WorldWideScience

Sample records for energy resolved multi-ion

  1. 238U + n resolved resonance energies

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.; Ingle, R.W.

    1978-01-01

    Neutron transmission measurements from 100 eV to 170 keV at 150 m through four 238 U samples are reported. The energy calibration is described, and the resultant 233 U resolved resonance energies are found to be intermediate between those from other workers. In addition, some energies for sharp resonances in 23 Na, 27 Al, 32 S, and 206 Pb are given

  2. Resolving Environmental Effects of Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeGeorge, Elise M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Copping, Andrea E. [Pacific Northwest National Laboratory; May, Roel [Norwegian Institute for Nature Research; Bennet, Finlay [Marine Scotland Science; Warnas, Marijke [Rijkswaterstaat; Perron, Muriel [nateco AG; Elmqvist, Asa [Swedish Environmental Protection Agency

    2018-04-25

    Concerns for potential wildlife impacts resulting from land-based and offshore wind energy have created challenges for wind project development. Research is not always adequately supported, results are neither always readily accessible nor are they satisfactorily disseminated, and so decisions are often made based on the best available information, which may be missing key findings. The potential for high impacts to avian and bat species and marine mammals have been used by wind project opponents to stop, downsize, or severely delay project development. The global nature of the wind industry - combined with the understanding that many affected species cross-national boundaries, and in many cases migrate between continents - also points to the need to collaborate on an international level. The International Energy Agency (IEA) Wind Technology Collaborative Programs facilitates coordination on key research issues. IEA Wind Task 34 - WREN: Working Together to Resolve Environmental Effects of Wind Energy-is a collaborative forum to share lessons gained from field research and modeling, including management methods, wildlife monitoring methods, best practices, study results, and successful approaches to mitigating impacts and addressing the cumulative effects of wind energy on wildlife.

  3. Resolving society's energy trilemma through the Energy Justice Metric

    International Nuclear Information System (INIS)

    Heffron, Raphael J.; McCauley, Darren; Sovacool, Benjamin K.

    2015-01-01

    Carbon dioxide emissions continue to increase to the detriment of society in many forms. One of the difficulties faced is the imbalance between the competing aims of economics, politics and the environment which form the trilemma of energy policy. This article advances that this energy trilemma can be resolved through energy justice. Energy justice develops the debate on energy policy to one that highlights cosmopolitanism, progresses thinking beyond economics and incorporates a new futuristic perspective. To capture these dynamics of energy justice, this research developed an Energy Justice Metric (EJM) that involves the calculation of several metrics: (1) a country (national) EJM; (2) an EJM for different energy infrastructure; and (3) an EJM which is incorporated into economic models that derive costs for energy infrastructure projects. An EJM is modeled for China, the European Union and the United States, and for different energy infrastructure in the United Kingdom. The EJM is plotted on a Ternary Phase Diagram which is used in the sciences for analyzing the relationship (trilemma) of three forms of matter. The development of an EJM can provide a tool for decision-making on energy policy and one that solves the energy trilemma with a just and equitable approach. - Highlights: • Energy justice advances energy policy with cosmopolitanism and new economic-thinking. • An Energy Justice Metric is developed and captures the dynamics of energy justice. • The Energy Justice Metric (EJM) compares countries, and energy infrastructure. • EJM provides an energy policy decision-making tool that is just and equitable.

  4. Single Hit Energy-resolved Laue Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Comley, Andrew J.; Foster, John M. [Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  5. Single Hit Energy-resolved Laue Diffraction

    International Nuclear Information System (INIS)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-01-01

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation

  6. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  7. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  8. Resolving Rapid Variation in Energy for Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Haut, Terry Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Ahrens, Cory Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Jonko, Alexandra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Till, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Lowrie, Robert Byron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.

  9. Computed tomography with energy-resolved detection: a feasibility study

    Science.gov (United States)

    Shikhaliev, Polad M.

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20° tilting angle decreased the

  10. The Dark Energy Survey: Prospects for resolved stellar populations

    Energy Technology Data Exchange (ETDEWEB)

    Rossetto, Bruno M. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Santiago, Basílio X. [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); Girardi, Léo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Osservatorio Astronomica di Padova-INAF, Padova (Italy); Camargo, Julio I. B. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Balbinot, Eduardo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); da Costa, Luiz N. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Yanny, Brian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maia, Marcio A. G. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Makler, Martin [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Ogando, Ricardo L. C. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Pellegrini, Paulo S. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Ramos, Beatriz [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); de Simoni, Fernando [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Armstrong, R. [Univ. of Illinois, Urbana, IL (United States); Bertin, E. [Univ. Pierre et Marie Curie, Paris (France); Desai, S. [Univ. of Illinois, Urbana, IL (United States); Kuropatkin, N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lin, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mohr, J. J. [Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany); Tucker, D. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2011-05-06

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  11. Energy-resolved computed tomography: first experimental results

    International Nuclear Information System (INIS)

    Shikhaliev, Polad M

    2008-01-01

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  12. Atomic column resolved electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  13. Resolving environmental issues in energy development: roles for the Department of Energy and its field offices

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Merrow, E.W.

    1979-01-01

    This study asks what the Department of Energy (DOE) might do to resolve environmental conflicts that arise during the implementation of energy projects or programs. We define implementation as efforts to establish an energy facility at a specific site. The environmental concerns surrounding implementation serve as touchstones of the relevance and feasibility of national energy policies. We have analyzed geothermal development in California and oil shale development in Colorado and Utah and addressed the following questions: By what processes are energy and environmental tradeoffs made. In what circumstances can DOE participation in these processes lead to a more satisfactory outcome. What options does DOE have for resolving environmetal issues and how can it choose the best option. How can DOE establish an effective working relationship with both the governmental and private groups affected by the siting and operation of energy projects. The government's most effective role in resolving environmental conflicts and uncertainties is to improve communications among the concerned parties. This role requires flexibility and evenhandedness from the government as well as an understanding of the local conditions and a commitment to appropriate local solutions. Involving local sources at every stage of the environmental impact analysis will reduce the probability of conflicts and make those that do arise more easily resolvable.

  14. Wave Model Development in Multi-Ion Plasmas

    Directory of Open Access Journals (Sweden)

    Sung-Hee Song

    1999-06-01

    Full Text Available Near-earth space is composed of plasmas which embed a number of plasma waves. Space plasmas consist of electrons and multi-ion that determine local wave propagation characteristics. In multi-ion plasmas, it is di cult to find out analytic solution from the dispersion relation in general. In this work, we have developed a model with an arbitrary magnetic field and density as well as multi-ion plasmas. This model allows us to investigate how plasma waves behave when they propagate along realistic magnetic field lines, which are assumed by IGRF(International Geomagnetic Reference Field. The results are found to be useful for the analysis of the in situ observational data in space. For instance, if waves are assumed to propagate into the polar region, from the equatorial region, our model quantitatively shows how polarization is altered along earth travel path.

  15. Time-resolved beam energy measurements at LAMPF

    International Nuclear Information System (INIS)

    Hudgings, D.W.; Clark, D.A.; Bryant, H.C.

    1979-01-01

    A narrow atomic photodetachment resonance is used to measure the LAMPF beam energy. Energy and time resolution are adequate to permit the use of this method in studying transient changes in accelerated beam energy

  16. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.

    2007-01-19

    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  17. New layout of time resolved beam energy spectrum measurement for dragon-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jinshui

    2010-01-01

    A new layout of time resolved beam energy spectrum measurement is proposed for Dragon-I by a new method named RBS (rotating beams in solenoids). The basic theory of RBS and the new layout are presented and the measuring error is also discussed. The derived time resolved beam energy spectrum is discrete and is determined by measuring the beam's rotating angle and expanding width through a group of solenoids at the export of Dragon-I. (authors)

  18. Decision analytic tools for resolving uncertainty in the energy debate

    International Nuclear Information System (INIS)

    Renn, O.

    1986-01-01

    Within the context of a Social Compatibility Study on Energy Supply Systems a complex decision making model was used to incorporate scientific expertize and public participation into the process of policy formulation and evaluation. The study was directed by the program group ''Technology and Society'' of the Nuclear Research Centre Juelich. It consisted of three parts: First, with the aid of value tree analysis the whole spectrum of concern and dimensions relevant to the energy issue in Germany was collected and structured in a combined value tree representing the values and criteria of nine important interest groups in the Federal Republic of Germany. Second, the revealed criteria were translated into indicators. Four different energy scenarios were evaluated with respect to each indicator making use of physical measurement, literature review and expert surveys. Third, the weights for each indicator were elicited by interviewing randomly chosen citizens. Those citizens were informed about the scenarios and their impacts prior to the weighting process in a four day seminar. As a result most citizens favoured more moderate energy scenarios assigning high priority to energy conservation. Nuclear energy was perceived as necessary energy source in the long run, but should be restricted to meet only the demand that cannot be covered by other energy means. (orig.)

  19. Resolving shifting patterns of muscle energy use in swimming fish.

    Directory of Open Access Journals (Sweden)

    Shannon P Gerry

    Full Text Available Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.

  20. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    Science.gov (United States)

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  1. Faraday cup for analyzing multi-ion plasma

    International Nuclear Information System (INIS)

    Fujita, Takao

    1987-01-01

    A compact and convenient ion analyzer (a kind of a Faraday cup) is developed in order to analyze weakly ionized multi-ion plasmas. This Faraday cup consists of three mesh electrodes and a movable ion collector. With a negative gate pulse superimposed on the ion retarding bias, ions are analyzed by means of time-of-flight. The identification of ion species and measurements of ion density and ion temperature are studied. (author)

  2. The role of solar energy in resolving global problems

    International Nuclear Information System (INIS)

    Kendall, H.W.

    1993-01-01

    Solar energy, and other alternate energy sources, including improved energy efficiency, can play a significant role in the solution of the cluster of ''great problems'' that face the present generation. These problems are related to, first, environmental damage, second, management of critical resources, and lastly, spiraling population growth. Some aspects of these linked difficulties are not yet well comprehended, even within the environmental community, though their neglect could prove to be very serious. It was the principal purpose of the paper to address those hidden risks. Seeking prompt and effective solutions to these problems is now a most urgent matter. On November 18, 1992, the Union of Concerned Scientists released a document called ''World Scientists'' ''Warning to Humanity''. The document outlined the most important challenges and set out the principal elements required to deal with them. It was signed by some 1,600 scientists from around the world, including the leaders of a substantial number of national honorary, scientific societies. In what follows, relevant elements of that statement are reviewed to set the stage for a description of solar energy's role in dealing with the situation that the world faces

  3. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  4. Energy-resolved fast neutron resonance radiography at CSNS

    Science.gov (United States)

    Tan, Zhixin; Tang, Jingyu; Jing, Hantao; Fan, Ruirui; Li, Qiang; Ning, Changjun; Bao, Jie; Ruan, Xichao; Luan, Guangyuan; Feng, Changqin; Zhang, Xianpeng

    2018-05-01

    The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.

  5. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  6. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  7. Kinetic Alfven wave with density variation and loss-cone distribution function of multi-ions in PSBL region

    Science.gov (United States)

    Tamrakar, Radha; Varma, P.; Tiwari, M. S.

    2018-05-01

    Kinetic Alfven wave (KAW) generation due to variation of loss-cone index J and density of multi-ions (H+, He+ and O+) in the plasma sheet boundary layer region (PSBL) is investigated. Kinetic approach is used to derive dispersion relation of wave using Vlasov equation. Variation of frequency with respect to wide range of k⊥ρi (where k⊥ is wave vector across the magnetic field, ρi is gyroradius of ions and i denotes H+, He+ and O+ ions) is analyzed. It is found that each ion gyroradius and number density shows different effect on wave generation with varying width of loss-cone. KAW is generated with multi-ions (H+, He+ and O+) over wide regime for J=1 and shows dissimilar effect for J=2. Frequency is reduced with increasing density of gyrating He+ and O+ ions. Wave frequency is obtained within the reported range which strongly supports generation of kinetic Alfven waves. A sudden drop of frequency is also observed for H+ and He+ ion which may be due to heavy penetration of these ions through the loss-cone. The parameters of PSBL region are used for numerical calculation. The application of these results are in understanding the effect of gyrating multi-ions in transfer of energy and Poynting flux losses from PSBL region towards ionosphere and also describing the generation of aurora.

  8. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  9. Potential of mediation for resolving environmental disputes related to energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This study assesses the potential of mediation as a tool for resolving disputes related to the environmental regulation of new energy facilities and identifies possible roles the Federal government might play in promoting the use of mediation. These disputes result when parties challenge an energy project on the basis of its potential environmental impacts. The paper reviews the basic theory of mediation, evaluates specific applications of mediation to recent environmental disputes, discusses the views of environmental public-interest groups towards mediation, and identifies types of energy facility-related disputes where mediation could have a significant impact. Finally, potential avenues for the Federal government to encourage use of this tool are identified.

  10. Energy- and time-resolved microscopy using PEEM: recent developments and state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Weber, N B; Escher, M; Merkel, M [FOCUS GmbH, Neukirchner Strasse 2, 65510 Huenstetten (Germany); Oelsner, A [Surface Concept GmbH, Staudingerweg 7, 55099 Mainz (Germany); Schoenhense, G [Johannes Gutenberg Universitaet, Institut fuer Physik, 55099 Mainz (Germany)], E-mail: n.weber@focus-gmbh.com

    2008-03-15

    Two novel methods of spectroscopic surface imaging are discussed, both based on photoemission electron microscopy PEEM. They are characterised by a simple electron-optical set up retaining a linear column. An imaging high-pass energy filter has been developed on the basis of lithographically-fabricated microgrids. Owing to a mesh size of only 7{mu}m, no image distortions occur. The present energy resolution is 70 meV. The second approach employs time-of-flight energy dispersion and time-resolved detection using a Delayline Detector. In this case, the drift energy and the time resolution of the detector determine the energy resolution. The present time resolution is 180 ps, giving rise to an energy resolution in the 100 meV range.

  11. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    Science.gov (United States)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  12. Time and energy resolved runaway measurements in TFR from induced radioactivity

    International Nuclear Information System (INIS)

    1983-09-01

    A time and energy resolved measurement of the radioactivity induced by runaway electrons in proper samples has been developped in TFR. The data give an information on the confinement time of these electrons, which appears to be strongly dependent on the toroidal field, suggesting the onset of a magnetic turbulence at lower fields. Observations showing that the runaway electrons deeply penetrate into the limiter shadow are also reported

  13. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  14. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  15. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  16. Angular and mass resolved energy distribution measurements with a gallium liquid metal ion source

    International Nuclear Information System (INIS)

    Marriott, Philip

    1987-06-01

    Ionisation and energy broadening mechanisms relevant to liquid metal ion sources are discussed. A review of experimental results giving a picture of source operation and a discussion of the emission mechanisms thought to occur for the ionic species and droplets emitted is presented. Further work is suggested by this review and an analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated and a series of measurements, both on and off the beam axis, of 69 Ga + , Ga ++ and Ga 2 + ions emitted at various currents from a gallium source has been performed. A comparison is made between these results and published work where possible, and the results are discussed with the aim of determining the emission and energy spread mechanisms operating in the gallium liquid metal ion source. (author)

  17. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  18. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  19. X-ray spectrometer having 12 000 resolving power at 8 keV energy

    Science.gov (United States)

    Seely, John F.; Hudson, Lawrence T.; Henins, Albert; Feldman, Uri

    2017-10-01

    An x-ray spectrometer employing a thin (50 μm) silicon transmission crystal was used to record high-resolution Cu Kα spectra from a laboratory x-ray source. The diffraction was from the (331) planes that were at an angle of 13.26° to the crystal surface. The components of the spectral lines resulting from single-vacancy (1s) and double-vacancy (1s and 3d) transitions were observed. After accounting for the natural lifetime widths from reference double-crystal spectra and the spatial resolution of the image plate detector, the intrinsic broadening of the transmission crystal was measured to be as small as 0.67 eV and the resolving power 12 000, the highest resolving power achieved by a compact (0.5 m long) spectrometer employing a single transmission crystal operating in the hard x-ray region. By recording spectra with variable source-to-crystal distances and comparing to the calculated widths from various geometrical broadening mechanisms, the primary contributions to the intrinsic crystal broadening were found to be the source height at small distances and the crystal apertured height at large distances. By reducing these two effects, using a smaller source size and vignetting the crystal height, the intrinsic crystal broadening is then limited by the crystal thickness and the rocking curve width and would be 0.4 eV at 8 keV energy (20 000 resolving power).

  20. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope

    International Nuclear Information System (INIS)

    Nickel, F.; Gottlob, D.M.; Krug, I.P.; Doganay, H.; Cramm, S.; Kaiser, A.M.; Lin, G.; Makarov, D.; Schmidt, O.G.

    2013-01-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern. - Highlights: • A new time-resolving operation mode in photoemission electron microscopy is shown. • Our setup works within an energy-filtered, aberration-corrected PEEM. • A new gating system for bunch selection using synchrotron radiation is developed. • An alternative magnetic excitation system is developed. • First tr-imaging using an energy-filtered, aberration-corrected PEEM is shown

  1. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    Science.gov (United States)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  2. Highly-resolved modeling of personal transportation energy consumption in the United States

    International Nuclear Information System (INIS)

    Muratori, Matteo; Moran, Michael J.; Serra, Emmanuele; Rizzoni, Giorgio

    2013-01-01

    This paper centers on the estimation of the total primary energy consumption for personal transportation in the United States, to include gasoline and/or electricity consumption, depending on vehicle type. The bottom-up sector-based estimation method introduced here contributes to a computational tool under development at The Ohio State University for assisting decision making in energy policy, pricing, and investment. In order to simulate highly-resolved consumption profiles three main modeling steps are needed: modeling the behavior of drivers, generating realistic driving profiles, and simulating energy consumption of different kinds of vehicles. The modeling proposed allows for evaluating the impact of plug-in electric vehicles on the electric grid – especially at the distribution level. It can serve as a tool to compare different vehicle types and assist policy-makers in estimating their impact on primary energy consumption and the role transportation can play to reduce oil dependency. - Highlights: • Modeling primary energy consumption for personal transportation in the United States. • Behavior of drivers has been simulated in order to establish when driving events occur and the length of each event. • Realistic driving profiles for each driving event are generated using a stochastic model. • The model allows for comparing the initial cost of different vehicles and their expected energy-use operating cost. • Evaluation of the impact of PEVs on the electric grid – especially at the distribution level – can be performed

  3. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    Science.gov (United States)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  4. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    Science.gov (United States)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  5. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  6. Crossing statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem

    International Nuclear Information System (INIS)

    Shafieloo, Arman

    2012-01-01

    By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties

  7. City and mobility: towards an integrated approach to resolve energy problems

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2012-07-01

    Full Text Available The issue of integration between city, mobility and energy plays a central role in the current EU policies, aimed at achieving energy saving targets, independence from fossil fuels and enhance of the urban systems resilience, but the strategies of the single states are, however, still far from its implementation. This paper proposes a reading of the current policies and of the recent initiatives aimed at improving the energy efficiency of settlements, implemented at both Community and national level, aimed at laying the groundwork for the definition of an integrated approach between city and mobility to resolve energy problem. Therefore, the paper is divided into six parts. The first part describes the transition from the concept of sustainability to the concept of resilience and illustrates the central role played by this one in the current urban and territorial research; the second part briefly analyzes the main and more recent European directives related to city, mobility and energy, while the third part describes how the energy problem is afforded in the current programming and planning tools. The fourth and fifth parts, are intended to describe the innovative practices promoted in some European and Italian cities concerning energy efficiency aimed at the integration between urban and transport systems. The last part of the paper, finally, deals with the definition of a new systemic approach for achieving objectives of energy sustainability. This approach aims at integrating strategies and actions for strategies of mobility governance, based on the certain assumption that the core for the most part of energy problems is mainly represented in medium and large cities. 

  8. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  9. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    Science.gov (United States)

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  10. Time-resolved photoion imaging spectroscopy: Determining energy distribution in multiphoton absorption experiments

    Science.gov (United States)

    Qian, D. B.; Shi, F. D.; Chen, L.; Martin, S.; Bernard, J.; Yang, J.; Zhang, S. F.; Chen, Z. Q.; Zhu, X. L.; Ma, X.

    2018-04-01

    We propose an approach to determine the excitation energy distribution due to multiphoton absorption in the case of excited systems following decays to produce different ion species. This approach is based on the measurement of the time-resolved photoion position spectrum by using velocity map imaging spectrometry and an unfocused laser beam with a low fluence and homogeneous profile. Such a measurement allows us to identify the species and the origin of each ion detected and to depict the energy distribution using a pure Poisson's equation involving only one variable which is proportional to the absolute photon absorption cross section. A cascade decay model is used to build direct connections between the energy distribution and the probability to detect each ionic species. Comparison between experiments and simulations permits the energy distribution and accordingly the absolute photon absorption cross section to be determined. This approach is illustrated using C60 as an example. It may therefore be extended to a wide variety of molecules and clusters having decay mechanisms similar to those of fullerene molecules.

  11. Construction, characterization and applications of a compact mass-resolved low-energy ion beam system

    International Nuclear Information System (INIS)

    Lau, W.M.; Feng, X.; Bello, I.; Sant, S.; Foo, K.K.; Lawson, R.P.W.

    1991-01-01

    A compact mass-resolved low-energy ion beam system has been constructed in which ions are extracted from a Colutron ion source, focused by an einzel lens, mass-selected by a Wien filter, refocused by a second einzel lens into an ultrahigh vacuum target chamber, and finally decelerated with a five-electrode lens. The design of the deceleration lens was assisted by computer simulation including space-charge effects with an ion trajectory software (CHDEN). The system performance has been characterized with a quadrupole mass spectrometer and an energy analyzer along the beam axis. For example, argon ions can be transported at keV and decelerated to 10 eV with an energy spread of ±0.5 eV. The total current measured by a Faraday cage at the exit of the deceleration lens in the energy range of 10-200 eV is about 1-5 μA. The ion current density was higher than 100 μA/cm 2 at 50 eV but decreased to 10-20 μA/cm 2 at 10 eV. The mass resolution was estimated to be 40 under the present operation configuration. The system has been used to produce interesting results in both ion beam etching and deposition. (orig.)

  12. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nádaždy, V., E-mail: nadazdy@savba.sk; Gmucová, K. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Schauer, F. [Faculty of Education, Trnava University in Trnava, 918 43 Trnava (Slovakia); Faculty of Applied Informatics, Tomas Bata University in Zlin, 760 05 Zlin (Czech Republic)

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  13. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    Science.gov (United States)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2017-06-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.

  14. Simulation for evaluation of the multi-ion-irradiation Laboratory of TechnoFusion facility and its relevance for fusion applications

    International Nuclear Information System (INIS)

    Jimenez-Rey, D.; Mota, F.; Vila, R.; Ibarra, A.; Ortiz, Christophe J.; Martinez-Albertos, J.L.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, J.M.

    2011-01-01

    Thermonuclear fusion requires the development of several research facilities, in addition to ITER, needed to advance the technologies for future fusion reactors. TechnoFusion will focus in some of the priority areas identified by international fusion programmes. Specifically, the TechnoFusion Area of Irradiation of Materials aims at surrogating experimentally the effects of neutron irradiation on materials using a combination of ion beams. This paper justifies this approach using computer simulations to validate the multi-ion-irradiation Laboratory. The planned irradiation facility will investigate the effects of high energetic radiations on reactor-relevant materials. In a second stage, it will also be used to analyze the performance of such materials and evaluate newly designed materials. The multi-ion-irradiation Laboratory, both triple irradiation and high-energy proton irradiation, can provide valid experimental techniques to reproduce the effect of neutron damage in fusion environment.

  15. Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles

    Science.gov (United States)

    Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.

    2015-11-01

    MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.

  16. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    Science.gov (United States)

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  17. Spatially resolving the very high energy emission from MGRO J2019+37 with VERITAS

    International Nuclear Information System (INIS)

    Aliu, E.; Errando, M.; Aune, T.; Behera, B.; Chen, X.; Federici, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Bouvier, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Falcone, A.

    2014-01-01

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (∼2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (∼1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  18. Efficient method for the solution of the energy dependent integral Boltzmann transport equation in the resolved resonance energy region

    International Nuclear Information System (INIS)

    Schwenk, G.A. Jr.

    1980-01-01

    The calculation of neutron-nuclei reaction rates in the lower resolved resonance region (167 eV - 1.855 eV) is considered in this dissertation. Particular emphasis is placed on the calculation of these reaction rates for tight lattices where their accuracy is most important. The results of the continuous energy Monte Carlo code, VIM, are chosen as reference values for this study. The primary objective of this work is to develop a method for calculating resonance reaction rates which agree well with the reference solution, yet is efficient enough to be used by nuclear reactor fuel cycle designers on a production basis. A very efficient multigroup solution of the two spatial region energy dependent integral transport equation is developed. This solution, denoted the Broad Group Integral Method (BGIM), uses escape probabilities to obtain the spatial coupling between regions and uses an analytical flux shape within a multigroup to obtain weighted cross sections which account for the rapidly varying resonance cross sections. The multigroup lethargy widths chosen for the numerical integration of the two region energy-dependent neutron continuity equations can be chosen much wider (a factor of 30 larger) than in the direct numerical integration methods since the analytical flux shape is used to account for fine structure effects. The BGIM solution is made highly efficient through the use of these broad groups. It is estimated that for a 10 step unit cell fuel cycle depletion calculation, the computer running time for a production code such as EPRI-LEOPARD would be increased by only 6% through the use of the more accurate and intricate BGIM method in the lower resonance energy region

  19. Clausius-Clapeyron Scaling of Convective Available Potential Energy (CAPE) in Cloud-Resolving Simulations

    Science.gov (United States)

    Seeley, J.; Romps, D. M.

    2015-12-01

    Recent work by Singh and O'Gorman has produced a theory for convective available potential energy (CAPE) in radiative-convective equilibrium. In this model, the atmosphere deviates from a moist adiabat—and, therefore, has positive CAPE—because entrainment causes evaporative cooling in cloud updrafts, thereby steepening their lapse rate. This has led to the proposal that CAPE increases with global warming because the strength of evaporative cooling scales according to the Clausius-Clapeyron (CC) relation. However, CAPE could also change due to changes in cloud buoyancy and changes in the entrainment rate, both of which could vary with global warming. To test the relative importance of changes in CAPE due to CC scaling of evaporative cooling, changes in cloud buoyancy, and changes in the entrainment rate, we subject a cloud-resolving model to a suite of natural (and unnatural) forcings. We find that CAPE changes are primarily driven by changes in the strength of evaporative cooling; the effect of changes in the entrainment rate and cloud buoyancy are comparatively small. This builds support for CC scaling of CAPE.

  20. Fingerprinting ancient gold by measuring Pt with spatially resolved high energy Sy-XRF

    International Nuclear Information System (INIS)

    Guerra, M.F.; Calligaro, T.; Radtke, M.; Reiche, I.; Riesemeier, H.

