  1. Resource efficiency of urban sanitation systems. A comparative assessment using material and energy flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meinzinger, Franziska

    2010-07-01

    Within the framework of sustainable development it is important to find ways of reducing natural resource consumption and to change towards closed-loop management. As in many other spheres increased resource efficiency has also become an important issue in sanitation. Particularly nutrient recovery for agriculture, increased energy-efficiency and saving of natural water resources, can make a contribution to more resource efficient sanitation systems. To assess the resource efficiency of alternative developments a systems perspective is required. The present study applies a combined cost, energy and material flow analysis (ceMFA) as a system analysis method to assess the resource efficiency of urban sanitation systems. This includes the discussion of relevant criteria and assessment methods. The main focus of this thesis is the comparative assessment of different systems, based on two case studies; Hamburg in Germany and Arba Minch in Ethiopia. A range of possible system developments including source separation (e.g. diversion of urine or blackwater) is defined and compared with the current situation as a reference system. The assessment is carried out using computer simulations based on model equations. The model equations not only integrate mass and nutrient flows, but also the energy and cost balances of the different systems. In order to assess the impact of different assumptions and calculation parameters, sensitivity analyses and parameter variations complete the calculations. Based on the simulations, following general conclusions can be drawn: None of the systems show an overall benefit with regard to all investigated criteria, namely nutrients, energy, water and costs. Yet, the results of the system analysis can be used as basis for decision making if a case-related weighting is introduced. The systems show varying potential for the recovery of nutrients from (source separated) wastewater flows. For the case study of Hamburg up to 29% of the mineral

  2. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Science.gov (United States)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  3. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  4. The research and training of human resources to produce renewable resources of energy

    Directory of Open Access Journals (Sweden)

    José Ernesto Rangel Delgado

    2008-10-01

    Full Text Available The prospective technique approach used as a context, this paper emphasizes the importance of a long term vision on the human resources development for renewable energies production. In the same sense it outlines the connection between the professions associated with the generation of renewable energy and the labor market. Results are presented on the research intellectual capacity of Mexico, highlighting, the public universities, specialized research centers, researchers, and the associated academic programs to renewable energies. Finally, it is presented the conclusions, and suggestions oriented to increase strategically, the renewable energies research for the technology development. Also it might incorporate our country towards the international market for renewable technologies, in the long term.

  5. Chunk-Based Energy Efficient Resource Allocation in OFDMA Systems

    Directory of Open Access Journals (Sweden)

    Yong Li

    2013-01-01

    Full Text Available Energy efficiency (EE capacity analysis of the chunk-based resource allocation is presented by considering the minimum spectrum efficiency (SE constraint in downlink multiuser orthogonal frequency division multiplexing (OFDM systems. Considering the minimum SE requirement, an optimization problem to maximize EE with limited transmit power is formulated over frequency selective channels. Based on this model, a low-complexity energy efficient resource allocation is proposed. The effects of system parameters, such as the average channel gain-to-noise ratio (CNR and the number of subcarriers per chunk, are evaluated. Numerical results demonstrate the effectiveness of the proposed scheme for balancing the EE and SE.

  6. Learning About Energy Resources Through Student Created Video Documentaries in the University Science Classroom

    Science.gov (United States)

    Wade, P.; Courtney, A.

    2010-12-01

    Students enrolled in an undergraduate non-science majors’ Energy Perspectives course created 10-15 minute video documentaries on topics related to Energy Resources and the Environment. Video project topics included wave, biodiesel, clean coal, hydro, solar and “off-the-grid” energy technologies. No student had any prior experience with creating video projects. Students had Liberal Arts academic backgrounds that included Anthropology, Theater Arts, International Studies, English and Early Childhood Education. Students were required to: 1) select a topic, 2) conduct research, 3) write a narrative, 4) construct a project storyboard, 5) shoot or acquire video and photos (from legal sources), 6) record the narrative, and 7) construct the video documentary. This study describes the instructional approach of using student created video documentaries as projects in an undergraduate non-science majors’ science course. Two knowledge survey instruments were used for assessment purposes. Each instrument was administered Pre-, Mid- and Post course. One survey focused on the skills necessary to research and produce video documentaries. Results showed students acquired enhanced technology skills especially with regard to research techniques, writing skills and video editing. The second survey assessed students’ content knowledge acquired from each documentary. Results indicated students’ increased their content knowledge of energy resource topics. Students reported very favorable evaluations concerning their experience with creating “Ken Burns” video project documentaries.

  7. The Resource Mapping Algorithm of Wireless Virtualized Networks for Saving Energy in Ultradense Small Cells

    Directory of Open Access Journals (Sweden)

    Sai Zou

    2015-01-01

    Full Text Available As the current network is designed for peak loads, it results in insufficient resource utilization and energy waste. Virtualized technology makes it possible that intelligent energy perception network could be deployed and resource sharing could become an effective energy saving technology. How to make more small cells into sleeping state for energy saving in ultradense small cell system has become a research hot spot. Based on the mapping feature of virtualized network, a new wireless resource mapping algorithm for saving energy in ultradense small cells has been put forward when wireless resource amount is satisfied in every small cell. First of all, the method divides the virtual cells. Again through the alternate updating between small cell mapping and wireless resource allocation, least amount of small cells is used and other small cells turn into sleeping state on the premise of guaranteeing users’ QoS. Next, the energy consumption of the wireless access system, wireless resource utilization, and the convergence of the proposed algorithm are analyzed in theory. Finally, the simulation results demonstrate that the algorithm can effectively reduce the system energy consumption and required wireless resource amount under the condition of satisfying users’ QoS.

  8. Wind and Solar Energy Resource Assessment for Navy Installations in the Midwestern US

    Science.gov (United States)

    Darmenova, K.; Apling, D.; Higgins, G. J.; Carnes, J.; Smith, C.

    2012-12-01

    A stable supply of energy is critical for sustainable economic development and the ever-increasing demand for energy resources drives the need for alternative weather-driven renewable energy solutions such as solar and wind-generated power. Recognizing the importance of energy as a strategic resource, the Department of the Navy has focused on energy efficient solutions aiming to increase tactical and shore energy security and reduce greenhouse gas emissions. Implementing alternative energy solutions will alleviate the Navy installations demands on the National power grid, however transitioning to renewable energy sources is a complex multi-stage process that involves initial investment in resource assessment and feasibility of building solar and wind power systems in Navy's facilities. This study focuses on the wind and solar energy resource assessment for Navy installations in the Midwestern US. We use the dynamically downscaled datasets at 12 km resolution over the Continental US generated with the Weather Research and Forecasting (WRF) model to derive the wind climatology in terms of wind speed, direction, and wind power at 20 m above the surface for 65 Navy facilities. In addition, we derived the transmissivity of the atmosphere, diffuse radiation fraction, cloud cover and seasonal energy potential for a zenith facing surface with unobstructed horizon for each installation location based on the results of a broadband radiative transfer model and our cloud database based on 17-years of GOES data. Our analysis was incorporated in a GIS framework in combination with additional infrastructure data that enabled a synergistic resource assessment based on the combination of climatological and engineering factors.

  9. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  10. Energy Efficient Resource Allocation for Cognitive Radios: A Generalized Sensing Analysis

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    In this paper, two resource allocation schemes for energy efficient cognitive radio systems are proposed. Our design considers resource allocation approaches that adopt spectrum sharing combined with soft-sensing information, adaptive sensing thresholds, and adaptive power to achieve an energy efficient system. An energy per good-bit metric is considered as an energy efficient objective function. A multi-carrier system, such as, orthogonal frequency division multiplexing, is considered in the framework. The proposed resource allocation schemes, using different approaches, are designated as sub-optimal and optimal. The sub-optimal approach is attained by optimizing over a channel inversion power policy. The optimal approach utilizes the calculus of variation theory to optimize a problem of instantaneous objective function subject to average and instantaneous constraints with respect to functional optimization variables. In addition to the analytical results, selected numerical results are provided to quantify the impact of soft-sensing information and the optimal adaptive sensing threshold on the system performance.

  11. Energy Efficient Resource Allocation for Cognitive Radios: A Generalized Sensing Analysis

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-12-31

    In this paper, two resource allocation schemes for energy efficient cognitive radio systems are proposed. Our design considers resource allocation approaches that adopt spectrum sharing combined with soft-sensing information, adaptive sensing thresholds, and adaptive power to achieve an energy efficient system. An energy per good-bit metric is considered as an energy efficient objective function. A multi-carrier system, such as, orthogonal frequency division multiplexing, is considered in the framework. The proposed resource allocation schemes, using different approaches, are designated as sub-optimal and optimal. The sub-optimal approach is attained by optimizing over a channel inversion power policy. The optimal approach utilizes the calculus of variation theory to optimize a problem of instantaneous objective function subject to average and instantaneous constraints with respect to functional optimization variables. In addition to the analytical results, selected numerical results are provided to quantify the impact of soft-sensing information and the optimal adaptive sensing threshold on the system performance.

  12. Energy and Reserve under Distributed Energy Resources Management—Day-Ahead, Hour-Ahead and Real-Time

    Directory of Open Access Journals (Sweden)

    Tiago Soares

    2017-11-01

    Full Text Available The increasing penetration of distributed energy resources based on renewable energy sources in distribution systems leads to a more complex management of power systems. Consequently, ancillary services become even more important to maintain the system security and reliability. This paper proposes and evaluates a generic model for day-ahead, intraday (hour-ahead and real-time scheduling, considering the joint optimization of energy and reserve in the scope of the virtual power player concept. The model aims to minimize the operation costs in the point of view of one aggregator agent taking into account the balance of the distribution system. For each scheduling stage, previous scheduling results and updated forecasts are considered. An illustrative test case of a distribution network with 33 buses, considering a large penetration of distribution energy resources allows demonstrating the benefits of the proposed model.

  13. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y.; Monteith, H. [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  14. Uranium resources, scenarios, nuclear and energy dynamics - 5200

    International Nuclear Information System (INIS)

    Bidaud, A.; Mima, S.; Criqui, P.; Gabriel, S.; Monnet, A.; Mathonniere, G.; Cuney, M.; Bruneton, P.

    2015-01-01

    In this paper we present a new model of the impact of uranium scarcity on the development of nuclear reactors. A dynamic simulation of coupled supply and demand of energy, resources and nuclear reactors is done with the global model Prospective Outlook for Long Term Energy Supply (POLES) over this century. In this model, both electricity demand and uranium supply are not independent of the cost of all base load electricity suppliers. Only two nuclear reactor types are modeled in POLES. Globally one has the characteristics of a Thermal Neutron Reactor (TR) and the other one has the ones of Fast Breeder Reactors (FBR). The results show that If both generations of nuclear reactors can be competitive with other sources, we see that in many countries their development would probably be limited by the availability of natural and recycled materials. Depending on the locally available alternative (hydro, coal) and local regulatory framework (safety and waste management for nuclear reactors but also environmental constraints such as CO 2 targets), both nuclear technologies could be developed. The advantage of the new model is that it avoids the difficult question of defining 'ultimate resources'. The drawback is that it needs a description of the volume of uranium resources but also of the link between the cost and the potential production capacities of these resources

  15. Renewable energy resources in Pakistan: status, potential and information systems

    International Nuclear Information System (INIS)

    Khan, A.M.

    1991-01-01

    This paper provides some details regarding the characteristic properties, potential and assessment of renewable energy compared with other forms of energy sources. It gives status of renewable energy sources in Pakistan. It also lights about the agencies providing technical information regarding renewable energy in Pakistan as well as suggestions and recommendations for the development of these resources, and over view the present status of renewable energy sources. (author)

  16. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact from Depletion of Resources

    International Nuclear Information System (INIS)

    2015-01-01

    INPRO is an international project to help ensure that nuclear energy is available to contribute in a sustainable manner to meeting the energy needs of the 21st century. A basic principle of INPRO in the area of environmental impact from depletion of resources is that a nuclear energy system will be capable of contributing to the energy needs in the 21st century while making efficient use of non-renewable resources needed for construction, operation and decommissioning. Recognizing that a national nuclear energy programme in a given country may be based both on indigenous resources and resources purchased from abroad, this publication provides background materials and summarizes the results of international global resource availability studies that could contribute to the corresponding national assessments

  17. Toward a Regional Geography of Renewable Electrical Energy Resources.

    Science.gov (United States)

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  18. Modeling and optimal resources allocation of a novel tri-distributed generation system based on sustainable energy resources

    International Nuclear Information System (INIS)

    Soheyli, Saman; Mehrjoo, Mehri; Shafiei Mayam, Mohamad Hossein

    2017-01-01

    Highlights: • Considering renewable resources as the main prime movers in tri-generation systems. • Using EDM and TDM strategies simultaneously by defining probability functions. • Using an area function to evaluate the practical implementation of the system. • Reducing fuel consumption and pollution up to 154 and 207 times more than SP system. • Reducing the need to power grid and other auxiliary systems to less than 1%. - Abstract: Tri-generation systems with the aim of recycling heat dissipation of equipment and importing the heat into the energy production cycle have been considered by researchers recently because of increasing energy efficiency and decreasing environmental pollution. Many studies have been done in the field of tri-generation systems, but the studies have been more focused on centralized energy sources, such as, steam and gas turbines. Thus, required researches to move the sources of tri-generation systems toward renewable energy resources are not perfect enough. Moreover, the type of operation strategy, which is one of the important issues in investigating tri-generation system, is usually depended on assistant resources, such as, local power grid. In this paper, a novel tri-generation system based on wind and solar renewable energy resources and natural gas as the system prime movers is evaluated. Furthermore, a different operation strategy is considered to minimize the need to auxiliary sources and so the ability to use the system in remote regions, independently. Hence, wind turbines, photovoltaic (PV) modules, and solid oxide fuel cells (SOFCs) are considered as prime movers of the system. Moreover, a battery bank and heat storage tanks (HSTs) are deployed to balance the fluctuations in produced energy by wind and solar renewable resources. Hence, thermal demand management (TDM) and electrical demand management (EDM) operation strategies are considered simultaneously and defined as two possible functions to achieve a system with

  19. Ranking of energy resources within the analysis of total costs for the IRP (Integrated Resources Planning for Energy Resources); Ranqueamento de recursos energeticos dentro da analise de custos completos para o PIR (Planejamento Integrado de Recursos Energeticos)

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, Alexandre Orrico; Cicone Junior, Decio; Galvao, Luiz Claudio Ribeiro [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Energia e Automacao Eletricas. Grupo de Energia; Udaeta, Miguel Edgar Morales [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia

    2008-07-01

    The objective of this work is to demonstrate the application of the Analytic Hierarchy Process (PAH) with the support of computational tools in the Complete Costs Evaluation (ACC) to classify energy resources, emphasizing as this important method of decision making can be used with the ACC inside of the integrated resources planning for energy resources (PIR). The use of the methodology in question inside of the PIR has as permanent goal to interrelate the complete technical valuation of the resources and its qualitative valuation carried through by the involved and interested (En-In) of the PIR, as well as the evaluation of the resources inside of multidimensional criteria of the ACC. For this the way is presented the way as the evaluation of the social dimension of the ACC in the PIR in the Aracatuba's Administrative Region (RAA) was made and ranking generated with the application of the PAH inside of the ACC. The main result is the validation of the AHP with the use of the Decision Lens for the ACC in the PIR, and from that conclude that the ranking of many energy resources using Decision Lens facilitates the process of PIR in the posterior Wallet of Resources and preferential plan determination. (author)

  20. Energy taxes, resource taxes and quantity rationing for climate protection

    Energy Technology Data Exchange (ETDEWEB)

    Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics; Edenhofer, Ottmar; Kalkuhl, Matthias [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany)

    2010-11-15

    Economic sectors react strategically to climate policy, aiming at a re-distribution of rents. Established analysis suggests a Pigouvian emission tax as efficient instrument, but also recommends factor input or output taxes under specific conditions. However, existing studies leave it open whether output taxes, input taxes or input rationing perform better, and at best only touch their distributional consequences. When emissions correspond to extracted ressources, it is questionable whether taxes are effective at all. We determine the effectiveness, efficiency and functional income distribution for these instruments in the energy and resource sector, based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and cumulative resource quantity rationing achieve this objective efficiently. Energy taxation is only second best. Mitigation generates a substantial ''climate rent'' in the resource sector that can be converted to transfer incomes by taxes. (orig.)

