WorldWideScience

Sample records for energy research national

  1. Energy research, national and international

    International Nuclear Information System (INIS)

    Rhijn, A.A.T. van

    1976-01-01

    The Dutch Energy Research Programme inaugurated by the National Steering Group for Energy Research (LSEO) is discussed. Three types of criteria to be borne in mind in the selection of new directions in development are considered: the setting of targets for energy policy: the general central social and economic aims of the country; and the scientific, financial and organisational possibilities. International aspects are reviewed with reference to the IEA, CERN, Euratom, ELDO and ESRO. (D.J.B.)

  2. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  3. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  4. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  5. Assessment Report on the national research strategy for energy

    International Nuclear Information System (INIS)

    2009-01-01

    This report was issued in 2009 by the French Parliament commission in charge of evaluating the scientific and technological choices of France's research in the field of energy. With environmental, economical and national independence concerns in view, the objective of the report is to assess the national research strategy for energy and to propose some directions for its future development. The scientific priority given in France to nuclear energy, petroleum, photovoltaic energy, second generation bio fuels and energy storage should be maintained. Mass energy storage should be considered as an essential condition for the development of renewable energies, such as offshore wind farms and storage systems

  6. National Renewable Energy Laboratory 2004 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  7. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  8. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Sinclair, K.

    2001-01-01

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  9. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  10. French energy research problems in relation to national energy goals

    International Nuclear Information System (INIS)

    Ferrari, A.

    1984-01-01

    There is a new view in energy planning: the new Government has firmly decided to enlarge the spectrum of energy technologies, to give more possibilities. Some new technologies if they reach a sufficient economic balance may be better than the ones used presently, and strict economic analysis shall be complemented by including external cost and taking into account the other considerations (political, social, etc.). The energy situation is serious and no technology should be dismissed: nuclear energy which with coal is one of the two sources of energy already abundant, cannot be discarded especially in a country like France, poor in fossil sources. France shall go on using nuclear energy and this means pursuing the development of the Fast Breeder Reactor Technology, because this is a unique insurance against possible future energy scarcity. Under strict nonproliferation conditions they shall also continue the effort to export nuclear units, using the expertise gained while implementing their own program

  11. National Renewable Energy Laboratory (NREL) 2006 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    This 2006 issue of the NREL Research Review again reveals just how vital and diverse our research portfolio has become. Our feature story looks at how our move to embrace the tenants of "translational research" is strengthening our ability to meet the nation's energy goals. By closing the gap between basic science and applied research and development (R&D)--and focusing a bright light on the valuable end uses of our work--translational research promises to shorten the time it takes to push new technology off the lab bench and into the marketplace. This issue also examines our research into fuels of the future and our computer modeling of wind power deployment, both of which point out the real-world benefits of our work.

  12. National Renewable Energy Laboratory 2002 Research Review (Booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Cook, G.; Epstein, K.; Brown, H.

    2002-07-01

    America is making a long transition to a future in which conventional, fossil fuel technologies will be displaced by new renewable energy and energy efficiency technologies. This first biannual research review describes NREL's R&D in seven technology areas--biorefineries, transportation, hydrogen, solar electricity, distributed energy, energy-efficient buildings, and low-wind-speed turbines.

  13. A National Plan for Energy Research, Development and Demonstration: Creating Energy Choices for the Future (1976)

    Energy Technology Data Exchange (ETDEWEB)

    Seamans, Jr., Robert C. [Energy Research and Development Administration (ERDA), Washington, DC (United States)

    1976-04-15

    This is the first annual update of the initial report submitted to you in June 1975 (ERDA-48), and complies with the requirements of Section 15 of the Federal Nonnuclear Energy Research and Development Act of 1974. This report represents an evolution in approach over the previous document. ERDA's proposed National Plan has been expanded in scope and depth of coverage and the basic goals and strategy are refined, but remain essentially intact. The Plan summarizes ERDA's current views on the energy technologies the Nation will need to achieve longer-term energy independence, specifically: The paramount role of the private sector in the development and commercialization of new energy technologies is addressed; Conservation (energy efficiency) technologies are singled out for increased attention and are now ranked with several supply technologies as being of the highest priority for national action; The President's 1977 budget requests a large increase - 30% over 1976 - in funding for energy RD&D with particular emphasis on accelerating energy RD&D programs directed at achieving greater long-term energy independence, encouraging cost-sharing with private industry and avoiding the undertaking of RD&D more appropriately the responsibility of the private sector, and supporting the commercial demonstration of synthetic fuel production by providing loan guarantees beginning in FY 76; Federal programs to assist industry in accelerating the market penetration of energy technologies with near-term potential are a key element of the Plan.

  14. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  15. Energy, fiscal balances and national sharing : research report

    International Nuclear Information System (INIS)

    Mansell, R.; Anderson, J.; Schlenker, R.; Calgary Univ., AB

    2005-01-01

    In recent years, the large fiscal surpluses of the Alberta government have attracted considerable attention. The economies of this major oil and gas producing region in Canada have expanded due to rising energy demand and high prices. The province accounts for nearly 75 per cent of Canada's oil and gas production, while its energy sector accounts for more than 50 per cent of the Alberta economy. Non-renewable resource revenue for the provincial government has increased along with gains in output and employment. There are some concerns that the strength in Alberta's fiscal position and in the economy may undermine Canada's fiscal equalization regime. Proposed solutions include federal policies that transfer more of Alberta's wealth to other regions. Alberta is concerned that a national fiscal, energy or environmental policy that transfers huge amounts of income out of the province would result in bankruptcies and a legacy of mistrust. There is also growing awareness in the province that it will be difficult to maintain a strong economy and that revenues will decline as reserves of conventional oil and gas are depleted. Presently, it is more challenging to develop unconventional energy supplies due to labour, environmental, technology and infrastructure constraints. This paper examined the record of fiscal redistribution across regions in Canada along with the future of Alberta's resource revenues in an effort to pursue informed discussion on these issues. The authors indicated that the province is already the largest net contributor to federal fiscal balances and redistribution to other regions. Alberta's net contributions are greater than what one would expect given accepted measures of fairness and the same standards applied to other regions. It was suggested that asking Albertans to make even larger net fiscal contributions to the benefit of other regions is not consistent with any standard of fairness. 12 refs., 3 tabs., 4 figs

  16. Basic science and energy research sector profile: Background for the National Energy Strategy

    Energy Technology Data Exchange (ETDEWEB)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  17. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  18. French National Alliance for Energy Research Coordination - Ancre, Activity Report 2015-2016

    International Nuclear Information System (INIS)

    Alazard-Toux, Nathalie; Allard, Francis; Becue, Thierry; Bernard, Herve; Bourgoin, Jean-Philippe; Brault, Pascal; Carre, Franck; Chabrelie, Marie-Francoise; Charrue, Herve; Colonna, Paul; Compere, Chantal; Criqui, Patrick; David, Sylvain; Devezeaux, Jean-Guy; Dollet, Alain; Duplan, Jean-Luc; Fabre, Francoise; Ferrant, Pierre; Flamant, Gilles; Forti, Laurent; Gentier, Sylvie; Gouy, Jean-Philippe; Hadj-Said, Nouredine; Lacour, Jean-Jacques; Latroche, Michel; Legrand, Jack; Lemoine, Fabrice; Le Net, Elisabeth; Le Thiez, Pierre; Lhomme-Maublanc, Julie; Lucchese, Paul; Malbranche, Philippe; Mermilliod, Nicole; Most, Jean-Michel; Rondot, Yolande; Tilagone, Richard; Touboul, Francoise; Uster, Guillaume; Vidal, Olivier

    2017-01-01

    Created on 17 July 2009, ANCRE (French National Alliance for Energy Research Coordination) brings together 19 research and innovation bodies and higher education institution consortia in the field of energy. Its missions, carried out in liaison with competitiveness clusters and funding agencies, are to: - reinforce synergies and partnerships between research bodies, universities and companies, - identify scientific and technical challenges hampering industrial development, - propose research and innovation programs and approaches to their implementation, - contribute to the development of national research strategy in the field of energy, as well as funding agency program development. Its 2 main societal challenges are: Clean, secure and efficient energy, and Sustainable mobility and urban systems. ANCRE mobilizes 200 scientists involved in 10 programmatic groups (1 - Energy from biomass, 2 - Fossil energy, geothermal energy, critical metals, 3 - Nuclear energy, 4 - Solar energy, 5 - Ocean, hydraulic and wind energy, 6 - Transport, 7 - Buildings, 8 - Industries and agriculture, 9 - Energy forecasting and economics, 10 - Energy networks and associated storage) and 2 cross-disciplinary groups (Strategy, Europe and international). This activity report presents the ANCRE's 2015-2016 Highlights, its future challenges, its contribution to public policy-making, its close cooperation with the French national research agency and active participation in European programs, its mobilizing, structuring and uniting communities, and its knowledge production and dissemination

  19. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  20. National Institute for Petroleum and Energy Research 1989 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Research programs on reservoir rocks petroleum, and enhanced recovery are briefly presented. Topics include: Geotechnology; reservoir assessment and characterization; TORIS Research Support; three phase relative permeability; static pore structure analysis of reservoir rocks; effects of pore structure on oil/contaminants ganglia distribution; development of improved microbial flooding methods; development of improved surfactant flooding systems; development of improved alkaline flooding methods; development of improved mobility-control methods; gas miscible displacement; development of improved immiscible gas displacement methodology; thermal processes for light oil recovery; thermal processes for heavy oil recovery; an application of natural isotopes in groundwater for solving environmental problems; processing and thermodynamics research; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; in situ hydrogenation; and fuel chemistry.

  1. National Energy Research Scientific Computing Center 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hules, John A.; Bashor, Jon; Wang, Ucilia; Yarris, Lynn; Preuss, Paul

    2008-10-23

    This report presents highlights of the research conducted on NERSC computers in a variety of scientific disciplines during the year 2007. It also reports on changes and upgrades to NERSC's systems and services aswell as activities of NERSC staff.

  2. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  3. Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development

  4. Report of test and research results on atomic energy obtained in national institutes in fiscal 1982

    International Nuclear Information System (INIS)

    1983-01-01

    As for the test and research on the utilization of atomic energy by national organizations, the budget was appropriated for the first time in fiscal year 1956. Since then, many valuable results of research have been produced in the diverse fields of nuclear fusion, safety research, food irradiation, medicine and others, in this way, the test and research have played large roles in the promotion of the utilization of atomic energy in Japan. This is the 23rd report, in which the results of the test and research on the utilization of atomic energy carried out in fiscal year 1982 by national organizations are summarized. 5 researches on nuclear fusion, 12 researches on engineering safety, 5 researches on environmental radioactivity safety, 3 researches on food irradiation, 5 researches on the countermeasures to cancer, 8 researches on soil fertilization, 4 researches on quality improvement, 7 researches on crop protection, 5 researches on the improvement of breeding, 8 researches on diagnosis and treatment, 8 researches on pharmaceuticals, 10 researches on the application to pathology, 6 researches on mining and industry, 6 researches on power reactors and nuclear ships, 1 research on underground water, 6 researches on activation analysis and 3 researches on injury prevention are reported. (Kako, I.)

  5. German Federal Ministry for Research: 1995 expenditures on energy research and national research centers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The draft departmental budget No. 30 covering the portfolio of the Federal Minister for Research and Technology (BMFT) within the 1995 federal budget features total expenditures of DM 9470 million. DM 78 (68) million has been earmarked for reactor safety and general technical safety. The sums earmarked for risk sharing in the nuclear field by the Federal Government are DM 236.5 (205.0) million. This adds up to DM 314.5 (296.0) million. (orig.)