    2005-01-01

    Trace elements of ancient gold such as Pt, give fundamental information on the circulation of the metal in the past. In the case of objects from the cultural heritage, the determination of trace elements requires non-destructive point analysis in general. These conditions and the need of good detection limits restrain the number of applicable analytical techniques. After the development of a PIXE set-up with a selective Cu or Zn filter of 75 μm and of a PIXE-XRF set-up using a primary target of As, we tested the possibilities of spatially resolved Sy-XRF to determine Pt in gold alloys. With a Zn filter, PIXE showed a detection limit of 1000 ppm in gold while PIXE-XRF lowers this detection limit down to 80 ppm. This last value being constrained by the resonant Raman effect produced on gold. In order to improve the detection limit of Pt keeping the non-destructiveness and access to point analysis, we developed an analytical protocol for XRF with synchrotron radiation at BESSY II, using the BAMline set-up. The L-lines of Pt were excited by a beam of energy above and below 11.564 keV and measured using a Si(Li) detector with a 50 μm Cu filter. A μ-beam of 100-250 μm 2 was used according to the size of the sample. The determination of the Pt content in the samples was carried out by Monte-Carlo simulation and subtraction of Au and Pt spectra obtained on pure standards. The limit of detection for Pt of 20 ppm was determined by using certified standards. The detection limits of a small set of other characteristic elements of gold were also measured using an incident energy of 33 keV

  1. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    Science.gov (United States)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  2. Conceptual understanding of climate change with a globally resolved energy balance model

    Energy Technology Data Exchange (ETDEWEB)

    Dommenget, Dietmar [Monash University, School of Mathematical Sciences, Melbourne, VIC (Australia); Floeter, Janine [Leibniz Institute for Marine Sciences, Kiel (Germany)

    2011-12-15

    The future climate change projections are essentially based on coupled general circulation model (CGCM) simulations, which give a distinct global warming pattern with arctic winter amplification, an equilibrium land-sea warming contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the Intergovernmental Panel on Climate Change (IPCC) predictions, the conceptual understanding of these predicted structures of climate change and the causes of their uncertainties is very difficult to reach if only based on these highly complex CGCM simulations. In the study presented here we will introduce a very simple, globally resolved energy balance (GREB) model, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the strongly simplified energy balance models and the fully coupled 4-dimensional complex CGCMs. It provides a fast tool for the conceptual understanding and development of hypotheses for climate change studies, which shall build a basis or starting point for more detailed studies of observations and CGCM simulations. It is based on the surface energy balance by very simple representations of solar and thermal radiation, the atmospheric hydrological cycle, sensible turbulent heat flux, transport by the mean atmospheric circulation and heat exchange with the deeper ocean. Despite some limitations in the representations of the basic processes, the models climate sensitivity and the spatial structure of the warming pattern are within the uncertainties of the IPCC models simulations. It is capable of simulating aspects of the arctic winter amplification, the equilibrium land-sea warming contrast and the inter-hemispheric warming gradient with good agreement to the IPCC models in amplitude and structure. The results give some insight into the understanding of the land-sea contrast and the polar amplification. The GREB model suggests that the regional inhomogeneous

  3. Resolving issues at the Department of Energy/Oak Ridge Operations Facilities

    International Nuclear Information System (INIS)

    Row, T.H.; Adams, W.D.

    1988-01-01

    Waste management, like many other issues, has experienced major milestones. In 1971, the Calvert Cliff's decision resulted in an entirely different approach to the consideration of environmental impact analysis in reactor siting. The accidents at Three Mile Island and Chernobyl have had profound effects on nuclear power plant design. The high-level waste repository program has had many similar experiences that have modified the course of events. The management of radioactive, hazardous chemical and mixed waste in all of the facilities of the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) took on an entirely different meaning in 1984. On April 13, 1984, Federal Judge Robert Taylor said that DOE should proceed 'with all deliberate speed' to bring the Y-12 plant into compliance with the Resource Conservation and Recovery Act and the Clean Water Act. This decision resulted from a suit brought by the Legal Environmental Assistance Foundation (LEAF) and grew out of a continuing revelation of mercury spills and other problems related to the Oak Ridge plants of DOE. In this same time frame, other events occurred in Oak Ridge that would set the stage for major changes, to provide the supporting environment that allowed a very different and successful approach to resolving waste management issues at the DOE/ORO Facilities. This is the origin of the Oak Ridge Model which was recently adopted as the DOE Model. The concept is to assure that all stakeholders in waste management decisions have the opportunity to be participants from the first step. A discussion of many of the elements that have contributed to the success of the Model follows

  4. ENDF/B-IV representation of the 238U total neutron cross section in the resolved resonance energy region

    International Nuclear Information System (INIS)

    de Saussure, G.; Olsen, D.K.; Perez, R.B.

    1976-01-01

    The ENDF/B-IV prescription fails to represent correctly the 238 U total (and scattering) cross section between the levels of the resolved range. It is shown how this representation can be improved by properly accounting for the contribution of levels outside the resolved region to the cross section at energies inside the resolved region, and by substituting the more precise multilevel Breit-Wigner formula for the presently used single-level formula. The importance of computing accurately the minima in the total cross section is illustrated by comparing values of the self-shielded capture resonance integral computed with ENDF/B-IV and with a more accurate cross section model

  5. The new framework for resolving the energy problem and its application to the utilization of nuclear technology

    International Nuclear Information System (INIS)

    Kurata, Kenji

    2002-01-01

    Until recently, the energy problem in Japan had been the problem of how enough energy could be supplied to various sectors in society under Japan's conditions of only a few energy resources existing within its territory. However, recently new environmental and social conditions are arising. These new conditions strongly affect not only concrete measures for solving the energy problem but also the characteristics of the energy problem itself. Nowadays, it seems to be impossible to resolve the energy problem without taking these conditions into consideration. For this reason, a new framework, which enables various social values to be reflected in concrete measures, is urgently needed to resolve the energy problem. This thesis uses the ISO14001 framework to consider a possible solution over the energy problem. In the first part of this thesis, an examination shows that the ISO14001 framework should be generalized beyond the original objective of dealing with environmental problems to accommodate any kind of problems caused by newly arising social values. This generalized framework is defined as a 'Social measure' and expected to enhance the resolution of the problem in socially appropriate manner. In the second part, this paper uses the idea of the Social measure to consider a possible solution to recover public trust on the utilization of nuclear technology, which is regarded as a typical energy problem under the social condition. (author)

  6. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  7. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  8. Spatially resolved soft x-ray diagnostics in fusion energy research

    International Nuclear Information System (INIS)

    Mlynar, J.; Weinzettl, V.; Imrisek, M.; Loeffelmann, V.

    2013-01-01

    With construction of ITER, the fusion community has progressed into a new stage of research with increased focus on reactor technologies. Corresponding development of diagnostic systems for fusion is required, including research of novel diagnostic methods, validation of radiation hard detectors, and tests of sensors for real-time operation and control, which comprise development of tools for fast data analyses. In parallel, diagnostic systems on running fusion experiments substantially contribute to better understanding of reactor-relevant plasma physics, in particular of energy confinement, plasma stability and transport of impurities. In this respect, spatially resolved Soft X-ray (SXR) diagnostic systems present an interesting case study of development towards reactor-relevant systems. In magnetic confinement fusion research, spatial distribution of SXR radiation with spectral range typically 1 keV - 15 keV is mostly measured by a photosensitive single-row semiconductor elements in a pinhole camera shielded by a beryllium foil. The SXR intensity strongly depends on plasma density, temperature and effective charge, which carry a valuable information on the plasma core physics. Data from SXR diagnostic can be also used for the operation control, among others due to their sensitivity to heavy impurity concentration or to the position of the peak temperature. In order to reconstruct the spatial distribution of SXR plasma emission from the measured line integrated signals, several tomographic methods have been developed and validated. However, the semiconductor elements cannot survive in harsh conditions of future fusion reactors due to radiation damage, which calls for development of radiation hard SXR cameras. In this contribution, role of the SXR diagnostics will be presented in experience and future plans of the Czech tokamak COMPASS (IPP Prague) and the French tokamak TORE SUPRA (CEA Cadarache). In IPP Prague, data from SXR cameras recently contributed to

  9. Space- and time-resolved measurements of ion energy distributions by neutral beam injection in TORTUR II

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.

    1981-10-01

    A method is described for the space- and time-resolved analysis of ion energy distributions in a plasma. A well-collimated neutral hydrogen beam is used to enhance the charge-exchange processes. The method is used in the TORTUR II tokamak to study the space and time evolution of the ion temperature profile of the plasma. The analytical background and the technique are described in detail. Examples of measurements on TORTUR II are presented

  10. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  11. Coordination-resolved local bond relaxation, electron binding-energy shift, and Debye temperature of Ir solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Wang, Yan [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou, Hunan 416000 (China); Yang, Yezi [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-11-30

    Highlights: • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. • Thermal XPS resolves the Debye temperature and atomic cohesive energy. - Abstract: Numerical reproduction of the measured 4f{sub 7/2} energy shift of Ir(1 0 0), (1 1 1), and (2 1 0) solid skins turns out the following: (i) the 4f{sub 7/2} level of an isolated Ir atom shifts from 56.367 eV to 60.332 eV by 3.965 eV upon bulk formation; (ii) the local energy density increases by up to 130% and the atomic cohesive energy decreases by 70% in the skin region compared with the bulk values. Numerical match to observation of the temperature dependent energy shift derives the Debye temperature that varies from 285.2 K (Surface) to 315.2 K (Bulk). We clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and quantum entrapment of electron binding energy, which perturbs the Hamiltonian and the core shifts in the skin region.

  12. Femtosecond time-resolved hot carrier energy distributions of photoexcited semiconductor quantum dots

    International Nuclear Information System (INIS)

    Chuang, Chi-Hung; Burda, Clemens; Chen, Xiaobo

    2013-01-01

    Using femtosecond transient absorption spectroscopy, we investigated hot carrier distributions in semiconductor cadmium selenide quantum dots. The relaxation processes represent the behavior of an ensemble of QDs. This concept is applied for analysis with the Fermi-Dirac distribution and relaxation processes among different electron-hole pair states. By extracting the experimental hot carrier distribution and fitting with the Fermi-Dirac function, we resolved the rapid thermalization processes, such as carrier-carrier and carrier-phonon interactions was resolved within one picosecond upon photoexcitation. The analysis, using the Fermi-Dirac distribution modulated by the density of states, provides a general route to understanding the carrier cooling and heat dissipation processes in quantum dot-based systems. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Sundström, V.

    2010-01-01

    Roč. 215, 2-3 (2010), s. 123-139 ISSN 1010-6030 R&D Projects: GA ČR(CZ) GP202/09/P099; GA AV ČR(CZ) IAA100100902; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : time-resolved terahertz spectroscopy * ultrafast dynamics * bulk heterojunction * semiconductor nanostructures * transport * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.243, year: 2010

  14. Energy-resolved photoemission studies of Be-containing surfaces for fusion; Energievariierte Photoemissionsstudien an berylliumhaltigen Oberflaechen fuer die Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Koeppen, Martin

    2013-02-04

    Fusion research aims at the exploitation of the deuterium-tritium reaction for energy production. Next step on the roadmap is the construction of the experimental reactor ITER. The three elements beryllium, carbon and tungsten are to be used as armour materials for the vacuum vessel. After erosion due to plasma processes, these materials are transported and redeposited together with plasma impurities like oxygen from surface oxides. This leads to the formation of compounds by chemical reactions and diffusive processes, induced both by elevated temperatures and implantation of energetic particles. Due to the complexity of the induced surface processes, a method is required which is capable of both qualitative and quantitative analysis of the involved chemical species. X-ray photoelectron spectroscopy (XPS) provides the chemical analysis. Since diffusive processes play an important role in solid-state reactions, a depth-resolved method is required. In this work, energy-resolved XPS using synchrotron radiation with variable photon energies is extended towards a quantitative depth-resolved analysis. For the quantitative analysis a new model is derived which calculates the depth-resolved composition and the respective composition-dependent electron inelastic mean free path in a self-consistent way. Input is the XPS data which is normalized with all parameters influencing the photoelectron intensities. This fully quantitative model is applied to describe the interaction of energetic oxygen ions with the beryllium-tungsten alloy Be{sub 2}W. Oxygen ions from the plasma are able to interact with plasma facing materials. Formation of Be{sub 2}W is to be expected at the first wall and in the divertor region of ITER. Irradiation of this alloy leads to its decompositions. After decomposition, formation of beryllium oxide BeO is preferred compared to formation of tungsten oxides. Heating to 600K leads to chemical reduction of tungsten oxides. Metallic Be acts as reduction agent

  15. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy.

    Science.gov (United States)

    Wang, Yi; Huang, Michael R S; Salzberger, Ute; Hahn, Kersten; Sigle, Wilfried; van Aken, Peter A

    2018-01-01

    Electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are two of the most common means for chemical analysis in the scanning transmission electron microscope. The marked progress of the instrumentation hardware has made chemical analysis at atomic resolution readily possible nowadays. However, the acquisition and interpretation of atomically resolved spectra can still be problematic due to image distortions and poor signal-to-noise ratio of the spectra, especially for investigation of energy-loss near-edge fine structures. By combining multi-frame spectrum imaging and automatic energy-offset correction, we developed a spectrum imaging technique implemented into customized DigitalMicrograph scripts for suppressing image distortions and improving the signal-to-noise ratio. With practical examples, i.e. SrTiO 3 bulk material and Sr-doped La 2 CuO 4 superlattices, we demonstrate the improvement of elemental mapping and the EELS spectrum quality, which opens up new possibilities for atomically resolved EELS fine structure mapping. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A preliminary layout and PIC simulations of the time resolved beam energy spectrum measurement for DRAGON-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jingshui

    2010-01-01

    The time resolved beam energy spectrum for DRAGON-I can be measured with a new method which is named RBS (Rotating Beam in Solenoid). The beam energy spectrum is determined by measuring the beam rotation angle and its expansion width at the exit of DRAGON-I. The rotation beam is shaped by a slit at the exit of DRAGON-I, then rotated in the magnetic field of the solenoids and the resulted beamlet is measured by the Cherenkov screen. The beam motion in the solenoids is simulated by PARMELA and the relationships between the beam rotation angle's expansion width and the beam energy spread, emittance are discussed. The measurement error is also discussed in this paper. (authors)

  17. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy

    International Nuclear Information System (INIS)

    Monroe, C.; Meekhof, D.M.; King, B.E.; Jefferts, S.R.; Itano, W.M.; Wineland, D.J.; Gould, P.

    1995-01-01

    We report laser cooling of a single 9 Be + ion held in a rf (Paul) ion trap to where it occupies the quantum-mechanical ground state of motion. With the use of resolved-sideband stimulated Raman cooling, the zero point of motion is achieved 98% of the time in 1D and 92% of the time in 3D. Cooling to the zero-point energy appears to be a crucial prerequisite for future experiments such as the realization of simple quantum logic gates applicable to quantum computation. copyright 1995 The American Physical Society

  18. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  19. Testing the resolving power of 2-D K+ K+ interferometry at Ags energies

    International Nuclear Information System (INIS)

    Roldao, Cristiane G.; Padula, Sandra S.

    1998-01-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry, an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, i.e., when non significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. The possible compatibility of the data with zero decoupling proper time interval, suggested by the experimental fit, is also investigated and seems to be ruled out when considering dynamical models with expanding sources. (author)

  20. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    Science.gov (United States)

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  1. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; LaFountain, Amy M; Kelsh, Rhiannon M; Gardiner, Alastair T; Cogdell, Richard J; Frank, Harry A

    2008-08-28

    Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the

  2. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  3. Angle-resolved electron energy loss spectroscopy in hexagonal boron nitride

    Science.gov (United States)

    Fossard, Frédéric; Sponza, Lorenzo; Schué, Léonard; Attaccalite, Claudio; Ducastelle, François; Barjon, Julien; Loiseau, Annick

    2017-09-01

    Electron energy loss spectra were measured on hexagonal boron nitride single crystals employing an electron energy loss spectroscopic setup composed of an electron microscope equipped with a monochromator and an in-column filter. This setup provides high-quality energy-loss spectra and allows also for the imaging of energy-filtered diffraction patterns. These two acquisition modes provide complementary pieces of information, offering a global view of excitations in reciprocal space. As an example of the capabilities of the method we show how easily the core loss spectra at the K edges of boron and nitrogen can be measured and imaged. Low losses associated with interband and/or plasmon excitations are also measured. This energy range allows us to illustrate that our method provides results whose quality is comparable to that obtained from nonresonant x-ray inelastic scattering but with advantageous specificities such as an enhanced sensitivity at low q and a much greater simplicity and versatility that make it well adapted to the study of two-dimensional materials and related heterostructures. Finally, by comparing theoretical calculations to our measures, we are able to relate the range of applicability of ab initio calculations to the anisotropy of the sample and assess the level of approximation required for a proper simulation of our acquisition method.

  4. Trajectory resolved analysis of LEIS energy spectra: Neutralization and surface structure

    International Nuclear Information System (INIS)

    Beikler, Robert; Taglauer, Edmund

    2001-01-01

    For a quantitative evaluation of low-energy ion scattering (LEIS) data with respect to surface composition and structure a detailed analysis of the energy spectra is required. This includes the identification of multiple scattering processes and the determination of ion survival probabilities. We analyzed scattered ion energy spectra by using the computer code MARLOWE for which we developed a new analysis routine that allows to record energy distributions in dependence of the number of projectile-target atom collisions, in dependence of the distance of closest approach, or in dependence of the scattering crystalline layer. This procedure also permits the determination of ion survival probabilities by applying simple collision-dependent neutralization models. Experimental energy spectra for various projectile (He + , Ne + , Na + ) and target (transition metals, oxides) combinations are well reproduced and quantitative results for ion survival probabilities are obtained. These are largely in agreement with results obtained for bimetallic crystal surfaces obtained in a different way. Such MARLOWE calculations are also useful for the identification of structure relevant processes. This is shown exemplarily for the reconstructed Au(1 1 0) surface including a possibility to determine the (1x2)→(1x1) transition temperature

  5. CMOS-sensors for energy-resolved X-ray imaging

    International Nuclear Information System (INIS)

    Doering, D.; Amar-Youcef, S.; Deveaux, M.; Linnik, B.; Müntz, C.; Stroth, Joachim; Baudot, J.; Dulinski, W.; Kachel, M.

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ''color sensitive' X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors

  6. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  7. Time resolved energy spectrum of the axial ion beam generated in plasma focus discharges

    International Nuclear Information System (INIS)

    Bostick, W.H.; Kilic, H.; Nardi, V.; Powell, C.W.

    1993-01-01

    The energy spectrum of the deuteron beam along the electrode axis (0 (degree) ) in a plasma focus discharge has been determined with a time of flight (TOF) method and with a differential filter method in the ion energy interval E = 0.3-9 MeV. The ion TOF method is applied to single-ion pulse events with an ion emission time t(E) that is only weakly dependent on the ion energy E for E > 0.3 MeV. The correlation of the ion beam intensity with the filling pressure, the neutron yield and the hard X-ray intensity is also reported. (author). 11 refs, 10 figs

  8. Electrostatic mass spectrometer for concurrent mass-, energy- and angle-resolved measurements

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Krasnova, N.K.

    1999-01-01

    A new electron-optical scheme is considered. An energy- and mass-analyser with angular resolution are combined in one device, in which a time-of-flight principle of mass separation is used. The tool is created on the basis of electrostatic field of quasi-conical systems possessing the high-energy dispersion and high-angular resolution. A regime of simultaneous angular and energy resolution is found. If there is an ion-pulsed source then the ion groups of equal mass will be registered at the same time at a position-sensitive detector located at the edge of the field. Real parameters of the suggested scheme are calculated

  9. The Potential Of Fission Nuclear Energy In Resolving Global Climate Change

    International Nuclear Information System (INIS)

    Pevec, D.

    2015-01-01

    There is an international consensus on the need of drastic reduction of carbon emission if very serious global climate changes are to be avoided. At present target is to limit global temperature increase to 2 Degrees of C and to keep CO 2 concentration below 450 ppm, though some recent request by climatologists argue for lower limit of 1.5 Degrees of C. The carbon emission reduction has to be done in the next few decades, as climate effects are essentially determined by integral emission. The integral emissions should not exceed 1000 Gt CO 2 to keep the probability of exceeding global temperature by 2 Degrees of C below 25 percent. Consequently, when we consider energy sources that could produce carbon free energy we have to concentrate on the period not later than 2060-2065. The sources that can take the burden of reduction in the years up to 2065 are Renewable Energy Sources (RES) and nuclear fission energy. The potential of RES has been estimated by many organizations and individuals. Their predictions indicate that RES are not likely to be sufficient to replace carbon emitters and fulfill the 2 Degrees of C limit requirements. The nuclear fission energy can give a very serious and hopefully timely (unlike nuclear fusion) contribution to reduction of emission. Even with proven conventional reactors using once through fuel cycle without fuel reprocessing the nuclear build-up in the years 2025-2065 could reach 3330 GW. With this concept nuclear contribution of 94.5 EJ/y would be reached by 2065, while integral CO 2 emission savings would be about 500 Gt CO 2 by 2065. This shows that essential nuclear contribution is possible without the use of plutonium and fast breeders, technology not ready for climate-critical next 50 years and not acceptable in present political environment. This nuclear fission energy contribution along with contributions from renewable sources, energy saving, and increased efficiency in energy use can solve the climate problems. (author).

  10. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Science.gov (United States)

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  11. Resolving issues at the Department of Energy/Oak Ridge operations facilities

    International Nuclear Information System (INIS)

    Row, T.H.; Adams, W.D.

    1988-01-01

    The development of the US Department of Energy Oak Ridge Operations Office's model for waste management and its application in the Oak Ridge Reservation are discussed. The concept simply stated is to assure that all stakeholders in waste management decisions have the opportunity to be participants from the first step. The paper discusses the advisory committees involved in the process, subcontracting support, college and university relation, technology demonstrations and planning, other federal agency interaction, and the model meeting

  12. An energy resolved electron-ion coincidence study near the S 2p thresholds of the SF6 molecule

    International Nuclear Information System (INIS)

    Kivimaeki, A; Ruiz, J Alvarez; Erman, P; Hatherly, P; Garcia, E Melero; Rachlew, E; Rius i Riu, J; Stankiewicz, M

    2003-01-01

    The fragmentation dynamics of the SF 6 molecule following the excitations of S 2p electrons into unoccupied molecular orbitals has been studied using the energy-resolved electron-ion coincidence technique. Fragmentation patterns were found to depend on the particular excitation and on the electronic state of the molecular ion. The spectator resonant Auger decay at the 2p → 6a 1g resonance induces changes in the ion distributions as compared to direct photoionization. Furthermore, coincidence spectra related to the same Auger structure display different ion abundances at the 2t 2g and 4e g shape resonances. Differences were also found in the Auger decay spectra. These findings give further support for the previously suggested many-electron character of the 4e g shape resonance

  13. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  14. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-01-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy

  15. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    Science.gov (United States)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection

  16. Resolving issues with environmental impact assessment of marine renewable energy installations

    Directory of Open Access Journals (Sweden)

    Ilya M. D. Maclean

    2014-12-01

    Full Text Available Growing concerns about climate change and energy security have fueled a rapid increase in the development of marine renewable energy installations (MREIs. The potential ecological consequences of increased use of these devices emphasizes the need for high quality environmental impact assessment (EIA. We demonstrate that these processes are hampered severely, primarily because ambiguities in the legislation and lack of clear implementation guidance are such that they do not ensure robust assessment of the significance of impacts and cumulative effects. We highlight why the regulatory framework leads to conceptual ambiguities and propose changes which, for the most part, do not require major adjustments to standard practice. We emphasize the importance of determining the degree of confidence in impacts to permit the likelihood as well as magnitude of impacts to be quantified and propose ways in which assessment of population-level impacts could be incorporated into the EIA process. Overall, however, we argue that, instead of trying to ascertain which particular developments are responsible for tipping an already heavily degraded marine environment into an undesirable state, emphasis should be placed on better strategic assessment.

  17. The relation between lattice order and energy resolved momentum densities in carbon films

    International Nuclear Information System (INIS)

    Vos, M.; Storer, P.; Cai, Y.Q.; McCarthy, I.E.; Weigold, E.

    1994-06-01

    The (e,2e) technique is well known to be able to measure the momentum profiles of the electron orbitals in molecules. In crystalline solids energy levels are replaced by bands, and the momentum profiles simplify to energy dependent delta functions. In this paper the development from a molecular to a crystalline picture of the electronic structure is illustrated using a simple model of a linear chain of atoms of increasing length. This model is used to get some insight into the (e,2e) momentum profiles expected for disordered solids. These results are compared to the experimental data for carbon films with different degrees of order, i.e amorphous carbon films, annealed amorphous carbon films and highly oriented pyrolitic graphite (HOPG) films. The focus is on the influence of disorder on (e,2e) spectra. The intensity of the π electron contribution is suppressed in HOPG, due to the orientation chosen. In the annealed evaporated samples, the planes of graphite atoms have random orientation and the π electrons are clearly seen. With increasing order the momentum profiles show increasingly well defined peaks. 16 refs., 7 figs

  18. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    Science.gov (United States)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  19. Variable low energy positron beams for depth resolved defect spectroscopy in thin film structures

    International Nuclear Information System (INIS)

    Amarendra, G.; Viswanathan, B.; Venugopal Rao, G.; Parimala, J.; Purniah, B.

    1997-01-01

    The design, development and commissioning details of an ultra high vacuum compatible, magnetically-guided and compact variable low energy positron beam facility are reported. Information pertaining to the nature, concentration and spatial distribution of defects present at various depths in the near-surface layers of a material can be obtained using this technique. Some of the experimental results obtained using this facility, in terms of surface-sensitive positronium fraction measurements on Cu surfaces as well as defect-sensitive Doppler broadening measurements on semiconductor interfaces and ion irradiated silicon are presented. These results essentially provide an illustration of the research capability of the technique for the study of sub-surface regions and thin film interfaces. (author)

  20. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    Science.gov (United States)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  1. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Science.gov (United States)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  2. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  3. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  4. Spatially resolved quantification of agrochemicals on plant surfaces using energy dispersive X-ray microanalysis.

    Science.gov (United States)

    Hunsche, Mauricio; Noga, Georg

    2009-12-01

    In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.

  5. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    Science.gov (United States)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  6. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  7. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  8. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  9. Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma

    Science.gov (United States)

    Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.

    2017-09-01

    By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.

  10. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  11. Fundamental processes in the expansion, energization, and coupling of single- and multi-Ion plasmas in space: Laboratory simulation experiments

    Science.gov (United States)

    Szuszczewicz, E. P.; Bateman, T. T.

    1996-01-01

    We have conducted a laboratory investigation into the physics of plasma expansions and their associated energization processes. We studied single- and multi-ion plasma processes in self-expansions, and included light and heavy ions and heavy/light mixtures to encompass the phenomenological regimes of the solar and polar winds and the AMPTE and CRRES chemical release programs. The laboratory experiments provided spatially-distributed time-dependent measurements of total plasma density, temperature, and density fluctuation power spectra with the data confirming the long-theorized electron energization process in an expanding cloud - a result that was impossible to determine in spaceborne experiments (as e.g., in the CRRES program). These results provided the missing link in previous laboratory and spaceborne programs. confirming important elements in our understanding of such solar-terrestrial processes as manifested in expanding plasmas in the solar wind (e.g., CMES) and in ionospheric outflow in plasmaspheric fluctuate refilling after a storm. The energization signatures were seen in an entire series of runs that varied the ion species (Ar', Xe', Kr' and Ne'), and correlative studies included spectral analyses of electrostatic waves collocated with the energized electron distributions. In all cases wave energies were most intense during the times in which the suprathermal populations were present, with wave intensity increasing with the intensity of the suprathermal electron population. This is consistent with theoretical expectations wherein the energization process is directly attributable to wave particle interactions. No resonance conditions were observed, in an overall framework in which the general wave characteristics were broadband with power decreasing with increasing frequency.

  12. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    International Nuclear Information System (INIS)

    Florido, R.; Mancini, R. C.; Nagayama, T.; Tommasini, R.; Delettrez, J. A.; Regan, S. P.

    2014-01-01

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ∼ 1100 eV and ρ ∼ 2 g/cm 3 ; then temperature drops to T ∼ 920 eV while density rises to ρ ∼ 3.4 g/cm 3 about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics

  13. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Florido, R., E-mail: ricardo.florido@ulpgc.es; Mancini, R. C.; Nagayama, T. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Tommasini, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Delettrez, J. A.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-10-15

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ∼ 1100 eV and ρ ∼ 2 g/cm{sup 3}; then temperature drops to T ∼ 920 eV while density rises to ρ ∼ 3.4 g/cm{sup 3} about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics.