  1. China could satisfied her energy demand by her domestic resource of renewable and hydrogen energy and with her favorite condition

    International Nuclear Information System (INIS)

    Bao De You

    2006-01-01

    Paper described recent situation and the reason of oils consumed increasing rapidly and the activity for searching oil around the world wide and proposed some suggestion for rapid development and commercialization of hydrogen energy system in China with her domestic resources. China could satisfy the energy demand with her domestic resources of renewable energies and depending on her domestic scientific and technology and personal resources etc. It could Clean up the misunderstanding of other country and worried about the oil price increasing. (author)

  2. Two decision-support tools for assessing the potential effects of energy development on hydrologic resources as part of the Energy and Environment in the Rocky Mountain Area interactive energy atlas

    Science.gov (United States)

    Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.

    2014-01-01

    The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a

  3. An initial assessment of Ocean Energy Resources in the Western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, Linus; Ehnberg, Jimmy

    2011-07-01

    The demand for modern energy is accelerating in the Western Indian Ocean (coastal East Africa). A mixture of different energy sources will by necessity be the option for the long-term future and the most adequate solutions naturally vary between locations. The vast coastlines and many islands of the region make ocean energy (OE) a relevant field to explore. With an early understanding of the resources strategic planning towards sustainable development is facilitate. Moreover, early awareness facilitates a respectful integration of new technologies in the fragile and for local people invaluable ecosystems. This study provides a first assessment of the frontier OE technologies and corresponding resources in the region. Five renewable Ocean Energy technologies have been reviewed and the physical resource abundance for respective energy source has been screened based on available literature and databases. The Western Indian Ocean is shared between nine African countries and two French departments. The studied countries are the Comoros, Kenya, Madagascar, Mauritius, Mayotte, Mozambique, the Seychelles, Tanzania, and Reunion. The energy situation is insufficient throughout the region, either as consequence of lacking domestic energy sources or rudimentary grid extension. The results indicate that ocean energy resources are abundant in much of the region, but different sources have potential in different areas. Several countries have favourable physical conditions for extracting energy from waves and from the temperature gradient between the surface and deep water. Wave power is a young but currently available technology which can be utilized for both large- and small-scale applications. Ocean Thermal Energy Conversion is a technology under development that, once proven, may be applicable for large-scale power production. The physical conditions for small-scale tidal barrage power, tidal stream power, and ocean current power are less pronounced but may be of interest at

  4. Adaptive prediction model accuracy in the control of residential energy resources

    NARCIS (Netherlands)

    Negenborn, R.R.; Houwing, M.; De Schutter, B.; Hellendoorn, H.

    2008-01-01

    With the increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which automated energy management systems could control domestic

  5. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

    International Nuclear Information System (INIS)

    Cavallo, Alfred

    2007-01-01

    World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor

  6. World resources: engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The proceedings include 10 papers that contribute to population environment; fossil fuel resources and energy conservation; nuclear and solar power; production of ores and manufacture and use of metallic resources; resources of manufactured and natural nonmetallic materials; water as a reusable resource; and timber as a replaceable resource.

  7. Application Framework Of Integrated Energy Resources Planning Considering Full Environmental Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, Paulo Helio; Morales Udaeta, Miguel Edgar; Ribeiro Galvao, Luis Claudio; Baesso Grimoni, Jose Aquiles

    2010-09-15

    This paper describes the full environmental accounting being used in RAA (Administrative Region of Aracatuba), an area composed of 43 municipalities in Sao Paulo, Brazil. The full environment accounting shows the vulnerabilities and advantages in the region that can be used as a tool for public awareness and involvement in decision making to choose the most appropriate energy resources of the region. It is characterized by four main environmental categories: aerial, aquatic, land and anthropogenic mediums, each to be used as a tool for decision making in energy planning, specifically with the methodology of PIR - Integrated Energy Resources Planning.

  8. Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2017-11-01

    Full Text Available In this paper, we present an energy-efficient resource allocation and power control scheme for D2D (Device-to-Device multicasting transmission. The objective is to maximize the overall energy-efficiency of D2D multicast clusters through effective resource allocation and power control schemes, while considering the quality of service (QoS requirements of both cellular users (CUs and D2D clusters. We first build the optimization model and a heuristic resource and power allocation algorithm is then proposed to solve the energy-efficiency problem with less computational complexity. Numerical results indicate that the proposed algorithm outperforms existing schemes in terms of throughput per energy consumption.

  9. Utilisation of Estonian energy wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Muiste, P.; Tullus, H.; Uri, V. [Estonian Agricultural University, Tartu (Estonia)

    1996-12-31

    In the end of the Soviet period in the 1980s, a long-term energy programme for Estonia was worked out. The energy system was planned to be based on nuclear power and the share of domestic alternative sources of energy was low. The situation has greatly changed after the re-establishment of the Estonian independence, and now wood and peat fuels play an important role in the energy system. Energy consumption in Estonia decreased during the period 1970-1993, but this process has less influenced the consumption of domestic renewable fuels - peat and wood. It means that the share of these fuels has grown. The investment on substitution of imported fossil fuels and on conversion of boiler plants from fossil fuels to domestic fuels has reached the level of USD 100 million. The perspectives of the wood energy depend mainly on two factors; the resources and the price of wood energy compared with other fuels. The situation in wood market influences both the possible quantities and the price. It is typical that the quickly growing cost of labour power in Estonia is greatly affecting the price of energy wood. Though the price level of fuel peat and wood chips is lower than the world market price today, the conditions for using biofuels could be more favourable, if higher environmental fees were introduced. In conjunction with increasing utilisation of biofuels it is important to evaluate possible emissions or removal of greenhouse gases from Estonian forests 3 refs.

  10. Utilisation of Estonian energy wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Muiste, P; Tullus, H; Uri, V [Estonian Agricultural University, Tartu (Estonia)

    1997-12-31

    In the end of the Soviet period in the 1980s, a long-term energy programme for Estonia was worked out. The energy system was planned to be based on nuclear power and the share of domestic alternative sources of energy was low. The situation has greatly changed after the re-establishment of the Estonian independence, and now wood and peat fuels play an important role in the energy system. Energy consumption in Estonia decreased during the period 1970-1993, but this process has less influenced the consumption of domestic renewable fuels - peat and wood. It means that the share of these fuels has grown. The investment on substitution of imported fossil fuels and on conversion of boiler plants from fossil fuels to domestic fuels has reached the level of USD 100 million. The perspectives of the wood energy depend mainly on two factors; the resources and the price of wood energy compared with other fuels. The situation in wood market influences both the possible quantities and the price. It is typical that the quickly growing cost of labour power in Estonia is greatly affecting the price of energy wood. Though the price level of fuel peat and wood chips is lower than the world market price today, the conditions for using biofuels could be more favourable, if higher environmental fees were introduced. In conjunction with increasing utilisation of biofuels it is important to evaluate possible emissions or removal of greenhouse gases from Estonian forests 3 refs.

  11. 75 FR 4836 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2010-01-29

    ... ``Tribal Energy Resource Agreements (TERAs)'' to the Office of Management and Budget (OMB) for renewal... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of request...

  12. Exploring the challenges of energy and resources network governance

    International Nuclear Information System (INIS)

    Poocharoen, Ora-orn; Sovacool, Benjamin K.

    2012-01-01

    While a growing amount of literature has recently emerged describing network governance, less attention has been paid to evaluating the actual performance of networks. Our paper looks at the challenges facing network governance for natural resources (primarily logging and forestry) and energy (primarily renewable energy and energy efficiency) in Asia. The paper investigates what network governance is, and what types of challenges networks have to tackle. It then develops a qualitative analytical framework to evaluate the effectiveness of networks consisting of five criteria: (1) clarity of roles and objectives among members, (2) having strong, independent, continual sources of funding, (3) institutional formality (having a permanent secretariat, budget, full time staff, etc.), (4) efficacy (ability to accomplish its mission and goals at the least possible cost); and (5) level of interdependency among members. Finally, we apply this framework to four case studies: the Association of Southeast Asian Nations (ASEAN) Centre for Energy, Renewable Energy and Energy Efficiency Partnership (REEEP), ASEAN Regional Knowledge Network on Forests and Climate Change (FCC), and ASEAN Regional Knowledge Network on Forest Law Enforcement and Governance (FLEG). These cases illustrate effective (or ineffective) environmental and energy networks and the factors that are associated with network governance. - Highlights: ► This article evaluates four cases of energy and resources network governance. ► We assess these cases according to five criteria. ► We illustrate the effectiveness (and ineffectiveness) of these networks.

  13. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China

    Energy Technology Data Exchange (ETDEWEB)

    Yanli, Yang; Peidong, Zhang; Yonghong, Zheng; Lisheng, Wang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Wenlong, Zhang; Yongsheng, Tian [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2010-12-15

    As the largest agricultural country, China has abundant biomass resources, but the distribution is scattered and difficult to collect. It is essential to estimate the biomass resource and its potential for bioenergy utilization in China. In this study, the amount of main biomass resources for possible energy use and their energy utilization potential in China are analyzed based on statistical data. The results showed that the biomass resource for possible energy use amounted to 8.87 x 10{sup 8} tce in 2007 of which the crops straw is 1.42 x 10{sup 8} tce, the forest biomass is 2.85 x 10{sup 8} tce, the poultry and livestock manure is 4.40 x 10{sup 7} tce, the municipal solid waste is 1.35 x 10{sup 6} tce, and the organic waste water is 6.46 x 10{sup 6} tce. Through the information by thematic map, it is indicated that, except arctic-alpine areas and deserts, the biomass resource for possible energy use was presented a relatively average distribution in China, but large gap was existed in different regions in the concentration of biomass resources, with the characteristics of East dense and West sparse. It is indicated that the energy transformation efficiency of biomass compressing and shaping, biomass anaerobic fermentation and biomass gasification for heating have higher conversion efficiency. If all of the biomass resources for possible energy use are utilized by these three forms respectively, 7.66 x 10{sup 12} t of biomass briquettes fuel, 1.98 x 10{sup 12} m{sup 3} of low calorific value gas and 3.84 x 10{sup 11} m{sup 3} of biogas could be produced, 3.65 x 10{sup 8} t to 4.90 x 10{sup 8} t of coal consumption could be substituted, and 6.12 x 10{sup 8} t to 7.53 x 10{sup 8} t of CO{sub 2} emissions could be reduced. With the enormous energy utilization potential of biomass resources and the prominent benefit of energy saving and emission reduction, it proves an effective way to adjust the energy consumption structure, to alleviate the energy crisis, to ensure

  14. Mongolia wind resource assessment project

    International Nuclear Information System (INIS)

    Elliott, D.; Chadraa, B.; Natsagdorj, L.

    1998-01-01

    The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia

  15. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  16. Energy - Resources, technologies and power issues

    International Nuclear Information System (INIS)

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  17. Energy efficient processing of natural resources; Energieeffiziente Verarbeitung natuerlicher Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pehlken, Alexandra [Univ. Bremen (Germany). Projekt FU2; Hans, Carl [Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Abt. Intelligente Informations- und Kommunikationsumgebungen fuer die kooperative Produktion im Forschungsbereich Informations- und Kommunikationstechnische Anwendungen; Thoben, Klaus-Dieter [Univ. Bremen (Germany). Inst. fuer integrierte Produktentwicklung; Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Forschungsbereich Informations- und kommunikationstechnische Anwendungen; Austing, Bernhard [Fa. Austing, Damme (Germany)

    2012-10-15

    Energy efficiency is gaining high importance in production processes. High energy consumption is directly related to high costs. The processing of natural resources is resulting in additional energy input because of defined output quality demands. This paper discussed approaches and IT-solutions for the automatically adjustment of production processes to cope with varying input qualities. The intention is to achieve the lowest energy input into the process without quality restraints.

  18. Integrating Intelligent Electric Devices into Distributed Energy Resources in a Cloud-Based Environment

    DEFF Research Database (Denmark)

    Petersen, Bo Søborg; Winther, D.; Pedersen, Anders Bro

    2013-01-01

    Until now the main purpose of Distributed Energy Resources (DERs) has been to compliment the power plants. However, if DERs are to play a larger role in the power grid of the future, then improved communication and cooperation between these resources and the system operators is necessary. Coopera......Until now the main purpose of Distributed Energy Resources (DERs) has been to compliment the power plants. However, if DERs are to play a larger role in the power grid of the future, then improved communication and cooperation between these resources and the system operators is necessary...

  19. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2010-02-16

    Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but

  20. Assessment of Kinetic Tidal Energy Resources Using SELFE

    OpenAIRE

    Manasa Ranjan Behera; Pavel Tkalich

    2014-01-01

    An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE) model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s) and suitable fo...

  1. World nonrenewable conventional energy resources as of December 31, 1982

    International Nuclear Information System (INIS)

    Parent, J.D.

    1984-01-01

    Energy analysts present year-end 1982 estimates for world proved reserves, remaining recoverable resources, annual production rates, and cumulative production of the non-renewable convectional energy resources: coal, natural gas, crude oil, natural gas liquids, bitumens, shale oil, and uranium oxide. Life indices for world fossil fuels are also given for several annual growth rates. The world's proved and currently recoverable natural gas reserves amount to 2649-3250 trillion CF; the estimated total remaining recoverable is 6693-7462 TCF. In 1982, 54 TCF of gas was produced for a cumulative production of 1320 TCF (not counting vented or flared gas)

  2. Electromagnetic energy applications in lunar resource mining and construction

    International Nuclear Information System (INIS)

    Lindroth, D.P.; Podnieks, E.R.