  6. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  7. Report of test and research results on atomic energy obtained in national institutes in fiscal 1983

    International Nuclear Information System (INIS)

    1984-01-01

    As for the test and research on the utilization of atomic energy by national organizations, the budget was appropriated for the first time in fiscal year 1956. Since then, many valuable results of research have been produced in the diverse fields of nuclear fusion, safety research, food irradiation, medicine and others, in this way, the test and research have played large roles in the promotion of the utilization of atomic energy in Japan. This is the 24th report, in which the results of the test and research on the utilization of atomic energy carried out in fiscal year 1983 by national organizations are summarized. 5 researches on nuclear fusion, 19 researches on engineering safety and environmental radioactivity safety, 3 researches on food irradiation, 6 researches on the countermeasures to cancer, 19 researches on agriculture, forestry and fishery, 30 researches on medicine, pharmaceuticals and environmental hygiene, 6 researches on mining and industry, 6 researches on power reactors and nuclear ships, 1 research on agricultural water, 7 researches on activation analysis and 4 researches on injury prevention are reported. (Kako, I.)

  8. German Federal Ministry for Research: 1994 expenditures on energy research and national research centers

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The draft departmental budget No. 30 covering the portfolio of the Federal Minister for Research and Technology (BMFT) within the 1994 federal budget features total expenditures of DM 9470 million (as against 9600 million in 1993). DM 68.0 (90.3) million has been earmarked for reactor safety and general technical safety. The sums earmarked for spent fuel and waste management R and D and investments are DM 23.0 (35.8) million; for risk sharing in the nuclear field by the Federal Government, DM 210.0 (191.6) million. This adds up to DM 310.0 (317.7) million. (orig./HP) [de

  9. German Federal Ministry for Research and Technology: 1990 expenditures on energy research and national research centers

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The draft departmental budget No. 30 covering the portfolio of the Federal Minister for Research and Technology (BMFT) within the 1990 federal budget features total expenditures of DM 7855.2 million (as against 7645.4 million in the previous year). DM 112 (119) million has been earmarked for the funding of reactor development. In addition DM 105 (104) million has been planned for reactor safety and general technical safety, DM 2.5 (2.5) million for funding nuclear fuel supply (including uranium enrichment). The sums earmarked for nuclear spent fuel and waste management R and D are DM 43 (55.9) million; for investments, DM 26 (38.1) million, and risk sharing in the nuclear field by the Federal Government, DM 20 (20) million. This adds up to DM 308.5 million, which is 14.2% less than the 1989 target figure of DM 359.5 million. (orig.) [de

  10. Introduction of the national centre for research and application of renewable energy sources

    OpenAIRE

    Smitkova, Miroslava; Eleschova, Zaneta; Hajducek, Peter; Janicek, Frantisek; Minovski, Dragan; Sarac, Vasilija

    2011-01-01

    Slovak University of Technology in Bratislava acquired financial support from the European Fund for Regional Development for the establishment of the National Centre for Research and Application of Renewable Energy Sources in the framework of the “Operation Program Research and Development”. Slovak University of Technology in Bratislava (STU) is a research oriented university contributing to the development and spreading of scientific knowledge. Paper deals with the presentation o...

  11. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  12. Accelerating Ocean Energy to the Marketplace - Environmental Research at the U.S. Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Copping, Andrea E.; Cada, G.F.; Roberts, Jesse; Bevelhimer, Mark

    2010-01-01

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  13. Report of test and research results on atomic energy obtained in national institutes in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The tests and researches on the development and utilization of atomic energy in national laboratories were begun in 1956, and have accomplished the great role for the advance of the development and utilization of atomic energy in Japan by having produced many valuable results so far. Atomic energy has been utilized in diverse fields, and also in national laboratories, the research for expanding the development and utilization of atomic energy in food irradiation, medicine, agriculture, forestry, fishery and others in addition to the basic research on nuclear fusion and safety have been advanced. Further expecting the pervasive effect to general science and technology, the development of basic technology and integrated research are promoted from the viewpoint of new techical innovation and creative technology. This is 31st report in which the results of the tests and researches carried out by national laboratories in fiscal year 1990 are summarized. Nuclear fusion, safety research, food irradiation, cancer countermeasures, agriculture, forestry, fishery, medicine, mining and manufacture, power utilization, construction, radioactivation analysis and so on were the main subjects. (K.I.)

  14. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  15. Report of test and research results on atomic energy obtained in national institutes in fiscal 1987

    International Nuclear Information System (INIS)

    1989-01-01

    The test and research regarding the utilization of atomic energy carried out in national institutions have produced many valuable results in diverse fields so far, such as nuclear fusion, safety research, food irradiation and medicine, since the budget had been appropriated for the first time in 1956. It has accomplished large role in the promotion of atomic energy utilization in Japan. This report is volume 28, in which the results of the test and research on atomic energy utilization carried out by national institutions in fiscal year 1987 are summarized. It is hoped that the understanding about the recent trend and the results of the test and research on atomic energy utilization is further promoted by this report. The contents of this report are nuclear fusion; the research on engineering safety and environmental radioactivity safety; food irradiation; the countermeasures against cancer; fertilized soil, the improvement of quality, the protection of plants and the improvement of breeding in agriculture and fishery fields; diagnosis and medical treatment, pharmaceuticals, environmental hygiene and the application to physiology and pathology in medical field; radiation measurement and process analysis in mining and industry fields; nuclear reactor materials and nuclear-powered ships; civil engineering; radioactivation analysis; the research on the prevention of injuries; and the basic researches on materials and acessment and reduction of irradiation risk. (J.P.N.)

  16. Report of test and research results on atomic energy obtained in national institutes in fiscal 1985

    International Nuclear Information System (INIS)

    1986-01-01

    As for the test and research on the utilization of atomic energy in national institutes, the budget was appropriated for the first time in fiscal year 1956, and since then, the many valuable results of research have been obtained so far in the diversified fields of nuclear fusion, safety research, the irradiation of foods, medicine and others, thus the test and research accomplished the large role for promoting the utilization of atomic energy in Japan. In this report, the gists of the results of the test and research on the utilization of atomic energy carried out by national institutes in fiscal year 1985 are collected. No.1 of this report was published in 1960, and this is No.26. It is desired to increase the understanding about the recent trend and the results of the test and research on atomic energy utilization with this book. The researches on nuclear fusion, engineering safety and environmental radioactivity safety, the irradiation of foods, the countermeasures against cancer, fertilized soil, the quality improvement of brewing and farm products, the protection of farm products and the improvement of breeding, diagnosis and medical treatment, pharmaceuticals, environmental hygiene, the application to physiology and pathology, radiochemistry, radiation measurement, process analysis, nuclear reactor materials, nuclear powered ships, civil engineering, radioactivation analysis and injury prevention are reported. (Kako, I.)

  17. Report of test and research results on atomic energy obtained in national institutes in fiscal 1992

    International Nuclear Information System (INIS)

    1994-01-01

    The tests and researches on the development and utilization of atomic energy in national laboratories were begun in 1956, and have accomplished the great role for the advance of the development and utilization of atomic energy in Japan by having produced many valuable results so far. Atomic energy has been utilized not only in the field of nuclear power but also in diverse fields, and in national laboratories, the research for expanding the development and utilization of atomic energy in medicine, agriculture, forestry, fishery, radioactivation analysis and others in addition the basic research on nuclear fusion have been advanced. Further expecting the pervasive effect to general science and technology, the development of integrated research are promoted from the viewpoint of new technical innovation and creative technology. The safety research of nuclear facilities have been carried out to keep them high level on the basis of the yearly program enacted by Nuclear Safety Commission. This is the report No. 33, in which the results of the test and research in the fields of nuclear fusion safety research, food irradiation, cancer countermeasures, agriculture, forestry, fishery, medicine, mining and manufacture, power utilization, construction, radioactivation analysis carried on in fiscal 1992 are summarized. (J.P.N.)

  18. Sandia National Laboratories: Research

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD and decision-making. Materials science Leading the nation in the knowledge of materials engineering success is our foundational scientific research, which provides us with knowledge and capabilities that

  19. Report of test and research results on atomic energy obtained in national institutes in fiscal 1986

    International Nuclear Information System (INIS)

    1988-01-01

    The test and research regarding the utilization of atomic energy carried out in national institutions have produced many valuable results in diverse fields so far, such as nuclear fusion, safety research, food irradiation and medicine, since the budget had been appropriated for the first time in 1956. It has accomplished large role in the promotion of atomic energy utilization in Japan. This report is volume 27, in which the results of the test and research on atomic energy utilization carried out by national institutions in fiscal year 1986 are summarized. It is hoped that the understanding about the recent trend and the results of the test and research on atomic energy utilization is further promoted by this report. The contents of this report are nuclear fusion; the research on engineering safety and environmental radioactivity safety; food irradiation; the countermeasures against cancer; fertilized soil, the improvement of quality, the protection of plants and the improvement of breeding in agriculture and fishery fields; diagnosis and medical treatment, pharmaceuticals, environmental hygiene and the application to physiology and pathology in medical field; radiation chemistry and radiation measurement in mining and industry fields; nuclear reactor materials and nuclear-powered ships; civil engineering; radioactivation analysis; and the research on the prevention of injuries. (Kako, I.)

  20. Report of test and research results on atomic energy obtained in national institutes in fiscal 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The test and research regarding the utilization of atomic energy carried out in national institutions have produced many valuable results in diverse fields so far, such as nuclear fusion, safety research, food irradiation and medicine, since the budget had been appropriated for the first time in 1956. It has accomplished large role in the promotion of atomic energy utilization in Japan. This report is Volume 25, in which the results of the test and research on atomic energy utilization carried out by national institutions in fiscal year 1984 are summarized. It is hoped that the understanding about the recent trend and the results of the test and research on atomic energy utilization is further promoted by this report. The contents of this report are nuclear fusion; the research on engineering safety and environmental radioactivity safety; food irradiation; the countermeasures against cancer; fertilized soil, the improvement of quality, the protection of plants and the improvement of breeding in agriculture and fishery fields; diagnosis and medical treatment, pharmaceuticals, environmental hygiene and the application to physiology and pathology in medical field; radiation chemistry and radiation measurement in mining and industry fields; nuclear reactor materials and nuclear-powered ships; civil engineering; radioactivation analysis; and the research on the prevention of injuries. (Kako, I.)

  1. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    . The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  2. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  3. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development

  4. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  5. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  6. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    International Nuclear Information System (INIS)

    Sinclair, K.C.; Morrison, M.L.

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects

  7. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.C. [National Renewable Energy Lab., Golden, CO (United States); Morrison, M.L. [California State Univ., Sacramento, CA (United States). Dept. of Biological Sciences

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects.

  8. Report on the national strategy of research in the energy domain

    International Nuclear Information System (INIS)

    2007-05-01

    This report presents the energy situation in France and the place of the research in the energy policy. It discusses the political and legal context, the strategy orientations, the energy efficiency, the renewable energies, the fossil energies, the nuclear energy and the socio-economic factors. The actors of the energy research are detailed. (A.L.B.)

  9. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  10. Energy research

    International Nuclear Information System (INIS)

    1979-03-01

    Status reports are given for the Danish Trade Ministry's energy research projects on uranium prospecting and extraction, oil and gas recovery, underground storage of district heating, electrochemical energy storage systems, wind mills, coal deposits, coal cambustion, energy consumption in buildings, solar heat, biogas, compost heat. (B.P.)

  11. Status of the U.S. Department of Energy/National Renewable Energy Laboratory Avian Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K. C.