  14. The Energy-Water Nexus: Spatially-Resolved Analysis of the Potential for Desalinating Brackish Groundwater by Use of Solar Energy

    Directory of Open Access Journals (Sweden)

    Jill B. Kjellsson

    2015-06-01

    Full Text Available This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water from two low value resources (brackish groundwater and intermittent solar energy. Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed for spatially-resolved analysis techniques while considering depth to brackish groundwater, water quality, and solar radiation across Texas to determine the locations with the best potential for integrating solar energy with brackish groundwater desalination. The framework presented herein can be useful for policymakers, regional planners, and project developers as they consider where to site desalination facilities coupled with solar photovoltaics. Results suggest that the northwestern region of Texas—with abundant sunshine and groundwater at relatively shallow depths and low salinity in areas with freshwater scarcity—has the highest potential for solar powered desalination. The range in capacity for solar photovoltaic powered reverse osmosis desalination was found to be 1.56 × 10—6 to 2.93 × 10—5 cubic meters of water per second per square meter of solar panel (m3/s/m2.

  15. Full genotyping of a highly polymorphic human gene trait by time-resolved fluorescence resonance energy transfer.

    Directory of Open Access Journals (Sweden)

    Edoardo Totè

    Full Text Available The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA system. The polymorphisms of the trait of the DQB1 gene including codons 52-57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52-57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52-57 trait of DQB1 (8 homozygous and 28 heterozygous. We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes.

  16. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  17. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, N., E-mail: nilimajannat74@gmail.com; Ferdousi, M.; Mamun, A. A. [Jahangirnagar University, Department of Physics (Bangladesh)

    2016-07-15

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg−deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  18. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    International Nuclear Information System (INIS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2016-01-01

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg−deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  19. Bulk electronic state of high-Tc cuprate La2-xSrxCuO4 observed by high-energy angle integrated and resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kasai, S.; Sekiyama, A.; Tsunekawa, M.; Ernst, P.T.; Shigemoto, A.; Yamasaki, A.; Irizawa, A.; Imada, S.; Sing, M.; Muro, T.; Sasagawa, T.; Takagi, H.; Suga, S.

    2005-01-01

    The high-energy core-level photoemission spectroscopy (PES) and angle-resolved photoemission spectroscopy (ARPES) measurements have been performed for La 2-x Sr x CuO 4 (LSCO). Polar-angle dependence of the Cu 2p core-level PES has revealed a discrepancy between bulk and surface. We have observed by the high-energy ARPES that the Fermi surface of LSCO with x=0.16 is electron-like, in contrast to previous low-energy ARPES results

  20. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  1. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  2. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  3. Internal energy of HCl upon photolysis of 2-chloropropene at 193 nm investigated with time-resolved Fourier-transform spectroscopy and quasiclassical trajectories

    International Nuclear Information System (INIS)

    Chang, C.-M.; Huang, Y.-H.; Liu, S.-Y.; Lee, Y.-P.; Pombar-Perez, Marta; Martinez-Nunez, Emilio; Vazquez, Saulo A.

    2008-01-01

    Following photodissociation of 2-chloropropene (H 2 CCClCH 3 ) at 193 nm, vibration-rotationally resolved emission spectra of HCl (υ≤6) in the spectral region of 1900-2900 cm -1 were recorded with a step-scan time-resolved Fourier-transform spectrometer. All vibrational levels show a small low-J component corresponding to ∼400 K and a major high-J component corresponding to 7100-18 700 K with average rotational energy of 39± 3 11 kJ mol -1 . The vibrational population of HCl is inverted at υ=2, and the average vibrational energy is 86±5 kJ mol -1 . Two possible channels of molecular elimination producing HCl+propyne or HCl+allene cannot be distinguished positively based on the observed internal energy distribution of HCl. The observed rotational distributions fit qualitatively with the distributions of both channels obtained with quasiclassical trajectories (QCTs), but the QCT calculations predict negligible populations for states at small J. The observed vibrational distribution agrees satisfactorily with the total QCT distribution obtained as a weighted sum of contributions from both four-center elimination channels. Internal energy distributions of HCl from 2-chloropropene and vinyl chloride are compared.

  4. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  5. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  6. Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

    International Nuclear Information System (INIS)

    Oelsner, Andreas; Rohmer, Martin; Schneider, Christian; Bayer, Daniela; Schoenhense, Gerd; Aeschlimann, Martin

    2010-01-01

    The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump-probe experiments in the femtosecond and attosecond time scale where space charge processes drastically limit the maximum number of photoemitted electrons per laser pulse. This work focuses particularly on time-of-flight analysis using a novel delay line detector. Time and energy resolved PEEM instruments with delay line detectors enable 4D imaging (x, y, Δt, E Kin ) on a true counting basis. This allows a broad range of applications from real-time observation of dynamic phenomena at surfaces to fs time-of-flight spectro-microscopy and even aberration correction. By now, these time-of-flight analysis instruments achieve intrinsic time resolutions of 108 ps absolute and 13.5 ps relative. Very high permanent measurement speeds of more than 4 million events per second in random detection regimes have been realized using a standard USB2.0 interface. By means of this performance, the time-resolved PEEM technique enables to display evolutions of spatially resolved (<25 nm) and temporal sliced images life on any modern computer. The method allows dynamics investigations of variable electrical, magnetic, and optical near fields at surfaces and great prospects in dynamical adaptive photoelectron optics. For dynamical processes in the ps time scale such as magnetic domain wall movements, the time resolution of the delay line detectors

  7. A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors -- possible evidence of spinon and holon branches

    International Nuclear Information System (INIS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2006-01-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E 1 approx 0.38eV and E 2 approx 0.8 eV. E 1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Gamma point at approx 0.5 eV. The other is given by a peak in the momentum space, nearly independent of energy between E 1 and E 2 . Above E 2 , a band-like dispersion re-emerges. We conjecture that these two energies mark the disintegration of the low energy quasiparticles into a spinon and holon branch in the high T c cuprates

  8. Testing the resolving power of 2-D K{sup +} K{sup +} interferometry at Ags energies

    Energy Technology Data Exchange (ETDEWEB)

    Roldao, Cristiane G.; Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1998-12-31

    Adopting a procedure previously proposed to quantitatively study pion interferometry, an equivalent 2-D {sub X}{sup 2} analysis was performed to test the resolving power of that method when applied to less favorable conditions, i.e., when non significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K{sup +} K{sup +} interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. The possible compatibility of the data with zero decoupling proper time interval, suggested by the experimental fit, is also investigated and seems to be ruled out when considering dynamical models with expanding sources. (author) 10 refs., 2 figs., 1 tab.

  9. Simulation and evaluation of the absorption edge subtraction technique in energy-resolved X-ray radiography applied to the cultural heritage studies

    International Nuclear Information System (INIS)

    Leyva Pernia, Diana; Cabal Rodriguez, Ana E.; Pinnera Hernandez, Ibrahin; Leyva Fabelo, Antonio; Abreu Alfonso, Yamiel; Espen, Piet Van

    2011-01-01

    In this work the mathematical simulation of photon transport in the matter was used to evaluate the potentials of a new energy-resolved X-ray radiography system. The system is intended for investigations of cultural heritage object, mainly painting. The radiographic system uses polychromatic radiation from an X-ray tube and measures the spectrum transmitted through the object with an energy-dispersive X-ray detector on a pixel-by-pixel basis. Manipulation of the data-set obtained allows constructing images with enhanced contrast for certain elements. Here the use of the absorption edge subtraction technique was emphasized. The simulated results were in good agreement with the experimental data.(author)

  10. Proceedings of the Wind Energy and Birds/Bats Workshop: Understanding and Resolving Bird and Bat Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Susan Savitt (ed.)

    2004-09-01

    Most conservation groups support the development of wind energy in the US as an alternative to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. However, concerns have surfaced over the potential threat to birds, bats, and other wildlife from the construction and operation of wind turbine facilities. Co-sponsored by the American Bird Conservancy (ABC) and the American Wind Energy Association (AWEA), the Wind Energy and Birds/Bats Workshop was convened to examine current research on the impacts of wind energy development on avian and bat species and to discuss the most effective ways to mitigate such impacts. On 18-19 May 2004, 82 representatives from government, non-government organizations, private business, and academia met to (1) review the status of the wind industry and current project development practices, including pre-development risk assessment and post-construction monitoring; (2) learn what is known about direct, indirect (habitat), and cumulative impacts on birds and bats from existing wind projects; about relevant aspects of bat and bird migration ecology; about offshore wind development experience in Europe; and about preventing, minimizing, and mitigating avian and bat impacts; (3) review wind development guidelines developed by the USFWS and the Washington State Department of Fish and Wildlife; and (4) identify topics needing further research and to discuss what can be done to ensure that research is both credible and accessible. These Workshop Proceedings include detailed summaries of the presentations made and the discussions that followed.

  11. Design and numerical simulation of a 3-D electron plasma analyzer that resolves both energy and elevation angle

    International Nuclear Information System (INIS)

    Weiss, L.A.; Sablik, M.J.; Winningham, J.D.; Frahm, R.A.; Reiff, P.H.

    1989-01-01

    The Comet Rendezvous and Asteroid Flyby Mission (CRAF) will include, as one of its complement of thirteen scientific instruments, a plasma electron analyzer capable of providing 3-dimensional measurements of the energy and angular distribution of electrons in the solar wind, asteroidal and cometary environments. After initial instrument selection, mission planners at JPL suggested that an instrument capable of performing angular scanning electronically rather than mechanically be investigated. This paper describes the computer design of the new CRAF plasma electron detector, consisting of an electronic scanning component, called the 'elevation analyzer', and an energy analyzing component based on the Soft Particle Spectrometer (SPS) and its successor, the Spectrographic Particle Imager (SPI). Numerical simulation of each component's operation - consisting of ray-tracing particles through the electrostatic field of each analyzer and collecting statistics on those particles successfully transmitted - is used to determine the energy and angular response functions of each component and the design dimensions that optimize these responses. (orig.)

  12. Energy and angle resolved studies of double photo-ionisation of helium by electron time-of-flight coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Viefhaus, J.; Avaldi, L.; Heiser, F.; Hentges, R.; Gessner, O.; Ruedel, A.; Wiedenhoeft, M.; Wieliczek, K.; Becker, U. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany)

    1996-10-28

    Helium double photo-ionization is studied by a novel coincidence technique which employs time-of-flight spectrometers. Using this technique it is possible to collect simultaneously all the electron pairs, with different energy sharing, emitted by the absorption of a single energetic incident photon. The measurements, in a configuration where the two electrons emerge at 180{sup o} relative angle, provide the more complete information on the contribution of the ungerade amplitude to the triple differential cross section and allow the establishment of a relative scale for the full coincidence angular distribution measured by other experiments at the same photon energies, but only for a few selected energy-sharing conditions. (author).

  13. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    Science.gov (United States)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  14. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    Science.gov (United States)

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  15. Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2007-01-01

    Full Text Available CdSe/ZnS core/shell quantum dots (QDs are used as efficient Förster Resonance Energy Transfer (FRET acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0.5 milliseconds, the same value to which the Tb donor decay time is quenched due to FRET to the QD acceptors. The FRET system has an extremely large Förster radius of approx. 100 Å and more than 70% FRET efficiency with a mean donor-acceptor distance of ca. 84 Å, confirming the applied biotin-streptavidin binding system. Time-resolved measurement allows for suppression of short-lived emission due to background fluorescence and directly excited QDs. By this means a detection limit of 18 attomol QDs within the immunoassay is accomplished, an improvement of more than two orders of magnitude compared to commercial systems.

  16. Resolving Past Liabilities for Future Reduction in Greenhouse Gases; Nuclear Energy and the Outstanding Federal Liability of Spent Nuclear Fuel

    Science.gov (United States)

    Donohue, Jay

    This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.

  17. Gibbs energy of the resolvation of glycylglycine and its anion in aqueous solutions of dimethylsulfoxide at 298.15 K

    Science.gov (United States)

    Naumov, V. V.; Isaeva, V. A.; Kuzina, E. N.; Sharnin, V. A.

    2012-12-01

    Gibbs energies for the transfer of glycylglycine and glycylglycinate ions from water to water-dimethylsulfoxide solvents are determined from the interface distribution of substances between immiscible phases in the composition range of 0.00 to 0.20 molar fractions of DMSO at 298.15 K. It is shown that with a rise in the concentration of nonaqueous components in solution, we observe the solvation of dipeptide and its anion, due mainly to the destabilization of the carboxyl group.

  18. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  19. Time and space-resolved energy flux measurements in the divertor of the ASDEX tokamak by computerized infrared thermography

    International Nuclear Information System (INIS)

    Mueller, E.R.; Steinmetz, K.; Bein, B.K.

    1984-06-01

    A new, fully computerized and automatic thermographic system has been developed. Its two central components are an AGA THV 780 infrared camera and a PDP-11/34 computer. A combined analytical-numerical method of solving the 1-dimensional heat diffusion equation for a solid of finite thickness bounded by two parallel planes was developed. In high-density (anti nsub(e) = 8 x 10 13 cm -3 ) neutral-beam-heated (L-mode) divertor discharges in ASDEX, the power deposition on the neutralizer plates is reduced to about 10-15% of the total heating power, owing to the inelastic scattering of the divertor plasma from a neutral gas target. Between 30% and 40% of the power is missing in the global balance. The power flow inside the divertor chambers is restricted to an approximately 1-cm-thick plasma scrape-off layer. This width depends only weakly on the density and heating power. During H-phases free of Edge Localized Mode (ELM) activity the energy flow into the divertor is blocked. During H-phases with ELM activity the energy is expelled into the divertor in very short intense pulses (several MW for about one hundred μs). Sawtooth events are able to transport significant amounts of energy from the plasma core to the peripheral zones and the scrape-off layer, and they are frequently correlated with transitions from the L to the H mode. (orig./AH)

  20. Processes of the excitation energy migration and transfer in Ce3+-doped alkali gadolinium phosphates studied with time-resolved photoluminescence spectroscopy technique

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Shalapska, T.; Voloshinovskii, A.; Gektin, A.; Krasnikov, A.; Zazubovich, S.

    2011-01-01

    Spectral-kinetic characteristics of Gd 3+ and Ce 3+ luminescence from a series of Ce 3+ -doped alkali gadolinium phosphates of MGdP 4 O 12 type (M=Li, Na, Cs) have been studied within 4.2-300 K temperature range using time-resolved luminescence spectroscopy techniques. The processes of energy migration along the Gd 3+ sub-lattice and energy transfer between the Gd 3+ and Ce 3+ ions have been investigated. Peculiarities of these processes have been compared for MGdP 4 O 12 phosphate hosts with different alkali metal ions. A contribution of different levels from the 6 P j multiplet of the lowest Gd 3+ excited state into the energy migration and transfer processes has been clarified. The phonon-assisted occupation of high-energy 6 P 5/2,3/2 levels by Gd 3+ in the excited 6 P j state has been revealed as a shift of Gd 3+6 P j → 8 S 7/2 emission into the short-wavelength spectral range upon the temperature increase. The relaxation of excited Gd 3+ via phonon-assisted population of Gd 3+6 P 5/2 level (next higher one to the lowest excited 6 P 7/2 ) is supposed to be responsible for the rise in probability of energy migration within the Gd 3+ sub-lattice initiating the Gd 3+ →Ce 3+ energy transfer at T 3+ →Ce 3+ energy transfer at T>150 K is explained by the increase in probability of Gd 3+ relaxation into the highest 6 P 3/2 level of the 6 P j multiplet. An efficient reversed Ce 3+ →Gd 3+ energy transfer has been revealed for the studied phosphates at 4.2 K. - Highlights: →We investigate the Gd 3+ -Ce 3+ energy transfer in alkali gadolinium phosphates. → Thermal population of Gd 3+6 P 5/2 level improves migration along the Gd sub-lattice. → Increasing overlap of Gd 3+ and Ce 3+ states enhances the Gd 3+ -Ce 3+ energy transfer. → In LiGdP 4 O 12 :Ce and NaGdP 4 O 12 :Ce an efficient Ce 3+ -Gd 3+ transfer occurs at 4-300 K. → An effective reverse Gd 3+ -Ce 3+ energy transfer becomes possible at T>150 K.

  1. Probing long-range structural order in SnPc/Ag(111) by umklapp process assisted low-energy angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael

    2018-03-01

    Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.

  2. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  3. Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)

    2014-04-14

    Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089 eV for an isolated Si atom, and their bulk shifts of 2.461 eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.

  4. Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method

    International Nuclear Information System (INIS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.

    2009-01-01

    We present the reconstruction of neutron energy spectra from time-of-flight signals. This technique is useful in experiments with the time of neutron production in the range of about tens or hundreds of nanoseconds. The neutron signals were obtained by a common hard X-ray and neutron fast plastic scintillation detectors. The reconstruction is based on the Monte Carlo method which has been improved by simultaneous usage of neutron detectors placed on two opposite sides from the neutron source. Although the reconstruction from detectors placed on two opposite sides is more difficult and a little bit inaccurate (it followed from several presumptions during the inclusion of both sides of detection), there are some advantages. The most important advantage is smaller influence of scattered neutrons on the reconstruction. Finally, we describe the estimation of the error of this reconstruction.

  5. Resolving the impasse in American energy policy. The case for a transformational R and D strategy at the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [National University of Singapore, Lee Kuan Yew School of Public Policy Centre on Asia and Globalisation, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-02-15

    From its inception in 1977, the U.S. Department of Energy (DOE) has been responsible for maintaining the nation's nuclear stockpile, leading the country in terms of basic research, setting national energy goals, and managing thousands of individual programs. Despite these gains, however, the DOE research and development (R and D) model does not appear to offer the nation an optimal strategy for assessing long-term energy challenges. American energy policy continues to face constraints related to three I's: inconsistency, incrementalism, and inadequacy. An overly rigid management structure and loss of mission within the DOE continues to plague its programs and create inconsistencies in terms of a national energy policy. Various layers of stove-piping within and between the DOE and national laboratories continue to fracture collaboration between institutions and engender only slow, incremental progress on energy problems. And funding for energy research and development continues to remain inadequate, compromising the country's ability to address energy challenges. To address these concerns, an R and D organization dedicated to transformative, creative research is proposed. (author)

  6. Spot size dependence of laser accelerated protons in thin multi-ion foils

    International Nuclear Information System (INIS)

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-01-01

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10 8 protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen

  7. MOCCA: A 4k-Pixel Molecule Camera for the Position- and Energy-Resolving Detection of Neutral Molecule Fragments at CSR

    Science.gov (United States)

    Gamer, L.; Schulz, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Kempf, S.; Krantz, C.; Novotný, O.; Schwalm, D.; Wolf, A.

    2016-08-01

    We present the design of MOCCA, a large-area particle detector that is developed for the position- and energy-resolving detection of neutral molecule fragments produced in electron-ion interactions at the Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg. The detector is based on metallic magnetic calorimeters and consists of 4096 particle absorbers covering a total detection area of 44.8 mathrm {mm} × 44.8 mathrm {mm}. Groups of four absorbers are thermally coupled to a common paramagnetic temperature sensor where the strength of the thermal link is different for each absorber. This allows attributing a detector event within this group to the corresponding absorber by discriminating the signal rise times. A novel readout scheme further allows reading out all 1024 temperature sensors that are arranged in a 32 × 32 square array using only 16+16 current-sensing superconducting quantum interference devices. Numerical calculations taking into account a simplified detector model predict an energy resolution of Δ E_mathrm {FWHM} le 80 mathrm {eV} for all pixels of this detector.

  8. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  9. Quantitative study of energy-transfer mechanism in Eu,O-codoped GaN by time-resolved photoluminescence spectroscopy

    Science.gov (United States)

    Inaba, Tomohiro; Kojima, Takanori; Yamashita, Genki; Matsubara, Eiichi; Mitchell, Brandon; Miyagawa, Reina; Eryu, Osamu; Tatebayashi, Jun; Ashida, Masaaki; Fujiwara, Yasufumi

    2018-04-01

    In order to investigate the excitation processes in Eu,O-codoped GaN (GaN:Eu,O), the time-resolved photoluminescence signal including the rising part is analyzed. A rate equation is developed based upon a model for the excitation processes in GaN:Eu to fit the experimental data. The non-radiative recombination rate of the trap state in the GaN host, the energy transfer rate between the Eu3+ ions and the GaN host, the radiative transition probability of Eu3+ ion, as well as the ratio of the number of luminescent sites (OMVPE 4α and OMVPE 4β), are simultaneously determined. It is revealed and quantified that radiative transition probability of the Eu ion is the bottleneck for the enhancement of light output from GaN:Eu. We also evaluate the effect of the growth conditions on the luminescent efficiency of GaN:Eu quantitatively, and find the correlation between emission intensity of GaN:Eu and the fitting parameters introduced in our model.

  10. SU-E-T-782: Using Light Output From Doped Plastic Scintillators to Resolve the Linear Energy Transfer Spectrum of Clinical Electron Beams

    International Nuclear Information System (INIS)

    Nusrat, H; Pang, G; Ahmad, S; Keller, B; Sarfehnia, A

    2015-01-01

    Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillators (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident

  11. A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Alexander J.G., E-mail: alexander.lunt@chch.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Mohanty, Gaurav, E-mail: gaurav.mohanty@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Ying, Siqi, E-mail: siqi.ying@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Dluhoš, Jiří, E-mail: jiri.dluhos@tescan.cz [TESCAN Brno, s.r.o., Libušina tř. 1, 623 00 Brno-Kohoutovice (Czech Republic); Sui, Tan, E-mail: tan.sui@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Neo, Tee K., E-mail: neophyte@singnet.com.sg [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, 228510 (Singapore); Michler, Johann, E-mail: johann.michler@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Korsunsky, Alexander M., E-mail: alexander.korsunsky@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom)

    2015-12-01

    μm. - Highlights: • Cross section of yttria partially stabilised zirconia (YPSZ)–porcelain prosthesis • Energy dispersive X-ray spectroscopy shows 2–6 μm elemental diffusion zone. • Transmission electron microscopy shows voids in near interface porcelain. • Complex near interface YPSZ microstructure shows grains embedded in porcelain. • Spatially resolved micropillar compression reveals modulus and strength variation.

  12. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor.

    Science.gov (United States)

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki

    2018-01-01

    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  13. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  14. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Science.gov (United States)

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    Science.gov (United States)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  16. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  17. Bulk electronic structures of n-type superconductor Nd1.85Ce0.15CuO4 probed by high energy angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Tsunekawa, M.; Sekiyama, A.; Kasai, S.; Yamasaki, A.; Fujiwara, H.; Sing, M.; Shigemoto, A.; Imada, S.; Onose, Y.; Tokura, Y.; Muro, T.; Suga, S.

    2005-01-01

    We report on a high-energy angle-resolved photoemission (ARPES) study of the n-type high-T C cuprate, Nd 1.85 Ce 0.15 CuO 4 (NCCO). Our bulk sensitive results suggest a hole-like Fermi surface as seen by the so far reported low-energy ARPES studies. The soft X-ray Cu 2p core-level photoemission spectra show clear polar-angle dependence, suggesting the difference in electron states between the bulk and surface

  18. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    Science.gov (United States)

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  19. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  20. Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2008-10-01

    The performance of multimetal-(Cu, Cr, Zn, Ni, and Co)-ion-exchanged zeolite A prepared from both a commercial-grade sample and one produced from coal fly ash in methane emissions abatement was evaluated in this study. The ion-exchange process was used to load the metal ions in zeolite A samples. The methane conversion efficiency by the samples was studied under various parameters including the amount of metal loading (7.3-19.4 wt%), reaction temperature (25-500 degrees C), space velocity (8400-41 900 h(-1)), and methane concentration (0.5-3.2 vol %). At 500 degrees C, the original commercial-grade zeolite A catalyzed 3% of the methane only, whereas the addition of different percentages of metals in the sample enhanced the methane conversion efficiency by 40-85%. Greater methane conversion was observed by increasing the percentage of metals added to the zeolite even though the BET surface area of the zeolite consequently decreased. Higher percentage methane conversion over the multi-ion-exchanged samples was observed at lower space velocities indicating the importance of the mass diffusion of reactants and products in the zeolite. Compared to the multi-ion-exchanged zeolite A prepared from the commercial-grade zeolite, the one produced from coal fly ash demonstrated similar performances in methane emissions abatement, showing the potential use of this low cost recycled material in gaseous pollutant treatment.

  1. Collision energy-resolved study of the emission cross-section and the Penning ionization cross-section in the reaction of BrCN with He*(2 3S)

    Science.gov (United States)

    Kanda, Kazuhiro; Yamakita, Yoshihiro; Ohno, Koichi

    2001-12-01

    The dissociative excitation of BrCN producing CN(B 2Σ +) fragment by the collision of He *(2 3S) was investigated by the collision energy-resolved electron and emission spectroscopy using time-of-flight method with a high-intensity He * beam. The Penning electrons ejected from BrCN and the subsequent CN ( B2Σ +- X2Σ +) emission were measured as a function of collision energy in the range of 90-180 meV. The formation of CN ( B2Σ +) is concluded to proceed dominantly via the promotion of an electron from Π-character orbital, by comparison between the collision energy dependence of the partial Penning ionization cross-sections and the CN ( B2Σ +- X2Σ +) emission cross-section.

  2. Future perspectives for climate action. How economics can prescribe more than an energy charge. An essay on how economics can contribute to resolving the climate problem

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, S.

    2013-07-15

    How can economics contribute to designing a 'solution' for the emerging climate crisis? This essay attempts to answer that question by investigating the roots of economic thinking and analyzing the coordination issues that are at the heart of the climate problem. While economics has been a protagonist in climate change debates by providing economic instruments such as tradeable emission permits, it has also been an antagonist by calling into doubt the need for mitigation, the benefits of which were held not to outweigh the costs. This essay argues that climate change is primarily a social equity issue and that economics is a poor science for analyzing such issues. Discussion models in economics and climate change science are fundamentally different, moreover, which means the two disciplines are prone to mutual misunderstanding. Nonetheless, to resolve the climate problem, climate science could well benefit from economic thinking, and especially from theoretical ideas from institutional economics concerning the design of effective policy instruments.

  3. Future perspectives for climate action. How economics can prescribe more than an energy charge. An essay on how economics can contribute to resolving the climate problem

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, S.

    2013-07-15

    How can economics contribute to designing a 'solution' for the emerging climate crisis? This essay attempts to answer that question by investigating the roots of economic thinking and analyzing the coordination issues that are at the heart of the climate problem. While economics has been a protagonist in climate change debates by providing economic instruments such as tradeable emission permits, it has also been an antagonist by calling into doubt the need for mitigation, the benefits of which were held not to outweigh the costs. This essay argues that climate change is primarily a social equity issue and that economics is a poor science for analyzing such issues. Discussion models in economics and climate change science are fundamentally different, moreover, which means the two disciplines are prone to mutual misunderstanding. Nonetheless, to resolve the climate problem, climate science could well benefit from economic thinking, and especially from theoretical ideas from institutional economics concerning the design of effective policy instruments.

  4. Rotationally resolved pulsed-field ionization photoelectron bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) in the energy range of 17.0-18.2 eV

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Evans, M. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Ng, C. Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Hsu, C.-W. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jarvis, G. K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-01-15

    We have obtained rotationally resolved pulsed-field ionization photoelectron (PFI-PE) spectra for O{sub 2} in the energy range of 17.05-18.13 eV, covering the ionization transitions O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12,N{sup +})(<-)O{sub 2}(X {sup 3}{sigma}{sub g}{sup -},v{sup ''}=0,N{sup ''}). Although these O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}) PFI-PE bands have significant overlaps with vibrational bands for O{sub 2}{sup +}(a {sup 4}{pi}{sub u}) and O{sub 2}{sup +}(X {sup 2}{pi}{sub g}), we have identified all the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) bands by simulation of spectra obtained using supersonically cooled O{sub 2} samples with rotational temperatures {approx_equal}20 and 220 K. While these v{sup +}=0-12 PFI-PE bands represent the first rotationally resolved photoelectron data for O{sub 2}{sup +}(A {sup 2}{pi}{sub u}), the PFI-PE bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) are the first rotationally resolved spectroscopic data for these levels. The simulation also allows the determination of accurate ionization energies, vibrational constants, and rotational constants for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12). The analysis of the PFI-PE spectra supports the conclusion of the previous emission study that the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) states are strongly perturbed by a nearby electronic state. (c) 2000 American Institute of Physics.