    1988-01-01

    Past work during the Apollo Program and current efforts to determine extraterrestrial mining technology requirements have led to the exploration of various methods applicable to lunar or planetary resource mining and processing. The use of electromagnetic energy sources is explored and demonstrated using laboratory methods to establish a proof of concept for application to lunar mining, construction, and resource extraction. Experimental results of using laser, microwave, and solar energy to fragment or melt terrestrial basal under atmospheric and vacuum conditions are presented. Successful thermal stress fragmentation of dense igneous rock was demonstrated by all three electromagnetic energy sources. The results show that a vacuum environment has no adverse effects on fragmentation by induced thermal stresses. The vacuum environment has a positive effect for rock disintegration by melting, cutting, or penetration applications due to release of volatiles that assist in melt ejection. Consolidation and melting of basaltic fines are also demonstrated by these methods

  3. Optimum selection of an energy resource using fuzzy logic

    International Nuclear Information System (INIS)

    Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Nagy, Mohammad E.; Agamy, Saeed

    2009-01-01

    Optimum selection of an energy resource is a vital issue in developed countries. Considering energy resources as alternatives (nuclear, hydroelectric, gas/oil, and solar) and factors upon which the proper decision will be taken as attributes (economics, availability, environmental impact, and proliferation), one can use the multi-attribute utility theory (MAUT) to optimize the selection process. Recently, fuzzy logic is extensively applied to the MAUT as it expresses the linguistic appraisal for all attributes in wide and reliable manners. The rise in oil prices and the increased concern about environmental protection from CO 2 emissions have promoted the attention to the use of nuclear power as a viable energy source for power generation. For Egypt, as a case study, the nuclear option is found to be an appropriate choice. Following the introduction of innovative designs of nuclear power plants, improvements in the proliferation resistance, environmental impacts, and economics will enhance the selection of the nuclear option.

  4. The United Nations framework classification for fossil energy and mineral reserves and resources 2009

    Science.gov (United States)

    MacDonald, D.; Lynch-Bell, M.; Ross, J.; Heiberg, S.; Griffiths, C.; Klett, T.

    2011-01-01

    Effective resource management in a globalizing economy requires accurate assessments of fossil energy and minerals resources. The recoverable quantities must be described and categorized in a manner that is consistent with scientific and social/economic information describing the economy as well as with the information describing the projects to recover them. A number of different standards have evolved over time in response to various professional needs Under a mandate given by the United Nations Economic and Social Council, the United Nations Economic Commission for Europe (UNECE) has cooperated with Governments, regulatory agencies, industry, international organizations, and professional organizations (including Committee for Mineral Reserves International Reporting Standards (CRIRSCO), the Society of Petroleum Engineers (SPE), the American Association of Petroleum Geologists (AAPG), and the Society of Petroleum Evaluation Engineers (SPEE)), as well as with outstanding experts, to define a global classification for extractive activities (including oil, gas, heavy oil and bitumen extraction) that reflects the principal concerns of existing petroleum and mineral classifications. The United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources-2009 (UNFC-2009) aims to serve the following four principal needs: 1. The needs in international energy and mineral studies to formulate robust and long-sighted policies. 2. The needs of governments in managing their resources accordingly, allowing market prices to be transferred to the wellhead with as little loss as possible. 3. The industries' needs for information while deploying technology, management and finance to secure energy supplies and capture value efficiently within the established frameworks to serve its host countries, shareholders and stakeholders. 4. The financial community's need for information to allocate capital appropriately, providing reduced costs and improved long

  5. The Global Resource Nexus

    NARCIS (Netherlands)

    Ridder, M. de; Duijne, F. van; Jong, S. de; Jones, J.; Luit, E. van; Bekkers, F.F.; Auping, W.

    2014-01-01

    Supply and demand of resources are connected in a complex way. This interconnectivity has been framed as the global resource nexus and can conceivebly include all types of resources. This study focus on the nexus of five essential natural resources: land, food, energy, water and minerals. Together

  6. Sustainable Biomass Resource Development and Use | Energy Analysis | NREL

    Science.gov (United States)

    Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can biomass resource development. They look at whether there is available land to support bioenergy. They also

  7. EMPLOY: Step-by-step guidelines for calculating employment effects of renewable energy investments [including annex 2

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, Barbara [Fraunhofer Inst. for Systems and Innovation Research (Germany); Nathani, Carsten [Ruetter and Partner Socioeconomic Research and Consulting (Switzerland); Resch, Gustav [Vienna Univ. of Technology, Energy Economics Group (EEG) (Austria

    2012-07-15

    The EMPLOY project aimed to help achieve the IEA-RETD’s objective to 'empower policy makers and energy market actors through the provision of information, tools and resources' by underlining the economic and industrial impacts of renewable energy technology deployment and providing reliable methodological approaches for employment – similar to those available for the incumbent energy technologies. The EMPLOY project resulted in a comprehensive set of methodological guidelines for estimating the employment impacts of renewable energy deployment in a coherent, uniform and systematic way. Guidelines were prepared for four different methodological approaches. In the introduction section of the guidelines policy makers are guided in their choice for the most suited approach, depending on the policy questions to be answered, the data availability and budget. The guidelines were tested for the IEA-RETD member state countries and Tunisia. The results of these calculations are included in the annex to the guidelines.

  8. Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine

    International Nuclear Information System (INIS)

    Khan, M Usman Saeed; Maqsood, M Irfan; Ali, Ehsan; Jamal, Shah; Javed, M

    2013-01-01

    Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, - the use of tesla turbine as renewable energy resource; - using tesla turbine in distributed generation system; - use of tesla turbine at home for power generation; - use of tesla turbine in irrigation channels; - using tesla turbine in hybrid electric vehicles; All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

  9. A study on the role of nuclear energy in overcoming environment and resource crisis -For the establishment of sustainable energy policy-

    International Nuclear Information System (INIS)

    Han, Pil Soon; Choi, Yung Myung; Ham, Chul Hoon; Cho, Il Hoon; Jung, Heum Soo; Lee, Tae Joon; Lee, Duk Sun

    1995-04-01

    This study is mainly composed of the analyses of the current circumstances and the future views on the global warming and the exhaustion of energy resources related to the use of energy, and the suggestion on the role of nuclear energy as the most prospective countermeasure on energy crisis. The effects of the problems of global warming and energy crisis on the 21st century are look upon and the strategies of each countries to their crises are analyzed in this study. In energy source and the characteristics of nuclear energy resource, and the necessity of the sustainable development of nuclear energy was emphasized. We suggested the enlargement of the development of nuclear energy in the aspects of the international trends, the national economic options and the deficiency of energy resources, and proposed the detail of the short - and long - term strategies on these matters. 22 figs, 39 tabs, 45 refs. (Author)

  10. State and Local Initiatives: Your Bridge to Renewable Energy and Energy Efficiency Resources (Brochure)

    International Nuclear Information System (INIS)

    Epstein, K.

    2001-01-01

    A brochure for local and state policymakers, informing them about the State and Local Initiatives team at the National Renewable Energy Laboratory. The brochure outlines the benefits of using renewables and energy efficiency, the benefits of using the State and Local Initiatives team as a liaison to the wealth of information at NREL, and some of the services and resources available

  11. Resource analysis of the Chinese society 1980-2002 based on exergy-Part 2: Renewable energy sources and forest

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.

    2007-01-01

    This second part is the continuation of the first part on fossil fuels and energy minerals. The major renewable energy sources and forest products entering the Chinese society from 1980 to 2002, including sunlight, wind power, tidal power, wave power, geothermal power and heating, biomass, hydroelectric resource and forestry products, are calculated and analyzed in detail in this paper. The solar exergy inputs from solar photovoltaics and solar collectors, including water heater, solar oven and solar building, are calculated and discussed. The development of the wind power plant is presented. Major tidal power plants, which are still working, are addressed. Wave power devices and plants are introduced. Geothermal resources, mainly for power generation and heating, associated with distribution, are depicted. The utilization of biomass, embracing firewood, straw and biogas, which served as the main obtainable local resources for private consumption and production in the rural areas, is illustrated. Development of hydroelectric resources as complement to scarce fossil fuels is represented, of which the small hydropower project adapted for rural areas is emphasized. Finally, forest products from timber forest and economic forest are presented, with the forestation, reproducing, tending areas and sum of odd forestation trees being manifested

  12. The value of co-locating energy storage with wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Fox, C. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2010-07-01

    This PowerPoint presentation discussed the value of wind energy storage systems. The systems can be used to downsize transmission requirements and to minimize reliability and forecast uncertainty. Revenue factors in relation to wind power energy storage are determined by the amount of wind power produced each hour with the wind farm capacity and hourly electricity price. Case studies of a wind farm in Ontario over a period of 20 years were used to determine capacity and revenue factors as well as gross revenues. The maximum revenue factor was determined by multiplying the greatest wind energy output by the highest electricity prices. A hybrid wind farm energy storage system was designed to determine energy storage discharges and charges to and from the grid at pool prices. The method allowed for time-shifts in wind generation resources and downsized transmission requirements for remote resources. The mixed integer linear program model co-optimized revenues from the wind farm and the energy storage facility. Combined output was constrained to the transmission capacity. Transmission losses were neglected, and capital costs were considered. Future studies are needed to determine levelized electricity costs under different load growth scenarios. tabs., figs.

  13. Renewable energy and resource curse on the possible consequences of solar energy in North Africa

    NARCIS (Netherlands)

    Bae, Yuh Jin

    2013-01-01

    The main aim of this thesis is to project whether the five North African countries (Algeria, Egypt, Libya, Morocco, and Tunisa) have the potentials to suffer from a solar energy curse. Under the assumption that a solar energy curse will be similar to the current resource curse, the combination of

  14. Integration of renewable energy resources when they dominate the electricity production mix; Integration erneuerbarer Energiequellen bei hohen Anteilen an der Stromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Trieb, Franz [Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany). Gruppe Energie Integration

    2013-07-15

    The energy turnaround has triggered a reorganisation of the German energy supply system and in the process has given rise to a number of complex problems. The challenge at hand is to find the optimal route into an energy supply landscape based largely on renewable resources. This article investigates two scenarios of a sustainable future, one based on largely fluctuating resources and the other including controllable renewable sources as well as the use of storages. The author has found there to be substantial differences between these two paths.

  15. Bulgarian geothermal energy resources - state and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gramatikov, P S [Faculty of Natural Sciences and Mathematics, Dept. of Physical Engineering, South West Univ. ` Neofit Rilsky` , Blagoevgrad (Bulgaria)

    1997-12-01

    As special attention is paid to geothermal energy because the geothermal sources are distributed all over the territory of Bulgaria. Governmental incentives for initiating national action programs for energy efficiency, new renewable sources and the environment as well as educational activities are particularly important. The energy sector, as any other sector of the national economy, is currently undergoing considerable changes on its way to market relations, primarily connected to determining the role of the state as well as the form of ownership. The state energy policy is based on a long - term energy strategy complying with the natural conditions of the country, the expected macro - economic development, the geopolitical situation and regional development of energy cooperation with neighboring and closely situated countries. Limited reserves of fossil fuels, increased local and global environmental risks and recent technological achievements have straightened the global importance of renewable sources of thermal and electric energy. This is even more relevant for Bulgaria with small fossil fuel reserves (lignite) to be nearly exhausted and the environment notably polluted. Concerning local renewable sources of thermal energy and electricity, it is necessary to re-estimate their strategic role, to complete the input data for the resources, also to establish national programs supported by research and educational activities and international cooperation. (orig./AKF)

  16. A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site

    Directory of Open Access Journals (Sweden)

    Reduan Atan

    2016-11-01

    Full Text Available Wave characteristic assessments of wave energy test sites provide a greater understanding of prevailing wave conditions and are therefore extremely important to both wave energy test site operators and clients as they can inform wave energy converter design, optimisation, deployment, operation and maintenance. This research presents an assessment of the wave resource at the Atlantic Marine Energy Test Site (AMETS on the west coast of Ireland based on 12-years of modelled data from January 2004 to December 2015. The primary aim is to provide an assessment of annual and seasonal wave characteristics and resource variability at the two deployment berths which comprise the site. A nested model has been developed using Simulating WAves Nearshore (SWAN to replicate wave propagations from regional to local scale with a 0.05° resolution model covering the northeast Atlantic and a 0.0027° resolution model covering AMETS. The coarse and fine models have been extensively validated against available measured data within Irish waters. 12-year model outputs from the high resolution model were analysed to determine mean and maximum conditions and operational, high and extreme event conditions for significant wave height, energy period and power. Annual and seasonal analyses are presented. The 12-year annual mean P were 68 kW/m at Berth A (BA and 57 kW/m at Berth B (BB. The resource shows strong seasonal and annual variations and the winter mean power levels were found to be strongly correlated with the North Atlantic Oscillation (NAO.

  17. Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

  18. Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China

    Science.gov (United States)

    Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun

    2017-12-01

    La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.

  19. Resource assessment/commercialization planning meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-24

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  20. Energy resource management under the influence of the weekend transition considering an intensive use of electric vehicles

    DEFF Research Database (Denmark)

    Sousa, T.; Morais, Hugo; Pinto, T.

    2015-01-01

    Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distri......Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use...... of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps...

  1. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  2. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gueymard, Christian [Solar Consulting Services, Daytona Beach, FL (United States); Wilbert, Stefan [German Aerospace Center (DLR), Cologne (Germany); Renne, Dave [Dave Renne Renewables, LLC, Boulder, CO (United States)

    2017-12-01

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar power plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.

  3. How much electricity really costs. Comparison of the state subsidisation and overall social costs of conventional and renewable energy resources

    International Nuclear Information System (INIS)

    Kuechler, Swantje; Meyer, Bettina

    2012-01-01

    subsidisation and external costs are often not considered in the price of conventional energy resources but ultimately have to be paid nonetheless, be it the form of tax payments, the social costs of the climate change or of other burdens on humans and the environment. The study furnishes proof that the EEG reallocation charge levied for the promotion of renewable energy (3.59 cents per kWh in 2012) represents a far smaller cost burden than do conventional energy resources, and that it will remain so even if it raised substantially in the future to finance the conversion to a more climate-friendly, sustainable energy supply. Contrary to popular belief, renewable energy resources are not the big cost driving factor in our power supply system but rather a replacement of energy resources that are causing far greater consequential costs for tax payers and society as a whole. If power supply companies were made to include these additional costs of electricity production in their cost calculations, most renewable energy resources would already be competitive today.

  4. Utilization of bio-resources by low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  5. 77 FR 41481 - Integration of Variable Energy Resources

    Science.gov (United States)

    2012-07-13

    ... point to the importance of the Proposed Rule in removing market barriers to VER integration. NextEra... Commission's initiative to remove market and operational barriers to VERs integration and eliminate undue... Commission 18 CFR Part 35 Integration of Variable Energy Resources; Final Rule #0;#0;Federal Register / Vol...

  6. Integration of distributed energy resources into low voltage grid: A market-based multiperiod optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Mashhour, Elahe; Moghaddas-Tafreshi, S.M. [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyd Khandan, P.O. Box 16315-1355, Shariati, Tehran (Iran)

    2010-04-15

    This paper develops a multiperiod optimization model for an interconnected micro grid with hierarchical control that participates in wholesale energy market to maximize its benefit (i.e. revenues-costs). In addition to the operational constraints of distributed energy resources (DER) including both inter-temporal and non-inter-temporal types, the adequacy and steady-state security constraints of micro grid and its power losses are incorporated in the optimization model. In the presented model, DER are integrated into low voltage grid considering both technical and economical aspects. This integration as a micro grid can participate in wholesale energy market as an entity with dual role including producer and consumer based on the direction of exchanged power. The developed model is evaluated by testing on a micro grid considering different cases and the results are analyzed. (author)

  7. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  8. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  9. Local electricity market design for the coordination of distributed energy resources at district level

    NARCIS (Netherlands)

    Ampatzis, M.; Nguyen, P.H.; Kling, W.L.