    1999-06-21

    As wind energy development expands, concern over possible negative impacts of wind farms on birds remains an issue to be addressed. The concerns are twofold: (1) possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act and/or the Endangered Species Act, and (2) the effect of avian mortality on bird populations. To properly address these concerns, the National Renewable Energy Laboratory (NREL), working collaboratively with stakeholders including utilities, environmental groups, consumer advocates, regulators, government officials, and the wind industry, supports an avian-wind interaction research program. The objectives of the program are to conduct and sponsor scientifically based research that will ultimately lead to the reduction of avian fatality due to wind energy development throughout the United States. The approach for this program involves cooperating with the various stakeholders to study the impacts of current wind plants on avian populations, developing approaches to siting wind plants that avoid avian problems in the future, and investigating methods for reducing or eliminating impacts on birds due to the development of wind energy. This paper summarizes the research projects currently supported by NREL.

  12. NREL Research and Thoughts on Connected and Automated Vehicle Energy Impacts; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, Jeff; Wood, Eric; Lammert, Michael

    2014-12-09

    Jeff was invited to brief the EPA Mobile Sources Technical Review Subcommittee on considerations regarding potential energy and environmental considerations for connected and automated vehicles. For more information about the MSTRS see http://www2.epa.gov/caaac/mobile-sources-technical-review-subcommittee-mstrs-caaac.

  13. Research on the decomposition model for China’s National Renewable Energy total target

    International Nuclear Information System (INIS)

    Liu, Zhen; Shi, Yuren; Yan, Jianming; Ou, Xunmin; Lieu, Jenny

    2012-01-01

    It is crucial that China’s renewable energy national target in 2020 is effectively decomposed into respective period targets at the provincial level. In order to resolve problems arising from combining the national and local renewable energy development plan, a total target and period target decomposition model of renewable energy is proposed which considers the resource distribution and energy consumption of different provinces as well as the development characteristics of various renewable energy industries. In the model, the total proposed target is comprised of three shares: basic share, fixed share and floating share target. The target distributed for each province is then determined by the preference relation. That is, when total renewable energy target is distributed, the central government is more concerned about resources potential or energy consumption. Additionally, the growth models for various renewable energy industries are presented, and the period targets of renewable energy in various provinces are proposed in line with regional economic development targets. In order to verify whether the energy target can be achieved, only wind power, solar power, and hydropower are considered in this study. To convenient to assess the performance of local government, the two year period is chosen as an evaluation cycle in the paper. The renewable energy targets per two-year period for each province are calculated based on the overall national renewable energy target, energy requirements and resources distribution. Setting provincial period targets will help policy makers to better implement and supervise the overall renewable energy plan. - Highlights: It is very importance that the national target of renewable energy in 2020 can be effectively decomposed into the stages target of various province. In order to resolve the relation the plan between the national and local renewable energy development planning, a total target and phase target decomposition model

  14. The national laboratory business role in energy technology research and development. Panel Discussion

    International Nuclear Information System (INIS)

    Sackett, John; Sullivan, Charles J.; Aumeier, Steve; Sanders, Tom; Johnson, Shane; Bennett, Ralph

    2001-01-01

    Full text of publication follows: Energy issues will play a pivotal role in the economic and political future of the United States. For reasons of both available supply and environmental concerns, development and deployment of new energy technologies is critical. Nuclear technology is important, but economic, political, and technical challenges must be overcome if it is to play a significant role. This session will address business opportunities for national laboratories to contribute to the development and implementation of a national energy strategy, concentrating on the role of nuclear technology. Panelists have been selected from the national laboratories, the U.S. Department of Energy, and state regulators. (authors)

  15. Scenarios for energy transition by ANCRE, the National Alliance for Coordination of Energy Research

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    Public research institutes - brought together in ANCRE - present their scenarios in order to provide a backdrop for this fundamental transformation about to take place in France. How to reduce to 50% the share of nuclear power by 2025 and to divide by 4 greenhouse gas emissions by 2050? These tools enable ANCRE to calculate the heavy investments that will be necessary to develop new technologies and to build distribution networks. (authors)

  16. A National Research Council Evaluation of the Department of Energy's Marine and Hydrokinetic Resource Assessments

    Science.gov (United States)

    Glickson, D.; Holmes, K. J.; Cooke, D.

    2012-12-01

    Marine and hydrokinetic (MHK) resources are increasingly becoming part of energy regulatory, planning, and marketing activities in the U.S. and elsewhere. In particular, state-based renewable portfolio standards and federal production and investment tax credits have led to an increased interest in the possible deployment of MHK technologies. The Energy Policy Act of 2005 (Public Law 109-58) directed the Department of Energy (DOE) to estimate the size of the MHK resource base. In order to help DOE prioritize its overall portfolio of future research, increase the understanding of the potential for MHK resource development, and direct MHK device and/or project developers to locations of greatest promise, the DOE Wind and Water Power Program requested that the National Research Council (NRC) provide an evaluation of the detailed assessments being conducted by five individual resource assessment groups. These resource assessment groups were contracted to estimate the amount of extractable energy from wave, tidal, ocean current, ocean thermal energy conversion, and riverine resources. Performing these assessments requires that each resource assessment group estimate the average power density of the resource base, as well as the basic technology characteristics and spatial and temporal constituents that convert power into electricity for that resource. The NRC committee evaluated the methodologies, technologies, and assumptions associated with each of these resource assessments. The committee developed a conceptual framework for delineating the processes used to develop the assessment results requested by the DOE, with definitions of the theoretical, technical, and practical resource to clarify elements of the overall resource assessment process. This allowed the NRC committee to make a comparison of different methods, terminology, and processes among the five resource assessment groups. The committee concluded that the overall approach taken by the wave resource and

  17. The national strategy synthesis on the research in the energy domain

    International Nuclear Information System (INIS)

    2007-01-01

    The energy research strategy takes into account two main orientations: the identification, the design and the industrial validation of new technologies generating no or less greenhouse gases, progresses relative to the today technologies in order to decrease the energy consumption. The report discusses the following axis of research: technologies of poor greenhouse gases emission and alternative energy resources, the nuclear energy for the electric power production, the biomass, the photovoltaic energy by the development of less expensive technologies, the CO 2 capture and storage, the energy efficiency, the energy storage, the transport sector and the fuel cells development. (A.L.B.)

  18. Environmental management assessment of the National Institute for Petroleum and Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-01

    This report documents the results of the environmental management assessment of the National Institute for Petroleum and Energy Research (NIPER), located in Bartlesville, Oklahoma. The assessment was conducted August 15-26, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health. The assessment included reviews of documents and reports, as well as inspections and observations of selected facilities and operations. Further, the team conducted interviews with management and staff from the Bartlesville Project Office (BPO), the Office of Fossil Energy (FE), the Pittsburgh Energy Technology Center (PETC), state and local regulatory agencies, and BDM Oklahoma (BDM-OK), which is the management and operating (M&O) contractor for NIPER. Because of the transition from a cooperative agreement to an M&O contract in January 1994, the scope of the assessment was to evaluate (1) the effectiveness of BDM-OK management systems being developed and BPO systems in place and under development to address environmental requirements; (2) the status of compliance with DOE Orders, guidance, and directives; and (3) conformance with accepted industry management practices. An environmental management assessment was deemed appropriate at this time in order to identify any systems modifications that would provide enhanced effectiveness of the management systems currently under development.

  19. The gratefulness of the entire nation: Atomic Energy Research Policy in Sweden 1945-1956

    International Nuclear Information System (INIS)

    Lindstroem, S.

    1991-01-01

    The dissertation is a study of the Swedish atomic energy research policy since its inception in the mid-1940's until the parliamentary decision in 1956 to launch the massive program of research and technological development which became known as the 'Swedish line'. This program entailed an effort to develop and introduce a nuclear technology based on domestically produced heavy water reactors and domestic energy supplies as a key component in a long-term solution to the nation's energy problem. The analysis is based on a study of government documents, parliamentary materials and public debates as well as extensive studies of the archives of both public agencies such as the Swedish State Power Board, private bodies such as the large-scale corporation ASEA and of the archives of the executive committee of the government party and of then-prime minister Tage Erlander. It has been possible to disaggregate the actual policy process into its constituent parts and, on the basis of such a close examination of the step-by-step process, to give an account which deviates considerably from many of traditional interpretations of both policy processes in general and of this period in modern Swedish political history in particular. Thus neither an exclusively rationalistic account in terms of the publicly stated objectives and reasons nor an account cast in terms of some of the more common metaphors in vogue such as 'iron triangles', 'segments' or 'issue networks' are able to capture the essence of this complex policy process. Rather an image emerges of a process of constant negotiation that takes place in a contested border-line zone between the public and the private sphere. It is also possible to relate this process to over-arching themes in modern Swedish politics such as the debate over rationalization and over the proper role of the state in the economic life of society. (3 p. English summary) (71 refs.)

  20. Research for energy

    International Nuclear Information System (INIS)

    Garbers, C.F.

    1983-01-01

    This paper deals with energy R D and its funding in the South African public sector. The objectives of the National Programme for Energy Research are discussed within the framework of the country's manpower and financial needs and limitations. It is shown that energy research is multidisciplinary where the focus is on infrastructure development within the constraints of technical, economic and environmental factors. Possible mechanisms to cater for the country's energy research funding are suggested

  1. Tiger Team Assessment of the National Institute for Petroleum and Energy Research

    International Nuclear Information System (INIS)

    1992-05-01

    This report documents the Tiger Team Assessment of the National Institute for Petroleum and Energy Research (NIPER) and the Bartlesville Project Office (BPO) of the Department of Energy (DOE), co-located in Bartlesville, Oklahoma. The assessment investigated the status of the environmental, safety, and health (ES ampersand H) programs of the two organizations. The Tiger Team Assessment was conducted from April 6 to May 1, 1992, under the auspices of DOE's Office of Special Projects (OSP) in the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health issues; management practices; quality assurance; and NIPER and BPO self-assessments. Compliance with Federal, state, and local regulations; DOE Orders; best management practices; and internal IITRI requirements was assessed. In addition, an evaluation was conducted of the adequacy and effectiveness of BPO and IITRI management of the ES ampersand H and self-assessment processes. The NIPER/BPO Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES ampersand H requirements, root causes for noncompliance, adequacy of DOE and contractor ES ampersand H management programs, response actions to address the identified problem areas, and DOE-wide ES ampersand H compliance trends and root causes

  2. US Department of Energy reservior research activities Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1991-01-01

    The US Department of Energy (DOE) does not directly manage large reservoirs, but DOE laboratories conduct research on reservoir monitoring, assessment, and enhancement under several activities. These activities include (1) studies and remedial actions for reservoirs affected by releases from DOE facilities, (2) industry- sponsored research on reservoir and stream fish, (3) climate change research, (4) hydropower impact assessment studies conducted for the Federal Energy Regulatory Commission (FERC), and (5) the DOE hydropower program. These activities fall under DOE's missions of providing support for environmentally sound energy technologies and managing the legacies of past waste disposal practices at DOE facilities. 9 refs

  3. Fossil energy research meeting

    Energy Technology Data Exchange (ETDEWEB)

    Kropschot, R. H.; Phillips, G. C.

    1977-12-01

    U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

  4. The comparison and coordination of national policies and programmes in the energy research and development sector

    International Nuclear Information System (INIS)

    1978-01-01

    Inventory of programmes and expenditures in the field of energy research and development, which are financed from the public sector funds of the Member States and of the European Communities (1974-1976)

  5. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  6. National Energy Balance - 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The National Energy Balance - 1985 shows energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, since 1974 to 1984 (E.G.) [pt

  7. National Energy Balance - 1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The National Energy Balance - 1984 shows energy fluxes of several primary and secondary energy sources, since the productions to final consumption in the main economic sectors, since 1973 to 1983. (E.G.) [pt

  8. National Energy Balance-1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The National Energy Balance - 1987 showns energy fluxes of several primary and secondary energy sources, since the production to final consumption in the main economic sectors, since 1971 to 1986. (E.G.) [pt

  9. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  10. IRM National Reference Series: Japan: An evaluation of government-sponsored energy conservation research and development

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C.D.

    1987-07-01

    Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and are usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.