  5. Energy dispersions of single-crystalline Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ superconductors determined using angle-resolved photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Dessau, D.S.; Wells, B.O.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.

    1989-01-01

    Angle-resolved photoemission studies of single-crystalline La-doped Bi-Sr-Ca-Cu- 90-K superconductors (Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ ) were performed utilizing synchrotron radiation covering the photon energy range 10--40 eV. The data conclusively reveal a dispersionless character of the valence-band states as a function of the wave-vector component parallel to the c axis, in agreement with the predictions of band calculations. Band effects are evident from both intensity modulations of the spectral features in the valence band and from energy dispersions as a function of the wave vector component lying in the basal a-b plane

  6. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, Martin Paul [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  7. High Flux Energy-Resolved Photon-Counting X-Ray Imaging Arrays with CdTe and CdZnTe for Clinical CT

    International Nuclear Information System (INIS)

    Barber, William C.; Hartsough, Neal E.; Gandhi, Thulasidharan; Iwanczyk, Jan S.; Wessel, Jan C.; Nygard, Einar; Malakhov, Nail; Wawrzyniak, Gregor; Dorholt, Ole; Danielsen, Roar

    2013-06-01

    We have fabricated fast room-temperature energy dispersive photon counting x-ray imaging arrays using pixellated cadmium zinc (CdTe) and cadmium zinc telluride (CdZnTe) semiconductors. We have also fabricated fast application specific integrated circuits (ASICs) with a two dimensional (2D) array of inputs for readout from the CdZnTe sensors. The new CdTe and CdZnTe sensors have a 2D array of pixels with a 0.5 mm pitch and can be tiled in 2D. The new 2D ASICs have four energy discriminators per pixel with a linear energy response across the entire dynamic range for clinical CT. The ASICs can also be tiled in 2D and are designed to fit within the active area of the 2D sensors. We have measured several important performance parameters including; an output count rate (OCR) in excess of 20 million counts per second per square mm, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor less than 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdTE and CdZnTe sensors incurring very little additional capacitance. We present a comparison of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, and noise floor. (authors)

  8. Time resolved studies of dual emission and photoinduced energy transfer in a Tris methoxy coumarin derivative of a cryptand and its complex with Tb(NO{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Subhodip [Department of Chemistry, Presidency College, Kolkata 700 073 (India); Roy, Maitrayee Basu [Department of Chemistry, Presidency College, Kolkata 700 073 (India); Ghosh, Sanjib [Department of Chemistry, Presidency College, Kolkata 700 073 (India)], E-mail: sanjibg@cal2.vsnl.net.in

    2006-09-29

    The paper reports time resolved emission studies in different solvents of the dual emission observed in the macrotricyclic cryptand (L) where the three secondary amino nitrogen have been derivatized with methoxy coumarin at room temperature and at 77K. The emission from the 'locally excited monomer state' has a lifetime less than 1ns while the other emitting state is an exciplex state with a lifetime of 4-5ns depending on the solvent. The lifetime is found to increase significantly in the presence of protons and at 77K exhibiting photoinduced electron transfer (PET) in the system L. The system exhibits photoinduced energy transfer (ET) in its Tb(III) complex using NO{sub 3}{sup -} ion as counteranion at room temperature as well as at 77K. The rate constants for energy transfer from coumarin moiety to Tb(III) have been evaluated at room temperature and at 77K following the decay of {sup 5}D{sub 4}->{sup 7}F{sub 5} emission of Tb(III). The results indicate that energy transfer takes place from the lowest triplet state of coumarin moiety to Tb(III) by exchange mechanism. The energy transfer (ET) rate constants at room temperature and at 77K have been evaluated and interpreted using the geometry of L obtained by theoretical calculation.

  9. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.; Kurtz, Charles; Grey, Clare P.; Chapman, Karena W.; Chupas, Peter J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstrated for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.

  10. Effect of multi-ions on electromagnetic ion-cyclotron waves with a hot plasma around the polar cusp

    International Nuclear Information System (INIS)

    Patel, Soniya; Varma, P; Tiwari, M S

    2011-01-01

    Electromagnetic ion cyclotron (EMIC) instabilities with an isotropic ion beam and general loss-cone distribution of hot core plasmas are discussed. The growth rate of the wave, perpendicular heating of ions, parallel resonant energy and marginal instability of the EMIC waves in homogeneous plasmas are obtained using the dispersion relation for hot plasmas consisting of H + , He + ,O + ions and electrons. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by the isotropic ion beam. It is assumed that the resonant particles and the ion beam participate in energy exchange with the wave, whereas the non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in hot plasmas by the energy conservation method with a general loss-cone distribution function. We also discuss the effect of positive and negative ion beam velocity on the growth rate of the wave. The thermal anisotropy of the ions of the core plasma acts as a source of free energy for EMIC waves and enhances the growth rate. Heating of ions perpendicular to the magnetic field is discussed along with EMIC wave emission in the polar cusp region.

  11. Operation: Inherent Resolve

    DEFF Research Database (Denmark)

    Cramer-Larsen, Lars

    2015-01-01

    Kapitlet giver læseren indsigt i den internationale koalitions engagement mod IS igennem Operaton Inherent Resolve; herunder koalitionens strategi i forhold til IS strategi, ligesom det belyser kampagnens legalitet og folkeretlige grundlag, ligesom det giver et bud på overvejelser om kampagnens...

  12. Spatially resolved electron density and electron energy distribution function in Ar magnetron plasmas used for sputter-deposition of ZnO-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Maaloul, L.; Gangwar, R. K.; Morel, S.; Stafford, L., E-mail: luc.stafford@umontreal.ca [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada)

    2015-11-15

    Langmuir probe and trace rare gases optical emission spectroscopy were used to analyze the spatial structure of the electron density and electron energy distribution function (EEDF) in a cylindrical Ar magnetron plasma reactor used for sputter-deposition of ZnO-based thin films. While a typical Bessel (zero order) diffusion profile was observed along the radial direction for the number density of charged particles at 21 cm from the ZnO target, a significant rise of these populations with respect to the Bessel function was seen in the center of the reactor at 4 cm from the magnetron surface. As for the EEDF, it was found to transform from a more or less Maxwellian far from the target to a two-temperature Maxwellian with a depletion of high-energy electrons where magnetic field confinement effects become important. No significant change in the behavior of the electron density and EEDF across a wide range of pressures (5–100 mTorr) and self-bias voltages (115–300 V) was observed during magnetron sputtering of Zn, ZnO, and In{sub 2}O{sub 3} targets. This indicates that sputtering of Zn, In, and O atoms do not play a very significant role on the electron particle balance and electron heating dynamics, at least over the range of experimental conditions investigated.

  13. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barbes, Damien, E-mail: damien.barbes@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tabary, Joachim, E-mail: joachim.tabary@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Paulus, Caroline, E-mail: caroline.paulus@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Hazemann, Jean-Louis, E-mail: jean-louis.hazemann@neel.cnrs.fr [Univ.Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Verger, Loïck, E-mail: loick.verger@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2017-03-11

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  14. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  15. Resolved resonance parameters for 236Np

    International Nuclear Information System (INIS)

    Morogovskij, G.B.; Bakhanovich, L.A.

    2002-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236 Np experimental fission cross-section in the resolved resonance region. (author)

  16. Design and Beam Dynamics Studies of a Multi-Ion Linac Injector for the JLEIC Ion Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P. N.; Plastun, A. S.; Mustapha, B.; Conway, Z. A.

    2016-01-01

    The electron-ion collider (JLEIC) being proposed at JLab requires a new ion accelerator complex which includes a linac capable of delivering any ion beam from hydrogen to lead to the booster. We are currently developing a linac which consists of several ion sources, a normal conducting (NC) front end, up to 5 MeV/u, and a SC section for energies > 5 MeV/u. This design work is focused on the beam dynamics and electrodynamics studies performed to design efficient and cost-effective accelerating structures for both the NC and SC sections of the linac. Currently, we are considering two separate RFQs for the heavy-ion and light-ion beams including polarized beams, and different types of NC accelerating structures downstream of the RFQ. Quarter-wave and half-wave resonators can be effectively used in the SC section.

  17. Highly resolving computerized tomography

    International Nuclear Information System (INIS)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  18. Highly resolving computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions.

  19. Orbital Evolution and Orbital Phase Resolved Spectroscopy of the ...

    Indian Academy of Sciences (India)

    binary. We have carried out orbital phase resolved spectroscopy to mea- ... agreement with a simple model of a spherically symmetric stellar wind from the .... has a set of Narrow Field Instruments (NFI) comprising one Low Energy Concen-.

  20. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  1. Resolving Turbine Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Withey, Elizabeth Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The supercritical carbon dioxide (S-CO2) Brayton Cycle has gained significant attention in the last decade as an advanced power cycle capable of achieving high efficiency power conversion. Sandia National Laboratories, with support from the U.S. Department of Energy Office of Nuclear Energy (US DOE-NE), has been conducting research and development in order to deliver a technology that is ready for commercialization. Root cause analysis has been performed on the Recompression Loop at Sandia National Laboratories. It was found that particles throughout the loop are stainless steel, likely alloy 316 based upon the elemental composition. Deployment of a filter scheme is underway to both protect the turbomachinery and also for purposes of determining the specific cause for the particulate. Shake down tests of electric resistance (ER) as a potential in-situ monitoring scheme shows promise in high temperature systems. A modified instrument was purchased and held at 650°C for more than 1.5 months to date without issue. Quantitative measurements of this instrument will be benchmarked against witness samples in the future, but all qualitative trends to date are as to be expected. ER is a robust method for corrosion monitoring, but very slow at responding and can take several weeks under conditions to see obvious changes in behavior. Electrochemical noise was identified as an advanced technique that should be pursued for the ability to identify transients that would lead to poor material performance.

  2. Rosetta swing-by at Mars – an analysis of the ROMAP measurements in comparison with results of 3-D multi-ion hybrid simulations and MEX/ASPERA-3 data

    Directory of Open Access Journals (Sweden)

    A. Boesswetter

    2009-06-01

    Full Text Available The Rosetta spacecraft flew by Mars at a distance of 260 km on 25 February 2007 during a gravity assist manoeuvre. During the closest approach (CA the lander magnetometer ROMAP was switched on. The dataset taken during this swingby provides insight into the plasma environment around Mars: in addition to a pronounced bow shock crossing Rosetta recorded the signature of the pile up region of draped magnetic field. Also the Rosetta measurements showed signatures of crustal magnetic field anomalies which can be verified by results of a crustal magnetic field model. In order to understand the measured field morphology, multi-ion hybrid simulations were performed. Some of the input parameters for the simulations were obtained from Mars Express (MEX data which were contemporaneously collected during the Rosetta swingby. These simulations reproduces ROMAP magnetic field measurements and show that the interplanetary magnetic field pointed northward during the encounter. A spectral analysis shows upstream waves ahead of the bow shock and indicates the presence of the magnetic pile-up boundary (MPB. The multi-ion model reproduces the ion fluxes measured by MEX/ASPERA-3 and is in agreement with the measurements to within one order of magnitude.

  3. On the resolvents methods in quantum perturbation calculations

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    This paper gives a systematic review of resolvent methods in quantum perturbation calculations. The case of discrete spectrum of hamiltonian is considered specially (in the literature this is the fewest considered case). The topics of calculations of quantum transitions by using of the resolvent formalism, quantum transitions between states from particular subspaces, the shifts of energy levels, are shown. The main ideas of stationary perturbation theory developed by Lippmann and Schwinger are considered too. (author)

  4. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  5. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  6. High resolving power spectrometer for beam analysis

    International Nuclear Information System (INIS)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs

  7. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  11. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  12. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  13. Resolving Ethical Issues at School

    Science.gov (United States)

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  14. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  15. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  16. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  18. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    International Nuclear Information System (INIS)

    Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.

    2016-01-01

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D"3He, and T"3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of T_i(t) and T_e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  19. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  20. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  1. Spatially resolved spectroscopy on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Johanna

    2009-02-20

    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  2. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  3. Mediation for resolving family disputes

    Directory of Open Access Journals (Sweden)

    Kamenecka-Usova M.

    2016-01-01

    Full Text Available Nowadays the understanding of the institute of marriage and its importance in the society has changed. Marriage is no longer assumed to be a commitment for a lifetime. As the principle of equality has replaced hierarchy as the guiding principle of family law it gave more grounds for family disputes and it became socially acceptable to leave marriages that are intolerable or merely unfulfilling. The aim of this article is to suggest an alternative dispute resolution method-mediation as a worthy option for resolving family conflicts.

  4. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  5. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  6. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  7. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  13. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  16. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  19. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  20. Energy

    International Nuclear Information System (INIS)

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  1. Energy

    OpenAIRE

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  2. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  3. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  4. Angle-resolved photoelectron spectrometry: new electron optics and detection system

    International Nuclear Information System (INIS)

    Hoof, H.A. van.

    1980-01-01

    A new spectrometer system is described, designed to measure angle-resolved energy distributions of photoemitted electrons efficiently. Some results are presented of measurements on a Si(001) surface. (Auth.)

  5. Panchromatic SED modelling of spatially resolved galaxies

    Science.gov (United States)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  6. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  7. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  8. Resolvability of regional density structure

    Science.gov (United States)

    Plonka, A.; Fichtner, A.

    2016-12-01

    Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convectivemotion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravityprovide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling,making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assessif 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within thecrust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we performprincipal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish theextent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrainedindependently. Since the density imprint we observe is not exclusively linked to travel times and amplitudes of specific phases,we consider waveform differences between complete seismograms. We test the method using a known smooth model of the crust and seismograms with clear Love and Rayleigh waves, showing that - as expected - the first principal kernel maximizes sensitivity to SH and SV velocity structure, respectively, and that the leakage between S velocity, P velocity and density parameter spaces is minimal in the chosen setup. Next, we apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density

  9. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  10. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  11. Capacity Fading Mechanism of the Commercial 18650 LiFePO4-Based Lithium-Ion Batteries: An in Situ Time-Resolved High-Energy Synchrotron XRD Study.

    Science.gov (United States)

    Liu, Qi; Liu, Yadong; Yang, Fan; He, Hao; Xiao, Xianghui; Ren, Yang; Lu, Wenquan; Stach, Eric; Xie, Jian

    2018-02-07

    In situ high-energy synchrotron XRD studies were carried out on commercial 18650 LiFePO 4 cells at different cycles to track and investigate the dynamic, chemical, and structural changes in the course of long-term cycling to elucidate the capacity fading mechanism. The results indicate that the crystalline structural deterioration of the LiFePO 4 cathode and the graphite anode is unlikely to happen before capacity fades below 80% of the initial capacity. Rather, the loss of the active lithium source is the primary cause for the capacity fade, which leads to the appearance of inactive FePO 4 that is proportional to the absence of the lithium source. Our in situ HESXRD studies further show that the lithium-ion insertion and deinsertion behavior of LiFePO 4 continuously changed with cycling. For a fresh cell, the LiFePO 4 experienced a dual-phase solid-solution behavior, whereas with increasing cycle numbers, the dynamic change, which is characteristic of the continuous decay of solid solution behavior, is obvious. The unpredicted dynamic change may result from the morphology evolution of LiFePO 4 particles and the loss of the lithium source, which may be the cause of the decreased rate capability of LiFePO 4 cells after long-term cycling.

  12. Imposing resolved turbulence in CFD simulations

    DEFF Research Database (Denmark)

    Gilling, L.; Sørensen, Niels N.

    2011-01-01

    In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...

  13. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fast time-resolved aerosol collector: proof of concept

    Science.gov (United States)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  15. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  16. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  17. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  18. Retrofit breakers resolve trip failures

    International Nuclear Information System (INIS)

    Hanna, G.L.

    1995-01-01

    This articles examines how power plants can use advance planning and retrofit equipment to upgrade existing systems while avoiding unnecessary downtime. A break that fails to open challenges the safety features of a nuclear power plant. To ensure reliable operations, the utility selected a comprehensive retrofit program to replace a third of the 200 breakers originally installed at the Shearon Harris Nuclear Power Plant. Under contract, the retrofits--Siemens RLN breakers--were built and qualified for nuclear service by Wyle Laboratories through a special teaming agreement with Siemens Energy and Automation. The project offers an excellent example of how a utility can use advance planning and retrofit equipment to upgrade its existing systems while avoiding unnecessary downtime

  19. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  20. Knowledge Extraction from Atomically Resolved Images.

    Science.gov (United States)

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  1. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  2. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  3. Wasted energy?

    NARCIS (Netherlands)

    E.M. Steg

    1999-01-01

    Original title: Verspilde energie? Many environmental problems are increasing primarily due to rising production and consumption, in other words due to the behaviour of consumers. Accordingly, there is a growing realisation that environmental problems must be partly resolved through a change

  4. Highly Resolved Studies of Vacuum Ultraviolet Photoionization Dynamics

    Science.gov (United States)

    Kakar, Sandeep

    We use measurements of dispersed fluorescence from electronically excited photoions to study fundamental aspects of intramolecular dynamics. Our experimental innovations make it possible to obtain highly resolved photoionization data that offer qualitative insights into molecular scattering. In particular, we obtain vibrationally resolved data to probe coupling between the electronic and nuclear degrees of freedom by studying the distribution of vibrational energy among photoions. Vibrationally resolved branching ratios are measured over a broad spectral range of excitation energy and their non-Franck-Condon behavior is used as a tool to investigate two diverse aspects of shape resonant photoionization. First, vibrational branching ratios are obtained for the SiF_4 5a _1^{-1} and CS_2 5sigma_{rm u} ^{-1} photoionization channels to help elucidate the microscopic aspects of shape resonant wavefunction for polyatomic molecules. It is shown that in such molecules the shape resonant wavefunction is not necessarily attributable to a specific bond in the molecule. Second, the multichannel aspect of shape resonant photoionization dynamics, reflected in continuum channel coupling, is investigated by obtaining vibrational branching ratios for the 2 sigma_{rm u}^{ -1} and 4sigma^{ -1} photoionization of the isoelectronic molecules N_2 and CO, respectively. These data indicate that effects of continuum coupling may be widespread. We also present the first set of rotationally resolved data over a wide energy range for the 2 sigma_{rm u}^{ -1} photoionization of N_2. These data probe the partitioning of the angular momentum between the photoelectron and photoion, and highlight the multicenter nature of the molecular potential. These case studies illustrate the utility of dispersed fluorescence measurements as a complement to photoelectron spectroscopy for obtaining highly resolved data for molecular photoionization. These measurements makes it possible to probe intrinsically

  5. First Resolved Images of the Mira AB Symbiotic Binary at Centimeter Wavelengths

    OpenAIRE

    Matthews, Lynn D.; Karovska, Margarita

    2005-01-01

    We report the first spatially resolved radio continuum measurements of the Mira AB symbiotic binary system, based on observations obtained with the Very Large Array (VLA). This is the first time that a symbiotic binary has been resolved unambiguously at centimeter wavelengths. We describe the results of VLA monitoring of both stars over a ten month period, together with constraints on their individual spectral energy distributions, variability, and radio emission mechanisms. The emission from...

  6. Angle resolved mass spectrometry of positive ions transmitted through high aspect ratio channels in a radio frequency discharge

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.; Imai, S.

    1997-01-01

    The behavior of positive ions in high aspect ratio structures, relevant to the reactive ion etching of deep trenches, has been studied by means of energy resolved mass spectrometry. High aspect ratio trenches are simulated by capillary plates with various aspect ratios. Angle resolved measurements

  7. Rotationally resolved flurorescence as a probe of molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Kakar, S.; Choi, H.C.

    1993-01-01

    We present rotationally resolved data for N 2 (2σ u -1 ) photoionization in the excitation energy range 19 ≤ hν ≤ 35 eV. These are the first rotationally resolved measurements on the photoion over an extended spectral range above the ionization threshold. The requisite resolution is obtained by measuring rotationally resolved fluorescence from electronically excited photoions created by synchrotron radiation. This technique is useful for studying dynamical features embedded deep in the ionization continua and should supplement laser-based methods that are limited to probing near-threshold phenomena. The present study shows that the outgoing photoelectron can alter the rotational motion of the more massive photoion by exchanging angular momentum and this partitioning of angular momentum depends on the ionization dynamics. Thus, our data directly probe electron-molecule interactions and are sensitive probes of scattering dynamics. We are currently investigating dynamical features such as shape resonances and Cooper minima with rotational resolution for deciphering microscopic aspects of molecular scattering and these efforts will be discussed

  8. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  9. Resolving the Circumgalactic Medium in the NEPHTHYS Simulations

    Science.gov (United States)

    Richardson, Mark Lawrence Albert; Devriendt, Julien; Slyz, Adrianne; Rosdahl, Karl Joakim; Kimm, Taysun

    2018-01-01

    NEPHTHYS is a RAMSES Cosmological-zoom galaxy simulation suite investigating the impact of stellar feedback (winds, radiation, and type Ia and II SNe) on z > 1 ~L* galaxies and their environments. NEPHTHYS has ~10 pc resolution in the galaxy, where the scales driving star formation and the interaction of stellar feedback with the ISM can begin to be resolved. As outflows, winds, and radiation permeate through the circumgalactic medium (CGM) they can heat or cool gas, and deposit metals throughout the CGM. Such material in the CGM is seen by spectroscopic studies of distant quasars, where CGM gas of foreground galaxies is observed in absorption. It is still unclear what the origin and evolution of this gas is. To help answer this, NEPHTHYS includes additional refinement in the CGM, refining it to an unrivaled 80 pc resolution. I will discuss how this extra resolution is crucial for resolving the complex structure of outflows and accretion in the CGM. Specifically, the metal mass and covering fraction of metals and high energy ions is increased, while the better resolved outflows leads to a decrease in the overall baryon content of galaxy halos, and individual outflow events can have larger velocities. Our results suggest that absorption observations of CGM are tracing a clumpy column of gas with multiple kinematic components.

  10. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  11. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  12. Resolving Ethical Dilemmas in Financial Audit

    OpenAIRE

    Professor PhD Turlea Eugeniu; PhD Student Mocanu Mihaela

    2010-01-01

    Resolving ethical dilemmas is a difficult endeavor in any field and financial auditing makes no exception. Ethical dilemmas are complex situations which derive from a conflict and in which a decision among several alternatives is needed. Ethical dilemmas are common in the work of the financial auditor, whose mission is to serve the interests of the public at large, not those of the auditee’s managers who mandate him/her. The objective of the present paper is to offer support in resolving ethi...

  13. Development of a Cloud Resolving Model for Heterogeneous Supercomputers

    Science.gov (United States)

    Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.

    2017-12-01

    A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.

  14. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  15. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Peter

    2012-12-07

    show a good agreement. Up to now the measurements of impinging spectra with a Timepix detector have been performed in radiation fields with a relatively high fluence. To cope with the requirement of measuring in radiation fields with a low fluence, there had to be changes in the method of analysis compared to those performed formerly. An important improvement in this context was the employment of the Bayesian deconvolution method. The spectra reconstructed with this method were then compared to the results of two different and established detection systems. Firstly, the shape of the deconvolved spectrum was compared to the one measured with a hpGe detector. Secondly, the calculated value of the kerma rate was compared to the one measured with an ionization chamber. This gave an estimate on the correctness of the absolute number of photons. Both comparisons have shown a good agreement and thus I was able to validate that the method delivers precise results. Compared to the formerly used spectrum-stripping method the Bayesian deconvolution turned out to be very stable and reliable. This robustness of the deconvolution method and the development of a pixel-by-pixel energy calibration were the keys towards position-resolved spectrometry. With such a precise energy calibration the energy resolution was enhanced by up to 45%. This improved accuracy in the measurement has been very demanding on the improvements of the simulation of the response matrix needed for deconvolution. Both this enhanced simulation and a pixel-by-pixel calibrated detector opened the possibility of measuring the anode heel effect. Not only the relative angular dependency of the spectrum emitted but also the change in the absolute photon fluence were measured. Furthermore, it is possible to even use small ROIs down to 4x4 pixels to evaluate a spectrum. This was then applied for the spectrometry of small focal spots of a miniature X-ray source used in therapeutics. Furthermore, the robustness and the

  16. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    International Nuclear Information System (INIS)

    Sievers, Peter

    2012-01-01

    show a good agreement. Up to now the measurements of impinging spectra with a Timepix detector have been performed in radiation fields with a relatively high fluence. To cope with the requirement of measuring in radiation fields with a low fluence, there had to be changes in the method of analysis compared to those performed formerly. An important improvement in this context was the employment of the Bayesian deconvolution method. The spectra reconstructed with this method were then compared to the results of two different and established detection systems. Firstly, the shape of the deconvolved spectrum was compared to the one measured with a hpGe detector. Secondly, the calculated value of the kerma rate was compared to the one measured with an ionization chamber. This gave an estimate on the correctness of the absolute number of photons. Both comparisons have shown a good agreement and thus I was able to validate that the method delivers precise results. Compared to the formerly used spectrum-stripping method the Bayesian deconvolution turned out to be very stable and reliable. This robustness of the deconvolution method and the development of a pixel-by-pixel energy calibration were the keys towards position-resolved spectrometry. With such a precise energy calibration the energy resolution was enhanced by up to 45%. This improved accuracy in the measurement has been very demanding on the improvements of the simulation of the response matrix needed for deconvolution. Both this enhanced simulation and a pixel-by-pixel calibrated detector opened the possibility of measuring the anode heel effect. Not only the relative angular dependency of the spectrum emitted but also the change in the absolute photon fluence were measured. Furthermore, it is possible to even use small ROIs down to 4x4 pixels to evaluate a spectrum. This was then applied for the spectrometry of small focal spots of a miniature X-ray source used in therapeutics. Furthermore, the robustness and the

  17. Electronic properties of linear carbon chains: Resolving the controversy

    International Nuclear Information System (INIS)

    Al-Backri, Amaal; Zólyomi, Viktor; Lambert, Colin J.

    2014-01-01

    Literature values for the energy gap of long one-dimensional carbon chains vary from as little as 0.2 eV to more than 4 eV. To resolve this discrepancy, we use the GW many-body approach to calculate the band gap E g of an infinite carbon chain. We also compute the energy dependence of the attenuation coefficient β governing the decay with chain length of the electrical conductance of long chains and compare this with recent experimental measurements of the single-molecule conductance of end-capped carbon chains. For long chains, we find E g = 2.16 eV and an upper bound for β of 0.21 Å −1

  18. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  19. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    International Nuclear Information System (INIS)

    Hsieh, S. H.; Chu, C. S.

    2016-01-01

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. This is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions

  20. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  1. Optical model calculation for the unresolved/resolved resonance region of Fe-56

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Froehner, F.H.