    2014-01-01

    The increasing penetration of distributed energy resources at the distribution grid level creates concerns about their successful integration in the existing electric grid, designed for centralized generation by large power plants. Failure to the proper integration of distributed energy resources

  10. Survey of energy resources: focus on shale gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The energy sector around the world is undergoing major changes resulting from increasing competitive pressures and concerns about costs, security of supply and the environment. At the same time, 1.6 billion people, almost a quarter of the world population, do not have access to commercial energy and the need for energy infrastructure investment is huge. The energy challenges are not the same in all regions. While rapidly burgeoning economies in the developing world are focusing on expanding energy access to support their economic growth and provide basic energy services to their citizens, industrialised countries are focusing on securing energy supplies in a competitive environment and in a publicly and environmentally acceptable way. In recent years, shale gas has been making headlines as a potential solution for many of the energy-related challenges, in particular in the United States. A number of studies on shale gas have been conducted, the majority focusing on the assessment of the resource base and the role of emerging technologies, which can significantly increase the current reserve estimates.

  11. Assessment of Kinetic Tidal Energy Resources Using SELFE

    Directory of Open Access Journals (Sweden)

    Manasa Ranjan Behera

    2014-09-01

    Full Text Available An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s and suitable for Tidal Energy Converter (TEC array installation to generate sustainable energy, have been identified. Further, various operational factors for installation of Tidal Energy Converters are considered before computing the theoretical power output for a typical TEC array. An approximate estimation of the possible theoretical power extraction from a TEC array shows an energy potential of up to 4.36% of the total energy demand of Singapore in 2011. Thus, the study suggests a detailed investigation of potential sites to quantify the total tidal stream energy potential in the Singapore Strait.

  12. Security aspects of "Geoenergeia" and the significance of energy resources management in international politics

    OpenAIRE

    VIDAKIS, Ioannis; BALTOS, Georgios

    2015-01-01

    This paper builds on the tools of geopolitics and geo-economics for analyzing energy resource networks and energy security. To prioritize the role that energy resources play in the interpretation of and decision making in international politics, it proposes the introduction of the Greek language-inspired term "geoenergeia" and a derivative methodology. Unprecedented fluctuations in fuel prices during recent decades and intensifying turmoil in the energy market are all indisputable phenomena t...

  13. Energy from the west: energy resource development systems report. Volume IV: uranium. Final report, 1975-1978

    International Nuclear Information System (INIS)

    White, I.L.; Chartock, M.A.; Leonard, R.L.; Ballard, S.C.; Gilliland, M.

    1979-01-01

    This report describes the technologies likely to be used for development of uranium resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, outputs, residuals, energy requirements, economic costs, and resource specific state and federal laws and regulations

  14. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  15. Agent-based Integration of Complex and Heterogeneous Distributed Energy Resources in Virtual Power Plants

    DEFF Research Database (Denmark)

    Clausen, Anders; Umair, Aisha; Demazeau, Yves

    2017-01-01

    A Virtual Power Plant aggregates several Distributed Energy Resources in order to expose them as a single, controllable entity. This enables smaller Distributed Energy Resources to take part in Demand Response programs which traditionally only targeted larger consumers. To date, models for Virtual...

  16. Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium

    Science.gov (United States)

    Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben

    2014-05-01

    Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field

  17. The use of Geothermal Energy Resources in the Tourism Industry of Vojvodina (Northern Serbia

    Directory of Open Access Journals (Sweden)

    Nemanja Tomić

    2013-01-01

    Full Text Available Exploitation of geothermal energy in Vojvodina is still at an unjustly low level taking into account the abundance of resource locations, some of which are ranked among the most affluent in Europe. Moreover, development of geothermal exploitation started in Serbia at about the same time as in other countries whose geothermal energy facilities are now at the highest technological level and which are leaders in this field. The largest use of geothermal energy in Vojvodina is present in the non-energetic area, especially in spas and sports–recreational centers. Other, seasonal consumers of geothermal energy are from the field of industry and agricultural production where the energy is used for heating of cattle and poultry farms, greenhouses and other facilities. However these consumers use only a small portion of available geothermal resources. The main users are those from the tourism industry. The goal of this paper is to give an overview and an analysis of the use of geothermal energy resources, mainly geothermal waters, in the tourism industry of Vojvodina. It shows how these resources are used and also for what are they used by the tourism industry. The paper covers only geothermal resources that are currently being used by the tourism industry. The potential for future usage in this area is also briefly discussed

  18. Distributed energy resources at naval base ventura county building 1512

    International Nuclear Information System (INIS)

    Bailey, Owen C.; Marnay, Chris

    2004-01-01

    This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year

  19. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    Science.gov (United States)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  20. A National Research Council Evaluation of the Department of Energy's Marine and Hydrokinetic Resource Assessments

    Science.gov (United States)

    Glickson, D.; Holmes, K. J.; Cooke, D.

    2012-12-01

    Marine and hydrokinetic (MHK) resources are increasingly becoming part of energy regulatory, planning, and marketing activities in the U.S. and elsewhere. In particular, state-based renewable portfolio standards and federal production and investment tax credits have led to an increased interest in the possible deployment of MHK technologies. The Energy Policy Act of 2005 (Public Law 109-58) directed the Department of Energy (DOE) to estimate the size of the MHK resource base. In order to help DOE prioritize its overall portfolio of future research, increase the understanding of the potential for MHK resource development, and direct MHK device and/or project developers to locations of greatest promise, the DOE Wind and Water Power Program requested that the National Research Council (NRC) provide an evaluation of the detailed assessments being conducted by five individual resource assessment groups. These resource assessment groups were contracted to estimate the amount of extractable energy from wave, tidal, ocean current, ocean thermal energy conversion, and riverine resources. Performing these assessments requires that each resource assessment group estimate the average power density of the resource base, as well as the basic technology characteristics and spatial and temporal constituents that convert power into electricity for that resource. The NRC committee evaluated the methodologies, technologies, and assumptions associated with each of these resource assessments. The committee developed a conceptual framework for delineating the processes used to develop the assessment results requested by the DOE, with definitions of the theoretical, technical, and practical resource to clarify elements of the overall resource assessment process. This allowed the NRC committee to make a comparison of different methods, terminology, and processes among the five resource assessment groups. The committee concluded that the overall approach taken by the wave resource and

  1. Real-time Energy Resource Scheduling considering a Real Portuguese Scenario

    DEFF Research Database (Denmark)

    Silva, Marco; Sousa, Tiago; Morais, Hugo

    2014-01-01

    The development in power systems and the introduction of decentralized gen eration and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which...... scheduling in smart grids, considering day - ahead, hour - ahead and real - time scheduling. The case study considers a 33 - bus distribution network with high penetration of distributed energy resources . The wind generation profile is base d o n a rea l Portuguese wind farm . Four scenarios are presented...... taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour - ahead and real - time scheduling...

  2. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards the environment, energy and the use of resources

  3. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    the environment, energy and the use of resources will be an important foundation for bringing about changes in the future. The environmental effects caused by the Energy System are local as well as global. Regarding the global challenges, it is important to find solutions and incentives that are financially, politically and administratively sound, that will work across borders and give a fair distribution of burdens between rich and poor countries, at the same time giving poor countries good opportunities for development. The Proceedings from the seminar should be a useful contribution to the debate on the Energy System for both specialists and the general public. It will also be a useful background document for setting priorities for energy policies and energy research in the future. Furthermore, it should provide a useful summary of the current scientific debate for both the laymen and specialized experts in the field of energy research. This will also provide guidance for the task of setting national research priorities in the future. The seminar describes status and future prospects within different resource-, technology- and application areas globally as well as from a Norwegian perspective. International trends in the energy markets are described, and an ambitious Swiss plan to halve the consumption of fossil fuels in the future will be presented.

  4. Evaluating energy security of resource-poor economies: A modified principle component analysis approach

    International Nuclear Information System (INIS)

    Li, Yingzhu; Shi, Xunpeng; Yao, Lixia

    2016-01-01

    This study proposes to aggregately measure energy security performance with the principal component analysis. In its application of the methodology to four resource-poor yet economically advanced island economies in East Asia—Singapore, South Korea, Japan, and Taiwan, this study establishes a novel framework to conceptualize energy security. The framework incorporates three dimensions: vulnerability, efficiency, and sustainability, three indicators being allocated to each dimension. The study finds that all the three dimensions are critical for the resource-poor economies but have different weights in each of them. An urgent task for these four economies is to implement energy efficiency and conservation measures. Liberalization of electricity sector can be a helpful tool to reduce energy consumption and increase efficiency. All of them have been committed to promoting renewable energy development, which shall be further expanded in these economies. - Highlights: • Proposes to assess energy security within a three-level framework using PCA. • Applies the method to four resource-poor island economies in East Asia. • Establishes a novel framework to conceptualize energy security. • Dimensions within the framework are vulnerability, efficiency, and sustainability. • Three dimensions are all important but have different weights in different economies.

  5. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  6. NETL's Energy Data Exchange (EDX) - a coordination, collaboration, and data resource discovery platform for energy science

    Science.gov (United States)

    Rose, K.; Rowan, C.; Rager, D.; Dehlin, M.; Baker, D. V.; McIntyre, D.

    2015-12-01

    Multi-organizational research teams working jointly on projects often encounter problems with discovery, access to relevant existing resources, and data sharing due to large file sizes, inappropriate file formats, or other inefficient options that make collaboration difficult. The Energy Data eXchange (EDX) from Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is an evolving online research environment designed to overcome these challenges in support of DOE's fossil energy goals while offering improved access to data driven products of fossil energy R&D such as datasets, tools, and web applications. In 2011, development of NETL's Energy Data eXchange (EDX) was initiated and offers i) a means for better preserving of NETL's research and development products for future access and re-use, ii) efficient, discoverable access to authoritative, relevant, external resources, and iii) an improved approach and tools to support secure, private collaboration and coordination between multi-organizational teams to meet DOE mission and goals. EDX presently supports fossil energy and SubTER Crosscut research activities, with an ever-growing user base. EDX is built on a heavily customized instance of the open source platform, Comprehensive Knowledge Archive Network (CKAN). EDX connects users to externally relevant data and tools through connecting to external data repositories built on different platforms and other CKAN platforms (e.g. Data.gov). EDX does not download and repost data or tools that already have an online presence. This leads to redundancy and even error. If a relevant resource already has an online instance, is hosted by another online entity, EDX will point users to that external host either using web services, inventorying URLs and other methods. EDX offers users the ability to leverage private-secure capabilities custom built into the system. The team is presently working on version 3 of EDX which will incorporate big data analytical

  7. Energy resources integrated planning as instrument for clean development; Planejamento integrado de recursos energeticos como instrumento de desenvolvimento limpo

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Luis Claudio Ribeiro; Kanayama, Paulo Helio [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica; Grimoni, Jose Aquiles Baeso; Udaeta, Miguel Edgar Morales [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia

    2008-07-01

    This paper presents the RIP - Resources Integrated Planning, viewing the sustainable development. In the RIP the regional energy resource utilization are a prioritization and the regional economic talent is viewing as a competitive advantage for improvement of the social indexes, and the environmental limitations are considered, including the effects of global heating. Also, the political forces are respected, the involved and interested participates in the planning, and the most important the systemic approaching for obtaining the sustainable, rational and efficient use of the energy are obtained in advance which allows to predict the development consequences before the implantation of projects.

  8. Potential effects of energy development on environmental resources of the Williston Basin in Montana, North Dakota, and South Dakota

    Science.gov (United States)

    Post van der Burg, Max; Vining, Kevin C.; Frankforter, Jill D.

    2017-09-28

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States, has been a leading domestic oil and gas producing area. To better understand the potential effects of energy development on environmental resources in the Williston Basin, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, and in support of the needs identified by the Bakken Federal Executive Group (consisting of representatives from 13 Federal agencies and Tribal groups), began work to synthesize existing information on science topics to support management decisions related to energy development. This report is divided into four chapters (A–D). Chapter A provides an executive summary of the report and principal findings from chapters B–D. Chapter B provides a brief compilation of information regarding the history of energy development, physiography, climate, land use, demographics, and related studies in the Williston Basin. Chapter C synthesizes current information about water resources, identifies potential effects from energy development, and summarizes water resources research and information needs in the Williston Basin. Chapter D summarizes information about ecosystems, species of conservation concern, and potential effects to those species from energy development in the Williston Basin.

  9. Energy storage device including a redox-enhanced electrolyte

    Science.gov (United States)

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  10. The largest renewable, easily exploitable, and economically sustainable energy resource

    Science.gov (United States)

    Abbate, Giancarlo; Saraceno, Eugenio

    2018-02-01

    Sun, the ultimate energy resource of our planet, transfers energy to the Earth at an average power of 23,000 TW. Earth surface can be regarded as a huge panel transforming solar energy into a more convenient mechanical form, the wind. Since millennia wind is recognized as an exploitable form of energy and it is common knowledge that the higher you go, the stronger the winds flow. To go high is difficult; however Bill Gates cites high wind among possible energy miracles in the near future. Public awareness of this possible miracle is still missing, but today's technology is ready for it.

  11. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  12. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    Energy Technology Data Exchange (ETDEWEB)

    Whissel, John C. [Native Village of Eyak, Cordova, AK (United States); Piche, Matthew [Native Village of Eyak, Cordova, AK (United States)

    2015-06-29

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  13. 75 FR 75335 - Integration of Variable Energy Resources

    Science.gov (United States)

    2010-12-02

    ... difficulties posed by the deployment of solar resources.\\26\\ Further still, commenters in the South explain... the facility owner or operator. This includes, for example, wind, solar thermal and photovoltaic, and... significant wind and solar resources.\\27\\ Commenters therefore express a need for flexibility in responding to...

  14. 78 FR 72878 - Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764...

    Science.gov (United States)

    2013-12-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-11-000] Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764 Electronic Compliance Filings Take... Variable Energy Resources, Order No. 764, FERC Stats. & Regs. ] 31,331, order on reh'g, Order No. 764-A...

  15. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  16. Polar energy resources potential. Report prepared for the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fourth Congress, Second Session by the Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The study covers both Antarctic and Arctic energy resources including oil, coal, natural gas, hydroelectric power, geothermal energy, oil shale, uranium, solar energy, and wind power. The environment, geology, topography, climate, and weather are also treated. Consideration is given to the international relations involved in energy resource exploitation in both polar regions, and the technologies necessary to develop polar resources are discussed. The potential resources in each area are described. Resource potentials south of 60 degrees in Antartica and north of 60 degrees in the Arctic are summarized. (MCW)

  17. Exploration of resource and transmission expansion decisions in the Western Renewable Energy Zone initiative

    International Nuclear Information System (INIS)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2011-01-01

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19% of the total delivered cost of renewable energy. - Research highlights: → We describe a new tool to evaluate transmission expansion and renewable resource selection. → We examine a scenario where 33% of the energy in the Western Interconnection comes from renewables. → Wind energy provides the majority of new renewable energy. → For some loads, the decision to procure wind and the required transmission is insensitive to assumptions. → For other loads, assumptions can shift toward more solar, which also changes the needed transmission.

  18. Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society

    Directory of Open Access Journals (Sweden)

    Mei Gong

    2016-09-01

    Full Text Available Exergy is applied to the Swedish energy supply system for the period 1970–2013. Exergy flow diagrams for the systems of electricity and district heating as well as for the total supply system of energy and material resources for 2012 are presented. The share of renewable use has increased in both electricity and district heat production. The resource use is discussed in four sectors: residential and service, transportation, industry and agriculture. The resource use is also analyzed with respect to exergy efficiency and renewable share. The total exergy input of energy and material resources amounts to about 2700 PJ of which about 530 PJ was used for final consumption in 2012. The results are also compared with similar studies. Even though the share of renewable resource use has increased from 42% in 1980 to 47% in 2012, poor efficiency is still occurring in transportation, space heating, and food production. A strong dependence on fossil and nuclear fuels also implies a serious lack of sustainability. A more exergy efficient technology and a higher renewable energy share are needed in order to become a more sustainable society.