  11. National Energy Plan II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This volume contains the Administration's second National Energy Plan, as required by section 801 of the Department of Energy Organization Act (Public Law 95-91). A second volume will contain an assessment of the environmental trends associated with the energy futures reported here. Detailed appendices to the Plan will be published separately. The eight chapters and their subtitles are: Crisis and Uncertainty in the World Energy Future (The Immediate Crisis and the Continuing Problem, The Emergence of the Energy Problem, The Uncertainties of the World Energy Future, World Oil Prices, Consequences for the U.S.); The U.S. Energy Future: The Implications for Policy (The Near-, Mid-, and Long-Term, The Strategy in Perspective); Conservation (Historical Changes in Energy Use, Post-Embargo Changes - In Detail, Conservation Policies and Programs, The Role of Conservation); Oil and Gas (Oil, Natural Gas); Coal and Nuclear (Coal, Nuclear, Policy for Coal and Nuclear Power); Solar and Other Inexhaustible Energy Sources (Solar Energy, Geothermal, Fusion, A Strategy for Inexhaustible Resources); Making Decisions Promptly and Fairly (Managing Future Energy Crises: Emergency Planning, Managing the Current Shortfall: The Iranian Response Plan, Managing the Long-Term Energy Problem: The Institutional Framework, Fairness in Energy Policy, Public Participation in the Development of Energy Policy); and NEP-II and the Future (The Second National Energy Plan and the Nation's Energy Future, The Second National Energy Plan and the Economy, Employment and Energy Policy, The Second National Energy Plan and Individuals, The Second National Energy Plan and Capital Markets, and The Second National Energy Plan and the Environment). (ERA citation 04:041097)

  12. [National Institute for Petroleum and Energy Research] monthly progress report, July 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  13. (National Institute for Petroleum and Energy Research) monthly progress report, July 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  14. Energy research strategic plan

    International Nuclear Information System (INIS)

    1995-08-01

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation's industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department's energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation

  15. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  16. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  17. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  18. National energy balance - 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Based on available data from IBGE, CNP/Petrobras, Eletrobras, Nuclebras and other governmental enterprises the National Energy Balance was done. This publication covers since 1965 to 1975. In conformity to the international rules, the energy resources used for non-energy purposes were excluded. The energy production and consumption for the next ten years were forecasted, considering the actual brazilian energy policy. (E.G.) [pt

  19. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  20. National energy balance - 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The national energy balance of 1978 shows some modifications in relation to the last year. New tables were included aiming to show the brazilian energy situation, such as the hydraulic potential and the non-renewable energy resources. (E.G.) [pt

  1. National energy balance - 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The national energy balance of the 1976 shows several modifications in relation to the last year. The historical serie is based in more confiable information, from several energy companies. The most greater modifications are on energy source of hard control, such as lignite and charcoal for non-siderurgic uses. (E.G.) [pt

  2. National Energy Balance - 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The National Energy Balance - 1986 shows energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, since 1970 to 1985. The incorporation of a new brazilian information is done. (E.G.) [pt

  3. National Energy Balance - 1981

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The National Energy Balance - 1981, shows a new metodology and information in level of several economic sectors, as well as a separation of primary and secondary energy sources, its energy fluxes, i.e. production, imports, exports, consumption, etc...(E.G.) [pt

  4. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development

  5. Centre for Education, Training, & Research in Renewable Energy and Energy Efficiency (CETREE) of Malaysia: Educating the Nation

    Science.gov (United States)

    Ibrahim, Kamarulazizi; Hilme, Khairur Rahim Ahmad

    2007-10-01

    Centre for Education, Training, and Research in Renewable Energy and Energy Efficiency (CETREE), was established in the year 2000, in Universiti Sains Malaysia (USM). CETREE is a not-for-profit organization that was part of the Malaysian Government's continuous effort in promoting sustainable development. The centre's main task is to tackle issues and problems that are slowing the potential growth of RE & EE utilizations in Malaysia. CETREE and the Government of Malaysia, with funding and supports from Danish International Development Assistance (DANIDA) and USM, has been working together closely in applying trans-disciplinary educational methods and approaches for the teaching of RE & EE that are compatible with Malaysian. Through association with various entities such as Energy Centre of Malaysia (PTM), Energy Commission of Malaysia (ST), Malaysia Electricity Supply Industry Trust Account (MESITA); CETREE was able to successfully promote sustainable development through education and training. Significant accomplishments made by CETREE include introducing RE and EE as part of Malaysian secondary schools and universities education; conducting energy related courses for professionals; and generating awareness via campaign in the mass media and CETREE's mobile-exhibition-unit road-tour.

  6. National Privacy Research Strategy

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — On July 1, NITRD released the National Privacy Research Strategy. Research agencies across government participated in the development of the strategy, reviewing...

  7. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  8. Comprehensive national energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This Comprehensive National Energy Strategy sets forth a set of five common sense goals for national energy policy: (1) improve the efficiency of the energy system, (2) ensure against energy disruptions, (3) promote energy production and use in ways that respect health and environmental values, (4) expand future energy choices, and (5) cooperate internationally on global issues. These goals are further elaborated by a series of objectives and strategies to illustrate how the goals will be achieved. Taken together, the goals, objectives, and strategies form a blueprint for the specific programs, projects, initiatives, investments, and other actions that will be developed and undertaken by the Federal Government, with significant emphasis on the importance of the scientific and technological advancements that will allow implementation of this Comprehensive National Energy Strategy. Moreover, the statutory requirement of regular submissions of national energy policy plans ensures that this framework can be modified to reflect evolving conditions, such as better knowledge of our surroundings, changes in energy markets, and advances in technology. This Strategy, then, should be thought of as a living document. Finally, this plan benefited from the comments and suggestions of numerous individuals and organizations, both inside and outside of government. The Summary of Public Comments, located at the end of this document, describes the public participation process and summarizes the comments that were received. 8 figs.

  9. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  10. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  11. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  12. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  13. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Deri, R.J.; Erlandson, A.C.

    2011-01-01

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  14. Information support of Energy Research and Development Administration's environmental program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ulrikson, G.U.

    1975-01-01

    The primary function of the Information Center Complex (ICC) is to develop and correlate the information activities of the energy and related environmental research projects at ORNL and to systematize operations to achieve maximum response to the information needs of funding agencies and user community. The development of new data bases and information services as need arises is a major responsibility of ICC. Interactions among segments of ICC provide for a wide range of analysis and synthesis of knowledge, resulting in a synergistic effect. Present methods used to retrieve environmental information from the scientific literature are reviewed with respect to specific procedures employed by ICC, and the use of highly specialized data bases in relation to manual and computerized sources is discussed. Procedures employed for different types of queries and the search strategy utilized are summarized indicating the extent of coverage from the various data bases. The ICC matrix organization is described. This organizational structure is representative of the subject area disciplines which contribute to biomedical and environmental information and an intersecting structure which provides for the accomplishment of mission-oriented tasks overlapping general disciplines. The advantages of a matrix organization are discussed

  15. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  16. [National Institute for Petroleum and Energy Research] 1991 annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This Annual Report provides research accomplishments, publications, and presentations resulting from the FY91 research conducted under the following Base Program projects: reservoir assessment and characterization; TORIS research support; three-phase relative permeability; imaging techniques applied to the study of fluids in porous media; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility- control methods; gas flooding; mobility control and sweep improvement in gas flooding; thermal processes for light oil recovery; thermal processes for heavy oil recovery; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom- containing compounds; and development of analytical methodology for analysis of heavy crudes.

  17. Annual report of the Gama Atomic Energy Research Centre, National Atomic Energy Agency, April 1975-March 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Contents of this 1975-1976 Annual Report include organization structure personnel, procurement and acquisition of laboratory materials and equipment, maintenance of laboratory equipments, budgeting and financial accounts, preliminary fundamental research on plasma physics and particle physics, development of several prototypes of radiation detectors, construction of prototypes of high voltage tension, research in reactor physics, construction of BATAN Yogyakarta nuclear reactor, development of electronic equipment prototypes for reactor instrumentation, research on radiochemistry and radiation chemistry, preliminary research on uranium extraction using organic solvents, laboratory scale heavy water separation by distillation method, and research publication list. The institute's programmes for 1976-1977 are summarized. (author)

  18. Annual report April 1974-March 1975 of the Gama Research Centre National Atomic Energy Agency

    International Nuclear Information System (INIS)

    1975-01-01

    Activities at the Gama Research Centre for the period of April 1974-March 1975, covering works at the Laboratory of Nuclear and Atomic Physics, at the Reactor Laboratory, at the Laboratory of Chemistry, and at the Laboratory of Process Technology, are described. The Center's personnel and financial accounts are also given. (RUW)

  19. Energy security and national policy

    International Nuclear Information System (INIS)

    Martin, W.F.

    1987-01-01

    To achieve an energy secure future, energy cannot be viewed as an isolated concern. It is part and parcel of a nation's economic, social, and political context. In the past important implications for the economy and national security have been ignored. Crash programs to deal with oil shortages in the seventies, crashed. In the eighties, oil surplus has been enjoyed. The energy situation could be quite different in the nineties. Statistics on energy supply and consumption of oil, coal, natural gas and electricity from nuclear power show that much progress has been made worldwide. However, about half of the world's oil will come from the Persian Gulf by 1995. Continued low oil prices could raise US imports to 60% of consumption by 1995. Persian Gulf tensions serve as reminders of the link between energy policy and national security policy. Energy policy must be based on market forces and concerns for national security. Strategic oil reserves will expand along with the availability of domestic oil and gas resources. Increased attention to conservation, diversification of energy resources, and use of alternative fuels can help reduce imports. Continued high-risk long term research and development is needed. Improved technology can reduce environmental impacts. Global markets need global cooperation. Energy has emerged as an important aspect of East-West relations. Europeans need to diversify their sources of energy. The soviets have proposed expanded collaboration in magnetic fusion science. A series of initiatives are proposed that together will ensure that economies will not become overly dependent on a single source of energy

  20. Nanoscience Research for Energy Needs. Report of the National Nanotechnology Initiative Grand Challenge Workshop, March 16-18, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Alivisatos, P.; Cummings, P.; De Yoreo, J.; Fichthorn, K.; Gates, B.; Hwang, R.; Lowndes, D.; Majumdar, A.; Makowski, L.; Michalske, T.; Misewich, J.; Murray, C.; Sibener, S.; Teague, C.; Williams, E.

    2004-03-18

    This document is the report of a workshop held under NSET auspices in March 2004 aimed at identifying and articulating the relationship of nanoscale science and technology to the Nation's energy future.

  1. Swedish Energy Research 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Swedish Energy Research 2009 provides a brief, easily accessible overview of the Swedish energy research programme. The aims of the programme are to create knowledge and skills, as needed in order to commercialise the results and contribute to development of the energy system. Much of the work is carried out through about 40 research programmes in six thematic areas: energy system analysis, the building as an energy system, the transport sector, energy-intensive industries, biomass in energy systems and the power system. Swedish Energy Research 2009 describes the overall direction of research, with examples of current research, and results to date within various thematic areas and highlights

  2. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries Security User Facilities Science Work with Us Energy Batteries and Energy Storage Energy Systems Modeling Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  3. Researches about energy matrix teaching in national and international journals: challenges for Science-Technology-Society (STS education

    Directory of Open Access Journals (Sweden)

    Tiago Clarimundo Ramos

    2017-08-01

    Full Text Available It’s consensual that the global energy issue is permeated by a great diversity of factors, as prices and availability of natural resources, due to, above all, the comfort and prosperities which have been so vigorously advocated since the industrial civilization. Nevertheless, it is defended that it would be better to achieve development without growing, as long as growing in a sustainable way is always considered paradoxical. Considering that these issues must be reflected in a scope of researches in energy matrix teaching, this article shows a qualitative analysis of 37 studies published from 1988 to 2013, in national and international journals in the field of Education and (or Science Education of webqualis stratum A1, A2 and B1, in 2013, according to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes; aiming to record the knowledge built, as well as to identify if the discussion about the contradiction of the unlimited growing model is being observed. In general, it has been ascertained great unease regarding to the traditional education, uncritically applied in different school subjects (as in Physics, Chemistry, Biology, Science, Geography, among others, signaling that the Science-Technology-Society (STS education can be a way for its resignification. However, it is very worrisome the aspect of the omission, in great part of these studies, regarding to the necessity of focusing more on the problematization of the current socio-economic model, chiefly aiming to emphasize that the demand for energy, imposed by the rampant consumption, is clearly unbearable.