    1997-03-01

    We have studied optical model fits to total neutron cross sections of structural materials using the accurate data base for {sup 56}Fe existing in the resolved and unresolved resonance region. Averages over resolved resonances were calculated with Lorentzian weighting in Reich-Moore (reduced R matrix) approximation. Starting from the best available optical potentials we found that adjustment of the real and imaginary well depths does not work satisfactorily with the conventional weak linear energy dependence of the well depths. If, however, the linear dependences are modified towards low energies, the average total cross sections can be fitted quite well, from the resolved resonance region up to 20 MeV and higher. (author)

  2. Timepix3 as X-ray detector for time resolved synchrotron experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem, E-mail: hazem.yousef@diamond.ac.uk; Crevatin, Giulio; Gimenez, Eva N.; Horswell, Ian; Omar, David; Tartoni, Nicola

    2017-02-11

    The Timepix3 ASIC can be used very effectively for time resolved experiments at synchrotron facilities. We have carried out characterizations with the synchrotron beam in order to determine the time resolution and other characteristics such as the energy resolution, charge sharing and signals overlapping. The best time resolution achieved is 19 ns FWHM for 12 keV photons and 350 V bias voltage. The time resolution shows dependency on the photon energy as well as on the chip and acquisition parameters. - Highlights: • An estimate time resolution of the Timepix3 is produced based on the arrival time. • At high resolution, the time structure of the DLS synchrotron beam is resolved. • The arrival time information improves combining the charge split events. • The results enable performing a wide range of time resolved experiments.

  3. Timepix3 as X-ray detector for time resolved synchrotron experiments

    International Nuclear Information System (INIS)

    Yousef, Hazem; Crevatin, Giulio; Gimenez, Eva N.; Horswell, Ian; Omar, David; Tartoni, Nicola

    2017-01-01

    The Timepix3 ASIC can be used very effectively for time resolved experiments at synchrotron facilities. We have carried out characterizations with the synchrotron beam in order to determine the time resolution and other characteristics such as the energy resolution, charge sharing and signals overlapping. The best time resolution achieved is 19 ns FWHM for 12 keV photons and 350 V bias voltage. The time resolution shows dependency on the photon energy as well as on the chip and acquisition parameters. - Highlights: • An estimate time resolution of the Timepix3 is produced based on the arrival time. • At high resolution, the time structure of the DLS synchrotron beam is resolved. • The arrival time information improves combining the charge split events. • The results enable performing a wide range of time resolved experiments.

  4. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  5. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  6. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  7. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...... before. Inverse driving may find application with, e.g., supercompilation, thus suggesting a new kind of program inverter....

  8. Generalized Darcy–Oseen resolvent problem

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar; Ptashnyk, M.; Varnhorn, W.

    2016-01-01

    Roč. 39, č. 6 (2016), s. 1621-1630 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : Darcy-Oseen resolvent problem * semipermeable membrane * Brinkman-Darcy equations * fluid flow between free-fluid domains and porous media Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3872/abstract

  9. On marginally resolved objects in optical interferometry

    Science.gov (United States)

    Lachaume, R.

    2003-03-01

    With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.

  10. WFIRST: Resolving the Milky Way Galaxy

    Science.gov (United States)

    Kalirai, Jason; Conroy, Charlie; Dressler, Alan; Geha, Marla; Levesque, Emily; Lu, Jessica; Tumlinson, Jason

    2018-01-01

    WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. In this poster, we describe the activities of the WFIRST Science Investigation Team (SIT), "Resolving the Milky Way with WFIRST". Notional programs guiding our analysis include targeting sightlines to establish the first well-resolved large scale maps of the Galactic bulge aand central region, pockets of star formation in the disk, benchmark star clusters, and halo substructure and ultra faint dwarf satellites. As an output of this study, our team is building optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of Milky Way environments including new astrometric studies; and strategies and automated algorithms to find substructure and dwarf galaxies in the Milky Way through the WFIRST High Latitude Survey.

  11. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  12. Time-resolved Laue diffraction from protein crystals: Instrumental considerations

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Cornell Univ., Ithaca, NY; Moffat, K.; Szebenyi, D.M.E.

    1984-01-01

    A serious limitation of macromolecular crystallography has been its inability to determine changes in structure on a biochemical time scale of milliseconds or less. Recently, we have shown that X-ray exposures on single crystals of macromolecules may be obtained in the millisecond time range through the use of intense, polychromatic radiation with Δlambda/lambda approx.= 0.2 derived from the Cornell High Energy Synchrotron Source, CHESS. Such radiation falling on a stationary crystal yields a Laue diffraction pattern, in which almost all Laue reflections arise from a unique set of Miller indices and where their intensities are automatically integrated over wavelength. This Laue technique requires wide band pass optics, which may be obtained by a combination of reflection and transmission mirrors, filters or layered synthetic microstructures. Time-resolved macromolecular crystallography may be achieved by several data collection schemes: 'one-shot' recording coupled to a simple streak camera, repetitive sample perturbation coupled to a detector with temporal resolution and repetitive perturbation which uses the synchrotron pulses for stroboscopic triggering and detection. These schemes are appropriate for different time scales, roughly the milli-, micro- and nanosecond regimes. It appears that time-resolved crystallography is entirely feasible, with an ultimate time resolution limited only by the length of a synchrotron light pulse, some 150 ps at CHESS. (orig.)

  13. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  14. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    Science.gov (United States)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  15. Fully resolved simulations of expansion waves propagating into particle beds

    Science.gov (United States)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  16. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Sullivan, James O; Polívka, Tomás; Birge, Robert R; Frank, Harry A

    2006-11-16

    Xanthophylls are a major class of photosynthetic pigments that participate in an adaptation mechanism by which higher plants protect themselves from high light stress. In the present work, an ultrafast time-resolved spectroscopic investigation of all the major xanthophyll pigments from spinach has been performed. The molecules are zeaxanthin, lutein, violaxanthin, and neoxanthin. beta-Carotene was also studied. The experimental data reveal the inherent spectral properties and ultrafast dynamics including the S(1) state lifetimes of each of the pigments. In conjunction with quantum mechanical computations the results address the molecular features of xanthophylls that control the formation and decay of the S* state in solution. The findings provide compelling evidence that S* is an excited state with a conformational geometry twisted relative to the ground state. The data indicate that S* is formed via a branched pathway from higher excited singlet states and that its yield depends critically on the presence of beta-ionylidene rings in the polyene system of pi-electron conjugated double bonds. The data are expected to be beneficial to researchers employing ultrafast time-resolved spectroscopic methods to investigate the mechanisms of both energy transfer and nonphotochemical quenching in higher plant preparations.

  17. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  18. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  19. Resolving ultrafast exciton migration in organic solids at the nanoscale

    Science.gov (United States)

    Ginsberg, Naomi

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in photosynthesis and in organic semiconducting films is critical to the efficiency of natural and artificial light harvesting. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton migration lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore. By combining the ultrafast super-resolved measurements with exciton hopping simulations we furthermore specify the nature (in addition to the extent) of exciton migration as a function of the intrinsic and ensemble chromophore energy scales that determine a spatio-energetic landscape for migration. In collaboration with: Samuel Penwell, Lucas Ginsberg, University of California, Berkeley and Rodrigo Noriega University of Utah.

  20. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  1. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  2. Chemistry resolved kinetic flow modeling of TATB based explosives

    Science.gov (United States)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  3. Dijet angular distributions in direct and resolved photoproduction at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-05-01

    Jet photoproduction, where the two highest transverse energy (E T jet ) jets have E T jet above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess. (orig.)

  4. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  5. Achieving patient satisfaction: resolving patient complaints.

    Science.gov (United States)

    Oxler, K F

    1997-07-01

    Patients demand to be active participants on and partners with the health care team to design their care regimen. Patients bring unique perceptions and expectations and use these to evaluate service quality and satisfaction. If customer satisfaction is not achieved and a patient complaint results, staff must have the skills to respond and launch a service recovery program. Service recovery, when done with style and panache, can retain loyal customers. Achieving patient satisfaction and resolving patient complaints require commitment from top leadership and commitment from providers to dedicate the time to understand their patients' needs.

  6. Spatially Resolved Analysis of Bragg Selectivity

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2015-11-01

    Full Text Available This paper targets an inherent control of optical shrinkage in photosensitive polymers, contributing by means of spatially resolved analysis of volume holographic phase gratings. Point by point scanning of the local material response to the Gaussian intensity distribution of the recording beams is accomplished. Derived information on the local grating period and grating slant is evaluated by mapping of optical shrinkage in the lateral plane as well as through the depth of the layer. The influence of recording intensity, exposure duration and the material viscosity on the Bragg selectivity is investigated.

  7. Spatially Resolved Circumnuclear Dust in Centaurus A

    OpenAIRE

    Karovska, Margarita; Marengo, Massimo; Elvis, Martin; Fazio, Giovanni; Hora, Joseph; Hinz, Philip; Hoffmann, William; Meyer, Michael; Mamajek, Eric

    2003-01-01

    In this paper we present results from our exploratory mid-IR study of Centaurus A circumnuclear environment using high-angular resolution imaging at the Magellan 6.5m telescope with the MIRAC/BLINC camera. We detected emission from a compact region surrounding the nuclear source, and obtained photometry at 8.8 microns and in the N band. Our analysis suggests that the nuclear region is resolved with a size of approximately 3 pc. The mid-IR emission from this region is likely associated with co...

  8. Periodicity in Age-Resolved Populations

    Science.gov (United States)

    Esipov, Sergei

    We discuss the interplay between the non-linear diffusion and age-resolved population dynamics. Depending on the age properties of collective migration the system may exhibit continuous joint expansion of all ages or continuous expansion with age segregation. Between these two obvious limiting regimes there is an interesting window of periodic expansion, which has been previously used by us in modeling bacterial colonies of Proteus mirabilis. In order to test whether the age-dependent collective migration leads to periodicity in other systems we performed a Fourier analysis of historical data on ethnic expansions and found multiple co-existing periods of activity.

  9. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E.

    2002-02-01

    A review is made about the consequences of the European directive on energy that entered into application in august 2000. It appears that most countries are opening their electricity and gas markets at a faster pace than required by the E.U. directive. European gas imports reached 480 Gm{sup 3} in 2000 and are expected to be over 700 Gm{sup 3} in 2015, so the question of the reliability of the gas suppliers has to be answered at the European level. The current time is marked by an increase of the complexity of the energy market that is due to different factors: 1) the delay in the implementation of European energy directives in France, 2) new arrangement is occurring in United-Kingdom in the energy sector, 3) the lack of a regulating authority in Germany, and 4) the difficulty of inter-connecting the different European energy networks. This transitory period may generate some economic imbalances and competition disturbances by allowing some enterprises to benefit from lower energy prices before others. (A.C.)

  10. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Experiments are underway to investigate new diagnostics for electron beams in vacuum and in a plasma background. Measured parameters include temporally resolved beam current profile and beam emittance. These characterizations are being performed during electron beam diode closure experiments (1) and beam-plasma interaction experiments with either of two long-pulse accelerators: MELBA (Michigan Electron Long Beam Accelerator): Voltage = -1 MV, Current = 10 kA, at Pulselength = 0.1 to 1μs (1.4μs) for voltage flat to within +.7% (+.10%). The second accelerator is a long-pulse Febetron with parameters: Voltage = -0.5 MV, Current = 1 kA, and Pulselength = 0.3 s. Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) The threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons, 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system, 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage, 4) Quantitative data is obtained directly

  11. Rapid Spontaneously Resolving Acute Subdural Hematoma

    Science.gov (United States)

    Gan, Qi; Zhao, Hexiang; Zhang, Hanmei; You, Chao

    2017-01-01

    Introduction: This study reports a rare patient of a rapid spontaneously resolving acute subdural hematoma. In addition, an analysis of potential clues for the phenomenon is presented with a review of the literature. Patient Presentation: A 1-year-and-2-month-old boy fell from a height of approximately 2 m. The patient was in a superficial coma with a Glasgow Coma Scale of 8 when he was transferred to the authors’ hospital. Computed tomography revealed the presence of an acute subdural hematoma with a midline shift beyond 1 cm. His guardians refused invasive interventions and chose conservative treatment. Repeat imaging after 15 hours showed the evident resolution of the hematoma and midline reversion. Progressive magnetic resonance imaging demonstrated the complete resolution of the hematoma, without redistribution to a remote site. Conclusions: Even though this phenomenon has a low incidence, the probability of a rapid spontaneously resolving acute subdural hematoma should be considered when patients present with the following characteristics: children or elderly individuals suffering from mild to moderate head trauma; stable or rapidly recovered consciousness; and simple acute subdural hematoma with a moderate thickness and a particularly low-density band in computed tomography scans. PMID:28468224

  12. Healthcare Teams Neurodynamically Reorganize When Resolving Uncertainty

    Directory of Open Access Journals (Sweden)

    Ronald Stevens

    2016-11-01

    Full Text Available Research on the microscale neural dynamics of social interactions has yet to be translated into improvements in the assembly, training and evaluation of teams. This is partially due to the scale of neural involvements in team activities, spanning the millisecond oscillations in individual brains to the minutes/hours performance behaviors of the team. We have used intermediate neurodynamic representations to show that healthcare teams enter persistent (50–100 s neurodynamic states when they encounter and resolve uncertainty while managing simulated patients. Each of the second symbols was developed situating the electroencephalogram (EEG power of each team member in the contexts of those of other team members and the task. These representations were acquired from EEG headsets with 19 recording electrodes for each of the 1–40 Hz frequencies. Estimates of the information in each symbol stream were calculated from a 60 s moving window of Shannon entropy that was updated each second, providing a quantitative neurodynamic history of the team’s performance. Neurodynamic organizations fluctuated with the task demands with increased organization (i.e., lower entropy occurring when the team needed to resolve uncertainty. These results show that intermediate neurodynamic representations can provide a quantitative bridge between the micro and macro scales of teamwork.

  13. Time Resolved Deposition Measurements in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Roquemore, A.L.; Hogan, J.; Wampler, W.R.

    2004-01-01

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 (micro)g/cm 2 of deposition, however surprisingly, 15.9 (micro)g/cm 2 of material loss occurred at 7 discharges. The net deposited mass of 13.3 (micro)g/cm 2 matched the mass of 13.5 (micro)g/cm 2 measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition

  14. The time resolved SBS and SRS research in heavy water and its application in CARS

    Science.gov (United States)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  15. Local atomic structure of Fe/Cr multilayers: Depth-resolved method

    Science.gov (United States)

    Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.

    2017-10-01

    A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.

  16. Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations

    Science.gov (United States)

    Toosi, Siavash; Larsson, Johan

    2015-11-01

    Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.

  17. Time-resolved suprathermal x-rays

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Rosen, M.D.

    1978-01-01

    Temporally resolved x-ray spectra in the range of 1 to 20 keV have been obtained from gold disk targets irradiated by 1.06 μm laser pulses from the Argus facility. The x-ray streak camera used for the measurement has been calibrated for streak speed and dynamic range by using an air-gap Fabry-Perot etalon, and the instrument response has been calibrated using a multi-range monoenergetic x-ray source. The experimental results indicate that we are able to observe the ''hot'' x-ray temperature evolve in time and that the experimentally observed values can be qualitatively predicted by LASNEX code computations when the inhibited transport model is used

  18. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  19. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  20. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  1. Time - resolved thermography at Tokamak T-10

    International Nuclear Information System (INIS)

    Grunow, C.; Guenther, K.; Lingertat, J.; Chicherov, V.M.; Evstigneev, S.A.; Zvonkov, S.N.

    1987-01-01

    Thermographic experiments were performed at T-10 tokamak to investigate the thermic coupling of plasma and the limiter. The limiter is an internal equipment of the vacuum vessel of tokamak-type fusion devices and the interaction of plasma with limiter results a high thermal load of limiter for short time. In according to improve the limiter design the temperature distribution on the limiter surface was measured by a time-resolved thermographic method. Typical isotherms and temperature increment curves are presented. This measurement can be used as a systematic plasma diagnostic method because the limiter is installed in the tokamak whereas special additional probes often disturb the plasma discharge. (D.Gy.) 3 refs.; 7 figs

  2. Resolvent-Techniques for Multiple Exercise Problems

    International Nuclear Information System (INIS)

    Christensen, Sören; Lempa, Jukka

    2015-01-01

    We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristics of the problems can be identified more explicitly. We illustrate the main results with explicit examples

  3. Resolvent-Techniques for Multiple Exercise Problems

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Sören, E-mail: christensen@math.uni-kiel.de [Christian–Albrechts-University in Kiel, Mathematical Institute (Germany); Lempa, Jukka, E-mail: jukka.lempa@hioa.no [Oslo and Akershus University College, School of business, Faculty of Social Sciences (Norway)

    2015-02-15

    We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristics of the problems can be identified more explicitly. We illustrate the main results with explicit examples.

  4. Hot exozodiacal dust resolved around Vega with IOTA/IONIC

    Science.gov (United States)

    Defrère, D.; Absil, O.; Augereau, J.-C.; di Folco, E.; Berger, J.-P.; Coudé du Foresto, V.; Kervella, P.; Le Bouquin, J.-B.; Lebreton, J.; Millan-Gabet, R.; Monnier, J. D.; Olofsson, J.; Traub, W.

    2011-10-01

    Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. Aims: We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. Methods: Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. Results: Resolved circumstellar emission within ~6 AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). Conclusions: The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations.

  5. EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING

    International Nuclear Information System (INIS)

    Brown, J. M.; Blake, G. A.; Qi, C.; Wilner, D. J.; Dullemond, C. P.; Williams, J. P.

    2009-01-01

    Mid-infrared spectrophotometric observations have revealed a small subclass of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model-dependent method of finding central holes. Imaging of protoplanetry disks provides an independent check of SED modeling. We present here the direct characterization of three 33-47 AU radii inner gaps, in the disks around LkHα 330, SR 21N, and HD 135344B, via 340 GHz (880 μm) dust continuum aperture synthesis observations obtained with the Submillimeter Array (SMA). The large gaps are fully resolved at ∼0.''3 by the SMA data and mostly empty of dust, with less than (1-7.5) x 10 -6 M sun of fine grained solids inside the holes. Gas (as traced by atomic accretion markers and CO 4.7 μm rovibrational emission) is still present in the inner regions of all three disks. For each, the inner hole exhibits a relatively steep rise in dust emission to the outer disk, a feature more likely to originate from the gravitational influence of a companion body than from a process expected to show a more shallow gradient like grain growth. Importantly, the good agreement between the spatially resolved data and spectrophotometry-based models lends confidence to current interpretations of SEDs, wherein the significant dust emission deficits arise from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.

  6. Picosecond rotationally resolved stimulated emission pumping spectroscopy of nitric oxide

    Science.gov (United States)

    Tanjaroon, Chakree; Reeve, Scott W.; Ford, Alan; Murry, W. Dean; Lyon, Kevin; Yount, Bret; Britton, Dan; Burns, William A.; Allen, Susan D.; Bruce Johnson, J.

    2012-01-01

    Stimulated emission pumping (SEP) experiments were performed on the nitric oxide molecule in a flow cell environment using lasers with pulse widths of 17-25 ps. A lambda excitation scheme, or ''pump-dump" arrangement, was employed with the pump laser tuned to the T 00 vibronic band origin ( λ=226.35(1)nm) of the A2Σ+( v' = 0, J') ← X2Π1/2( v″ = 0, J″) and the dump laser scanned from 246-248 nm within the A2Σ+( v' = 0, J') → X2Π1/2( v″ = 2, J″) transition. The rotationally resolved SEP spectra were measured by observing the total fluorescence within the A2Σ+( v' = 0, J') → X2Π1/2( v″ = 1, J″) transition between 235 nm and 237.2 nm while scanning the dump laser wavelengths. Multiple rotational states were excited due to the broad laser bandwidth. Measurements showed that the resolved rotational structure depended on the energy and bandwidth of the applied pump and dump laser pulses. Analysis of the observed fluorescence depletion signals yielded an average percent fluorescence depletion of about 19% when λ=226.35(1)nm and λ=247.91(1)nm. This value reflects the percent transfer of the NO population from the A2Σ+( V' = 0, J') excited electronic state to the X2Π1/2( v″ = 2, J″) ground electronic state. The maximum expected depletion is 50% in the limit of dump saturation. Selective excitation of NO at the bandhead provides good spectral discrimination from the background emission and noise and unambiguously confirms the identity of the emitter.

  7. Energy transport

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The measurement of primary interaction cross sections and the incorporation of these data into Monte Carlo calculations provide detailed information about the initial spatial distribution of absorbed dose. Our theoretical energy transport studies have focused on the use of this information to predict the evolution of chemical species formed as a result of the energy deposition. This effort has led to a stochastic approach to diffusion kinetics that can account for the influence of track structure on the yield of free radicals in the radiolysis of water. Fluorescence studies with pulsed alpha particle and proton beams provided the first experimental test of our stochastic model of tract structure effects. Our experimental studies use time-resolved emission spectroscopy to investigate the mechanism of energy transport in nonpolar liquids. Studies of the concentration dependence of time-resolved emission from solutions of benzene in cyclohexane also show the importance of using low benzene concentrations to minimize the influence of benzene dimers on the emission kinetics

  8. Fully Resolved Simulations of 3D Printing

    Science.gov (United States)

    Tryggvason, Gretar; Xia, Huanxiong; Lu, Jiacai

    2017-11-01

    Numerical simulations of Fused Deposition Modeling (FDM) (or Fused Filament Fabrication) where a filament of hot, viscous polymer is deposited to ``print'' a three-dimensional object, layer by layer, are presented. A finite volume/front tracking method is used to follow the injection, cooling, solidification and shrinking of the filament. The injection of the hot melt is modeled using a volume source, combined with a nozzle, modeled as an immersed boundary, that follows a prescribed trajectory. The viscosity of the melt depends on the temperature and the shear rate and the polymer becomes immobile as its viscosity increases. As the polymer solidifies, the stress is found by assuming a hyperelastic constitutive equation. The method is described and its accuracy and convergence properties are tested by grid refinement studies for a simple setup involving two short filaments, one on top of the other. The effect of the various injection parameters, such as nozzle velocity and injection velocity are briefly examined and the applicability of the approach to simulate the construction of simple multilayer objects is shown. The role of fully resolved simulations for additive manufacturing and their use for novel processes and as the ``ground truth'' for reduced order models is discussed.

  9. Time resolved ion beam induced charge collection

    International Nuclear Information System (INIS)

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  10. The Resolved Stellar Population of Leo A

    Science.gov (United States)

    Tolstoy, Eline

    1996-05-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Hα filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an accurate color-magnitude diagram (CMD). We have used the Bavesian inference method described by Tolstoy & Saha to calculate the likelihood of a Monte Carlo simulation of the stellar population of Leo A being a good match to the data within the well understood errors in the data. The magnitude limits on our data are sensitive enough to look back at ~1 Gyr of star formation history at the distance of Leo A. To explain the observed ratio of red to blue stars in the observed CMD, it is necessary to invoke either a steadily decreasing star formation rate toward the present time or gaps in the star formation history. We also compare the properties of the observed stellar population with the known spatial distribution of the H I gas and H II regions to support the conclusions from CMD modeling. We consider the possibility that currently there is a period of diminished star formation in Leo A, as evidenced by the lack of very young stars in the CMD and the faint H II regions. How the chaotic H I distribution, with no observable rotation, fits into our picture of the evolution of Leo A is as yet unclear.

  11. Component-resolved diagnostics in vernal conjunctivitis.

    Science.gov (United States)

    Armentia, Alicia; Sanchís, Eugenia; Montero, Javier A

    2016-10-01

    Conventional diagnostic tests in allergy are insufficient to clarify the cause of vernal conjunctivitis. Component-resolved diagnostic (CRD) by microarray allergen assay may be useful in detecting allergens that might be involved in the inflammatory process. In a recent trial in patients suffered from eosinophilic esophagitis, after 2 years of the CRD-guided exclusion diet and specific immunotherapy, significant clinical improvement was observed, and 68% of patients were discharged (cure based on negative biopsy, no symptoms, and no medication intake). Our new objective was to evaluate IgE-mediated hypersensitivity by CRD in tears and serum from patients with vernal conjunctivitis and treat patients with identified triggering allergens by specific immunotherapy. Twenty-five patients with vernal conjunctivitis were evaluated. The identified triggering allergens were n Lol p 1 (11 cases), n Cyn d 1 (eight cases), group 4 and 6 grasses (six cases) and group 5 of grasses (five cases). Prick test and pollen IgE were positive in one case. Clinical improvement was observed in 13/25 vernal conjunctivitis patients after 1-year specific immunotherapy. CRD seems to be a more sensitive diagnostic tool compared with prick test and IgE detection. Specific CRD-led immunotherapy may achieve clinical improvements in vernal conjunctivitis patients.

  12. Component Resolved Diagnosis in Hymenoptera Anaphylaxis.

    Science.gov (United States)

    Tomsitz, D; Brockow, K

    2017-06-01

    Hymenoptera anaphylaxis is one of the leading causes of severe allergic reactions and can be fatal. Venom-specific immunotherapy (VIT) can prevent a life-threatening reaction; however, confirmation of an allergy to a Hymenoptera venom is a prerequisite before starting such a treatment. Component resolved diagnostics (CRD) have helped to better identify the responsible allergen. Many new insect venom allergens have been identified within the last few years. Commercially available recombinant allergens offer new diagnostic tools for detecting sensitivity to insect venoms. Additional added sensitivity to nearly 95% was introduced by spiking yellow jacket venom (YJV) extract with Ves v 5. The further value of CRD for sensitivity in YJV and honey bee venom (HBV) allergy is more controversially discussed. Recombinant allergens devoid of cross-reactive carbohydrate determinants often help to identify the culprit venom in patients with double sensitivity to YJV and HBV. CRD identified a group of patients with predominant Api m 10 sensitization, which may be less well protected by VIT, as some treatment extracts are lacking this allergen. The diagnostic gap of previously undetected Hymenoptera allergy has been decreased via production of recombinant allergens. Knowledge of analogies in interspecies proteins and cross-reactive carbohydrate determinants is necessary to distinguish relevant from irrelevant sensitizations.

  13. Time resolved ion beam induced charge collection

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  14. Resolving Gas-Phase Metallicity In Galaxies

    Science.gov (United States)

    Carton, David

    2017-06-01

    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  15. Resolved Parental Infertility and Children's Educational Achievement.

    Science.gov (United States)

    Branigan, Amelia R; Helgertz, Jonas

    2017-06-01

    Although difficulty conceiving a child has long been a major medical and social preoccupation, it has not been considered as a predictor of long-term outcomes in children ultimately conceived. This is consistent with a broader gap in knowledge regarding the consequences of parental health for educational performance in offspring. Here we address that omission, asking how resolved parental infertility relates to children's academic achievement. In a sample of all Swedish births between 1988 and 1995, we find that involuntary childlessness prior to either a first or a second birth is associated with lower academic achievement (both test scores and GPA) in children at age 16, even if the period of infertility was prior to a sibling's birth rather than the child's own. Our results support a conceptualization of infertility as a cumulative physical and social experience with effects extending well beyond the point at which a child is born, and emphasize the need to better understand how specific parental health conditions constrain children's educational outcomes.

  16. Picosecond rotationally resolved stimulated emission pumping spectroscopy of nitric oxide

    International Nuclear Information System (INIS)

    Tanjaroon, Chakree; Reeve, Scott W.; Ford, Alan; Murry, W. Dean; Lyon, Kevin; Yount, Bret; Britton, Dan; Burns, William A.; Allen, Susan D.; Bruce Johnson, J.

    2012-01-01

    Highlights: ► Stimulated emission pumping for nitric oxide was studied using picosecond lasers. ► Weak and tightly focused pulses provide sufficient energy for population transfer. ► Selective excitation at the bandhead yields strong fluorescence depletion signals. ► We observe 19% population transfer to v″ = 2 of the X 2 Π 1/2 ground electronic state. - Abstract: Stimulated emission pumping (SEP) experiments were performed on the nitric oxide molecule in a flow cell environment using lasers with pulse widths of 17–25 ps. A lambda excitation scheme, or ‘‘pump–dump” arrangement, was employed with the pump laser tuned to the T 00 vibronic band origin (λ pump =226.35(1)nm) of the A 2 Σ + (v′ = 0, J′) ← X 2 Π 1/2 (v″ = 0, J″) and the dump laser scanned from 246–248 nm within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 2, J″) transition. The rotationally resolved SEP spectra were measured by observing the total fluorescence within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 1, J″) transition between 235 nm and 237.2 nm while scanning the dump laser wavelengths. Multiple rotational states were excited due to the broad laser bandwidth. Measurements showed that the resolved rotational structure depended on the energy and bandwidth of the applied pump and dump laser pulses. Analysis of the observed fluorescence depletion signals yielded an average percent fluorescence depletion of about 19% when λ pump =226.35(1)nm and λ dump =247.91(1)nm. This value reflects the percent transfer of the NO population from the A 2 Σ + (V′ = 0, J′) excited electronic state to the X 2 Π 1/2 (v″ = 2, J″) ground electronic state. The maximum expected depletion is 50% in the limit of dump saturation. Selective excitation of NO at the bandhead provides good spectral discrimination from the background emission and noise and unambiguously confirms the identity of the emitter.