  19. Wind and solar energy resources on the 'Roof of the World'

    Science.gov (United States)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  20. A framework for quantitative assessment of impacts related to energy and mineral resource development

    Science.gov (United States)

    Haines, Seth S.; Diffendorfer, James; Balistrieri, Laurie S.; Berger, Byron R.; Cook, Troy A.; Gautier, Donald L.; Gallegos, Tanya J.; Gerritsen, Margot; Graffy, Elisabeth; Hawkins, Sarah; Johnson, Kathleen; Macknick, Jordan; McMahon, Peter; Modde, Tim; Pierce, Brenda; Schuenemeyer, John H.; Semmens, Darius; Simon, Benjamin; Taylor, Jason; Walton-Day, Katherine

    2013-01-01

    Natural resource planning at all scales demands methods for assessing the impacts of resource development and use, and in particular it requires standardized methods that yield robust and unbiased results. Building from existing probabilistic methods for assessing the volumes of energy and mineral resources, we provide an algorithm for consistent, reproducible, quantitative assessment of resource development impacts. The approach combines probabilistic input data with Monte Carlo statistical methods to determine probabilistic outputs that convey the uncertainties inherent in the data. For example, one can utilize our algorithm to combine data from a natural gas resource assessment with maps of sage grouse leks and piñon-juniper woodlands in the same area to estimate possible future habitat impacts due to possible future gas development. As another example: one could combine geochemical data and maps of lynx habitat with data from a mineral deposit assessment in the same area to determine possible future mining impacts on water resources and lynx habitat. The approach can be applied to a broad range of positive and negative resource development impacts, such as water quantity or quality, economic benefits, or air quality, limited only by the availability of necessary input data and quantified relationships among geologic resources, development alternatives, and impacts. The framework enables quantitative evaluation of the trade-offs inherent in resource management decision-making, including cumulative impacts, to address societal concerns and policy aspects of resource development.

  1. Geothermal Energy: Resource and Utilization. A Teaching Module.

    Science.gov (United States)

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  2. Resource Allocation of Security-Critical Tasks with Statistically Guaranteed Energy Constraint

    DEFF Research Database (Denmark)

    Jiang, Wei; Jiang, Ke; Ma, Yue

    2012-01-01

    In this paper, we are interested in resource allocation for energy constrained and security-critical embedded systems. Tasks in such systems need to be successfully executed under certain energy budget and be robust against serious security threatens. Different to former energy minimal scheduling...... energy slack ratio. The proposed algorithm is very efficient in both time and space dimensions, and achieves good solutions. Extensive simulations demonstrate the superiority of our algorithm over other approaches....

  3. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

    2010-06-10

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

  4. Resource rents: The effects of energy taxes and quantity instruments for climate protection

    International Nuclear Information System (INIS)

    Eisenack, Klaus; Edenhofer, Ottmar; Kalkuhl, Matthias

    2012-01-01

    Carbon dioxide emissions correspond to fossil resource use. When considering this supply side of climate protection, crucial questions come to fore. It seems likely that owners of fossil resources would object to emission reductions. Moreover, policy instruments such as taxes may not be effective at all: it seems individually rational to leave no fossil resources unused. In this context, it can be expected that economic sectors will react strategically to climate policy, aiming at a re-distribution of rents. To address these questions, we investigate the effectiveness, efficiency, and resource rents for energy taxes, resource taxes, and quantity rationing of emissions. The analysis is based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and quantity rationing achieve this objective efficiently, energy taxation is only second-best. The use of quantity rationing to achieve climate protection generates substantial rents for resource owners. - Highlights: ► Resource taxes and quantity rationing (carbon budgets) are efficient. ► Carbon budgets increase resource rents, while taxes decrease rents. ► Resource owners may support climate protection. ► Climate protection introduces a climate rent.

  5. Impacts of Using Distributed Energy Resources to Reduce Peak Loads in Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lunacek, Monte S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, Birk [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-28

    To help the United States develop a modern electricity grid that provides reliable power from multiple resources as well as resiliency under extreme conditions, the U.S. Department of Energy (DOE) is leading the Grid Modernization Initiative (GMI) to help shape the future of the nation's grid. Under the GMI, DOE funded the Vermont Regional Initiative project to provide the technical support and analysis to utilities that need to mitigate possible impacts of increasing renewable generation required by statewide goals. Advanced control of distributed energy resources (DER) can both support higher penetrations of renewable energy by balancing controllable loads to wind and photovoltaic (PV) solar generation and reduce peak demand by shedding noncritical loads. This work focuses on the latter. This document reports on an experiment that evaluated and quantified the potential benefits and impacts of reducing the peak load through demand response (DR) using centrally controllable electric water heaters (EWHs) and batteries on two Green Mountain Power (GMP) feeders. The experiment simulated various hypothetical scenarios that varied the number of controllable EWHs, the amount of distributed PV systems, and the number of distributed residential batteries. The control schemes were designed with several objectives. For the first objective, the primary simulations focused on reducing the load during the independent system operator (ISO) peak when capacity charges were the primary concern. The second objective was to mitigate DR rebound to avoid new peak loads and high ramp rates. The final objective was to minimize customers' discomfort, which is defined by the lack of hot water when it is needed. We performed the simulations using the National Renewable Energy Laboratory's (NREL's) Integrated Energy System Model (IESM) because it can simulate both electric power distribution feeder and appliance end use performance and it includes the ability to simulate

  6. Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system

    International Nuclear Information System (INIS)

    Logenthiran, T.; Srinivasan, Dipti; Khambadkone, Ashwin M.

    2011-01-01

    This paper proposes a multi-agent system for energy resource scheduling of an islanded power system with distributed resources, which consists of integrated microgrids and lumped loads. Distributed intelligent multi-agent technology is applied to make the power system more reliable, efficient and capable of exploiting and integrating alternative sources of energy. The algorithm behind the proposed energy resource scheduling has three stages. The first stage is to schedule each microgrid individually to satisfy its internal demand. The next stage involves finding the best possible bids for exporting power to the network and compete in a whole sale energy market. The final stage is to reschedule each microgrid individually to satisfy the total demand, which is the addition of internal demand and the demand from the results of the whole sale energy market simulation. The simulation results of a power system with distributed resources comprising three microgrids and five lumped loads show that the proposed multi-agent system allows efficient management of micro-sources with minimum operational cost. The case studies demonstrate that the system is successfully monitored, controlled and operated by means of the developed multi-agent system. (author)

  7. Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system

    Energy Technology Data Exchange (ETDEWEB)

    Logenthiran, T.; Srinivasan, Dipti; Khambadkone, Ashwin M. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-01-15

    This paper proposes a multi-agent system for energy resource scheduling of an islanded power system with distributed resources, which consists of integrated microgrids and lumped loads. Distributed intelligent multi-agent technology is applied to make the power system more reliable, efficient and capable of exploiting and integrating alternative sources of energy. The algorithm behind the proposed energy resource scheduling has three stages. The first stage is to schedule each microgrid individually to satisfy its internal demand. The next stage involves finding the best possible bids for exporting power to the network and compete in a whole sale energy market. The final stage is to reschedule each microgrid individually to satisfy the total demand, which is the addition of internal demand and the demand from the results of the whole sale energy market simulation. The simulation results of a power system with distributed resources comprising three microgrids and five lumped loads show that the proposed multi-agent system allows efficient management of micro-sources with minimum operational cost. The case studies demonstrate that the system is successfully monitored, controlled and operated by means of the developed multi-agent system. (author)

  8. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  9. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  10. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    Science.gov (United States)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  11. Monthly energy review, November 1994

    International Nuclear Information System (INIS)

    1994-11-01

    This monthly publication contains statistical data on energy resources in the United States. Petroleum, natural gas, coal, electricity, and nuclear energy are covered. Additional sections include an energy overview, energy consumption, oil and gas resource development and energy prices. This issue includes features on energy-related housing characteristics and the propane-provider fleet

  12. David Grant Medical Center energy use baseline and integrated resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Richman, E.E.; Hoshide, R.K.; Dittmer, A.L.

    1993-04-01

    The US Air Mobility Command (AMC) has tasked Pacific Northwest Laboratory (PNL) with supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy resource opportunities (EROs) at the David Grant Medical Center (DGMC). This report describes the methodology used to identify and evaluate the EROs at DGMC, provides a life-cycle cost (LCC) analysis for each ERO, and prioritizes any life-cycle cost-effective EROs based on their net present value (NPV), value index (VI), and savings to investment ratio (SIR or ROI). Analysis results are presented for 17 EROs that involve energy use in the areas of lighting, fan and pump motors, boiler operation, infiltration, electric load peak reduction and cogeneration, electric rate structures, and natural gas supply. Typical current energy consumption is approximately 22,900 MWh of electricity (78,300 MBtu), 87,600 kcf of natural gas (90,300 MBtu), and 8,300 gal of fuel oil (1,200 MBtu). A summary of the savings potential by energy-use category of all independent cost-effective EROs is shown in a table. This table includes the first cost, yearly energy consumption savings, and NPV for each energy-use category. The net dollar savings and NPV values as derived by the life-cycle cost analysis are based on the 1992 federal discount rate of 4.6%. The implementation of all EROs could result in a yearly electricity savings of more than 6,000 MWh or 26% of current yearly electricity consumption. More than 15 MW of billable load (total billed by the utility for a 12-month period) or more than 34% of current billed demand could also be saved. Corresponding natural gas savings would be 1,050 kcf (just over 1% of current consumption). Total yearly net energy cost savings for all options would be greater than $343,340. This value does not include any operations and maintenance (O&M) savings.

  13. David Grant Medical Center energy use baseline and integrated resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Richman, E.E.; Hoshide, R.K.; Dittmer, A.L.

    1993-04-01

    The US Air Mobility Command (AMC) has tasked Pacific Northwest Laboratory (PNL) with supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy resource opportunities (EROs) at the David Grant Medical Center (DGMC). This report describes the methodology used to identify and evaluate the EROs at DGMC, provides a life-cycle cost (LCC) analysis for each ERO, and prioritizes any life-cycle cost-effective EROs based on their net present value (NPV), value index (VI), and savings to investment ratio (SIR or ROI). Analysis results are presented for 17 EROs that involve energy use in the areas of lighting, fan and pump motors, boiler operation, infiltration, electric load peak reduction and cogeneration, electric rate structures, and natural gas supply. Typical current energy consumption is approximately 22,900 MWh of electricity (78,300 MBtu), 87,600 kcf of natural gas (90,300 MBtu), and 8,300 gal of fuel oil (1,200 MBtu). A summary of the savings potential by energy-use category of all independent cost-effective EROs is shown in a table. This table includes the first cost, yearly energy consumption savings, and NPV for each energy-use category. The net dollar savings and NPV values as derived by the life-cycle cost analysis are based on the 1992 federal discount rate of 4.6%. The implementation of all EROs could result in a yearly electricity savings of more than 6,000 MWh or 26% of current yearly electricity consumption. More than 15 MW of billable load (total billed by the utility for a 12-month period) or more than 34% of current billed demand could also be saved. Corresponding natural gas savings would be 1,050 kcf (just over 1% of current consumption). Total yearly net energy cost savings for all options would be greater than $343,340. This value does not include any operations and maintenance (O M) savings.

  14. Power system stabilizers based on distributed energy resources for damping of inter-area oscillations

    Directory of Open Access Journals (Sweden)

    Stefanov Predrag Č.

    2014-01-01

    Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.

  15. 76 FR 36532 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2011-06-22

    ... Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind...), Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, and Horizon Wind Energy LLC (Complainants) filed a formal complaint against Bonneville Power Administration...

  16. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  17. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2017-03-28

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  18. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2017-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  19. Explaining Earths Energy Budget: CERES-Based NASA Resources for K-12 Education and Public Outreach

    Science.gov (United States)

    Chambers, L. H.; Bethea, K.; Marvel, M. T.; Ruhlman, K.; LaPan, J.; Lewis, P.; Madigan, J.; Oostra, D.; Taylor, J.

    2014-01-01

    Among atmospheric scientists, the importance of the Earth radiation budget concept is well understood. Papers have addressed the topic for over 100 years, and the large Clouds and the Earth's Radiant Energy System (CERES) science team (among others), with its multiple on-orbit instruments, is working hard to quantify the details of its various parts. In education, Earth's energy budget is a concept that generally appears in middle school and Earth science curricula, but its treatment in textbooks leaves much to be desired. Students and the public hold many misconceptions, and very few people have an appreciation for the importance of this energy balance to the conditions on Earth. More importantly, few have a correct mental model that allows them to make predictions and understand the effect of changes such as increasing greenhouse gas concentrations. As an outreach element of the core CERES team at NASA Langley, a multi-disciplinary group of scientists, educators, graphic artists, writers, and web developers has been developing and refining graphics and resources to explain the Earth's Energy budget over the last few decades. Resources have developed through an iterative process involving ongoing use in front of a variety of audiences, including students and teachers from 3rd to 12th grade as well as public audiences.

  20. Survey of ecological resources at selected US Department of Energy sites

    International Nuclear Information System (INIS)

    McAllister, C.; Beckert, H.; Abrams, C.

    1996-09-01

    The U.S. Department of Energy (DOE) owns and manages a wide range of ecological resources. During the next 30 years, DOE Headquarters and Field Offices will make land-use planning decisions and conduct environmental remediation and restoration activities in response to federal and state statutes. This document fulfills, in part, DOE's need to know what types of ecological resources it currently owns and manages by synthesizing information on the types and locations of ecological resources at 10 DOE sites: Hanford Site, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratory, Rocky Flats Plant, Los Alamos National Laboratory, savannah River Site, Oak Ridge National Laboratory, Argonne National Laboratory, and Fernald Environmental Management Project. This report summarizes information on ecosystems, habitats, and federally listed threatened, endangered, and candidate species that could be stressed by contaminants or physical activity during the restoration process, or by the natural or anthropogenic transport of contaminants from presently contaminated areas into presently uncontaminated areas. This report also provides summary information on the ecosystems, habitats, and threatened and endangered species that exist on each of the 10 sites. Each site chapter contains a general description of the site, including information on size, location, history, geology, hydrology, and climate. Descriptions of the major vegetation and animal communities and of aquatic resources are also provided, with discussions of the treatened or endangered plant or animal species present. Site-specific ecological issues are also discussed in each site chapter. 106 refs., 11 figs., 1 tab

  1. A composite efficiency metrics for evaluation of resource and energy utilization

    International Nuclear Information System (INIS)

    Yang, Siyu; Yang, Qingchun; Qian, Yu

    2013-01-01

    Polygeneration systems are commonly found in chemical and energy industry. These systems often involve chemical conversions and energy conversions. Studies of these systems are interdisciplinary, mainly involving fields of chemical engineering, energy engineering, environmental science, and economics. Each of these fields has developed an isolated index system different from the others. Analyses of polygeneration systems are therefore very likely to provide bias results with only the indexes from one field. This paper is motivated from this problem to develop a new composite efficiency metrics for polygeneration systems. This new metrics is based on the second law of thermodynamics, exergy theory. We introduce exergy cost for waste treatment as the energy penalty into conventional exergy efficiency. Using this new metrics could avoid the situation of spending too much energy for increasing production or paying production capacity for saving energy consumption. The composite metrics is studied on a simplified co-production process, syngas to methanol and electricity. The advantage of the new efficiency metrics is manifested by comparison with carbon element efficiency, energy efficiency, and exergy efficiency. Results show that the new metrics could give more rational analysis than the other indexes. - Highlights: • The composite efficiency metric gives the balanced evaluation of resource utilization and energy utilization. • This efficiency uses the exergy for waste treatment as the energy penalty. • This efficiency is applied on a simplified co-production process. • Results show that the composite metrics is better than energy efficiencies and resource efficiencies

  2. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  3. Box-triangular multiobjective linear programs for resource allocation with application to load management and energy market problems

    International Nuclear Information System (INIS)

    Ekel, P.Y.; Galperin, E.A.