  4. Energy - Sandia National Laboratories

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  5. The national strategy synthesis on the research in the energy domain; La synthese de la strategie nationale sur la recherche dans le domaine de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The energy research strategy takes into account two main orientations: the identification, the design and the industrial validation of new technologies generating no or less greenhouse gases, progresses relative to the today technologies in order to decrease the energy consumption. The report discusses the following axis of research: technologies of poor greenhouse gases emission and alternative energy resources, the nuclear energy for the electric power production, the biomass, the photovoltaic energy by the development of less expensive technologies, the CO{sub 2} capture and storage, the energy efficiency, the energy storage, the transport sector and the fuel cells development. (A.L.B.)

  6. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  7. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  8. Research using energy landscape

    International Nuclear Information System (INIS)

    Kim, Hack Jin

    2007-01-01

    Energy landscape is a theoretical tool used for the study of systems where cooperative processes occur such as liquid, glass, clusters, and protein. Theoretical and experimental researches related to energy landscape are introduced in this review

  9. A National Energy-Water System Assessment Framework (NEWS): Synopsis of Stage 1 Research Strategy and Results

    Science.gov (United States)

    Vorosmarty, C. J.; Miara, A.; Macknick, J.; Newmark, R. L.; Cohen, S.; Sun, Y.; Tidwell, V. C.; Corsi, F.; Melillo, J. M.; Fekete, B. M.; Proussevitch, A. A.; Glidden, S.; Suh, S.

    2017-12-01

    The focus of this talk is on climate adaptation and the reliability of power supply infrastructure when viewed through the lens of strategic water issues. Power supply is critically dependent upon water resources, particularly to cool thermoelectric plants, making the sector particularly sensitive to any shifts in the geography or seasonality of water supply. We report on results from an NSF-Funded Water Sustainability and Climate effort aimed at uncovering key energy and economic system vulnerabilities. We have developed the National Energy-Water System assessment framework (NEWS) to systematically evaluate: a) the performance of the nation's electricity sector under multiple climate scenarios; b) the feasibility of alternative pathways to improve climate adaptation; and, c) the impacts of energy technology and investment tradeoffs on the economic productivity, water availability and aquatic ecosystem condition. Our project combines core engineering and geophysical models (ReEDS [Regional Energy Deployment System], TP2M [Thermoelectric Power and Thermal Pollution], and WBM [Water Balance]) through unique digital "handshake" protocols that operate across different institutions and modeling platforms. Combined system outputs are fed into a regional-to-national scale economic input/output model to evaluate economic consequences of climate constraints, technology choices, and environmental regulation. The impact assessments in NEWS are carried out through a series of climate/energy policy scenario studies to 2050. We find that despite significant climate-water impacts on individual plants, the current US power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. However, the magnitude and implications of climate-water impacts vary depending on the configuration of the future power sector. To evaluate future power supply performance, we

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  12. Danish energy research

    International Nuclear Information System (INIS)

    1976-04-01

    Review of current Danish research and development on energy, with the main weight laid on public financing. Based on this review, a proposal is presented for extended research and development i Denmark. (B.P.)

  13. Report style guide for subcontractors of the Efficiency and Renewables Research Section, Energy Division, Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stone, T.A.; Bennett, M.N.

    1992-09-01

    This document has been paraphrased from the ORNL Document Preparation Guide (DPG). It is intended for use by Efficiency and Renewables Research Section, Energy Division, ORNL subcontractor reports so that review and editing effort can be minimized. Topics covered are typing instructions, document format, usage, abbreviations and acronyms, and standard editing marks.

  14. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  15. National Energy Balance - 1980

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, are presented. The forecasting of uranium concentrate consumption and production is made for six years - 1980 to 1985. (E.G.) [pt

  16. National energy balance

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The energy fluxes of the several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, are presented. A historical series covering ten years - 1973 to 1982, and the information retrieval related to the year of 1970 are also presented. (EG) [pt

  17. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  18. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  19. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  20. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  1. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  2. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  3. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  4. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  5. Do nations still need national energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, James [Lehman Brothers, Washington, DC (United States); Odell, P [Erasmus Univ., Rotterdam (Netherlands). Dept. of International Energy Studies; Jones, D

    1993-02-01

    Once again the issue has arisen whether a national energy policy is necessary or even desirable. No doubt renewed debate has been stimulated by recent developments - the collapse of the Soviet threat, an altered perception of the power of OPEC, or a jaundiced view regarding the effectiveness of governments in this arena. Yet, beneath the surface lie longer-standing issues regarding interests and ideology. This article attempts to deal with the issue, first, as a generic level, then in terms of the transformed energy market, and, finally, in relation to the content of energy policy. (author)

  6. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  7. Energy research for tomorrow

    International Nuclear Information System (INIS)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard

    2011-04-01

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial application and

  8. Energy research for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard (eds.)

    2011-04-15

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial

  9. The contribution of Risoe National Laboratory to the research and development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.; Brown Joergensen, B.

    1990-07-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution to the organization and the administraton of the programs is mentioned. Finally a list of references is given. (author) 3 tabs., 24 ills.; 45 refs

  10. The contribution of Risoe National Laboratory to the research development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.

    1986-05-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current abd finished projects. All current projects are described briefly, stating status and results obtained, whole the results of finished projects are described in more detail. Risoe's contribution of the organization and the administration of the programs is mentioned. Finally, a list of references is given. (Author)

  11. The contribution of Risoe National Laboratory to the research and development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.; Petersen, S.

    1988-06-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution to the organization and the administration of the programs is mentioned. Finally a list of references is given. 11 ills., 34 refs. (author)

  12. The contribution of Risoe National Laboratory to the research development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    1985-07-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution of the organization and the administration of the programs is mentioned. Finally a list of references is given. (author)

  13. The contribution of Risoe National Laboratory to the research and development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.; Petersen, S.

    1989-04-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution to the organization and the administration of the programs is mentioned. Finally a list of references is given. (author) 4 tabs., 22 ills., 33 refs

  14. Research on wind energy

    CSIR Research Space (South Africa)

    Szewczuk, S

    2012-10-01

    Full Text Available heights; short-term predictions ? CSIR 2012 Slide 9 Innovation & preliminary wind energy technology tree ? South African Industry?s propensity to innovate is in the same league as their counterparts in Europe. To state this differently, South African...? ? CSIR 2012 Slide 18 Modular form of electrification in rural communities Project funded by the Royal Danish Embassy in Pretoria and carried out by: ? eThekwini (Durban) Municipality ? Ris? DTU (Danish National Laboratory for Sustainable Energy...

  15. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  16. Advances in energy research

    CERN Document Server

    Acosta, Morena J

    2013-01-01

    This book presents a comprehensive review of energy research studies from authors around the globe, including recent research in new technologies associated with the construction of nuclear power plants; oil disperse systems study using nuclear magnetic resonance relaxometry (NMRR); low energy consumption for cooling and heating systems; experimental investigation of the performance of a ground-source heat pump system for buildings heating and cooling; sustainable development of bioenergy from agricultural wastes and the environment; hazard identification and parametric analysis of toxic pollutants dispersion from large liquid hydrocarbon fuel-tank fires; maintenance benchmarking in petrochemicals plants by means of a multicriteria model; wind energy development innovation; power, people and pollution; nature and technology of geothermal energy and clean sustainable energy for the benefit of humanity and the environment; and soil thermal properties and the effects of groundwater on closed loops.

  17. Report on the national strategy of research in the energy domain; Rapport sur la strategie nationale de recherche dans le domaine energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    This report presents the energy situation in France and the place of the research in the energy policy. It discusses the political and legal context, the strategy orientations, the energy efficiency, the renewable energies, the fossil energies, the nuclear energy and the socio-economic factors. The actors of the energy research are detailed. (A.L.B.)

  18. Sandia National Laboratories: Research: Biodefense

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD knowledge to counter disease Sandia conducts research into how pathogens interact and subvert a host's immune response to develop the knowledge base needed to create new novel environmental detectors, medical

  19. Smart Cities and National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    Energy system analysis follows two tracks, either through plans for future transitions of national energy systems, or local development of smart cities and regions. These two tracks seldom overlap. National plans neglect the local implementation of intermittent renewable technology and use of local...... resources, and smart cities and local development do not relate to national targets and fail to evaluate sub-optimization. Thus, there is a need for approaches that help researchers creating links between country analyses and local energy system transitions. This paper investigates the effects...... of such an approach, by investigating Western Denmark. By splitting Western Denmark into regions, it is possible to create individual energy systems for each region. Through interconnection, these regions can exchange electricity with each other. This enables analyses of interaction between smart cities and national...

  20. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can be reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146

  2. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    Science.gov (United States)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  3. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  4. National debate on the energies; Debat national sur les energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathered the allocutions presented at the national debate on the energies of the 18 march 2003. The full text of the presentations of the Ministry of the industry N. Fontaine and the first Ministry J.P. Raffarin are provided. A synthesis of the answers to the following questions is also presented: understand the energy, the increase of the energy demand, the international consumption, the necessary changes of the consumption and production modes, the environmental impact, the resources, the decision making and the deciders. (A.L.B.)

  5. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  6. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  7. Energy research program 80

    International Nuclear Information System (INIS)

    1980-01-01

    The energy research program 80 contains an extension of the activities for the period 1980-82 within a budget of 100 mio.kr., that are a part of the goverment's employment plan for 1980. The research program is based on a number of project proposals, that have been collected, analysed, and supplemented in October-November 1979. This report consists of two parts. Part 1: a survey of the program, with a brief description of the background, principles, organization and financing. Part 2: Detailed description of the different research programs. (LN)

  8. National debate on the energies

    International Nuclear Information System (INIS)

    2003-01-01

    This document gathered the allocutions presented at the national debate on the energies of the 18 march 2003. The full text of the presentations of the Ministry of the industry N. Fontaine and the first Ministry J.P. Raffarin are provided. A synthesis of the answers to the following questions is also presented: understand the energy, the increase of the energy demand, the international consumption, the necessary changes of the consumption and production modes, the environmental impact, the resources, the decision making and the deciders. (A.L.B.)

  9. The Energy Science and Technology Database on a local library system: A case study at the Los Alamos National Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Holtkamp, I.S.

    1994-10-01

    This paper presents an overview of efforts at Los Alamos National Laboratory to acquire and mount the Energy Science and Technology Database (EDB) as a citation database on the Research Library`s Geac Advance system. The rationale for undertaking this project and expected benefits are explained. Significant issues explored are loading non-USMARC records into a MARC-based library system, the use of EDB records to replace or supplement in-house cataloging of technical reports, the impact of different cataloging standards and database size on searching and retrieval, and how integrating an external database into the library`s online catalog may affect staffing and workflow.