  17. HERSCHEL -RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS—EVIDENCE OF ICY GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R., E-mail: Farisa@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-11-01

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.

  18. Photon number projection using non-number-resolving detectors

    International Nuclear Information System (INIS)

    Rohde, Peter P; Webb, James G; Huntington, Elanor H; Ralph, Timothy C

    2007-01-01

    Number-resolving photo-detection is necessary for many quantum optics experiments, especially in the application of entangled state preparation. Several schemes have been proposed for approximating number-resolving photo-detection using non-number-resolving detectors. Such techniques include multi-port detection and time-division multiplexing. We provide a detailed analysis and comparison of different number-resolving detection schemes, with a view to creating a useful reference for experimentalists. We show that the ideal architecture for projective measurements is a function of the detector's dark count and efficiency parameters. We also describe a process for selecting an appropriate topology given actual experimental component parameters

  19. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  20. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  1. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  2. Time-resolved luminescence of Eu2+-aggregate centers in CsBr crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Turchak, R.M.; Voznjak, T.I.; Stryganjuk, G.B.

    2005-01-01

    The luminescence of Eu 2+ -V Cs dipole centers and CsEuBr 3 aggregate centers, as well as the features of the energy transfer to these centers by excitons have been studied in CsBr:Eu crystals by means of investigation of the time-resolved emission spectra and luminescence decay kinetics under excitation by synchrotron radiation at RT. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Capital-energy complementarity in aggregate energy-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, W.W.

    1979-10-01

    The interplay between capital and energy will affect the outcome of energy-policy initiatives. A static model clarifies the interpretation of the conflicting empirical evidence on the nature of this interplay. This resolves an apparent conflict between engineering and economc interpretations and points to an additional ambiguity that can be resolved by distinguishing between policy issues at aggregated and disaggregated levels. Restrictions on aggregate energy use should induce reductions in the demand for capital and exacerbate the economic impacts of the energy policy. 32 references.

  4. Angle-resolved photoelectron spectroscopy of cyclopropane

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Whitley, T. A.; Grimm, F. A.

    1985-10-01

    The angular distribution parameter, β, determined for the valence orbitals (IP < 18 eV) of cyclopropane in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β for photoelectron energies between, 2 and 10 eV above threshold was found to be similar to those found previously for other σ orbitals. The effects of Jahn-Teller splitting on β for the 3e' orbital were found to be small but definitely present. The overall shape and magnitude of the β( hv) curve are, however, sufficiently for the different Jahn-Teller components that, for purposes of orbital assignments using β( hv) curves the shape and magnitude of the curves can be considered associated only with the initial state. Resonance photoionization features at a photon ener of ≈ 18 eV were observed in the 3e' and 3a' 1 orbitals and tentatively assigned to autoionization.

  5. Resolved Hapke parameter maps of the Moon

    Science.gov (United States)

    Sato, H.; Robinson, M. S.; Hapke, B.; Denevi, B. W.; Boyd, A. K.

    2014-08-01

    We derived spatially resolved near-global Hapke photometric parameter maps of the Moon from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) multispectral observations using a novel "tile-by-tile method" (1° latitude by 1° longitude bins). The derived six parameters (w,b,c,BS0,hS, andθ¯p) for each tile were used to normalize the observed reflectance (standard angles i = g = 60°, e = 0° instead of the traditional angles i = g = 30°, e = 0°) within each tile, resulting in accurate normalization optimized for the local photometric response. Each pixel in the seven-color near-global mosaic (70°S to 70°N and 0°E to 360°E) was computed by the median of normalized reflectance from large numbers of repeated observations (UV: ˜50 and visible: ˜126 on average). The derived mosaic exhibits no significant artifacts with latitude or along the tile boundaries, demonstrating the quality of the normalization procedure. The derived Hapke parameter maps reveal regional photometric response variations across the lunar surface. The b, c (Henyey-Greenstein double-lobed phase function parameters) maps demonstrate decreased backscattering in the maria relative to the highlands (except 321 nm band), probably due to the higher content of both SMFe (submicron iron) and ilmenite in the interiors of back scattering agglutinates in the maria. The hS (angular width of shadow hiding opposition effect) map exhibits relatively lower values in the maria than the highlands and slightly higher values for immature highland crater ejecta, possibly related to the variation in a grain size distribution of regolith.

  6. Parameterized and resolved Southern Ocean eddy compensation

    Science.gov (United States)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  7. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  8. Numerical simulations of altocumulus with a cloud resolving model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Krueger, S.K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  9. Spatially resolved NEXAFS spectroscopy of siderophores in biological matrices

    International Nuclear Information System (INIS)

    Thieme, J; Kilcoyne, D; Tyliszczak, T; Haselwandter, K

    2013-01-01

    Iron is an essential nutrient for almost all forms of life. In the presence of oxygen iron is present in its ferric form which precipitates under formation of rather insoluble oxide-hydroxide polymers. Hence the bioavailability of iron is extremely low ( −17 M at pH 7 for Fe 3+ ). Under such conditions almost all microorganisms synthesize siderophores as iron chelating agents, thus solubilizing ferric iron from rather insoluble iron sources. Siderophores form soluble complexes with Fe 3+ . The present study aims at developing a methodology that would allow for the specific detection and localization of such iron chelators in their natural environment. The applicability of spatially resolved NEXAFS spectroscopy in the soft X-ray energy (E < 1 keV) range was evaluated for localization of typical fungal hydroxamate siderophores like ferrichrome or coprogen, which can be present in various biological materials. Results obtained with the scanning transmission X-ray microscopes at beamlines 11.0.2 and 5.3.2 of the ALS have shown characteristic signatures for siderophores. Thus NEXAFS spectroscopy at the carbon K-edge, nitrogen K-edge and iron L-edge with high spatial resolution has proven to be extremely useful for their identification in their natural environment. Spectra of different siderophores as well as spectra and images of biological material containing siderophores are presented

  10. On the resolving power of 2-D interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1996-12-31

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D {sub X}{sup 2} analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean {sub X}{sup 2} per degrees of freedom with respect to the range of the analysis in the ({sub qT}, {sub qL}) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high {omega}, {eta} resonance formation yields. (author) 24 refs., 5 figs.

  11. On the resolving power of 2-D interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.

    1996-01-01

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D X 2 analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean X 2 per degrees of freedom with respect to the range of the analysis in the ( qT , qL ) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high ω, η resonance formation yields. (author)

  12. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  13. 48 CFR 29.101 - Resolving tax problems.

    Science.gov (United States)

    2010-10-01

    .... (d) Before purchasing goods or services from a foreign source, the contracting officer should consult... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Resolving tax problems. 29... CONTRACTING REQUIREMENTS TAXES General 29.101 Resolving tax problems. (a) Contract tax problems are...

  14. 48 CFR 30.606 - Resolving cost impacts.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Resolving cost impacts. 30... impacts. (a) General. (1) The CFAO shall coordinate with the affected contracting officers before negotiating and resolving the cost impact when the estimated cost impact on any of their contracts is at least...

  15. Relevance of the law of international organisations in resolving ...

    African Journals Online (AJOL)

    structures to resolve disputes between states. Uncertainty remains, however, on the availability of effective structures within the system to resolve disputes between international organisations. It is important to note that international organisations were, prior to 1945, not considered subjects of international law so as to be ...

  16. Theoretical resolving power of a radiofrequency mass spectrometer

    International Nuclear Information System (INIS)

    Coc, A.; Le Gac, R.; Saint Simon, M. de; Thibault, C.; Touchard, F.

    1988-01-01

    Radiofrequency mass spectrometers of L.G. Smith's type can reach a resolving power of 10 6 -10 7 and a precision of 10 -9 -10 -10 . The resolving power, shape of peaks and limitations are described. As an example, the spectrometer to be used in an experiment aimed at measuring the anti p/p mass ratio is considered. (orig.)

  17. The site-characterization plan and its role in resolving siting and licensing issues

    International Nuclear Information System (INIS)

    Hanlon, C.L.

    1986-01-01

    As required by the Nuclear Waste Policy Act and the Nuclear Regulatory Commission (NRC) in 10 CFR Part 60, the Department of Energy is preparing plans for conducting site characterization at three candidate sites. Prepared according to a detailed annotated outline that is based on the NRC's Regulatory Guide 4.17, these plans will present the information collected to date about the geologic, hydrologic, geochemical, geoengineering, and climatic conditions of each site; describe the design of the repository and the waste package; and discuss the site-characterization program. The most important portions of the plan will be the strategy for resolving siting and licensing issues and the description of the testing and analysis program to be followed in resolving these issues. The issues-resolution strategy consists of identifying issues and the associated information needs; allocating performance goals for various components of the repository system; developing a testing plan to gather the necessary information; gathering and analyzing the information; and documenting the results for use in site selection and licensing. The issues-resolution strategy will allow the Department to define all of the issues that must be resolved in order to demonstrate compliance with applicable regulations and to specify the information needed to resolve these issues. It will provide a consistent framework and establish priorities for the Department's site-characterization effort for the next several years

  18. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    Science.gov (United States)

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  19. Contrast in atomically resolved EF-SCEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); D’Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Morgan, Andrew J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Takeguchi, Masaki [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548 (Japan); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2013-11-15

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the <110> orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored.

  20. Contrast in atomically resolved EF-SCEM imaging

    International Nuclear Information System (INIS)

    Wang, Peng; D’Alfonso, Adrian J.; Hashimoto, Ayako; Morgan, Andrew J.; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki; Kirkland, Angus I.; Allen, Leslie J.; Nellist, Peter D.

    2013-01-01

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored

  1. RAiSE II: resolved spectral evolution in radio AGN

    Science.gov (United States)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  2. Study on sociological approach to resolve maintenance related social problems

    International Nuclear Information System (INIS)

    Aoki, Takayuki

    2007-01-01

    This study proposes a sociological approach to resolve maintenance related social problems. As a result of consideration, the followings were found. (1) In general, solutions to some kinds of questions can be deduced from basic laws using some theories or methodologies in the field of the natural science or engineering. The approach to resolve maintenance related social problems is similar to the approach in the natural science or engineering. (2) The points of view based on fundamental human rights, market principles and community principles, and so on, are very important in resolving maintenance related social problems and can be placed as theories or tools for resolution. (3) If such theories or tools for resolving maintenance related social problems as described above are systematically prepared, it is estimated that it becomes very much easier to resolve maintenance related social problems. (author)

  3. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs

  4. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10 4 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO 4 tetrahedra, which efficiently transduce electric energy into elastic energy

  5. Neutron strength functions: the link between resolved resonances and the optical model

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1980-01-01

    Neutron strength functions and scattering radii are useful as energy and channel radius independent parameters that characterize neutron scattering resonances and provide a connection between R-matrix resonance analysis and the optical model. The choice of R-matrix channel radii is discussed, as are limitations on the accuracies of strength functions. New definitions of the p-wave strength function and scattering radius are proposed. For light nuclei, where strength functions display optical model energy variations over the resolved resonances, a doubly reduced partial neutron width is introduced for more meaningful statistical analyses of widths. The systematic behavior of strength functions and scattering radii is discussed

  6. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

  7. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  8. Spin-Resolved Photoemission on Anti-Ferromagnets: Direct Observation of Zhang-Rice Singlets in CuO

    NARCIS (Netherlands)

    Tjeng, L.H.; Sinkovic, B.; Brookes, N.B.; Goedkoop, J.B.; Hesper, R.; Pellegrin, E.; Groot, F.M.F. de; Altieri, S.; Hulbert, S.L.; Shekel, E.; Sawatzky, G.A.

    1997-01-01

    We demonstrate that it is possible to obtain spin-resolved valence band spectra with a very high degree of spin polarization from antiferromagnetic transition metal materials if the excitation light is circularly polarized and has an energy close to the cation 2p3/2 (L3) white line. We are able to

  9. Local Electronic and Magnetic Structure of Ni below and above TC: A Spin-Resolved Circularly Polarized Resonant Photoemission Study

    NARCIS (Netherlands)

    Sinkovic, B.; Tjeng, L.H.; Brookes, N.B.; Goedkoop, J.B.; Hesper, R.; Pellegrin, E.; Groot, F.M.F. de; Altieri, S.; Hulbert, S.L.; Shekel, E.; Sawatzky, G.A.

    1997-01-01

    We report the measurement of the local Ni 3d spin polarization, not only below but also above the Curie temperature (TC), using the newly developed spin-resolved circularly polarized 2p (L3) resonant photoemission technique. The experiment identifies the presence of 3d8 singlets at high energies

  10. Validation of an hourly resolved global aerosol model in answer to solar electricity generation information needs

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2013-04-01

    Full Text Available Solar energy applications need global aerosol optical depth (AOD information to derive historic surface solar irradiance databases from geostationary meteorological satellites reaching back to the 1980's. This paper validates the MATCH/DLR model originating in the climate community against AERONET ground measurements. Hourly or daily mean AOD model output is evaluated individually for all stations in Europe, Africa and the Middle East – an area highly interesting for solar energy applications being partly dominated by high aerosol loads. Overall, a bias of 0.02 and a root-mean-square error (RMSE of 0.23 are found for daily mean AOD values, while the RMSE increases to 0.28 for hourly mean AOD values. Large differences between various regions and stations are found providing a feedback loop for the aerosol modelling community. The difference in using daily means versus hourly resolved modelling with respect to hourly resolved observations is evaluated. Nowadays state-of-the-art in solar resource assessment relies on monthly turbidity or AOD climatologies while at least hourly resolved irradiance time series are needed by the solar sector. Therefore, the contribution of higher temporally modelled AOD is evaluated.

  11. Coarsely resolved topography along protein folding pathways

    Science.gov (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen

    2000-03-01

    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  12. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  13. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  14. An analytic approach to resolving problems in medical ethics.

    Science.gov (United States)

    Candee, D; Puka, B

    1984-06-01

    Education in ethics among practising professionals should provide a systematic procedure for resolving moral problems. A method for such decision-making is outlined using the two classical orientations in moral philosophy, teleology and deontology. Teleological views such as utilitarianism resolve moral dilemmas by calculating the excess of good over harm expected to be produced by each feasible alternative for action. The deontological view focuses on rights, duties, and principles of justice. Both methods are used to resolve the 1971 Johns Hopkins case of a baby born with Down's syndrome and duodenal atresia.

  15. An analytic approach to resolving problems in medical ethics.

    Science.gov (United States)

    Candee, D; Puka, B

    1984-01-01

    Education in ethics among practising professionals should provide a systematic procedure for resolving moral problems. A method for such decision-making is outlined using the two classical orientations in moral philosophy, teleology and deontology. Teleological views such as utilitarianism resolve moral dilemmas by calculating the excess of good over harm expected to be produced by each feasible alternative for action. The deontological view focuses on rights, duties, and principles of justice. Both methods are used to resolve the 1971 Johns Hopkins case of a baby born with Down's syndrome and duodenal atresia. PMID:6234395

  16. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  17. Surface investigations using monolayer-resolvable high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Kimura, Kenji; Ohtsuka, Hisashi; Ohshima, Kazuomi; Mannami, Michi-hiko

    1994-01-01

    Energy spectra of scattered 0.5 MeV He ions from a clean (001) surface of SnTe are measured with a 90 sector magnetic spectrometer (ΔE/E ∼ 0.1%). The ions scattered from successive atomic layers can be resolved in the energy spectra. Inelastic energy losses and charge state distributions of 0.5 MeV He ions scattered from the topmost atomic layer of the SnTe(001) are measured. A position-dependent stopping power at the surface is proposed from the observed energy losses. The observed charge state distribution shows the importance of the charge-exchange processes with valence electrons in the tail of the electron distribution at the surface. (orig.)

  18. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    Science.gov (United States)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  19. A review of the analysis of complex time-resolved fluorescence anisotropy data

    International Nuclear Information System (INIS)

    Smith, Trevor A; Ghiggino, Kenneth P

    2015-01-01

    Time-resolved fluorescence anisotropy measurements (TRAMs) are widely used to probe the dynamics of the various processes that can lead to the depolarisation of emission following photoselection by polarised excitation. The most commonly investigated of these emission depolarising phenomena is molecular rotational motion, but TRAMs are very useful for determining the kinetics of a host of other processes. In this paper we review several examples for which we have observed in our laboratories initially unexpectedly complex temporal behaviour of the time-resolved fluorescence anisotropy signal from relatively ‘simple’ chemical systems. In certain circumstances the anisotropy (i) decays on timescales when superficially it might be thought it should remain constant, (ii) shows marked ‘dip and rise’ behaviour in its intensity, or (iii) can change sign as the anisotropy evolves in time. Fundamentally simple processes, including molecular rotational motion, energy migration and excited state photophysics, can cause such behaviour. (topical review)

  20. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  1. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-01-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors

  2. Steps being taken to resolve questions on natural gas use for power generation in the New England region

    International Nuclear Information System (INIS)

    Gulick, C.

    1995-01-01

    Steps being taken to resolve questions on natural gas use for power generation in the New England Region are outlined. The following topics are discussed: bridging the gap, gas/electric discussion group, energy consumption by fuel, NEPOOL energy mix forecast, the players and their needs, pipelines serving New England, evaluation of pipeline reliability, industry survey, summary of survey conclusions, communications, operational differences, recommended red alert information sequence, handling a crisis, and major accomplishments to date

  3. Band structure and Fermi surface of UPd2Al3 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Fujimori, Shin-ichi; Saitoh, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Fujimori, Atsushi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika

    2007-01-01

    We have observed the band structure and Fermi surfaces of the heavy Fermion superconductor UPd 2 Al 3 by angle-resolved photoemission experiments in the soft X-ray region. We observed renormalized quasi-particle bands in the vicinity of the Fermi level and strongly dispersive bands on the higher binding energy side. Our observation suggests that the structure previously assigned to contributions from localized states in the U 5f spectrum has strong energy dispersions

  4. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  5. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  6. Using a referee to resolve shipper-receiver differences

    International Nuclear Information System (INIS)

    Tietjen, G.L.

    1981-01-01

    Within the nuclear community, shipper-receiver differences generate considerable concern. Current methods of resolving these differences are discussed, prticularly the use of an umpire or referee. Numerous statistical problems connected with the present procedures are also considered

  7. Existence Results for a Family of Equations of Fractional Resolvent

    International Nuclear Information System (INIS)

    Ibrahim, R.W.; Qasem, S.A.; Zailan Siri

    2015-01-01

    This study deals with the presence and distinction of bounded m-solutions (type mild) for a family of generalized integral and differential equations of spot order with fractional resolvent and indefinite delay. (author)

  8. Motivations to Resolve Communication Dilemmas in Database-Mediated Collaboration

    National Research Council Canada - National Science Library

    Kalman, Michael E; Monge, Peter; Fulk, Janet; Heino, Rebecca

    2002-01-01

    ... it. This article develops and tests an expectancy model that predicts specific conditions under which collective benefits can be made to converge with private ones, thus resolving communication dilemmas...

  9. RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS

    International Nuclear Information System (INIS)

    Andrews, Sean M.; Wilner, David J.; Espaillat, Catherine; Qi Chunhua; Brown, J. M.; Hughes, A. M.; Dullemond, C. P.; McClure, M. K.

    2011-01-01

    Circumstellar disks are thought to experience a rapid 'transition' phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (0.''3 ∼ 40-75 AU) Submillimeter Array (SMA) observations of the 880 μm (340 GHz) dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using two-dimensional Monte Carlo radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA continuum visibilities and spectral energy distributions. The cavities in these disks are large (R cav = 15-73 AU) and substantially depleted of small (∼μm-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are relatively common among the millimeter-bright disk population, comprising at least 1 in 5 (20%) of the disks in the bright half (and ≥26% of the upper quartile) of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. A sufficient decrease of the dust optical depths in these cavities by particle growth would be difficult to achieve: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions-very young (∼1 Myr) brown

  10. RESOLVING THE LUMINOSITY PROBLEM IN LOW-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Vorobyov, Eduard I., E-mail: michael.dunham@yale.edu, E-mail: eduard.vorobiev@univie.ac.at [Institute of Astronomy, University of Vienna, Vienna 1180 (Austria)

    2012-03-01

    We determine the observational signatures of protostellar cores by coupling two-dimensional radiative transfer calculations with numerical hydrodynamical simulations that predict accretion rates that both decline with time and feature short-term variability and episodic bursts caused by disk gravitational instability and fragmentation. We calculate the radiative transfer of the collapsing cores throughout the full duration of the collapse, using as inputs the core, disk, protostellar masses, radii, and mass accretion rates predicted by the hydrodynamical simulations. From the resulting spectral energy distributions, we calculate standard observational signatures (L{sub bol}, T{sub bol}, L{sub bol}/L{sub smm}) to directly compare to observations. We show that the accretion process predicted by these models reproduces the full spread of observed protostars in both L{sub bol}-T{sub bol} and L{sub bol}-M{sub core} space, including very low luminosity objects, provides a reasonable match to the observed protostellar luminosity distribution, and resolves the long-standing luminosity problem. These models predict an embedded phase duration shorter than recent observationally determined estimates (0.12 Myr versus 0.44 Myr), and a fraction of total time spent in Stage 0 of 23%, consistent with the range of values determined by observations. On average, the models spend 1.3% of their total time in accretion bursts, during which 5.3% of the final stellar mass accretes, with maximum values being 11.8% and 35.5% for the total time and accreted stellar mass, respectively. Time-averaged models that filter out the accretion variability and bursts do not provide as good of a match to the observed luminosity problem, suggesting that the bursts are required.

  11. An analytic approach to resolving problems in medical ethics.

    OpenAIRE

    Candee, D; Puka, B

    1984-01-01

    Education in ethics among practising professionals should provide a systematic procedure for resolving moral problems. A method for such decision-making is outlined using the two classical orientations in moral philosophy, teleology and deontology. Teleological views such as utilitarianism resolve moral dilemmas by calculating the excess of good over harm expected to be produced by each feasible alternative for action. The deontological view focuses on rights, duties, and principles of justic...

  12. Extended resolvent and inverse scattering with an application to KPI

    Science.gov (United States)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.

    2003-08-01

    We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.

  13. Extended resolvent and inverse scattering with an application to KPI

    International Nuclear Information System (INIS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A.K.; Prinari, B.

    2003-01-01

    We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schroedinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given

  14. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  15. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  16. Inclusive two-jet production in photon-photon collisions: Direct and resolved contributions in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kleinwort, T.; Kramer, G.

    1996-10-01

    We have calculated inclusive two-jet production in photon-photon collisions superimposing direct, single-resolved and double-resolved cross sections for center-of-mass energies of TRISTAN and LEP1.5. All three contributions are calculated up to next-to-leading order. The results are compared with recent experimental data. Three NLO sets of parton distributions of the photon are tested. (orig.)

  17. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    International Nuclear Information System (INIS)

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Brandis, M; Dangendorf, V; Tittelmeier, K; Bromberger, B; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the E n = 1–10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system

  18. Development of Micron-Resolved Electron Spectroscopy to Study Organic Thin Films in Real Devices

    International Nuclear Information System (INIS)

    Wang, C.-H.; Fan, L.-J.; Yang, Y.-W.; Su, J.-W.; Chan, S.-W.; Chen, M.-C.

    2010-01-01

    A straightforward application of an electron energy analyzer equipped with an image detector to micron-resolved electron spectroscopic studies of organic thin film devices is reported. The electron spectroscopies implemented include synchrotron-based UPS, XPS, and Auger yield NEXAFS. Along the non-energy-dispersion direction of the analyzer, a spatial resolution of ∼40 μm is obtained through the employment of entrance slits, electrostatic lenses and segmented CCD detector. One significant benefit offered by the technique is that the electronic transport and electronic structure of the same micron-sized sample can be directly examined. The example illustrated is a top-contact organic field effect transistor (OFET) fabricated from semiconducting triethylsilylethynyl anthradithiophene and gold electrodes. It is found that an extensive out-diffusion of gold atoms to adjacent conduction channels takes place, presumably due to the inability of soft organic materials in dissipating the excess energy with which gaseous Au atoms possess.

  19. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer QDs-based homogeneous time-resolved fluoroimmunoassay was developed to detect AFP. Black-Right-Pointing-Pointer The conjugates were prepared with QDs-doped microspheres and anti-AFP McAb. Black-Right-Pointing-Pointer The conjugates were prepared with LTCs and another anti-AFP McAb. Black-Right-Pointing-Pointer Excess amounts of conjugates were used for detecting AFP without rinsing. Black-Right-Pointing-Pointer The wedding of QPs and LTCs was suitable for HTRFIA to detect AFP. - Abstract: Quantum dots (QDs) with novel photoproperties are not widely used in clinic diagnosis, and homogeneous time-resolved fluorescence assays possess many advantages over current methods for alpha-fetoprotein (AFP) detection. A novel QD-based homogeneous time-resolved fluorescence assay was developed and used for detection of AFP, a primary marker for many cancers and diseases. QD-doped carboxyl-modified polystyrene microparticles (QPs) were prepared by doping oil-soluble QDs possessing a 605 nm emission peak. The antibody conjugates (QPs-E014) were prepared from QPs and an anti-AFP monoclonal antibody, and luminescent terbium chelates (LTCs) were prepared and conjugated to a second anti-AFP monoclonal antibody (LTCs-E010). In a double-antibodies sandwich structure, QPs-E014 and LTCs-E010 were used for detection of AFP, serving as energy acceptor and donor, respectively, with an AFP bridge. The results demonstrated that the luminescence lifetime of these QPs was sufficiently long for use in a time-resolved fluoroassay, with the efficiency of time-resolved Foerster resonance transfer (TR-FRET) at 67.3% and the spatial distance of the donor to acceptor calculated to be 66.1 Angstrom-Sign . Signals from TR-FRET were found to be proportional to AFP concentrations. The resulting standard curve was log Y = 3.65786 + 0.43863{center_dot}log X (R = 0.996) with Y the QPs fluorescence intensity and X the AFP concentration; the calculated sensitivity was 0

  20. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, L., E-mail: luca.piazza@epfl.ch [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 455 Bolero Drive, Danville, CA 94526 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Barwick, B. [Department of Physics, Trinity College, 300 Summit St., Hartford, CT 06106 (United States); Carbone, Fabrizio [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2013-09-23

    Highlights: • We present the implementation of a femtosecond-resolved ultrafast TEM. • This is the first ultrafast TEM based on a thermionic gun geometry. • An additional condenser lens has been used to maximize the electron count. • We achieved a time resolution of about 300 fs and an energy resolution of 1 eV. - Abstract: In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved.

  1. Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints

    International Nuclear Information System (INIS)

    Tohyama, T.; Maekawa, S.

    2000-01-01

    The angle-resolved photoemission (ARPES) technique has been developed rapidly over the last decade, accompanied by the improvement of energy and momentum resolutions. This technique has been established as the most powerful tool to investigate the high T c cuprate superconductors. We review recent ARPES data on the cuprates from a theoretical point of view, with emphasis on the systematic evolution of the spectral weight near the momentum (π, 0) from insulator to overdoped systems. The effects of charge stripes on the ARPES spectra are also reviewed. Some recent experimental and theoretical efforts to understand the superconducting state and the pseudogap phenomenon are discussed. (author)

  2. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  3. Initial angle resolved measurements of fast neutrals using a multichannel linear AXUV detector system on LHD

    International Nuclear Information System (INIS)

    Veshchev, E. A.; Ozaki, T.; Goncharov, P. R.; Sudo, S.