    2003-01-01

    Models for multicriteria resource allocation are constructed with the specific box-triangular structure of a feasible region. The method of balance set equations is extended for the satisfaction level representation of the cost function space including the case of linearly dependent cost functions. On this basis, different goal criteria on the balance set are investigated for linear cases. Procedures for determining the balance set and finding goal-optimal Pareto solutions are illustrated on examples. The results of the paper are of universal character and can find wide applications in allocating diverse types of resources on the multiobjective basis in planning and control of complex systems including load management and energy market problems. (Author)

  4. A Global Look at Future Trends in the Renewable Energy Resource

    Science.gov (United States)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  5. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  6. Least-cost model predictive control of residential energy resources when applying ?mCHP

    NARCIS (Netherlands)

    Houwing, M.; Negenborn, R.R.; Heijnen, P.W.; De Schutter, B.; Hellendoorn, H.

    2007-01-01

    With an increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which households manage their own energy generation and consumption,

  7. ACCIDENTS AND UNSCHEDULED EVENTS ASSOCIATED WITH NON-NUCLEAR ENERGY RESOURCES AND TECHNOLOGY

    Science.gov (United States)

    Accidents and unscheduled events associated with non-nuclear energy resources and technology are identified for each step in the energy cycle. Both natural and anthropogenic causes of accidents or unscheduled events are considered. Data concerning these accidents are summarized. ...

  8. Renewable energy resources in Mali : potential and options for a sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Dembele, P. [Mali-Folkecenter, Faladie SEMA, Bamako (Mali)

    2006-07-01

    With a population of approximately 12 million, the per capita energy consumption of Mali is 228 Kilo tons of oil equivalent per inhabitant per year. Household energy consumption accounts for nearly 86 per cent of the total energy consumed with almost 99 per cent coming from wood energy. Energy consumption in the transportation, industrial and agricultural sectors is 10, 3, and 1 per cent respectively. The energy sector in Mali is characterized by the over-exploitation of forestry resources, dependence on imported oil and an under-exploitation of potential renewable energy resources such as solar, wind and biomass. The supply of solar energy is inexhaustible as the country receives almost 12 hours of sunshine with an average daily insolation of 5-7 KWh/m{sup 2}/day. Applications of photovoltaic (PV) technology in Mali concerns the basic needs of the population such as water pumping, lighting, battery charging and refrigeration. In 1994, the Mali government gave preferential fiscal policy on all solar equipment in order to encourage the wide spread use of solar energy, but technical constraints such as low efficiency, appropriate technology transfer methods, and sustainable financing mechanisms remain to be addressed. This paper described several programs that have been initiated to promote the use of renewable energy, protect the fragile environment threatened by the Sahara Desert and to provide access to drinking water. These achievements however, have not yet guaranteed energy sustainability, particularly in rural areas. It was recommended that efforts should be made to strengthen the renewable energy sector, correct inadequacies, introduce a sustainable renewable energy technology transfer process, and consolidate knowledge and experiences to focus on low cost renewable energy technologies. It was suggested that a natural resource map of the country should be made available in order allow for comparative cost and technology sustainability analysis before deciding

  9. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  10. Strategic area : energy and petroleum - resources and environment : annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Energy is needed to provide for essential human needs like food, housing, clothing, transportation, health and recreation - in short what is needed to live a good life on this planet. By the end of this century, emission of greenhouse gases needs to be curbed. At the same time around 6 billion new citizens may join in at the global dinner table. How to produce sufficient amounts of clean energy for a future peaceful and sustainable society is today's largest challenge. There will be a great demand for new knowledge, new technology and new solutions. This is a global challenge which will involve a lot of people in many countries. NTNU, together with SINTEF, wants to play an active and productive role to supply the necessary scientific input to the global transformation processes needed to achieve a sustainable future. The overall goal is to develop new knowledge and educate the people who can turn that knowledge into clean energy solutions. A successful transition to clean and sustainable energy systems will depend on global innovation processes. Although the solutions that will be implemented will reflect local resources and conditions, they will emerge from the application of a mixture of key technologies with which NTNU and SINTEF are actively working: 1. Efficient and sustainable generation, transport and end-user utilization of energy, including oil and gas. 2. Carbon dioxide capture and storage. 3. Renewable energy. Probably, electricity and hydrogen will be the main energy carriers of the future, together with biofuels and biomass. Yet, it is important to propose - within the same time frame - a variety of possible technological solutions to allow for social choices and local concerns. Norway may be considered an 'energy country'. Thus, NTNU and SINTEF have established substantial energy related activity. Today, more than 750 scientists are involved in the efforts to create a cleaner future. This 'family' includes 170 professors and

  11. Smoothing out the volatility of South Africa’s wind and solar energy resources

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2015-10-01

    Full Text Available In the past, renewables were mainly driven by the US, Europe and China, but South Africa is slowly picking up. This presentation discusses South Africa's wind and solar resources as alternative energy resources....

  12. Global resources and energy trade. An overview for coal, natural gas, oil and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Remme, U.; Blesl, M.; Fahl, U.

    2007-07-15

    Despite efforts to improve energy effi-ciency and increase the usage of renewable energy carriers, fossil fuels and nuclear energy will continue to be important sources of global energy supply for the coming decades. Present global oil and gas supply is characterized by a concentration of production in a few world areas, mainly the Middle East and the Former Soviet Union, and a transport from these regions to the industrialized countries. Depletion of conventional reserves, especially oil, in combination with a surge for energy in emerging economies, as China and India, how-ever, is expected to change this picture in the future: unconventional resources in other world regions may be exploited to cover the surge energy demand, infrastructure for energy transport along new routes may have to be established. To provide a data base for such ques-tions, this report gives an overview of the current global resource situation for coal, natural gas, oil and uranium. In the first part, an assessment of the con-ventional and unconventional reserves and resources as well as their supply costs is given for the different regions of the world. The second part describes the current energy trade infrastructure between world regions and estimates the costs for existing and new trade links between these regions. (orig.)

  13. EERE Resources for Graduate Students

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    The Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) has a number of resources available for graduate students, including research positions, internships, and career-planning information to help you navigate the education-to-employment pathway in energy.

  14. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  15. Monthly energy review, December 1994

    International Nuclear Information System (INIS)

    1994-12-01

    This monthly publication contains statistical data on energy resources in the United States. Petroleum, natural gas, coal, electricity, and nuclear energy are covered. Additional sections include an energy overview, energy consumption, oil and gas resource development and energy prices. This issue includes a market assessment of alternative-fuel vehicles in the Atlanta private fleet for 1994

  16. Thermo-mechanical controls on geothermal energy resources: case studies in the Pannonian Basin and other natural laboratories

    NARCIS (Netherlands)

    Cloetingh, S.; Wees, J.D. van; Wesztergom, V.

    2017-01-01

    Geothermal energy is an important renewable energy resource, whose share is growing rapidly in the energy mix. Geosciences provide fundamental knowledge on Earth system processes and properties, required for the development of new methods to identify prospective geothermal resources suitable for

  17. Quantitative Assessment of Distributed Energy Resource Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, S.W.

    2003-05-22

    Distributed energy resources (DER) offer many benefits, some of which are readily quantified. Other benefits, however, are less easily quantifiable because they may require site-specific information about the DER project or analysis of the electrical system to which the DER is connected. The purpose of this study is to provide analytical insight into several of the more difficult calculations, using the PJM power pool as an example. This power pool contains most of Pennsylvania, New Jersey, Maryland, and Delaware. The techniques used here could be applied elsewhere, and the insights from this work may encourage various stakeholders to more actively pursue DER markets or to reduce obstacles that prevent the full realization of its benefits. This report describes methodologies used to quantify each of the benefits listed in Table ES-1. These methodologies include bulk power pool analyses, regional and national marginal cost evaluations, as well as a more traditional cost-benefit approach for DER owners. The methodologies cannot however determine which stakeholder will receive the benefits; that must be determined by regulators and legislators, and can vary from one location to another.

  18. Advanced Distribution Network Modelling with Distributed Energy Resources

    Science.gov (United States)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a

  19. A machine learning approach for predicting the relationship between energy resources and economic development

    Science.gov (United States)

    Cogoljević, Dušan; Alizamir, Meysam; Piljan, Ivan; Piljan, Tatjana; Prljić, Katarina; Zimonjić, Stefan

    2018-04-01

    The linkage between energy resources and economic development is a topic of great interest. Research in this area is also motivated by contemporary concerns about global climate change, carbon emissions fluctuating crude oil prices, and the security of energy supply. The purpose of this research is to develop and apply the machine learning approach to predict gross domestic product (GDP) based on the mix of energy resources. Our results indicate that GDP predictive accuracy can be improved slightly by applying a machine learning approach.

  20. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  1. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  2. Energy resources technical training and development programs for American Indians

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R E; White, W S

    1978-08-01

    Because of the energy resources located on Native American owned lands, it is pertinent that the tribes on these reservations receive information, training, and technical assistance concerning energy and the environment and the decisions that must be made about energy-resource development. In the past, attempts to enlist Indians in technical-assistance programs met with little success because teaching methods seldom incorporated program planning by both tribal leaders and the technical training staff. Several technical-assistance programs given on reservations in the central and western parts of the country were conducted by Argonne National Lab.--programs that stressed practical, on-the-job experience through lecture, laboratory, and field studies. Each program was designed by ANL and tribal leaders to fit the needs and concerns of a particular tribe for its environment. The individual programs met with an impressive degree of success; they also prompted several Indians to pursue this type of education further at ANL and local Indian community colleges and to obtain funds for energy projects. Despite the positive feedback, several difficulties were encountered. Among them are the necessity to continually modify the programs to fit diverse tribal needs, to diminish politically motivated interference, and to increase portions of the funding to involve more Native Americans.

  3. A review on distributed energy resources and MicroGrid

    Energy Technology Data Exchange (ETDEWEB)

    Jiayi, Huang; Chuanwen, Jiang; Rong, Xu [Department of Electrical Engineering, Shanghai Jiaotong University, Huashan Road 1954, Shanghai 200030 (China)

    2008-12-15

    The distributed energy resources (DER) comprise several technologies, such as diesel engines, micro turbines, fuel cells, photovoltaic, small wind turbines, etc. The coordinated operation and control of DER together with controllable loads and storage devices, such as flywheels, energy capacitors and batteries are central to the concept of MicroGrid (MG). MG can operate interconnected to the main distribution grid, or in an islanded mode. This paper reviews the researches and studies on MG technology. The operation of MG and the MG in the market environment are also described in the paper. (author)

  4. Children and youth's biopsychosocial wellbeing in the context of energy resource activities.

    Science.gov (United States)

    Cox, Robin S; Irwin, Pamela; Scannell, Leila; Ungar, Michael; Bennett, Trevor Dixon

    2017-10-01

    Children and youth emerge as key populations that are impacted by energy resource activities, in part because of their developmental vulnerabilities, as well as the compounding effects of energy systems on their families, communities, and physical environments. While there is a larger literature focused on fossil fuel emissions and children, the impacts of many aspects of energy systems on children and youth remain under examined and scattered throughout the health, social science, and environmental science literatures. This systematic interdisciplinary review examines the biological, psychosocial, and economic impacts of energy systems identified through social science research - specifically focused on household and industrial extraction and emissions - on children and youth functioning. A critical interpretive search of interdisciplinary and international social sciences literature was conducted using an adaptive protocol focusing on the biopsychosocial and economic impacts of energy systems on children and youth. The initial results were complemented with a purposeful search to extend the breadth and depth of the final collection of articles. Although relatively few studies have specifically focused on children and youth in this context, the majority of this research uncovers a range of negative health impacts that are directly and indirectly related to the development and ongoing operations of natural resource production, particularly oil and gas, coal, and nuclear energy. Psychosocial and cultural effects, however, remain largely unexamined and provide a rich avenue for further research. This synthesis identifies an array of adverse biopsychosocial health outcomes on children and youth of energy resource extraction and emissions, and identifies gaps that will drive future research in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Modelling the hydrokinetic energy resource for in-stream energy converters

    International Nuclear Information System (INIS)

    Lalander, Emilia

    2010-01-01

    Hydrokinetic energy, referring to the energy contained in moving water, is a renewable energy source that has gained much attention the past years. The energy is found in all moving water masses, but is only economical to convert for water masses moving with high velocity, i.e. likely around 1 m/s and above. This energy can for example be found in tidal, ocean and river currents which flow through narrow straits and channels. Along the west coast of Norway, there are many sites where kinetic energy conversion would be possible due to the strong current present. The driving force behind the currents is the tidal wave that progresses northward along the coast and increases in strength. The models that so far have been used for estimating the resource in Norway have been shown to be uncertain since they do not account for the fact that the velocities and the water levels are altered when energy is extracted. These effects can be simulated with numerical models. A channel in the Dal river, the Soederfors channel, is situated downstream a hydropower plant and was simulated with the numerical model MIKE. The water level alteration due to turbines was simulated. It was shown to be a lot less than the water level alteration caused by the level change in the downstream lake. Velocity profiles measured at several different locations were used to estimate how the power coefficient was changed. Four turbine configurations were studied and it was shown that changes in the power coefficient were prominent only for a vertical shear profile with a strong gradient. At the Div. of Electricity, studies have been conducted on how to convert hydrokinetic energy to electricity since 2003. The main idea has been to use a system that limits the need for maintenance. The concept studied is a vertical axis turbine directly coupled to a permanent magnet generator. The Soederfors channel has, due to aspects such as the flow properties and velocity, been chosen as a site for an experimental

  6. Electric power from renewable energy: resources and stakes for France

    International Nuclear Information System (INIS)

    2001-01-01

    This paper presents the essential of the last thematic letter published by the IFEN (French institute of the environment), devoted to the resources and stakes of the electric power produced by the renewable energies in France. (A.L.B.)

  7. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    Science.gov (United States)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  8. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources

    International Nuclear Information System (INIS)

    Sulaiman, F.; Abdullah, N.; Gerhauser, H.; Shariff, A.

    2011-01-01

    Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: →Palm oil and related products represent the second largest export of Malaysia. →Malaysia has an abundance of energy resources, both renewable and non-renewable. →Forest and oil palm residues are the main renewable energy option for Malaysia. →Efforts were undertaken to encourage the utilization of renewable resources.

  9. DOD Future Energy Resources. Proceedings of Workshops Held at the National Defense University

    National Research Council Canada - National Science Library

    2003-01-01

    .... In response to concerns about U.S. and global depletion of cheap petroleum resources and the particular impact of this on future DOD energy resource needs, a series of workshops were held during 2002 and 2003 at National Defense University...