  10. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  11. Viet Nam National Atomic Energy Commission

    International Nuclear Information System (INIS)

    1992-01-01

    Vietnam National Atomic Energy Commission (VINATOM) is a governmental body in charge of organizing and coordinating activities related to use of nuclear energy for peaceful purpose. VINATOM in structure consists of the Nuclear Research Institute (Dalat), the Institute of Nuclear Science and Technology (Hanoi), the Institute for Technology of Radioactive and Rare Elements (Hanoi), and the Centre for Nuclear Technique Application (Ho Chi Minh City). This catalogue introduces profiles of nuclear R and D activities under management by VINATOM. (N.H.A)

  12. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  13. Aerial radiological survey of the United States Department of Energy's Sandia National Laboratories and Inhalation Toxicology Research Institute, Albuquerque, New Mexico. Date of survey: April 1981

    International Nuclear Information System (INIS)

    Boyns, P.K.

    1982-05-01

    An aerial radiological survey of the Sandia National Laboratories (SNLA) and the Inhalation Toxicology Research Institute (ITRI) was carried out in April 1981 by EG and G, Inc. for the United States Department of Energy. The survey consisted of an airborne measurement of both natural and man-made gamma radiation from the terrain surface in and around the SNLA and ITRI site. These measurements allowed a determination of the surface terrestrial spatial distribution of isotope concentrations. Results are reported as exposure rates and man-made isopleths and are superimposed on 240 m/cm scale map of the area. Gamma ray energy spectra are also presented for the net man-made radioelements. Several areas of man-made activity were detected in the SNLA and ITRI survey. These areas were associated with normal operations at the SNLA, ITRI and Kirtland Air Force Base. The presence of 241 Am was not detected in any of the areas surveyed

  14. Basin-Scale Assessment of the Land Surface Energy Budget in the National Centers for Environmental Prediction Operational and Research NLDAS-2 Systems

    Science.gov (United States)

    Xia, Youlong; Peters-Lidard, Christa D.; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa; Ek, Michael B.; Kumar, Sujay V.; Mocko, David M.; Wei, Helin

    2015-01-01

    This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.

  15. Basin-scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems

    Science.gov (United States)

    Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Kumar, Sujay; Mocko, David; Wei, Helin

    2016-01-01

    This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15% for mean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.

  16. Economic feasibility study to Raise the operational capacity of the Electron Beam Accelerator at the National Centre for Radiation Research and Technology, atomic Energy Authority, Egypt

    International Nuclear Information System (INIS)

    El-Kolaly, M.; Hammad, A.; El-Gameel, E.A.

    2011-01-01

    The study aims to investigate the economic feasibility to raise the operational capacity of the accelerator at the National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt, through proposal of additional processing of power cables as it have 4 thousand operating hours per year of total 6 thousand hours per year. The study involved three sections; the first section included the technical aspects and marketing, the second section was concerned with financial analysis, and the third section included the national return of the project. In the first part, the electronic and technical requirements of the accelerator were studied to raise the capacity of the accelerator and to identify the time trend of demand for services in marketing. The second section included the financial feasibility of the project which was carried out through two parts; the first part deal with the analysis of costs of the project including identifying of investment, spending, labor costs, operating expenses, the annual installment of the annual depreciation expense with the total annual costs and operating costs per hour and ton. The second part was carried out to evaluated business profitability of the project, preparation of the annual cash flow, calculation of the internal rate of return, payback period of capital, and the analysis of sensitivity of the project in terms of its ability to achieve profitable business in the event of increasing costs and decreasing revenue. The third section was carried out to raise the operational capacity of the accelerator at the Egyptian Atomic Energy Authority to generate added value for national income, and to study the social rate of return for the project and examine the project's ability to provide new employment opportunities. The study showed the possibility and the importance of the project implemented at the level of private investment and national security.

  17. [Medium energy meson research

    International Nuclear Information System (INIS)

    Crowe, K.M.

    1992-01-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p bar p annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report

  18. Alternate Energy for National Security.

    Science.gov (United States)

    Rath, Bhakta

    2010-02-01

    Recent price fluctuations at the gas pump have brought our attention to the phenomenal increase of global energy consumption in recent years. It is now evident that we have almost reached a peak in global oil production. Several projections indicate that total world consumption of oil will rise by nearly 60 per cent between 1999 and 2020. In 1999 consumption was equivalent to 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the US, nearly 40 per cent of energy usage is provided by petroleum, of which nearly a third is used in transportation. The US Department of Defense (DOD) is the single largest buyer of fuel, amounting to, on the average, 13 million gallons per day. Additionally, these fuels have to meet different requirements that prevent use of ethanol additives and biodiesel. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. The presentation will review national and DOD perspectives on the exploration of alternate energy with a focus on energy derivable from the ocean. )

  19. Final Report to the National Energy Technology Laboratory on FY09-FY13 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Mesa, AZ (United States)

    2015-11-04

    The Consortium for Electric Reliability Technology Solutions (CERTS) was formed in 1999 in response to a call from U.S. Congress to restart a federal transmission reliability R&D program to address concerns about the reliability of the U.S. electric power grid. CERTS is a partnership between industry, universities, national laboratories, and government agencies. It researches, develops, and disseminates new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system and the efficiency of competitive electricity markets. It is funded by the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE). This report provides an overview of PSERC and CERTS, of the overall objectives and scope of the research, a summary of the major research accomplishments, highlights of the work done under the various elements of the NETL cooperative agreement, and brief reports written by the PSERC researchers on their accomplishments, including research results, publications, and software tools.

  20. Foresight and strategy in national research councils and research programmes

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Borup, Mads

    2009-01-01

    This paper addresses the issue of foresight and strategy processes of national research councils and research programmes. It is based on a study of strategy processes in national research councils and programmes and the challenges faced by their strategy activities. We analysed the strategy...... processes of two organisations: the Danish Technical Research Council and the Danish Energy Research Programme. We analysed the mechanisms of the strategy processes and studied the actors involved. The actors’ understanding of strategy was also included in the analysis. Based on these analyses we argue...... that the impact of foresight exercises can be improved if we have a better understanding of the traditions and new challenges faced by the research councils. We also argue that a more formal use of foresight elements might improve the legitimacy and impact of the strategic considerations of research councils...

  1. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    ... from the R&D conducted since 1978 in DOE's energy efficiency and fossil energy programs. In response to the congressional charge, the National Research Council formed the Committee on Benefits of DOE...

  2. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Tempe, AZ (United States); Lampis, Anna Rosa [Arizona State Univ., Tempe, AZ (United States)

    2018-01-16

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such as renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting

  3. Yakama Nation Renewable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rigdon, Phillip [Yakama Nation, Toppenish, WA (United States)

    2016-05-10

    It is the intention of the Yakama Nation to make improvements on the Wapato Irrigation Project (WIP) for the benefit of all stakeholders. Water management, water conservation and water allocation on the Wapato Irrigation Project is equally as important as hydropower. Irrigation will always be the primary purpose of this water system, but the irrigation system can also generate energy. The purpose of this project is the purchase and installation of inflow water turbines to generate an additional one megawatt of hydro-electrical power. The project will occur in two phases, Environmental Assessment and Project Implementation. The core objective for this proposal is to meet the Yakama Nation’s goal in hydroelectric power development. This will include the installation of inflow water turbines on the Wapato Irrigation Project. The Yakama Nation will prepare an Environmental Assessment in preparation to purchase and install new water turbines for hydropower generation of 1 Megawatt. This is a valuable economic development strategy for Yakama Nation that will create new jobs, improve and increase rural electrification, and attract private investments. This water system has an untapped low head/low power potential without the need to construct a new dam. The objective of Phase 1 is to complete an environmental assessment and obtain approval to proceed with installation of the hydroelectric power system.

  4. Rationale for energy research and development programme

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    This paper describes the rationale for the expenditure of government money on energy research and development. The Committee, organized in 1974, established the following order of project priorities: projects to determine current and future energy demand; projects concerned with the conservation and more efficient use of energy; projects concerned with the assessment of indigenous energy resources; projects concerned with the assessment of the human, financial, and organizational resources for energy production and use; and projects concerned with economic, technological, social, and environmental aspects of energy use and production over the next 15 years and beyond the next 15 years. Significant factors affecting the national energy economy, the strategy for energy research and development, and the results of committee activities are summarized. An energy scenario research is laid out. (MCW)

  5. Northwest National Marine Renewable Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States); Polagye, Brian [Univ. of Washington, Seattle, WA (United States); LiVecchi, Al [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-30

    In 2008, the US Department of Energy’s (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and tidal energy to establish the Northwest National Marine Renewable Energy Center, or NNMREC. NNMREC’s scope included research and testing in the following topic areas: • Advanced Wave Forecasting Technologies; • Device and Array Optimization; • Integrated and Standardized Test Facility Development; • Investigate the Compatibility of Marine Energy Technologies with Environment, Fisheries and other Marine Resources; • Increased Reliability and Survivability of Marine Energy Systems; • Collaboration/Optimization with Marine Renewable and Other Renewable Energy Resources. To support the last topic, the National Renewable Energy Laboratory (NREL) was brought onto the team, particularly to assist with testing protocols, grid integration, and testing instrumentation. NNMREC’s mission is to facilitate the development of marine energy technology, to inform regulatory and policy decisions, and to close key gaps in scientific understanding with a focus on workforce development. In this, NNMREC achieves DOE’s goals and objectives and remains aligned with the research and educational mission of universities. In 2012, DOE provided NNMREC an opportunity to propose an additional effort to begin work on a utility scale, grid connected wave energy test facility. That project, initially referred to as the Pacific Marine Energy Center, is now referred to as the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) and involves work directly toward establishing the facility, which will be in Newport Oregon, as well as supporting instrumentation for wave energy converter testing. This report contains a breakdown per subtask of the funded project. Under each subtask, the following

  6. National Grid Deep Energy Retrofit Pilot

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K. [Building Science Corporation (BSC), Somervgille, MA (United States)

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance.

  7. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  8. Energy Research & Development

    Science.gov (United States)

    Skip to Main Content CA.gov California Energy Commission CA.gov | Contact | Newsroom | Quick Links convenience of our website visitors and is for informational purposes only. The California Energy Commission Google Translate™. The California Energy Commission does not endorse the use of Google TranslateÂ

  9. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  10. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  11. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  13. National economic aspects of energy supply

    International Nuclear Information System (INIS)

    Tschopp, P.

    1981-01-01

    The author discusses the economic place value of energy supply for production, the influence of energy on national economy structure and specialisation, cost/gain effects of alternative energy strategies, the effects of energy policy on the labour market, and the need for clearer aims in energy policy. (H.V.H.)

  14. National energy balance - 1992 - Based on 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This National Energy Balance covers since 1976 to 1991, showing the supply and demand for each type of energy; the energy consumption by each economic sector; the external market of energy; the resources and reserves and some information about state and regional energy balance. (C.G.C.)

  15. Neutrons and sustainable energy research

    International Nuclear Information System (INIS)

    Peterson, V.

    2009-01-01

    Full text: Neutron scattering is essential for the study of sustainable energy materials, including the areas of hydrogen research (such as its separation, storage, and use in fuel-cells) and energy transport (such as fuel-cell and battery materials). Researchers at the Bragg Institute address critical questions in sustainable energy research, with researchers providing a source of expertise for external collaborators, specialist analysis equipment, and acting as a point of contact for the study of sustainable energy materials using neutron scattering. Some recent examples of sustainable energy materials research using neutron scattering will be presented. These examples include the storage of energy, in the form of hydrogen through a study of its location in and interaction with new porous hydrogen storage materials [1-3] and in battery materials through in-situ studies of structure during charge-discharge cycling, and use of energy in fuel cells by studying proton diffusion through fuel cell membranes.

  16. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  17. Forest industries energy research

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. C.

    1977-10-15

    Data on energy use in the manufacturing process of the wood products industry in 1974 are tabulated. The forest industries contributed 10% of New Zealand's factory production and consumed 25% of all industrial energy (including that produced from self-generated sources such as waste heat liquors and wood wastes) in that year. An evaluation of the potential for savings in process heat systems in existing production levels is shown to be 3% in the short, medium, and long-term time periods. The industry has a high potential for fuel substitution in all sectors. The payback periods for the implementation of the conservation measures are indicated.