    2006-01-01

    A new multichannel diagnostic for fast ion distribution studies has been developed and successfully tested on the Large Helical Device (LHD) in different plasma heating conditions. The diagnostic is based on a linear array AXUV detector consisting of 20 segments, charge sensitive preamplifiers, and a set of pulse height analysis channels. The main advantage of this system is the possibility to make time, energy, and angle-resolved measurements of charge exchange neutral particles in a single plasma discharge. This feature makes the new diagnostic a very helpful and powerful tool intended to contribute to the understanding of fast ion behavior in a complex helical plasma geometry like the one of LHD

  4. Determination of electronic states in crystalline semiconductors and metals by angle-resolved photoemission

    International Nuclear Information System (INIS)

    Mills, K.A.

    1979-08-01

    An important part of the theoretical description of the solid state is band structure, which relies on the existence of dispersion relations connecting the electronic energy and wavevector in materials with translational symmetry. These relations determine the electronic behavior of such materials. The elaboration of accurate band structures, therefore, is of considerable fundamental and practical importance. Angle-resolved photoemission (ARP) spectroscopy provides the only presently available method for the detailed experimental investigation of band structures. This work is concerned with its application to both semiconducting and metallic single crystals

  5. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  6. Rotationally resolved photodetachment spectrum of OH{sup -}, exposed with velocity-map imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S T; Cavanagh, S J; Lewis, B R, E-mail: Stephen.Gibson@anu.edu.a, E-mail: Steven.Cavanagh@anu.edu.a [Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2009-11-01

    The photodetachment spectrum of OH{sup -} has been measured using velocity-map imaging for the detection of photoelectrons. The relative electron kinetic-energy resolution, determined to be ({Delta}E/E) = 0.5%, resolves individual rotational transitions, including R3(0) that defines the electron affinity. Previously unobserved, N-, O-, S-, T-branch transitions are also revealed. The angular anisotropy parameters in general exhibit values consistent with electron detachment from O{sup -}, {beta} {approx} -0.8, except for the S, T branches which are significantly more isotropic, with {beta} {approx} -0.4.

  7. Spatially resolved charge exchange flux calculations on the Toroidal Pumped Limiter of Tore Supra

    International Nuclear Information System (INIS)

    Marandet, Y.; Tsitrone, E.; Boerner, P.; Reiter, D.; Beaute, A.; Delchambre, E.; Escarguel, A.; Brezinsek, S.; Genesio, P.; Gunn, J.; Monier-Garbet, P.; Mitteau, R.; Pegourie, B.

    2009-01-01

    A spatially resolved calculation of the charge exchange particle and energy fluxes on the Toroidal Pumped Limiter (TPL) of Tore Supra is presented, as a first step towards a better understanding and modelling of carbon erosion, migration, as well as deuterium codeposition and bulk diffusion of deuterium in Tore Supra. The results are obtained with the EIRENE code run in a 3D geometry. Physical and chemical erosion maps on the TPL are calculated, and the contribution of neutrals to erosion, especially in the self-shadowed area, is calculated.

  8. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  9. Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.

    2010-01-01

    The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.

  10. Mass resolved angular distribution of fission products in 20Ne + 232Th reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Kumar, Amit; Guin, R.

    2011-01-01

    Mass resolved angular distribution of fission products was measured in 20 Ne + 232 Th reaction at beam energy of 120 MeV. A preliminary analysis of the angular distribution data of fission products shows higher average anisotropy compared to that calculated using statistical theory. A signature of rise in anisotropy near symmetry, as reported in earlier studies in literature, is also seen. Further study is in progress to get more detailed information about the contribution from non-compound nucleus fission and dependence of angular anisotropy on asymmetry of mass division

  11. Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, A.

    2010-05-04

    Superconducting excitations - Bogoliubov quasiparticles - are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.

  12. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  13. Understanding healthcare professionals' self-efficacy to resolve interprofessional conflict.

    Science.gov (United States)

    Sexton, Martha; Orchard, Carole

    2016-05-01

    Conflict within interprofessional healthcare teams, when not effectively resolved, has been linked to detrimental consequences; however, effective conflict resolution has been shown to enhance team performance, increase patient safety, and improve patient outcomes. Alarmingly, knowledge of healthcare professionals' ability to resolve conflict has been limited, largely due to the challenges that arise when researchers attempt to observe a conflict occurring in real time. Research literature has identified three central components that seem to influence healthcare professional's perceived ability to resolve conflict: communication competence, problem-solving ability, and conflict resolution education and training. The purpose of this study was to investigate the impact of communication competence, problem-solving ability, and conflict resolution education and training on healthcare professionals' perceived ability to resolve conflicts. This study employed a cross-sectional survey design. Multiple regression analyses demonstrated that two of the three central components-conflict resolution education and training and communication competence-were found to be statistically significant predictors of healthcare professionals' perceived ability to resolve conflict. Implications include a call to action for clinicians and academicians to recognize the importance of communication competence and conflict resolution education and training as a vital area in interprofessional pre- and post-licensure education and collaborative practice.

  14. [A new measurement method of time-resolved spectrum].

    Science.gov (United States)

    Shi, Zhi-gang; Huang, Shi-hua; Liang, Chun-jun; Lei, Quan-sheng

    2007-02-01

    A new method for measuring time-resolved spectrum (TRS) is brought forward. Programming with assemble language controlled the micro-control-processor (AT89C51), and a kind of peripheral circuit constituted the drive circuit, which drived the stepping motor to run the monochromator. So the light of different kinds of expected wavelength could be obtained. The optical signal was transformed to electrical signal by optical-to-electrical transform with the help of photomultiplier tube (Hamamatsu 1P28). The electrical signal of spectrum data was transmitted to the oscillograph. Connecting the two serial interfaces of RS232 between the oscillograph and computer, the electrical signal of spectrum data could be transmitted to computer for programming to draw the attenuation curve and time-resolved spectrum (TRS) of the swatch. The method for measuring time-resolved spectrum (TRS) features parallel measurement in time scale but serial measurement in wavelength scale. Time-resolved spectrum (TRS) and integrated emission spectrum of Tb3+ in swatch Tb(o-BBA)3 phen were measured using this method. Compared with the real time-resolved spectrum (TRS). It was validated to be feasible, credible and convenient. The 3D spectra of fluorescence intensity-wavelength-time, and the integrated spectrum of the swatch Tb(o-BBA)3 phen are given.

  15. Turbulence-resolved Numerical Simulation for Hydrogen Safety in a NPP Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, a new measure to distinguish numerical analysis methods is proposed, which is based on how to resolve turbulent characteristics in nuclear thermal hydraulics. Even though 3-dimensional thermal hydraulic equations are used, it belongs to turbulence-unresolved approach if turbulence effect is lumped into correlations. The current numerical approach for the severe accident analysis strongly relies on models and correlations which are developed by analytical and experimental works. Traditionally, the numerical method is split into a lumped-parameter (LP) method and a multi-dimensional method. In the frame of multi-sale approach proposed by Yadigaroglu, LP method is thought to be useful for system scale (macro scale) analysis. On the contrary, computational fluid dynamics (CFD) is applicable to component (meso scale) or detail (micro scale) analysis. Recently the boundary of the two LP and CFD methods becomes more and more obscure. LP codes such as Melcor and Relap have been continuously improved in their capabilities. Melcor has been added convection terms in two-phase momentum equations. Relap-3D, a 3-dimensional version of the Relap code, has a multi-dimensional nodalization module similar to a CFD code. One of long-standing containment analysis codes GOTHIC was developed as a LP code originating Cobra-TF. Now, it can simulate a containment three-dimensionally using a Cartesian or cylindrical coordinate-based nodalization. So, it is believed that the LP codes can now resolve 3-D behavior of flows in a component such as a reactor or containment. GASFLOW is a famous containment analysis code based on 3-D nodalization. It has some lumped models for PAR (passive auto-catalytic recombiner) and sink and source of mass and energy to reduce the number of nodes and efficiently simulate their thermal hydraulic phenomena. Nowadays the turbulence-resolved approach becomes more important, and it is expected that the traditional LP method is supported by the

  16. Turbulence-resolved Numerical Simulation for Hydrogen Safety in a NPP Containment

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan

    2015-01-01

    In this paper, a new measure to distinguish numerical analysis methods is proposed, which is based on how to resolve turbulent characteristics in nuclear thermal hydraulics. Even though 3-dimensional thermal hydraulic equations are used, it belongs to turbulence-unresolved approach if turbulence effect is lumped into correlations. The current numerical approach for the severe accident analysis strongly relies on models and correlations which are developed by analytical and experimental works. Traditionally, the numerical method is split into a lumped-parameter (LP) method and a multi-dimensional method. In the frame of multi-sale approach proposed by Yadigaroglu, LP method is thought to be useful for system scale (macro scale) analysis. On the contrary, computational fluid dynamics (CFD) is applicable to component (meso scale) or detail (micro scale) analysis. Recently the boundary of the two LP and CFD methods becomes more and more obscure. LP codes such as Melcor and Relap have been continuously improved in their capabilities. Melcor has been added convection terms in two-phase momentum equations. Relap-3D, a 3-dimensional version of the Relap code, has a multi-dimensional nodalization module similar to a CFD code. One of long-standing containment analysis codes GOTHIC was developed as a LP code originating Cobra-TF. Now, it can simulate a containment three-dimensionally using a Cartesian or cylindrical coordinate-based nodalization. So, it is believed that the LP codes can now resolve 3-D behavior of flows in a component such as a reactor or containment. GASFLOW is a famous containment analysis code based on 3-D nodalization. It has some lumped models for PAR (passive auto-catalytic recombiner) and sink and source of mass and energy to reduce the number of nodes and efficiently simulate their thermal hydraulic phenomena. Nowadays the turbulence-resolved approach becomes more important, and it is expected that the traditional LP method is supported by the

  17. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  18. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  19. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.

    Science.gov (United States)

    Zimmermann, Benedikt M; Dura, Hanna; Baumann, Manuel J; Weil, Marcel R

    2015-07-01

    The ongoing transition of the German electricity supply toward a higher share of renewable and sustainable energy sources, called Energiewende in German, has led to dynamic changes in the environmental impact of electricity over the last few years. Prominent scenario studies predict that comparable dynamics will continue in the coming decades, which will further improve the environmental performance of Germany's electricity supply. Life cycle assessment (LCA) is the methodology commonly used to evaluate environmental performance. Previous LCA studies on electric vehicles have shown that the electricity supply for the vehicles' operation is responsible for the major part of their environmental impact. The core question of this study is how the prospective dynamic development of the German electricity mix will affect the impact of electric vehicles operated in Germany and how LCA can be adapted to analyze this impact in a more robust manner. The previously suggested approach of time-resolved LCA, which is located between static and dynamic LCA, is used in this study and compared with several static approaches. Furthermore, the uncertainty issue associated with scenario studies is addressed in general and in relation to time-resolved LCA. Two scenario studies relevant to policy making have been selected, but a moderate number of modifications have been necessary to adapt the data to the requirements of a life cycle inventory. A potential, fully electric vehicle powered by a supercapacitor energy storage system is used as a generic example. The results show that substantial improvements in the environmental repercussions of the electricity supply and, consequentially, of electric vehicles will be achieved between 2020 and 2031 on the basis of the energy mixes predicted in both studies. This study concludes that although scenarios might not be able to predict the future, they should nonetheless be used as data sources in prospective LCA studies, because in many cases

  20. Transportation Energy - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  1. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  2. Timely resolved measurements on CdSe nanoparticles

    International Nuclear Information System (INIS)

    Holt, B.E. von

    2006-01-01

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S e was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S 3/2 -1S-e and 1P 3/2 -1P e but not the intermediately lyingt transition 2S 3/2 -1S e were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S e and 1P e . The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation of the 1S 3/2 -1S e and the 1P 3

  3. An approach to spin-resolved molecular gas microscopy

    Science.gov (United States)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  4. A time-resolved image sensor for tubeless streak cameras

    Science.gov (United States)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  5. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  6. Resolved Companions of Cepheids as Seen by HST and XMM

    Science.gov (United States)

    Evans, Nancy Remage; Bond, Howard E.; Schaefer, Gail; Mason, Brian D.; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio; Wolk, Scott J.; Guinan, Edward F.; Engle, Scott G.

    2016-01-01

    We have conducted a survey of 70 classical Cepheids with the Hubble Wide Field Camera3 (WFC3) to identify possible resolved companions. Data cover the range of 0.3" to 20" which typically corresponds to 200 AU to 0.1 pc. At present only possible companions greater than 5" from the Cepheid are discussed, since closer companions require a sophisticated point spread correction for the light of the much brighter Cepheid. We have followed up a subset of the possible resolved companions with XMM observations to determine whether they are young (X-ray active) enough to be physical companions of the Cepheids. We estimate that 4% of the Cepheids have a physical resolved companion, with the widest having a separation of 4000 AU. The one wider young star is in the field of S Nor, but since it is a cluster member, the companion is not assumed to be gravitationally bound to the Cepheid.

  7. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010

    Science.gov (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle

    2010-01-01

    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  8. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  9. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  10. Femtosecond time-resolved two-photon photoemission study of organic semiconductor copper phthalocyanine film

    International Nuclear Information System (INIS)

    Tanaka, A.; Tohoku University; University of Rochester, NY; Yan, L.; Watkins, N.J.; Gao, Y.

    2004-01-01

    Full text: Organic semiconductors are recently attracting much interest from the viewpoints of both device and fundamental physics. These organic semiconductors are considered to be important constituents of the future devices, such as organic light-emitting diode, organic field effect transistor, and organic solid-state injection laser. In order to elucidate their detailed physical properties and to develop the future devices, it is indispensable to understand their excited-state dynamics as well as their electronic structures. The femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy is attracting much interest because of its capability to observe the energy-resolved excited electron dynamics. In this work, we have carried out a TR-2PPE study of the organic semiconductor copper phthalocyanine (CuPc) film. Furthermore, we have investigated the detailed electronic structure of CuPc film using the photoemission (PES) and inverse photoemission (IPES) spectroscopies. From the simultaneous PES and IPES measurements for CuPc film with a thickness of 100 nm, the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital, and ionization potential of CuPc film have been directly determined. The observed two-photon photoemission (2PPE) spectrum of the present CuPc film, measured with photon energy of about hv=3.3 eV, exhibits a broad feature. From the energy diagram of CuPc film determined by the PES and IPES measurements, the intermediate state observed in the present 2PPE spectrum of CuPc film corresponds to the energy region between about 0.4 and 1.7 eV above the LUMO energy. From the time-resolved pump-probe measurements, it is found that the relaxation lifetimes of excited states in the present CuPc films are very short (all below 50 fs) and monotonously become faster with increasing excitation energy. We attribute this extremely fast relaxation process of photoexcitation to a rapid internal conversion process. From these results

  11. The role of mediation in resolving workplace relationship conflict.

    Science.gov (United States)

    McKenzie, Donna Margaret

    2015-01-01

    Stress triggered by workplace-based interpersonal conflict can result in damaged relationships, loss of productivity, diminished job satisfaction and increasingly, workers' compensation claims for psychological injury. This paper examined the literature on the role and effectiveness of mediation, as the most common method of Alternative Dispute Resolution, in resolving workplace relationship conflict. Available evidence suggests that mediation is most effective when supported by organisational commitment to ADR strategies, policies and processes, and conducted by independent, experienced and qualified mediators. The United States Postal Service program REDRESS™ is described as an illustration of the successful use of mediation to resolve conflict in the workplace. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Spectrally resolved digital holography using a white light LED

    Science.gov (United States)

    Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.

    2017-06-01

    This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.

  13. Atom-resolved AFM imaging of calcite nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Hirotake; Kimura, Kenjiro [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan); Onishi, Hiroshi, E-mail: oni@kobe-u.ac.jp [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite.

  14. Atom-resolved AFM imaging of calcite nanoparticles in water

    International Nuclear Information System (INIS)

    Imada, Hirotake; Kimura, Kenjiro; Onishi, Hiroshi

    2013-01-01

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite

  15. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  16. Convergence behavior of idealized convection-resolving simulations of summertime deep moist convection over land

    Science.gov (United States)

    Panosetti, Davide; Schlemmer, Linda; Schär, Christoph

    2018-05-01

    Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.

  17. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  18. Analytical representation of dynamical quantities in G W from a matrix resolvent

    Science.gov (United States)

    Gesenhues, J.; Nabok, D.; Rohlfing, M.; Draxl, C.

    2017-12-01

    The power of the G W formalism is, to a large extent, based on the explicit treatment of dynamical correlations in the self-energy. This dynamics is taken into account by calculating the energy dependence of the screened Coulomb interaction W , followed by a convolution with the Green's function G . In order to obtain the energy dependence of W the prevalent methods are plasmon-pole models and numerical integration techniques. In this paper, we discuss an alternative approach, in which the energy-dependent screening is calculated by determining the resolvent, which is set up from a matrix representation of the dielectric function. On the one hand, this refrains from a numerical energy convolution and allows one to actually write down the energy dependence of W explicitly (like in the plasmon-pole models). On the other hand, the method is at least as accurate as the numerical approaches due to its multipole nature. We discuss the theoretical setup in some detail, give insight into the computational aspects, and present results for Si, C, GaAs, and LiF. Finally, we argue that the analytic representability is not only useful for educational purposes but may also be of avail for the development of theory that goes beyond G W .

  19. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  20. Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field

    International Nuclear Information System (INIS)

    Tamura, Hideo

    2003-01-01

    We consider the Hamiltonian for relativistic particles moving in the Aharonov-Bohm magnetic field in two dimensions. The field has δ-like singularity at the origin, and the Hamiltonian is not necessarily essentially self-adjoint. The self-adjoint realization requires one parameter family of boundary conditions at the origin. We approximate the point-like field by smooth ones and study the problem of norm resolvent convergence to see which boundary condition is physically reasonable among admissible boundary conditions. We also study the effect of perturbations by scalar potentials. Roughly speaking, the obtained result is that the limit self-adjoint realization is different even for small perturbation of scalar potentials according to the values of magnetic fluxes. It changes at half-integer fluxes. The method is based on the resolvent analysis at low energy on magnetic Schroedinger operators with resonance at zero energy and the resonance plays an important role from a mathematical point of view. However it has been neglected in earlier physical works. The emphasis here is placed on this natural aspect

  1. Life-time resolved emission spectra in CdI2 crystals

    International Nuclear Information System (INIS)

    Kawabata, Seiji; Nakagawa, Hideyuki

    2007-01-01

    The emission spectrum of CdI 2 is composed of ultraviolet (UV), green (G) and yellow (Y and Y') bands peaking at 3.38, 2.50, 2.16 and 2.25 eV, respectively. In order to determine the initial states of the Y- and G-luminescence, decay curves have been measured at 6 and 80 K by varying emission energy. The observed decay curves are composed of two or three exponential components. These decay components were named τ 1 , τ 2 , τ 3 , τ 3' and τ 4 . The emission spectrum for each decay component, i.e., the life-time resolved emission spectrum, was constructed from the observed decay curves. At 6 K, three bands at 2.12, 2.49 and 2.64 eV are obtained for τ 1 , τ 2 and τ 3 components, respectively. At 80 K, a dominant band for the τ 4 component and a weak band for the τ 3' component appear on the same energy position at 2.25 eV. The origin of each emission band in the life-time resolved emission spectra will be briefly discussed

  2. A spatially and temporally resolved model of the electricity grid – Economic vs environmental dispatch

    International Nuclear Information System (INIS)

    Razeghi, Ghazal; Brouwer, Jack; Samuelsen, Scott

    2016-01-01

    Highlights: • A spatially and temporally resolved dispatch model is developed. • MCP and average price of electricity are determined for 2050 base case. • Economic and environmental dispatch strategies are assessed. • Environmental dispatch results in significant NO_x reduction and higher prices. • A combination of economic and environmental strategies is the preferred method. - Abstract: Substantial changes need to occur in the electricity generation sector in order to address greenhouse gas and urban air quality goals. These goals, combined with increasing energy prices, have led to elevated interest in alternative, low to zero carbon and pollutant emission technologies in this sector. The challenge is to assess the impacts of various technologies, policies, and market practices in order to develop a roadmap to meet energy and environmental goals. To this end, a spatially and temporally resolved resource dispatch model is developed that simulates an electricity market while taking into account physical constraints associated with various components of an electricity grid. Multiple technology simulation modules are developed to provide inputs to the model. The model is used to design a market-based grid, and to develop and evaluate different dispatch strategies. To maintain the system cost at acceptable levels and reduce emissions, the results reveal that the best approach is a combination of economic and environmental dispatch strategies. The methodology and the tools developed provide a means to examine various aspects of future scenarios and their impacts on different sectors, and can be used for both decision making and planning.

  3. Time-resolved measurements of the focused ion beams on PBFA II

    International Nuclear Information System (INIS)

    Mix, L.P.; Stygar, W.A.; Leeper, R.J.; Maenchen, J.E.; Wenger, D.F.

    1992-01-01

    A time-resolved camera has been developed to image the intense ion beam focus on PBFA II. Focused ions from a sector of the ion diode are Rutherford scattered from a thin gold foil on the diode axis and pinhole imaged onto an array of up to 49 PIN detectors to obtain the spatially and temporally resolved images. The signals from these detectors are combined to provide a movie of the beam focus with a time resolution of about 3 ns and a spatial resolution of 2 mm over a 12 mm field of view. Monte Carlo simulations of the camera response are used with the measured ion energy to account for the time-of-flight dispersion of the beam and to convert the recorded signals to an intensity. From measurements on an 81 degree sector of the diode, average intensities on a 6 mm sphere of about 5 TW/cm 2 and energies approaching 80 kJ/cm 2 are calculated for standard proton diodes. Corresponding numbers for a lithium diode are less than those measured with protons. The details of the analysis and image reconstruction will be presented along with scaled images from recent ion focusing experiments

  4. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  5. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  6. Resolving Semantic Interference during Word Production Requires Central Attention

    Science.gov (United States)

    Kleinman, Daniel

    2013-01-01

    The semantic picture-word interference task has been used to diagnose how speakers resolve competition while selecting words for production. The attentional demands of this resolution process were assessed in 2 dual-task experiments (tone classification followed by picture naming). In Experiment 1, when pictures and distractor words were presented…

  7. Resolving ambiguities in reconstructed grain maps using discrete tomography

    DEFF Research Database (Denmark)

    Alpers, A.; Knudsen, E.; Poulsen, H.F.

    2005-01-01

    reconstruct the image from diffraction data, but they are often unable to assign unambiguous values to all pixels. We present an approach that resolves these ambiguous pixels by using a Monte Carlo technique that exploits the discrete nature of the problem and utilizes proven methods of discrete tomography...

  8. Time resolved two- and three-dimensional plasma diagnostics

    International Nuclear Information System (INIS)

    1991-03-01

    This collection of papers on diagnostics in fusion plasmas contains work on the data analysis of inverse problems and on the experimental arrangements presently used to obtain spatially and temporally resolved plasma radial profiles, including electron and ion temperature, plasma density and plasma current profiles. Refs, figs and tabs

  9. Multi-frame pyramid correlation for time-resolved PIV

    NARCIS (Netherlands)

    Sciacchitano, A.; Scarano, F.; Wieneke, B.

    2012-01-01

    A novel technique is introduced to increase the precision and robustness of time-resolved particle image velocimetry (TR-PIV) measurements. The innovative element of the technique is the linear combination of the correlation signal computed at different separation time intervals. The domain of the

  10. 48 CFR 2052.242-70 - Resolving differing professional views.

    Science.gov (United States)

    2010-10-01

    ... resolution of differing professional views (DPVs) of health and safety related concerns associated with the... professional views. 2052.242-70 Section 2052.242-70 Federal Acquisition Regulations System NUCLEAR REGULATORY....242-70 Resolving differing professional views. As prescribed in 2042.570-1, the contracting officer...

  11. Magnetic Resonance Microscopy Spatially Resolved NMR Techniques and Applications

    CERN Document Server

    Codd, Sarah

    2008-01-01

    This handbook and ready reference covers materials science applications as well as microfluidic, biomedical and dental applications and the monitoring of physicochemical processes. It includes the latest in hardware, methodology and applications of spatially resolved magnetic resonance, such as portable imaging and single-sided spectroscopy. For materials scientists, spectroscopists, chemists, physicists, and medicinal chemists.

  12. Resolving a protracted refugee situation through a regional process

    Directory of Open Access Journals (Sweden)

    Olga Mitrovic

    2015-09-01

    Full Text Available Protracted refugee situations are usually a result of political deadlock, and their resolution demands the involvement of a range of actors and a multifaceted approach focused on leveraging political will. Despite its shortcomings, the Regional Process in the Western Balkans offers a number of lessons for resolving such situations.

  13. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  14. Techniques used to increase the resolving power of magnetic ...

    African Journals Online (AJOL)

    Magnetic resonance imaging is a method which can be used to obtain highly detailed and clear images of organs inside the body. The objective of this article is evaluation of techniques used to increase the resolving power of magnetic resonance images. The use of gradient techniques with high functionality will increase ...

  15. Children's Use of Gesture to Resolve Lexical Ambiguity

    Science.gov (United States)

    Kidd, Evan; Holler, Judith

    2009-01-01

    We report on a study investigating 3-5-year-old children's use of gesture to resolve lexical ambiguity. Children were told three short stories that contained two homonym senses; for example, "bat" (flying mammal) and "bat" (sports equipment). They were then asked to re-tell these stories to a second experimenter. The data were coded for the means…

  16. Time-resolved fluorescence analysis of the mobile flavin cofactor

    Indian Academy of Sciences (India)

    Conformational heterogeneity of the FAD cofactor in -hydroxybenzoate hydroxylase (PHBH) was investigated with time-resolved polarized flavin fluorescence. For binary enzyme/substrate (analogue) complexes of wild-type PHBH and Tyr222 mutants, crystallographic studies have revealed two distinct flavin conformations ...

  17. Resolvent-based feedback control for turbulent friction drag reduction

    Science.gov (United States)

    Kawagoe, Aika; Nakashima, Satoshi; Luhar, Mitul; Fukagata, Koji

    2017-11-01

    Suboptimal control for turbulent friction drag reduction has been studied extensively. Nakashima et al. (accepted) extended resolvent analysis to suboptimal control, and for the control where the streamwise wall shear stress is used as an input (Case ST), they revealed the control effect across spectral space is mixed: there are regions of drag increase as well as reduction. This suggests that control performance may be improved if the control is applied for selective wavelengths, or if a new law is designed to suppress the spectral region leading to drag increase. In the present study, we first assess the effect of suboptimal control for selective wavelengths via DNS. The friction Reynolds number is set at 180. For Case ST, resolvent analysis predicts drag reduction at long streamwise wavelengths. DNS with control applied only for this spectral region, however, did not result in drag reduction. Then, we seek an effective control law using resolvent analysis and propose a new law. DNS results for this law are consistent with predictions from resolvent analysis, and about 10% drag reduction is attained. Further, we discuss how this law reduces the drag from a dynamical and theoretical point of view. This work was supported through Grant-in-Aid for Scientic Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  18. An x-ray detector for time-resolved studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.; Clarke, R.; Lowe, W.