  10. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frame, Caitlin [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Gill, Carrie [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Hanson, Howard [Florida Atlantic Univ., Boca Raton, FL (United States); Moriarty, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Powell, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilczak, Jim [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Wynne, Jason [Energetics, Columbia, MD (United States)

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  11. What criteria should now be applied in energy resource planning

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1976-01-01

    Twenty years ago decisions on nuclear power were made on purely economic grounds. Little attention was given to public acceptability, broad-scope cost/benefit analysis, environmental impacts, or conservation of resources. In the light of the significantly different situation that exists today, were the proper decisions made, and what should now be the basis for proper comparable analysis. Acknowledging that energy resource planning is extremely complex, a logical approach is suggested that provides a more meaningful basis for public choice and decision-making. (author)

  12. Characterising the spatial variability of the tidal stream energy resource from floating turbines

    Science.gov (United States)

    Ward, Sophie; Neill, Simon; Robins, Peter

    2017-04-01

    The shelf seas, in particular the northwest European shelf seas surrounding the UK, contain significant tidal power potential. Tidal stream energy is both predictable and reliable providing that sites are well-selected based upon the hydrodynamic regime and the device specifics. In this high resolution three-dimensional tidal modelling study, we investigate how the tidal stream resource around the Welsh coast (UK) varies with water depth and location, with particular focus on the Pembrokeshire region. The potential extractable energy for a floating tidal stream energy converter is compared with that for a bottom-fixed device, highlighting the need to vary the resource characterisation criteria based on device specifics. We demonstrate how small variations in the tidal current speeds - with hub depth or due to tidal asymmetry - can lead to substantial variations in potential power output. Further, the results indicate that power generation from floating tidal energy converters will be more significantly influenced by tidal elevations in regions characterised by a lower tidal range (more progressive waves) than regions that experience a high tidal range (standing waves). As numerical modelling capacity improves and tidal stream energy converter technologies develop, ongoing improved quantification of the tidal resource is needed, as well as consideration of the possible feedbacks of the devices and energy extraction on the hydrodynamic regime and the surrounding area.

  13. Ecological footprint accounting for energy and resource in China

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.; Yang, Z.F.; Jiang, M.M.

    2007-01-01

    Resource consumption of the Chinese society from 1981 to 2001 is represented by ecological footprint (EF) as an aggregate indicator. The debate, advances and implications of EF are investigated in detail. EF intensity is also provided to depict the resource consumption level corresponding to unit economic output. The results show that the EF per capita always exceeded the biocapacity and the EF intensity increased steadily over the study period. In addition, sectoral analysis for each EF component is also conducted. The appropriation in the global ecological sense of Chinese society with the second largest energy consumption in the world is therefore quantified and evaluated

  14. Survey of ecological resources at selected US Department of Energy sites

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, C.; Beckert, H.; Abrams, C. [and others

    1996-09-01

    The U.S. Department of Energy (DOE) owns and manages a wide range of ecological resources. During the next 30 years, DOE Headquarters and Field Offices will make land-use planning decisions and conduct environmental remediation and restoration activities in response to federal and state statutes. This document fulfills, in part, DOE`s need to know what types of ecological resources it currently owns and manages by synthesizing information on the types and locations of ecological resources at 10 DOE sites: Hanford Site, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratory, Rocky Flats Plant, Los Alamos National Laboratory, savannah River Site, Oak Ridge National Laboratory, Argonne National Laboratory, and Fernald Environmental Management Project. This report summarizes information on ecosystems, habitats, and federally listed threatened, endangered, and candidate species that could be stressed by contaminants or physical activity during the restoration process, or by the natural or anthropogenic transport of contaminants from presently contaminated areas into presently uncontaminated areas. This report also provides summary information on the ecosystems, habitats, and threatened and endangered species that exist on each of the 10 sites. Each site chapter contains a general description of the site, including information on size, location, history, geology, hydrology, and climate. Descriptions of the major vegetation and animal communities and of aquatic resources are also provided, with discussions of the treatened or endangered plant or animal species present. Site-specific ecological issues are also discussed in each site chapter. 106 refs., 11 figs., 1 tab.

  15. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  16. Computer modelling of the UK wind energy resource: final overview report

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Ravenscroft, F

    1993-12-31

    This report describes the results of a programme of work to estimate the UK wind energy resource. Mean wind speed maps and quantitative resource estimates were obtained using the NOABL mesoscale (1 km resolution) numerical model for the prediction of wind flow over complex terrain. NOABL was used in conjunction with digitised terrain data and wind data from surface meteorological stations for a ten year period (1975-1984) to provide digital UK maps of mean wind speed at 10m, 25m and 45m above ground level. Also included in the derivation of these maps was the use of the Engineering Science Data Unit (ESDU) method to model the effect on wind speed of the abrupt change in surface roughness that occurs at the coast. Existing isovent maps, based on standard meteorological data which take no account of terrain effects, indicate that 10m annual mean wind speeds vary between about 4.5 and 7 m/s over the UK with only a few coastal areas over 6 m/s. The present study indicated that 23% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. (20 figures, 7 tables, 10 references). (author)

  17. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  18. 2005 resource options report

    International Nuclear Information System (INIS)

    Morris, T.

    2005-01-01

    This resource options report (ROR) fulfils regulatory requirements in British Columbia's two-year resource planning process. It identifies a wide range of resources and technologies that could be used to meet BC Hydro's future electricity demand. As such, it facilitates a transparent public review of resource options which include both supply-side and demand-side options. The resource options that will be used in the 2005 integrated electricity plan (IEP) were characterized. This ROR also documents where there is a general agreement or disagreement on the resource type characterization, based on the First Nations and Stakeholder engagement. BC Hydro used current information to provide realistic ranges on volume and cost to characterize environmental and social attributes. The BC Hydro system was modelled to assess the benefit and cost of various resource options. The information resulting from this ROR and IEP will help in making decisions on how to structure competitive acquisition calls and to determine the level of transmission services needed to advance certain BC Hydro projects. The IEP forecasts the nature and quantity of domestic resources required over the next 20 years. A strategic direction on how those needs will be met has been created to guide the management of BC Hydro's energy resources. Supply-side options include near-commercial technologies such as energy storage, ocean waves, tidal, fuel cells and integrated coal gasification combined cycle technology. Supply-side options also include natural gas, coal, biomass, geothermal, wind, and hydro. 120 refs., 39 tabs., 21 figs., 6 appendices

  19. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  20. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.

    2010-01-01

    Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheri...

  1. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Science.gov (United States)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  2. 78 FR 28002 - In the Matter of South Mississippi Electric Power Association, System Energy Resources, Inc...

    Science.gov (United States)

    2013-05-13

    ... of South Mississippi Electric Power Association, System Energy Resources, Inc., Grand Gulf Nuclear... Amendment I South Mississippi Electric Power Association, System Energy Resources, Inc. (SERI), Entergy... Operating License No. NPF-29. South Mississippi Electric Power Association and SERI are the owners and EOI...

  3. Ways of conserving fuel-energy resources in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Voloshchenko, N.I.; Nabokov, E.P.

    1981-01-01

    A discussion is made of the work undertaken by enterprises and organizations of the coal industry to conserve fuel-energy resources in the tenth Five-Year Plan. An examination is made of the basic organizational-technical measures that have been implemented in this sector for conserving thermal and electrical energy. A presentation is made of the results obtained from the introduction of advanced technological processes and equipment aimed at increasing productivity and reducing operational losses of coal.

  4. Possible transfer of traditional energy intensive industries towards developing countries. Offers of energy resource in the CIER [Comision de Integracion Electrica Regional] area in relation to this transfer

    International Nuclear Information System (INIS)

    Facchini Ferro, A.; D'Amado Campo, R.

    1989-01-01

    Due to the steep rise in oil prices in the early 1970s, South American countries became aware of the advisability of developing their abundant and renewable hydroelectric resources. The second energy crisis of 1979 pushed up oil prices still further and the consequences in the South American electricity sector included contractions in markets, overcapacity, and difficult financial circumstances. Increases in exports were seen as a way to reduce the burden of those countries' heavy debts and to improve economic conditions. To harmonize the interests of development of highly energy intensive industries in developed countries and the economic development of developing countries, the possibility of marketing energy as an industrial input should be considered. Evidence of the advantages that South American countries can offer to such industrial transfers is presented. These countries offer a source of plentiful hydropower from installations in operation, under construction, or projected as major developments. These installations are already largely interconnected through high- and extra-high-voltage power transmission networks. Technical information is given on the installed generating capacities, including thermal reserve plants; utilization levels; transmission line interconnections; and remaining renewable and non-renewable energy resources. Considerations regarding the political and financial implications of industrial transfers are discussed. 6 refs., 9 figs

  5. Wave energy resource assessment for the Indian shelf seas

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Anoop, T.R.

    of the southeastern USA. Renewable Energy 2009; 34: 2197-205. [21] Lenee-Bluhm P, Paasch R, Özkan-Haller HT. Characterizing the wave energy resource of the US Pacific Northwest, Renewable Energy 2011; 36; 2106–2119. [22] Gunn K, Stock-Williams C. Quantifying... 17 18 19 0 1 2 3 4 M on th ly v ar ia bi lit y in de x (a) (b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Location 2 3 4 5 R at io o f m ax im um to m ea n w av e he ig ht Figure 7. Variation of (a) monthly variability index and (b...

  6. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    Science.gov (United States)

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  7. Funds from non-renewable energy resources: Policy lessons from Alaska and Alberta

    International Nuclear Information System (INIS)

    Baena, César; Sévi, Benoît; Warrack, Allan

    2012-01-01

    We document the use of energy natural resource funds in Alaska and Alberta and analyze theirs characteristics for further implementation in resource-rich countries. Such funds allow dealing theoretically with intergenerational equity issues, corruption, and more general institutional problems. The performance of both funds is very different, depending on the management and composition choices but some policy lessons can be drawn from these two examples. Importantly, the role of a public dividend policy is highlighted as a way to bypass corrupted institutions and to enhance quality of life for poorest people. We also emphasize the need to deal with inflation to make the fund sustainable. - Highlights: ► We document the optimal intergenerational energy resource management using funds. ► We use Alaskan and Albertan experiences to provide policy lessons for future implementation of such funds. ► We emphasize the role of a public dividend policy

  8. Smart Operations in Distributed Energy Resources System

    Science.gov (United States)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  9. Distributed Resource Energy Analysis and Management System (DREAMS) Development for Real-time Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nakafuji, Dora [Hawaiian Electric Company, Honululu, HI (United States); Gouveia, Lauren [Hawaiian Electric Company, Honululu, HI (United States)

    2016-10-24

    This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timeliness metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities

  10. Audit Report "Department of Energy Efforts to Manage Information Technology Resources in an Energy-Efficient and Environmentally Responsible Manner"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The American Recovery and Reinvestment Act of 2009 emphasizes energy efficiency and conservation as critical to the Nation's economic vitality; its goal of reducing dependence on foreign energy sources; and, related efforts to improve the environment. The Act highlights the significant use of various forms of energy in the Federal sector and promotes efforts to improve the energy efficiency of Federal operations. One specific area of interest is the increasing demand for Federal sector computing resources and the corresponding increase in energy use, with both cost and environmental implications. The U.S. Environmental Protection Agency reported that, without aggressive conservation measures, data center energy consumption alone is expected to double over the next five years. In our report on Management of the Department's Data Centers at Contractor Sites (DOE/IG-0803, October 2008) we concluded that the Department of Energy had not always improved the efficiency of its contractor data centers even when such modifications were possible and practical. Despite its recognized energy conservation leadership role, the Department had not always taken advantage of opportunities to reduce energy consumption associated with its information technology resources. Nor, had it ensured that resources were managed in a way that minimized impact on the environment. In particular: (1) The seven Federal and contractor sites included in our review had not fully reduced energy consumption through implementation of power management settings on their desktop and laptop computers; and, as a consequence, spent $1.6 million more on energy costs than necessary in Fiscal Year 2008; (2) None of the sites reviewed had taken advantage of opportunities to reduce energy consumption, enhance cyber security, and reduce costs available through the use of techniques, such as 'thin-client computing' in their unclassified environments; and, (3) Sites had not always taken the

  11. Globally sustainable and stable nuclear energy resources for the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.

    2010-09-15

    We address the issues of future resource unsustainability, energy demand uncertainty and supply unpredictability. Inexorably growing global energy demand increases the costs of energy sources, and raises concerns about security of energy supply and environmental emissions of carbon dioxide and other greenhouse gases (GHGs). Taking the viewpoint of developing a sustainable global fuel cycle, we propose alternate paths outside the present rather traditional thinking. Nevertheless, they still represent existing and known technology opportunities that may run counter to many current national positions, and today's commercial and technical interests, while still presenting very large opportunities.

  12. Panorama 2010: Which biomass resources should be used to obtain a sustainable energy system?

    International Nuclear Information System (INIS)

    Lorne, D.

    2010-01-01

    Biomass is the leading renewable energy in the world today. Moreover, the introduction of biomass into energy systems presents certain advantages as far as reducing greenhouse gas emissions is concerned. However, its mobilization still presents many challenges relative to the competition between uses and the management of local natural resources (e.g. water, soil and biodiversity). Therefore, the technologies involved should be structured so that this resource can be developed to be truly sustainable. (author)

  13. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Appendix 2. Macro-economic Scenarios

    International Nuclear Information System (INIS)

    Banse, M.

    2009-03-01

    The Bio-based Raw Materials Platform (known as PGG), which is part of the Energy Transition programme in the Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to study the macro-economic impact of large-scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including techno-economic projections of fossil and bio-based conversion technologies and a top-down study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down study (part 2) including macro-economic modelling of (global) trade of biomass and fossil resources, are presented in this report

  14. About energy vision in the twenty first century and the role of ecological resources

    International Nuclear Information System (INIS)

    Lelek, V.

    2010-01-01

    It is now frequently recommended, that only ecological resources can save us and keep for the mankind more or less contemporary way of living for future. During such consideration it is obviously forgotten that ecological wind and sun have occasional character and that still we do not know how to store great amount of energy. It is also not easy to estimate, what is the maximal capacity of such resources, supposing that we want all such energy use. Work estimate one special case in which all ecological resources are fully correlated-the same wind or sun on all places of local power stations-typically one state or economy. (Author)

  15. On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2013-01-01

    A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an endogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the current state and possible uses of remaining non-renewable resources such as fossil fuels and natural uranium. The theory is however designed for use within economic or technology models that allow technology substitutions. In this work, it is implemented in the global power sector model FTT:Power. Policy implications are given. - Highlights: • Theoretical model to forecast marginal costs of non-renewable resources. • Tracks the consumption and costs of non-renewable resources. • For use in economic or technology models

  16. DOE's Tribal Energy Program Offers Resources

    Energy Technology Data Exchange (ETDEWEB)

    Douglas C. MacCourt, Chair, Indian Law Practice, Ater Wynne LLP

    2010-06-01

    This handbook is an accessible reference for those who are new to tribal energy project development or who seek a refresher on key development issues as they navigate the project development process. Building upon the wealth of feedback and experiences shared by tribal and other participants in tribal energy workshops conducted by the National Renewable Energy Laboratory, it is designed to provide tribal leaders, tribal economic and energy enterprises, and those supporting them with a general overview of the renewable energy project development process. It includes information on how to structure a renewable energy project transaction to protect tribal interests, with an emphasis on joint project development efforts undertaken with nontribal parties; a general overview of key energy development agreements, including power sale agreements, transmission and interconnection agreements, and land leases; and a detailed discussion of ways tribes can finance renewable energy projects, the sources of funding or financing that may be available, the types of investors that may be available, and federal tax incentives for renewable energy projects. The guide also includes a glossary of some of the most commonly used technical terms.