  18. National Grid Deep Energy Retrofit Pilot

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  19. Renewable Energy Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    Jicarilla Apache Tribe

    2003-04-01

    The Jicarilla Apache Nation is in Rio Arriba County in North Central New Mexico. The photovoltaic project was installed at the Dulce High School in the town of Dulce. Dulce is in the most northern part of the reservation near the New Mexico/Colorado boundary and can be reached from the New Mexico State Capitol in Santa Fe, hence to the town of Chama along U.S. Highway 84 to the junction of U.S. Highway 64. Dulce is about 12 miles west of the junction along U.S. Highway 64. Dulce community is in the mountainous part of the Nation with a population of about 4000. No industry exists in the community, however, a few commercial sites do exist such as a motel, restaurants, gas stations, food and liquor stores.

  20. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  1. US National energy policy: conservation and environment

    International Nuclear Information System (INIS)

    Michna, J.; Bednarz, L.M.

    2004-01-01

    The paper presents extracts from an extended review devoted to recent changes and current trends in the national energy policy pursued in the USA. In 2001 the President Bush proposed an energy strategy for the period to 2025 that would promote energy conservation, repair and expand energy infrastructure, and increase energy supply while protecting the environment. The material stresses the importance of a sound national energy policy addressing supply, energy distribution and conservation. Well - illustrated data are given on the energy production and consumption (total, per capita, per $, by category, by fuel, etc.) and on the emissions (by sector, by fuel, by region, etc.). Giving an accurate account of the current situation with energy in America and a vision of its development for the first quarter of our century, these data are helpful for analyzing the national energy policies in other countries, post - transitional included. (authors)

  2. National energy ombudsman. 2013 activity report

    International Nuclear Information System (INIS)

    Gaubert, Jean; Merville, Denis; Lechevin, Bruno; Mialot, Stephane

    2014-06-01

    The National Energy Ombudsman is an independent administrative authority that was created by the law of 7 December 2006 relating to the energy sector, in preparation for the imminent liberalisation of the French gas and electricity markets. It has two legal roles: participating in the process of informing consumers about their rights, and recommending solutions for settling disputes. The Ombudsman reports directly to the French Parliament. This report summarizes the 2013 national energy ombudsman's activity in the domains of energy transition, conciliation between energy operators and consumers, consumers information, mediation, dispute settlement, markets opening, energy prices, quality of supply, smart meters, fight against energy poverty etc

  3. Leveraging the national cyberinfrastructure for biomedical research.

    Science.gov (United States)

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  4. National research and education network

    Science.gov (United States)

    Villasenor, Tony

    1991-01-01

    Some goals of this network are as follows: Extend U.S. technological leadership in high performance computing and computer communications; Provide wide dissemination and application of the technologies both to the speed and the pace of innovation and to serve the national economy, national security, education, and the global environment; and Spur gains in the U.S. productivity and industrial competitiveness by making high performance computing and networking technologies an integral part of the design and production process. Strategies for achieving these goals are as follows: Support solutions to important scientific and technical challenges through a vigorous R and D effort; Reduce the uncertainties to industry for R and D and use of this technology through increased cooperation between government, industry, and universities and by the continued use of government and government funded facilities as a prototype user for early commercial HPCC products; and Support underlying research, network, and computational infrastructures on which U.S. high performance computing technology is based.

  5. Section 4: National Research Council

    International Nuclear Information System (INIS)

    Arseneau, R.; Zelle, J.

    1991-01-01

    A study was carried out to produce a compendium of electric and magnetic field levels in various environments throughout Canada. The contribution of the National Research Council of Canada in cooperation with Ottawa Hydro was to study the magnetic field environment of 29 sites in the Ottawa area, including private residences, place of employment, distribution and transmission lines, and close to padmount transformers. At most sites the electric fields were too low to be measured. Magnetic fields near padmount transformers can be larger than 300 mG, however this rapidly decreases and at 3 feet from the transformers is below 20 mG. Magnetic fields of unbalanced distribution lines can be larger than the fields of balanced lines. The magnetic fields of a high voltage transmission line were measurable at distances up to 100 m from the line. Electric fields were low outside the right-of-way. 6 refs., 4 figs., 2 tabs

  6. National Renewable Energy Laboratory 2001 Information Resources Catalog

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    The National Renewable Energy Laboratory's (NREL) eighth annual Information Resources Catalog can help keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. The catalog includes five main sections with entries grouped according to subject area.

  7. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  8. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  9. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  10. The Spanish energy regulatory body: the national energy commission (CNE)

    International Nuclear Information System (INIS)

    Merono, P. M.

    2002-01-01

    The National Energy Commission (CNE) is the Spanish Energy Regulatory body. This paper presents its scope and purpose, organisation, resources and financing, financial and performance control, functions, and legal provisions. (author)

  11. A perfect match: Nuclear energy and the National Energy Strategy

    International Nuclear Information System (INIS)

    1990-11-01

    In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs

  12. Fleet Tools; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    From beverage distributors to shipping companies and federal agencies, industry leaders turn to the National Renewable Energy Laboratory (NREL) to help green their fleet operations. Cost, efficiency, and reliability are top priorities for fleets, and NREL partners know the lab’s portfolio of tools can pinpoint fuel efficiency and emissions-reduction strategies that also support operational the bottom line. NREL is one of the nation’s foremost leaders in medium- and heavy-duty vehicle research and development (R&D) and the go-to source for credible, validated transportation data. NREL developers have drawn on this expertise to create tools grounded in the real-world experiences of commercial and government fleets. Operators can use this comprehensive set of technology- and fuel-neutral tools to explore and analyze equipment and practices, energy-saving strategies, and other operational variables to ensure meaningful performance, financial, and environmental benefits.

  13. The Dutch National Research Agenda in Perspective

    OpenAIRE

    2017-01-01

    The Dutch National Research Agenda is a set of national priorities that are set by scientists working in conjunction with corporations, civil society organisations, and interested citizens. The agenda consolidates the questions that scientific research will be focused on in the coming year. This book covers the current status of the Dutch National Research Agenda and considers what changes and adjustments may need to be made to the process in order to keep Dutch national research at the top o...

  14. Quinault Indian Nation Renewable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Don Hopps, Institute for Washington' s Future; Jesse Nelson, Institute for Washington' s Future

    2006-11-28

    The Quinault Indian Nation (Nation) initiated this study on conservation and production of renewable energy because this approach created the opportunity: • To become self-sufficient and gain greater control over the energy the Nation uses; • To generate jobs and businesses for its members; • To better manage, sustain, and protect its resources; • To express the cultural values of the Nation in an important new arena. The Nation has relatively small energy needs. These needs are concentrated at two separate points: the Quinault Beach Resort and Casino (QBRC) and Taholah on the Quinault Indian Reservation (QIR). Except for the town of Queets, energy needs are small and scattered. The needs vary greatly over the season. The small scale, widely dispersed, and variable nature of these needs presents a unique challenge to the Nation. Meeting these needs requires a resource and technology that is flexible, effective, and portable. Conservation is the most cost-effective way to meet any need. It is especially effective in a situation like this where production would leave a high per unit cost. This plan is based on first gaining energy savings through conservation. Major savings are possible through: 1. Upgrading home appliances on the QIR. 2. Weatherizing homes and facilities. 3. Changes in lighting/ventilation in the QBRC pool room. These elements of the plan are already being implemented and promise to save the Nation around a quarter of its present costs. Wood biomass is the best resource available to the QIN for energy production either on-site or for commercial development. It is abundant, flexible and portable. Its harvesting has high job potential and these jobs are a good fit for the present “skill set” of the QIN. This plan focuses on using wood biomass to produce energy and other value-added products. Our study considered various technologies and approaches to using wood for energy. We considered production for both on-site and commercial production

  15. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  16. Human dimensions in energy consumption. Scientific research front from a national and international perspective; Maenskliga dimensioner vid energianvaendning. Vetenskaplig forskningsfront ur nationellt och internationellt perspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Ketola, Anna

    2000-07-01

    The aim of this report is to make an inventory of earlier studies of energy consumption in buildings where consideration has been taken to behaviour related and among all socio-cultural aspects. The literature study is focused on publications from 1980s and 1990s, and mainly concentrated to socio-cultural analyses. The report catches the national and international scientific discussion that have been conducted, and the debate of today within this field.

  17. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  18. National Institute of Nursing Research

    Science.gov (United States)

    ... Medicine at NINR Research Highlights Data Science and Nursing Research Spotlight on End-of-Life and Palliative Care Research Spotlight on Symptom Management Research Spotlight on Pain Research The Science of Compassion: Future Directions in ...

  19. Energy Systems | Argonne National Laboratory

    Science.gov (United States)

    Nissan spins up new plant to give second life to EV batteries Yemen News National Lab Licensing Hydrogen Computing Center Centers, Institutes, and Programs RISCRisk and Infrastructure Science Center Other

  20. Public Engagement in Energy Research

    NARCIS (Netherlands)

    Jellema, Jako; Mulder, Henk A. J.

    Public Engagement in Research is a key element in "Responsible Research and Innovation"; a cross-cutting issue in current European research funding. Public engagement can advance energy R&D, by delivering results that are more in-line with society's views and demands; and collaboration also unlocks

  1. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  2. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  3. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  4. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  5. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  6. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  7. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  8. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  9. European energy policy and Italian national rights

    International Nuclear Information System (INIS)

    Gentile, G.G.

    1991-01-01

    In light of energy market upheavals expected as a result of the up-coming European free trade market, impacts on existing Italian energy legislation, currently hinging on the monopolistic activities of ENEL, (Italian National Electricity Board) are examined. The various aspects dealt with include: legal implications of the integration, under monopolistic and deregulated national energy market scenarios, of new legislation, on the production and distribution of renewable energy sources, with existing energy legislation; the combined effects of strong competition in a new international energy market and energy supply vulnerability due strong dependence on OPEC supplied petroleum; Italian regional economic unbalance due to the possible introduction, in a deregulated European electric power market, of a common carrier system of electric power distribution, that due to Italy's particular geography is expected to be controlled by a firm locatednear the northern border; power pooling legislation and rate structure transparency in a deregulated energy market

  10. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  11. National Center on Sleep Disorders Research

    Science.gov (United States)

    ... Resources Register for Updates The National Center on Sleep Disorders Research (NCSDR) Located within the National Heart, Lung, ... 60 percent have a chronic disorder. Each year, sleep disorders, sleep deprivation, and sleepiness add an estimated $15. ...

  12. IRIS and the National Research Council (NRC)

    Science.gov (United States)

    Since the 2011 National Academies’ National Research Council (NRC) review of the IRIS Program's assessment of Formaldehyde, EPA and NRC have had an ongoing relationship into the improvements of developing the IRIS Assessments.

  13. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov (United States)

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community support for research; technology advancement and maturation; and small-lot, fast-turn prototyping Our

  14. National Action Plan for Energy Efficiency

    Science.gov (United States)

    Provides resources for policy-makers, consumers, utilities, and others produced through NAPEE - a private-public initiative to create a sustainable, aggressive national commitment to energy efficiency through a collaborative effort of stakeholders.

  15. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  16. Bioprocessing research for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Gaden, E.L. Jr.; Humphrey, A.E.; Carta, G.; Kirwan, D.J.