    1992-01-01

    The development of ultrahigh-brightness x-ray sources makes time-resolved x-ray studies more and more feasible. Improvements in x-ray optics components are also critical for obtaining the appropriate beam for a particular type of experiment. Moreover, fast parallel detectors will be essential in order to exploit the combination of high intensity x-ray sources and novel optics for time-resolved experiments. A CCD detector with a time resolution of microseconds has been developed at the Advanced Photon Source (APS). This detector is fully programmable using CAMAC electronics and a Micro Vax computer. The techniques of time-resolved x-ray studies, which include scattering, microradiography, microtomography, stroboscopy, etc., can be applied to a range of phenomena (including rapid thermal annealing, surface ordering, crystallization, and the kinetics of phase transition) in order to understand these time-dependent microscopic processes. Some of these applications will be illustrated by recent results performed at synchrotrons. New powerful x-ray sources now under construction offer the opportunity to apply innovative approaches in time-resolved work

  19. Time-Resolved Small-Angle X-Ray Scattering

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Besselink, R.; Stawski, Tomasz; Castricum, H.L.; Levy, D.; Zayat, M.

    2015-01-01

    This chapter focuses on time-resolved studies of nanostructure development in sol-gel liquids, that is, diluted sols, wet gels, and drying thin fffilms. The most commonly investigated classes of sol-gel materials are silica, organically modified silica, template-directed mesostructured silica,

  20. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Science.gov (United States)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  1. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  2. Time-resolved luminescence from feldspars: New insight into fading

    DEFF Research Database (Denmark)

    Tsukamoto, S.; Denby, P.M.; Murray, A.S.

    2006-01-01

    Time-resolved infrared optically stimulated luminescence (IR-OSL) signals of K- and Na-feldspar samples extracted from sediments were measured in UV, blue and red detection windows, using a fast photon counter and pulsed IR stimulation (lambda = 875 nm). We observe that the relative contribution ...

  3. Resolvent kernel for the Kohn Laplacian on Heisenberg groups

    Directory of Open Access Journals (Sweden)

    Neur Eddine Askour

    2002-07-01

    Full Text Available We present a formula that relates the Kohn Laplacian on Heisenberg groups and the magnetic Laplacian. Then we obtain the resolvent kernel for the Kohn Laplacian and find its spectral density. We conclude by obtaining the Green kernel for fractional powers of the Kohn Laplacian.

  4. Thinking, Relating and Choosing: Resolving the issue of Faith ...

    African Journals Online (AJOL)

    Which is worse: Doing evil or being evil? If we are free to define ourselves through our choices, as existentialism posits, then the latter is worse. This paper attempts to resolve the issue of the difference between religious (group) ethics and the ethics of a person of faith that embraces individuals with an existential ...

  5. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Nicholson, C. W.; Berthod, C.; Puppin, M.; Berger, H.; Wolf, M.; Hoesch, M.; Monney, C.

    2017-05-01

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe3 . In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  6. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  7. Thin film growth studies using time-resolved x-ray scattering

    Science.gov (United States)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  8. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    Science.gov (United States)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  9. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    Science.gov (United States)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  10. Time-resolved spectroscopy of laser-induced breakdown in water

    Science.gov (United States)

    Thomas, Robert J.; Hammer, Daniel X.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.; Roach, William P.

    1996-05-01

    Laser pulses of 60-ps and 80-ps at a wavelength of 532-nm and 1064-nm respectively were used to produce laser induced breakdown in triple-distilled water. The resulting luminescent flash from the plasma was captured with an imaging spectrograph coupled to a streak camera with a 5-ps time resolution. The wavelength range was 350 to 900-nm. We present the resulting experimental data which gives plasma duration and time-resolved spectral information. Plasma temperature is also computed from the data. All parameters are presented at a pulse energy of 1-mJ and are compared with time-integrated spectra at the same pulse duration and at 5 to 7-ns pulse duration in a similar energy range.

  11. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  12. Numerical simulations of time-resolved quantum electronics

    International Nuclear Information System (INIS)

    Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier

    2014-01-01

    Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation

  13. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    Science.gov (United States)

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  14. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission

    Science.gov (United States)

    Braun, Jürgen; Minár, Ján; Ebert, Hubert

    2018-04-01

    Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.

  15. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  16. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  17. Multiscale correlations in highly resolved Large Eddy Simulations

    Science.gov (United States)

    Biferale, Luca; Buzzicotti, Michele; Linkmann, Moritz

    2017-11-01

    Understanding multiscale turbulent statistics is one of the key challenges for many modern applied and fundamental problems in fluid dynamics. One of the main obstacles is the existence of anomalously strong non Gaussian fluctuations, which become more and more important with increasing Reynolds number. In order to assess the performance of LES models in reproducing these extreme events with reasonable accuracy, it is helpful to further understand the statistical properties of the coupling between the resolved and the subgrid scales. We present analytical and numerical results focussing on the multiscale correlations between the subgrid stress and the resolved velocity field obtained both from LES and filtered DNS data. Furthermore, a comparison is carried out between LES and DNS results concerning the scaling behaviour of higher-order structure functions using both Smagorinsky or self-similar Fourier sub-grid models. ERC AdG Grant No 339032 NewTURB.

  18. Programming for time resolved spectrum in pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Betty, C.A.; Panajkar, M.S.; Shirke, N.D.

    1993-01-01

    A user friendly program in Pascal has been developed for data acquisition and subsequent processing of time resolved spectra of transient species produced in pulse radiolysis experiments. The salient features of the program are (i) thiocyanate dosimetry and (ii) spectrum acquisition. The thiocyanate dosimetry is carried out to normalize experimental conditions to a standard value as determined by computing absorbance of the transient signal CNS -2 that is produced from thiocyanate solution by a 7 MeV electron pulse. Spectrum acquisition allows the acquisition of the time resolved data at 20 different times points and subsequent display of the plots of absorbance vs. wavelength for the desired time points during the experiment. It is also possible to plot single time point spectrum as well as superimposed spectra for different time points. Printing, editing and merging facilities are also provided. (author). 2 refs., 7 figs

  19. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  20. Suggested technical scheme to help resolve regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.

    1978-07-01

    A management-planning model envisioned as a useful tool for planning and guiding the development of a nuclear waste repository data base is described. It incorporates the technical assessment goals and objectives of the US Nuclear Regulatory Commission, and it provides a strategy for reaching them. The model strategy includes provisions for the breadth, timeliness, and defensibility of its predictions. Consideration is given to observational data, its structure, and future refinements. The structure of the data is consistent with the needs of a systems model whose structure is proposed to resolve questions about repository safety. Uncertainties are categorized as an aid in defining and resolving technical issues. The model provides a framework for ultimately exposing all the sensitive and controversial factors. Some quantitative aspects of data acquisition are presented. 12 figures.

  1. Resolving conflict realistically in today's health care environment.

    Science.gov (United States)

    Smith, S B; Tutor, R S; Phillips, M L

    2001-11-01

    Conflict is a natural part of human interaction, and when properly addressed, results in improved interpersonal relationships and positive organizational culture. Unchecked conflict may escalate to verbal and physical violence. Conflict that is unresolved creates barriers for people, teams, organizational growth, and productivity, leading to cultural disintegration within the establishment. By relying on interdependence and professional collaboration, all parties involved grow and, in turn, benefit the organization and population served. When used in a constructive manner, conflict resolution can help all parties involved see the whole picture, thus allowing freedom for growth and change. Conflict resolution is accomplished best when emotions are controlled before entering into negotiation. Positive confrontation, problem solving, and negotiation are processes used to realistically resolve conflict. Everyone walks away a winner when conflict is resolved in a positive, professional manner (Stone, 1999).

  2. Suggested technical scheme to help resolve regulatory issues

    International Nuclear Information System (INIS)

    Harvey, T.

    1978-07-01

    A management-planning model envisioned as a useful tool for planning and guiding the development of a nuclear waste repository data base is described. It incorporates the technical assessment goals and objectives of the US Nuclear Regulatory Commission, and it provides a strategy for reaching them. The model strategy includes provisions for the breadth, timeliness, and defensibility of its predictions. Consideration is given to observational data, its structure, and future refinements. The structure of the data is consistent with the needs of a systems model whose structure is proposed to resolve questions about repository safety. Uncertainties are categorized as an aid in defining and resolving technical issues. The model provides a framework for ultimately exposing all the sensitive and controversial factors. Some quantitative aspects of data acquisition are presented. 12 figures

  3. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  4. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    de Saussure, G.; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters. 25 refs., 4 figs., 5 tabs

  5. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    Saussure, G. de; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters

  6. Does Intrinsic Habit Formation Actually Resolve the Equity Premium Puzzle?

    OpenAIRE

    David A. Chapman

    2002-01-01

    Constantinides (1990) describes a simple model of intrinsic habit formation that appears to resolve the "equity premium puzzle" of Mehra and Prescott (1985). This finding is particularly important, since it has motivated a broader consideration of the implications of habit formation preferences in dynamic equilibrium models. However, consumption growth actually behaves very differently pre- and post-1948, and the explanatory power of the habit formation model is driven by the pre-1948 data. U...

  7. Time-resolved crystallography using the Hadamard Transform

    Science.gov (United States)

    Yorke, Briony A.; Beddard, Godfrey S.; Owen, Robin L.; Pearson, Arwen R.

    2014-01-01

    A new method for performing time-resolved X-ray crystallographic experiments based on the Hadamard Transform is proposed and demonstrated. The time-resolution is defined by the underlying periodicity of the probe pulse sequence and the signal to noise is greatly improved compared to the fastest experiments depending on a single pulse. This approach is general and equally applicable to any spectroscopic or imaging measurement where the probe can be encoded. PMID:25282611

  8. The Modalities to Resolve Conflicts of Interest between Stakeholders

    OpenAIRE

    Georgescu Cristina Elena

    2012-01-01

    The corporate governance is a complex system of relations and interactions, between various interest groups within and outside a company, aiming to maximize its own expectations. This paper discusses the relation between stakeholders and the means of resolving the conflicts between them. We intend to present main types of conflicts emerging within a company, such us: the shareholders-managers conflict, the shareholders-creditors conflict and the conflict between shareholders. Finnaly, we also...

  9. Resolving Standard Essential Patents Issues through Competition Law (Japanese)

    OpenAIRE

    KAWAHAMA Noboru

    2015-01-01

    The number of disputes relating to standard essential patents (SEPs), in which patent holders submit statements to commit to granting licenses on a fair, reasonable and non-discriminatory (FRAND) basis, have increased. The exercise of SEPs tends to cause problems such as hold-ups and royalty stacking and needs to be constrained somehow. Despite wide recognition of the need to address these problems, devising measures to resolve the issue has not been an easy task since various laws and princi...

  10. Resolving social conflict among females without overt aggression

    OpenAIRE

    Cant, M. A.; Young, A. J.

    2013-01-01

    Members of animal societies compete over resources and reproduction, but the extent to which such conflicts of interest are resolved peacefully (without recourse to costly or wasteful acts of aggression) varies widely. Here, we describe two theoretical mechanisms that can help to understand variation in the incidence of overt behavioural conflict: (i) destruction competition and (ii) the use of threats. The two mechanisms make different assumptions about the degree to which competitors are so...

  11. Resolving Conflicts between Agriculture and the Natural Environment.

    Directory of Open Access Journals (Sweden)

    Andrew J Tanentzap

    Full Text Available Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future.

  12. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  13. Big brother is watching you: eavesdropping to resolve family conflicts

    OpenAIRE

    Dreiss, A.N.; Ruppli, C.A.; Faller, C.; Roulin, A.

    2013-01-01

    Adult animals can eavesdrop on behavioral interactions between potential opponents to assess their competitive ability and motivation to contest resources without interacting directly with them. Surprisingly, eavesdropping is not yet considered as an important factor used to resolve conflicts between family members. In this study, we show that nestling barn owls (Tyto alba) competing for food eavesdrop on nestmates’ vocal interactions to assess the dominance status and food needs of opponents...

  14. Resolving traceability issues of product derivation for software product lines

    OpenAIRE

    Abid, Saad bin

    2009-01-01

    peer-reviewed Dealing with traceability management issues during model based product derivation in large complex industrial SPL is error prone due to the lack of tool support. As a result traceability management between connected models emerges as an important research topic. In this position paper, we discuss research challenges as scenarios from developed example product line and give recommendations on resolving traceability issues during product derivation. We also discuss initial idea...

  15. The RATIO method for time-resolved Laue crystallography

    International Nuclear Information System (INIS)

    Coppens, P.; Pitak, M.; Gembicky, M.; Messerschmidt, M.; Scheins, S.; Benedict, J.; Adachi, S.-I.; Sato, T.; Nozawa, S.; Ichiyanagi, K.; Chollet, M.; Koshihara, S.-Y.

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump-probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam.

  16. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  17. Time-resolved CT angiography in aortic dissection

    International Nuclear Information System (INIS)

    Meinel, Felix G.; Nikolaou, Konstantin; Weidenhagen, Rolf; Hellbach, Katharina; Helck, Andreas; Bamberg, Fabian; Reiser, Maximilian F.; Sommer, Wieland H.

    2012-01-01

    Objectives: We performed this study to assess feasibility and additional diagnostic value of time-resolved CT angiography of the entire aorta in patients with aortic dissection. Materials and methods: 14 consecutive patients with known or suspected aortic dissection (aged 60 ± 9 years) referred for aortic CT angiography were scanned on a dual-source CT scanner (Somatom Definition Flash; Siemens, Forchheim, Germany) using a shuttle mode for multiphasic image acquisition (range 48 cm, time resolution 6 s, 6 phases, 100 kV, 110 mAs/rot). Effective radiation doses were calculated from recorded dose length products. For all phases, CT densities were measured in the aortic lumen and renal parenchyma. From the multiphasic data, 3 phases corresponding to a triphasic standard CT protocol, served as a reference and were compared against findings from the time-resolved datasets. Results: Mean effective radiation dose was 27.7 ± 3.5 mSv. CT density of the true lumen peaked at 355 ± 53 HU. Compared to the simulated triphasic protocol, time-resolved CT angiography added diagnostic information regarding a number of important findings: the enhancement delay between true and false lumen (n = 14); the degree of membrane oscillation (n = 14); the perfusion delay in arteries originating from the false lumen (n = 9). Other additional information included true lumen collapse (n = 4), quantitative assessment of renal perfusion asymmetry (n = 2), and dynamic occlusion of aortic branches (n = 2). In 3/14 patients (21%), these additional findings of the multiphasic protocol altered patient management. Conclusions: Multiphasic, time-resolved CT angiography covering the entire aorta is feasible at a reasonable effective radiation dose and adds significant diagnostic information with therapeutic consequences in patients with aortic dissection.

  18. Resolve Instrument on X-ray Astronomy Recovery Mission (XARM)

    Science.gov (United States)

    Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Ichinohe, Y.; Fujimoto, R.; Takei, Y.; Yasuda, S.; Ishida, M.; Yamasaki, N. Y.; Maeda, Y.; Tsujimoto, M.; Iizuka, R.; Koyama, S.; Noda, H.; Tamagawa, T.; Sawada, M.; Sato, K.; Kitamoto, S.; Hoshino, A.; Brown, G. V.; Eckart, M. E.; Hayashi, T.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Mori, H.; Okajima, T.; Porter, F. S.; Soong, Y.; McCammon, D.; Szymkowiak, A. E.

    2018-04-01

    The X-ray Astronomy Recovery Mission (XARM) is a recovery mission of ASTRO-H/Hitomi, which is expected to be launched in Japanese Fiscal Year of 2020 at the earliest. The Resolve instrument on XARM consists of an array of 6 × 6 silicon-thermistor microcalorimeters cooled down to 50 mK and a high-throughput X-ray mirror assembly with the focal length of 5.6 m. Hitomi was launched into orbit in February 2016 and observed several celestial objects, although the operation of Hitomi was terminated in April 2016. The soft X-ray spectrometer (SXS) on Hitomi demonstrated high-resolution X-ray spectroscopy of 5 eV FWHM in orbit for most of the pixels. The Resolve instrument is planned to mostly be a copy of the Hitomi SXS and soft X-ray telescope designs, though several changes are planned based on the lessons learned from Hitomi. We report a brief summary of the SXS performance and the status of the Resolve instrument.

  19. Resolving social conflict among females without overt aggression.

    Science.gov (United States)

    Cant, Michael A; Young, Andrew J

    2013-01-01

    Members of animal societies compete over resources and reproduction, but the extent to which such conflicts of interest are resolved peacefully (without recourse to costly or wasteful acts of aggression) varies widely. Here, we describe two theoretical mechanisms that can help to understand variation in the incidence of overt behavioural conflict: (i) destruction competition and (ii) the use of threats. The two mechanisms make different assumptions about the degree to which competitors are socially sensitive (responsive to real-time changes in the behaviour of their social partners). In each case, we discuss how the model assumptions relate to biological reality and highlight the genetic, ecological and informational factors that are likely to promote peaceful conflict resolution, drawing on empirical examples. We suggest that, relative to males, reproductive conflict among females may be more frequently resolved peacefully through threats of punishment, rather than overt acts of punishment, because (i) offspring are more costly to produce for females and (ii) reproduction is more difficult to conceal. The main need now is for empirical work to test whether the mechanisms described here can indeed explain how social conflict can be resolved without overt aggression.

  20. Angle-resolved effective potentials for disk-shaped molecules

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  1. BENCHMARKING THE OPTICAL RESOLVING POWER OF UAV BASED CAMERA SYSTEMS

    Directory of Open Access Journals (Sweden)

    H. Meißner

    2017-08-01

    Full Text Available UAV based imaging and 3D object point generation is an established technology. Some of the UAV users try to address (very highaccuracy applications, i.e. inspection or monitoring scenarios. In order to guarantee such level of detail and accuracy high resolving imaging systems are mandatory. Furthermore, image quality considerably impacts photogrammetric processing, as the tie point transfer, mandatory for forming the block geometry, fully relies on the radiometric quality of images. Thus, empirical testing of radiometric camera performance is an important issue, in addition to standard (geometric calibration, which normally is covered primarily. Within this paper the resolving power of ten different camera/lens installations has been investigated. Selected systems represent different camera classes, like DSLRs, system cameras, larger format cameras and proprietary systems. As the systems have been tested in wellcontrolled laboratory conditions and objective quality measures have been derived, individual performance can be compared directly, thus representing a first benchmark on radiometric performance of UAV cameras. The results have shown, that not only the selection of appropriate lens and camera body has an impact, in addition the image pre-processing, i.e. the use of a specific debayering method, significantly influences the final resolving power.

  2. Angle-resolved diffraction grating biosensor based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Changwu; Li, Peng [School of Physical Science and Technology, Xinjiang University, Urumqi 830046 (China); Jia, Zhenhong, E-mail: jzhh@xju.edu.cn; Liu, Yajun; Mo, Jiaqing; Lv, Xiaoyi [College of Information Science and Engineering, Xinjiang University, Urumqi 830046 (China)

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  3. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    Science.gov (United States)

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  4. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    International Nuclear Information System (INIS)

    Murphy, J. R.; Delikanli, S.; Demir, H. V.; Scrace, T.; Zhang, P.; Norden, T.; Petrou, A.; Thomay, T.; Cartwright, A. N.

    2016-01-01

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  5. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. R. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Delikanli, S.; Demir, H. V., E-mail: volkan@bilkent.edu.tr [LUMINOUS Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798 (Singapore); Department of Electrical and Electronics Engineering, Department of Physics, UNAM−Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Scrace, T.; Zhang, P.; Norden, T.; Petrou, A., E-mail: petrou@buffalo.edu [Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Thomay, T.; Cartwright, A. N. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States)

    2016-06-13

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  6. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  7. Alignment of time-resolved data from high throughput experiments.

    Science.gov (United States)

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach

  8. a Study on SODIUM(110) and Other Nearly Free Electron Metals Using Angle Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Lyo, In-Whan

    Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is

  9. Creation of free excitons in solid krypton investigated by time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Kisand, Vambola; Kirm, Marco; Negodin, Evgeni; Sombrowski, Elke; Steeg, Barbara; Vielhauer, Sebastian; Zimmerer, Georg

    2003-01-01

    The creation and relaxation of secondary excitons in solid Kr was investigated using energy-and time-resolved luminescence spectroscopy in the vacuum ultraviolet region. The spectrally selected emission of the free exciton (FE) was used as a probe for an investigation of the different exciton creation processes. Delayed FE creation via electron-hole recombination and 'prompt' (in terms of the time-resolution of the experiment) creation of excitons were separated. The 'prompt' creation of a FE appears in the region above threshold energy E th , which is equal to the sum of the band gap energy and the free exciton energy. 'Prompt' creation of excitons above E th is ascribed to a superposition of two processes: (i) creation of the electronic polaron complex (one-step process) and (ii) inelastic scattering of photoelectrons described in the framework of the multiple-parabolic-branch band model (two-step process). In addition, the ratio spectrum of the time-integrated FE and self-trapped exciton (STE) emission was analysed. The behaviour of the ratio spectrum is a proof that electron-hole recombination leads to STE states through FE states as precursors

  10. Medical diagnosis and remote sensing at fiber-tip: picosecond resolved FRET sensor

    Science.gov (United States)

    Polley, Nabarun; Pal, Samir Kumar

    2016-03-01

    Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.

  11. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  12. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  13. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    Science.gov (United States)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  14. Developments in time-resolved x-ray research at APS beamline 7ID

    Energy Technology Data Exchange (ETDEWEB)

    Walko, D. A., E-mail: d-walko@anl.gov; Adams, B. W.; Doumy, G.; Dufresne, E. M.; Li, Yuelin; March, A. M.; Sandy, A. R.; Wang, Jin; Wen, Haidan; Zhu, Yi [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    The 7ID beamline of the Advanced Photon Source (APS) is dedicated to time-resolved research using x-ray imaging, scattering, and spectroscopy techniques. Time resolution is achieved via gated detectors and/or mechanical choppers in conjunction with the time structure of the x-ray beam. Three experimental hutches allow for a wide variety of experimental setups. Major areas of research include atomic, molecular, and optical physics; chemistry; condensed matter physics in the bulk, thin film, and surface regimes; and fluid-spray dynamics. Recent developments in facilities at 7ID include a high-power, high-repetition-rate picosecond laser to complement the 1 kHz ultrafast laser. For the ultrafast laser, a newly commissioned optical parametric amplifier provides pump wavelength from 0.2 to 15 µm with energy per pulse up to 200 µJ. A nanodiffraction station has also been commissioned, using Fresnel zone-plate optics to achieve a focused x-ray spot of 300 nm. This nanoprobe is not only used to spatially resolve the evolution of small features in samples after optical excitation, but also has been combined with an intense THz source to study material response under ultrafast electric fields.

  15. New approaches for a time- and position-resolved detector for positron annihilation spectroscopy at PLEPS

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Ulrich; Egger, Werner; Sperr, Peter; Loewe, Benjamin; Ravelli, Luca; Koegel, Gottfried; Dollinger, Guenther [Universitaet der Bundeswehr Muenchen, LRT2 (Germany); Jagutzki, Ottmar [Universitaet Frankfurt, RoentDek GmbH (Germany)

    2013-07-01

    The pulsed low energy positron system PLEPS at NEPOMUC at the FRM II is a tool for depth resolved positron lifetime measurements. Besides positron lifetime measurements 2D-AMOC (two dimensional age momentum correlation) experiments are also possible. 2D-AMOC provides in coincidence the lifetime of the positron and the longitudinal momentum distribution of the annihilating electron. It would be of great scientific concern to measure simultaneously the entire 3D-momentum distribution of the annihilating electron and the corresponding lifetime of the positron (4D-AMOC). To perform 4D-AMOC measurements, a time and spatially resolving detector with a time resolution of about 100 ps (FWHM) and a spatial resolution of circa 2 mm over an area of about 12 cm{sup 2} is required in coincidence with a pixelated Ge-detector and currently under development at our institute. It is intended to use a MCP-based UV-light detector with two MCP-stages coupled to a BaF{sub 2} scintillator. To achieve the spatial resolution the centroid information of the photoelectron-cloud is detected with a position sensitive anode installed outside the housing of the MCP detector. As an alternative to a MCP-based detector, silicon photomultipliers are also envisaged.

  16. Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL

    International Nuclear Information System (INIS)

    Kump, Paul; Bai, Er-Wei; Chan, Kung-Sik; Eichinger, William

    2013-01-01

    This paper is concerned with the identification of nuclides from weak and poorly resolved spectra in the presence of unknown radiation shielding materials such as carbon, water, concrete and lead. Since a shield will attenuate lower energies more so than higher ones, isotope sub-spectra must be introduced into models and into detection algorithms. We propose a new algorithm for detection, called group positive RIVAL, that encourages the selection of groups of sub-spectra rather than the selection of individual sub-spectra that may be from the same parent isotope. Indeed, the proposed algorithm incorporates group positive LASSO, and, as such, we supply the consistency results of group positive LASSO and adaptive group positive LASSO. In an example employing various shielding materials and material thicknesses, group positive RIVAL is shown to perform well in all scenarios with the exception of ones in which the shielding material is lead. - Highlights: ► Identification of nuclides from weak and poorly resolved spectra. ► Shielding materials such as carbon, water, concrete, and lead are considered. ► Isotope spectra are decomposed into their sub-spectra. ► A variable selection algorithm is proposed that encourages group selection. ► Simulations demonstrate the proposed method's performance when nuclides have been shielded

  17. Correlation functions for fully or partially state-resolved reactive scattering calculations

    International Nuclear Information System (INIS)

    Manthe, Uwe; Welsch, Ralph

    2014-01-01

    Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H 2 reaction illustrate important aspects of the formalism

  18. Box-Cox transformation for resolving the Peelle's Pertinent Puzzle in a curve fitting

    International Nuclear Information System (INIS)

    Oh, S. Y.; Seo, C. G.

    2004-01-01

    Incorporating the Box-Cox transformation into a curve fitting is presented as one of methods for resolving an anomaly known as the Peelle's Pertinent Puzzle in the nuclear data community. The Box-Cox transformation is a strategy to make non-normal distribution data resemble normal distribution data. The proposed method consists of the following steps: transform the raw data to be fitted with the optimized Box-Cox transformation parameter, fit the transformed data using a conventional curve fitting tool, the least-squares method in this study, then inverse-transform the fitted results to the final estimates. Covariance matrices are correspondingly transformed and inverse-transformed with the aid of the law of error propagation. In addition to a sensible answer to the Puzzle, the proposed method resulted in reasonable estimates for a test evaluation with pseudo-experimental 6 Li(n, t) cross sections in several to 800 keV energy region, while the GMA code resulted in systematic underestimates that characterize the Puzzle. Meanwhile, it is observed that the present method and the Chiba-Smith method yield almost the same estimates for the test evaluation on 6 Li(n, t). Conceptually, however, two methods are very different from each other and further discussions are needed for a consensus on the issue of how to resolve the Puzzle. (authors)

  19. State-resolved Photodissociation and Radiative Association Data for the Molecular Hydrogen Ion

    Science.gov (United States)

    Zammit, Mark C.; Savage, Jeremy S.; Colgan, James; Fursa, Dmitry V.; Kilcrease, David P.; Bray, Igor; Fontes, Christopher J.; Hakel, Peter; Timmermans, Eddy

    2017-12-01

    We present state-resolved (electronic, vibrational, and rotational) cross sections and rate coefficients for the photodissociation (PD) of {{{H}}}2+ and radiative association (RA) of H–H+. We developed a fully quantum mechanical approach within the nonrelativistic Born–Oppenheimer approximation to describe {{{H}}}2+ and calculate the data for transitions between the ground electronic state 1s{σ }g and the 2p{σ }u, 2p{π }u, 3p{σ }u, 3p{π }u, 4p{σ }u, 4f{σ }u, 4f{π }u, and 4p{π }u electronic states (i.e., up to {{{H}}}2+ n = 4). Tables of the dipole-matrix elements and energies needed to calculate state-resolved cross sections and rate coefficients will be made publicly available. These data could be important in astrophysical models when dealing with photon wavelengths (or radiation temperature distributions that are weighted toward such wavelengths) around 100 nm. For example, at these wavelengths and a material temperature of 8400 K, the LTE-averaged PD cross section via the (second electronically excited) 2p{π }u state is over three times larger than the PD cross section via the (first electronically excited) 2p{σ }u state.

  20. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    Science.gov (United States)

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.