  17. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  18. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    International Nuclear Information System (INIS)

    Nygaard, Ivan; Badger, Jake; Larsen, Soeren; Rasmussen, Kjeld; Nielsen, Thomas Theis; Hansen, Lars Boye; Stisen, Simon; Mariko, Adama; Togola, Ibrahim

    2010-01-01

    This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing and meteorological mesoscale modeling. The paper presents first results from applying the methodology in Mali and discusses the appropriateness of the results obtained. It is shown that northern Mali has considerable wind energy potential, while average wind speeds in the southern part are too low to make wind power a competitive option. Solar energy resources are shown to be abundant in all of Mali, though the highest values are found in the south. The temporal variation is relatively limited. Bio-energy resources are also concentrated in the south, but there are small pockets of high vegetation productivity in the irrigated areas of the Niger inland delta that might be interesting from a renewable energy resource perspective. Finally, the paper discusses the role that renewable energy resources might play in the energy systems of Mali, given the spatio-temporal distribution of renewable energy resources. It is argued that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options. (author)

  19. EERE Resources for Undergraduate Students

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-10-01

    Looking to expand your experience outside of the classroom? The Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) has a number of resources available for undergraduate students, including competitions, internships, and career planning information to help you navigate the education to employment pathway in energy.

  20. EERE Resources for Undergraduate Students

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    Looking to expand your experience outside of the classroom? The Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) has a number of resources available for undergraduate students, including competitions, internships, and career planning information to help you navigate the education to employment pathway in energy.

  1. Vultures of the seas: hyperacidic stomachs in wandering albatrosses as an adaptation to dispersed food resources, including fishery wastes.

    Directory of Open Access Journals (Sweden)

    David Grémillet

    Full Text Available Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13, markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.

  2. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  3. Into the new electricity age with Optimal integration of decentralized energy resources - The FENIX Project

    Energy Technology Data Exchange (ETDEWEB)

    Cech, Heinz; Fuchs, Erich; Heher, Anton; Ilo, Albana; Sezi, Tevfik; Trimmel, Johann; Werner, Thomas; Marti-Rodriguez, Juan

    2010-09-15

    Decentralized Energy Resources (DERs) will play a significant role in future energy scenarios. Today, the 'plug and forget' connection principle for renewable energy resources has the goal to maximize the active power transfer, without using their real capabilities. Other DERs based on fossil fuels are only activated in emergency situations. This paper describes the results of a demonstration project, where DERs installed in a large distribution area are utilized for participating in the day ahead energy market, frequency and voltage support for the transmission system, voltage support at specific distribution locations and feeders, and stability support in emergency situations.

  4. Geothermal energy from the earth: Its potential impact as an environmentally sustainable resource

    International Nuclear Information System (INIS)

    Mock, J.E.; Tester, J.W.; Wright, P.M.

    1997-01-01

    Geothermal energy technology is reviewed in terms of its current impact and future potential as an energy source. In general, the geothermal energy resource base is large and well distributed globally. Geothermal systems have a number of positive social characteristics (they are simple, safe, and adaptable systems with modular 1--50 MW [thermal (t) or electric (e)] plants capable of providing continuous baseload, load following, or peaking capacity) and benign environmental attributes (negligible emissions of CO 2 , SO x , NO x , and particulates, and modest land and water use). Because these features are compatible with sustainable growth of global energy supplies in both developed and developing countries, geothermal energy is an attractive option to replace fossil and fissile fuels. In 1997, about 7,000 MWe of base-load generating capacity and over 15,000 MWt of heating capacity from high-grade geothermal resources are in commercial use worldwide. 114 refs., 6 figs., 4 tabs

  5. Bio-Reclamation of Strategic and Energy Critical Metals from Secondary Resources

    Directory of Open Access Journals (Sweden)

    Sadia Ilyas

    2017-06-01

    Full Text Available Metals with an average crustal abundance of <0.01 ppm, which are high in supply shortage due to soaring demand, can, under the excessive environmental risk and <1% recycling rate of their production, be termed as ‘critical’ in a limited geo-boundary. A global trend to the green energy and low carbon technologies with geopolitical scenario is challenging for the sustainable reclamation of these metals from secondary resources. Among the available processes, bio-reclamation can be a sustainable technique for extracting and concentrating these metals. Therefore, in the present paper, the potential reclamation of critical metals (including rare earth elements, precious metals, and a common nuclear fuel element, uranium via their interaction with microbe/s has been reviewed.

  6. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Rasmussen, K.; Badger, Jake

    2010-01-01

    This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing and meteorolo...... that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options.......This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing...... a competitive option. Solar energy resources are shown to be abundant in all of Mali, though the highest values are found in the south. The temporal variation is relatively limited. Bio-energy resources are also concentrated in the south, but there are small pockets of high vegetation productivity...

  7. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  8. Energy policy, aid, and the development of renewable energy resources in Small Island Developing States

    International Nuclear Information System (INIS)

    Dornan, Matthew; Shah, Kalim U.

    2016-01-01

    Small Island Developing States (SIDS) have established ambitious renewable energy targets. The promotion of renewable energy has been motivated by several factors: a desire to lessen dependence on fossil fuels, to attract development assistance in the energy sector, and to strengthen the position of SIDS in climate change negotiations. Here we explore the interplay between the role of aid and energy policy in the development of renewable energy resources in SIDS. We find that the importance of development assistance has implications for the sustainability of renewable energy development, given that funding is not always accompanied by necessary energy policy reforms. We also identify energy efficiency and access to modern energy services as having received insufficient attention in the establishment and structure of renewable energy targets in SIDS, and argue that this is problematic due to the strong economic case for such investments. - Highlights: • SIDS have established the world's most ambitious renewable energy targets. • These are motivated by fossil fuel dependence and climate change vulnerability. • Aid dependence has influenced the ambition of renewable energy targets. • Energy efficiency and energy access have received insufficient attention. • Domestic policy reforms necessary for the achievement of targets has been limited.

  9. Cognitive radio networks dynamic resource allocation schemes

    CERN Document Server

    Wang, Shaowei

    2014-01-01

    This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off

  10. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  11. Energy in Canada

    International Nuclear Information System (INIS)

    1987-11-01

    This discussion paper was prepared by the Department of Energy, Mines and Resources Canada to provide information about Canada's resource potential, the contribution of energy to the Canadian economy, Canada's place in the world energy market, and the outlook for the development of Canadian energy resources. In addition, it provides background information on issues such as: energy and the environment, energy security, Canadian ownership of energy resources, energy R and D, and energy conservation. Finally, it concludes with an indication of some of the key challenges facing the energy sector. The paper is intended to inform the public and to serve as a reference document for those participating in the review of Canada's energy options. The paper was prepared before Canada and the U.S. agreed in principle on a free trade agreement (FTA) and does not include a discussion of the FTA or its potential impacts on the energy sector

  12. Day-ahead resource scheduling of a renewable energy based virtual power plant

    International Nuclear Information System (INIS)

    Zamani, Ali Ghahgharaee; Zakariazadeh, Alireza; Jadid, Shahram

    2016-01-01

    Highlights: • Simultaneous energy and reserve scheduling of a VPP. • Aggregate uncertainties of electricity prices, renewable generation and load demand. • Develop a stochastic scheduling model using the point estimate method. - Abstract: The evolution of energy markets is accelerating in the direction of a greater reliance upon distributed energy resources (DERs). To manage this increasing two-way complexity, virtual power plants (VPPs) are being deployed today all over the world. In this paper, a probabilistic model for optimal day ahead scheduling of electrical and thermal energy resources in a VPP is proposed where participation of energy storage systems and demand response programs (DRPs) are also taken into account. In the proposed model, energy and reserve is simultaneously scheduled considering the uncertainties of market prices, electrical demand and intermittent renewable power generation. The Point Estimate Method (PEM) is applied in order to model the uncertainties of VPP’s scheduling problem. Moreover, the optimal reserve scheduling of VPP is presented which efficiently decreases VPP’s risk facing the unexpected fluctuations of uncertain parameters at the power delivery time. The results demonstrated that implementation of demand response programs (DRPs) would decrease total operation costs of VPP as well as its dependency on the upstream network.

  13. A mathematical method for verifying the validity of measured information about the flows of energy resources based on the state estimation theory

    Science.gov (United States)

    Pazderin, A. V.; Sof'in, V. V.; Samoylenko, V. O.

    2015-11-01

    Efforts aimed at improving energy efficiency in all branches of the fuel and energy complex shall be commenced with setting up a high-tech automated system for monitoring and accounting energy resources. Malfunctions and failures in the measurement and information parts of this system may distort commercial measurements of energy resources and lead to financial risks for power supplying organizations. In addition, measurement errors may be connected with intentional distortion of measurements for reducing payment for using energy resources on the consumer's side, which leads to commercial loss of energy resource. The article presents a universal mathematical method for verifying the validity of measurement information in networks for transporting energy resources, such as electricity and heat, petroleum, gas, etc., based on the state estimation theory. The energy resource transportation network is represented by a graph the nodes of which correspond to producers and consumers, and its branches stand for transportation mains (power lines, pipelines, and heat network elements). The main idea of state estimation is connected with obtaining the calculated analogs of energy resources for all available measurements. Unlike "raw" measurements, which contain inaccuracies, the calculated flows of energy resources, called estimates, will fully satisfy the suitability condition for all state equations describing the energy resource transportation network. The state equations written in terms of calculated estimates will be already free from residuals. The difference between a measurement and its calculated analog (estimate) is called in the estimation theory an estimation remainder. The obtained large values of estimation remainders are an indicator of high errors of particular energy resource measurements. By using the presented method it is possible to improve the validity of energy resource measurements, to estimate the transportation network observability, to eliminate

  14. The Role of Material/Energy Resources and Dematerialisation in Economic Growth Theories

    OpenAIRE

    Ayres, Robert U.; van den Bergh, Jeroen C.J.M.

    2000-01-01

    The nature of energy and material resources in an endogenous growththeory framework isclarified. This involves three modifications of the conventionaltheory. Firstly, multiple feedbackmechanisms or “growth engines” are identified. Secondly, a productionfunction distinguishesbetween resource use, technical efficiency and value creation.Thirdly, the impact of the cost ofproduction through demand on growth is accounted for. A formal modelis analytically solvedunder a condition of a constant grow...

  15. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  16. Developing Clean Energy Projects on Tribal Lands: Data and Resources for Tribes (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    This is a outreach brochure (booklet) for the DOE Office of Indian Energy summarizing the renewable energy technology potential on tribal lands. The booklet features tech potential maps for various technologies, information about the activities of DOE-IE, and resources for Tribes.

  17. Comparative efficiency of technologies for conversion and transportation of energy resources of Russia's eastern regions to NEA countries

    Science.gov (United States)

    Kler, Aleksandr; Tyurina, Elina; Mednikov, Aleksandr

    2018-01-01

    The paper presents perspective technologies for combined conversion of fossil fuels into synthetic liquid fuels and electricity. The comparative efficiency of various process flows of conversion and transportation of energy resources of Russia's east that are aimed at supplying electricity to remote consumers is presented. These also include process flows based on production of synthetic liquid fuel.

  18. A national human resource strategy for the electricity and renewable energy industry in Canada: results of a Pan-Canadian consultation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The Electricity Sector Council (ESC) conducted a labour market information study in 2008 indicating that more than a quarter of the employees currently working in the electricity sector would be retiring four or five years later. Up to now, Canada has not been engaged enough in hiring and has not supported electricity and renewable energy training programs needed to satisfy workforce needs. The skills profile of workers in the electricity sector are modified by the advances in technology, especially regarding the sectors of energy efficiency and renewable energy. ESC has conducted the building connectivity project, which included a consultation process with 88 provincial/regional and federal important stakeholders. The purpose of this project was to establish a Pan-Canadian human resource strategy to undertake industry human resource practices and promote workforce development. The national human resource strategy for the electricity and renewable energy sector is based on the results of regional consultations. Stakeholders were invited to give their opinion regarding existing human resources limitations and gaps, the skills that should be developed, the suggested practices regarding recruitment and retention, the partnerships and collaborations that should be created or reinforced, and the tools and support that would be needed by industry stakeholders to undertake these issues. The regional consultations resulted in the final strategies and tactics, which were prioritized by senior industry stakeholders by the means of web surveys. 5 tabs., 1 fig.

  19. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  20. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.

    2016-01-06

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  1. Good use of the resources natural fossils in the energy generation

    International Nuclear Information System (INIS)

    Guerrero, Jimmy; Rodriguez, Claudia; Pinilla, Elcy; Torres, Jorge; Boneth, Manuel

    1997-01-01

    The present document is based on the analysis of the different scenarios that shorten and medium term will have the energy generation by means of the use of these fuels. The true reason of the growing energy demand is the continuous demographic growth, what bears to an increase in the degradation of the environment, to short and medium term is expected that the world population is duplicated with the consequent demand of energy and ecological resources, the biggest rat of growth will have in the developing countries. An insufficient energy supply would worsen more the economic situation increasing social tensions and with the consequent detriment of the environment

  2. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  3. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  4. Study on new energy development planning and absorptive capability of Xinjiang in China considering resource characteristics and demand prediction

    Science.gov (United States)

    Shao, Hai; Miao, Xujuan; Liu, Jinpeng; Wu, Meng; Zhao, Xuehua

    2018-02-01

    Xinjiang, as the area where wind energy and solar energy resources are extremely rich, with good resource development characteristics, can provide a support for regional power development and supply protection. This paper systematically analyzes the new energy resource and development characteristics of Xinjiang and carries out the demand prediction and excavation of load characteristics of Xinjiang power market. Combing the development plan of new energy of Xinjiang and considering the construction of transmission channel, it analyzes the absorptive capability of new energy. It provides certain reference for the comprehensive planning of new energy development in Xinjiang and the improvement of absorptive capacity of new energy.

  5. Externality costs by resource. E. Renewable generation resources

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter describes the environmental impacts associated with operation of renewable energy technologies. Renewable energy technologies currently supply 8% of US total energy usage and that figure is certain to grow. The rate of growth will depend heavily on the availability of research and development funds, and could reach 28% of US energy demands by 2030. Renewable generation resources include hydroelectric development, solar energy technologies, wind conversion facilities, and biomass fueled generation. A task force of personnel from five national laboratories recently concluded that renewable energy technologies generally have lower environmental impacts than do fossil fuel energy systems. The task force also stated that a comprehensive and comparative analysis of environmental impacts is needed and would strengthen the National Energy Strategy. This chapter summarizes some of the available literature on costing the environmental externalities associated with hydro, solar, wind, and biomass facilities. The less prevalent renewable energy technologies, including geothermal and ocean energy technologies, were not researched. The cost ranges identified are summarized in Table 1. The Table does not include a value for hydroelectric energy. The one study which attempted to value hydroelectric externalities was highly site-specific and has been criticized for having vastly overstated the value of the externalities

  6. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.