    1989-04-01

    The new biotechnology that is emerging could have a major impact on many of the industries important to our country, especially those associated with energy production and conservation. Advances in bioprocessing systems will provide important alternatives for the future utilization of various energy resources and for the control of environmental hazards that can result from energy generation. Although research in the fundamental biological sciences has helped set the scene for a ''new biotechnology,'' the major impediment to rapid commercialization for energy applications is the lack of a firm understanding of the necessary engineering concepts. Engineering research is now the essential ''bridge'' that will allow the development of a wide range of energy-related bioprocessing systems. A workshop entitled ''Bioprocessing Research for Energy Applications'' was held to address this technological area, to define the engineering research needs, and to identify those opportunities which would encourage rapid implementation of advanced bioprocessing concepts.

  17. Building National Health Research Information Systems (COHRED ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building National Health Research Information Systems (COHRED). This grant will allow the Council on Health Research for Development (COHRED) to create, host and maintain a web-based resource on national health research in low- and middle-income countries in partnership with institutions in the South. Called ...

  18. National energy ombudsman. 2012 activity report

    International Nuclear Information System (INIS)

    Merville, Denis; Lechevin, Bruno; Mialot, Stephane; Lefeuvre, Katia

    2013-06-01

    The National Energy Ombudsman is an independent administrative authority that was created by the law of 7 December 2006 relating to the energy sector, in preparation for the imminent liberalisation of the French gas and electricity markets. It has two legal roles: participating in the process of informing consumers about their rights, and recommending solutions for settling disputes. The Ombudsman reports directly to the French Parliament. This 2012 edition of the National energy ombudsman's activity report has adopted a somewhat original, but very informative, format: an abc which allows us to take a look back at the highlights of 2012 and to summarise the great energy challenges that the National Energy Ombudsman has worked on since 2007: Achievements, Activity, Amicable agreement, Billing decree, Consultation, Disconnections, Energy voucher, National debate on energy transition, help to consumers, lowering gas prices, best management of public resources, communicating gas meter project, Peak hours and off-peak hours, Unpaid bills, Commercially sensitive information, Disputes, Mediation, development of the European Network of Independent Energy Ombudsmen, Combat against energy poverty, Consumer protection, Back billing time limit, Supply quality, Complaint, Recommendations, Debt distress, rise in prices etc

  19. Fossil Energy Planning for Navajo Nation

    Energy Technology Data Exchange (ETDEWEB)

    Acedo, Margarita [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-11

    This project includes fossil energy transition planning to find optimal solutions that benefit the Navajo Nation and stakeholders. The majority of the tribe’s budget currently comes from fossil energy-revenue. The purpose of this work is to assess potential alternative energy resources including solar photovoltaics and biomass (microalgae for either biofuel or food consumption). This includes evaluating carbon-based reserves related to the tribe’s resources including CO2 emissions for the Four Corners generating station. The methodology for this analysis will consist of data collection from publicly available data, utilizing expertise from national laboratories and academics, and evaluating economic, health, and environmental impacts. Finally, this report will highlight areas of opportunities to implement renewable energy in the Navajo Nation by presenting the technology requirements, cost, and considerations to energy, water, and environment in an educational structure.

  20. The national standards program for research reactors

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1977-01-01

    In 1970 a standards committee called ANS-15 was established by the American Nuclear Society (ANS) to prepare appropriate standards for research reactors. In addition, ANS acts as Secretariat for a national standards committee N17 which is responsible to the American National Standards Institute (ANSI) for the national consensus efforts for standards related to research reactors. To date ANS-15 has completed or is working on 14 standards covering all aspects of the operation of research reactors. Of the 11 research reactor standards submitted to the ANSI N17 Committee since its inception, six have been issued as National standards, and the remaining are still in the process of review. (author)

  1. 1984 Statistical symposium on national energy issues: proceedings

    International Nuclear Information System (INIS)

    Kinnison, R.; Doctor, P.

    1985-07-01

    The 1984 Statistical Symposium on National Energy Issues was the tenth in a series of annual symposia bringing together statisticians and other interested parties who are actively engaged in the pursuit of solving the nation's energy problems. Initially the symposium was sponsored by US Department of Energy (DOE) and named the DOE Statistical Symposium. The symposium is organized by a steering committee made up of representatives from the national laboratories. The 1984 symposium was hosted by Pacific Northwest Laboratory, and it was organized around four special topical sessions: (1) assessing and assuring high reliability, (2) spatial statistical, (3) quantification of informed opinion, and (4) health effects of energy technologies. These were chosen by the steering committee as topics currently of high importance in energy research and data analysis. Several contributed papers were also presented. Separate abstracts have been prepared for 17 papers for inclusion in the Energy Data Base

  2. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  3. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  4. National register of research projects

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This Register is intended to serve as a source of information on research which is being conducted in all fields (both natural and human sciences) in the Republic of South Africa. New research projects commenced during 1983 or 1984, and significantly changed research projects, as well as project that were completed or terminated during this period, on which information was received by the compilers before December 1984, are included, with the exception of confidential projects.

  5. Research and assessment of national population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1984-01-01

    This article describes the necessity and probability of making researches on assessment of national population dose, and discusses some problems which might be noticeable in the research work. (author)

  6. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  7. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  8. National energy efficiency study. The Czech Republic

    International Nuclear Information System (INIS)

    Maly, M.; Jakubes, J.; Spitz, J.; Van Wees, M.T.; Uyterlinde, M.A.; Martens, J.W.; Van Oostvoorn, F.; Henelova, V.; Vazac, V.; Zalesak, M.; Marousek, J.; Szomolanyiova, J.; Havlickova, M.; Zeman, J.; Ten Donkelaar, M.; Travnicek, S.; Stejskal, F.; Pribyl, E.; Blokker, L.; Bizek, V.; Velthuijsen, J.W.

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech Government aims to promote these two sustainable options. The National Energy Efficiency Study has developed specific policies for the promotion of end use energy efficiency and renewables. These are described in two Action Plans, and in this report which serves as a background document. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy, including a listing of actions for implementation. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is presented to support project identification. In addition, two separate Action Plans have been published: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (separate document, ECN-C-99-065); and (2) The Renewable Energy Action Plan (separate document, ECN-C-99-064) deals with policy on promotion of renewable energy production. These two policy documents should provide policy makers in the Czech Government with essential information on potentials, targets, the required budget, and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation

  9. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  10. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  11. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  12. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  13. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  14. Challenges for Norway as an energy nation

    International Nuclear Information System (INIS)

    2000-01-01

    The Norwegian energy sector is a dominating factor in the economy of Norway. Both in the power sector and the petroleum sector industrial environments have been developed that possess resources, skill and technology which form a good foundation for further industrial commitments. Deregulation of the energy markets, new corporate strategies and phasing-up of national frontiers represent new challenges to the energy sector. Failing international focus among many energy companies in addition to less domestic activity may lead the energy sector into a negative development, We have formulated two active strategies for meeting the challenges of the future. If the recommended strategy, industrial reorientation, is followed, the consolidation of the Norwegian power sector will be continued and the state's owner interests on the Norwegian continental shelf coordinated. At the same time the public ownership will be wound up through partial privatization. Establishing powerful Norwegian energy companies creates the best foundation for meeting the competition in a much more demanding energy market

  15. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  16. The pressing energy innovation challenge of the US National Laboratories

    Science.gov (United States)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  17. ENERGY REVOLUTION UNDER THE BRICS NATIONS

    Directory of Open Access Journals (Sweden)

    M. K. Sahu

    2016-01-01

    Full Text Available The BRICS countries are of critical importance to both supply and demand fundamentals of energy markets globally. Today BRICS plays a very important role in the system of international energy security. BRICS energy diversification is driven by concerns for energy security. The potential for a BRIC energy partnership is thus enormous. The development of the BRIC countries in the next coming decades will include demographic changes with a growing middle class population which will demand more energy and resources that our world has the potential to supply.A Green Energy Revolution is the panacea to solve major social, economic and envi­ronmental effects of their growing populations. This paper is an attempt to highlight the cooperation among the BRICS Nations for the development of Energy Sector and at the same time the concerning issue of climate change etc. It further discusses about the contribution of BRICS countries in the global economy. This paper also discusses about the role of the BRICS Nations in collaboration with the International Energy Agency.

  18. PROCEEDINGS OF THE 2003 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, HELD AT THE 2003 NEW ENGLAND FUEL INSTITUTE CONVENTION AND 30TH NORTH AMERICAN HEATING AND ENERGY EXPOSITION, HYNES CONVENTION CENTER, PRUDENTIAL CENTER, BOSTON, MASSACHUSETTS, JUNE 9 - 10, 2003.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    2003-06-09

    This meeting is the sixteenth oilheat industry technology meeting held since 1984 and the third since the National Oilheat Research Alliance (NORA) was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Fuel Flexibility Program under the United States Department of Energy, Distributed Energy and Electricity Reliability Program (DEER). The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  19. The future of national research institutions

    International Nuclear Information System (INIS)

    Popp, M.

    1992-01-01

    In Germany, the national research centers have prepared, accompanied and stabilized the development of nuclear technology. In the present, political, situation, they are no longer able to make a comparably constructive contribution to the future perspective of nuclear technology. The accompanying scientific services rendered nuclear technology by the national research centers also in the future include the cultivation of qualified expertise. In this way, the link between national research centers and nuclear technology is maintained, albeit at a different level. Cases in point are nuclear fusion or the development of new, advanced reactor lines. (orig.) [de

  20. International and national organizations within nuclear energy

    International Nuclear Information System (INIS)

    Sandstroem, S.

    1975-03-01

    A survey is given of the organization, objective and action of international and national organizations working with nuclear energy. Five types of organizations are treated: international governmental organizations, international non-governmental organizations, international organizations dealing with ionizing radiation, nordic organizations, and Swedish organizations. Special attention is payed to the Swedish participation in the different organizations. (K.K)

  1. Human factors at the Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Pond, D.J.; Waters, R.M.

    1991-01-01

    After World War II, a system of national laboratories was created to foster a suitable environment for scientific research. This paper reports that today, human factors activities are in evidence at most of the nine U.S. Department of Energy multi-program national laboratories as well as at a number of special program facilities. This paper provides historical and future perspectives on the DOE's human factors programs

  2. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  3. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  4. Research Toward Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hammon

    2010-12-31

    This final report was compiled from the detailed annual reports that were submitted for efforts in 2008 and 2009, and from individual task reports from 2010. Reports, case studies, and presentations derived from this work are available through the Building America website. The BIRA team is led by ConSol, a leading provider of energy solutions for builders since 1983. In partnership with over fifty builders, developers, architects, manufactures, researchers, utilities, and agencies, research work was performed in California, Colorado, Utah, New Mexico, Washington, Oregon, and Hawaii and five (5) climate regions (Hot-Dry, Marine, Hot-Humid, Cold, and Hot/Mixed Dry). In addition to research work, the team provided technical assistance to our partners whose interests span the entire building process. During the three year budget period, the BIRA team performed analyses of several emerging technologies, prototype homes, and high performance communities through detailed computer simulations and extensive field monitoring to meet the required climate joule milestone targets.

  5. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  6. National Database for Autism Research (NDAR)

    Data.gov (United States)

    U.S. Department of Health & Human Services — National Database for Autism Research (NDAR) is an extensible, scalable informatics platform for austism spectrum disorder-relevant data at all levels of biological...

  7. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  8. University of Washington/ Northwest National Marine Renewable Energy Center Tidal Current Technology Test Protocol, Instrumentation, Design Code, and Oceanographic Modeling Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-11-452

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Frederick R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation system and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.

  9. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  10. National Energy Strategy: Executive Summary. First edition, 1991/1992

    International Nuclear Information System (INIS)

    1991-02-01

    The National Energy Strategy lays the foundation for a more efficient, less vulnerable, and environmentally sustainable energy future. It defines international, commercial, regulatory, and technological policy tools that will substantially diversify US sources of energy supplies and offer more flexibility and efficiency in the way energy is transformed and used. Specifically, it will spur more efficiency and competition throughout the energy sector, expand the fuel and technology choices available to the Nation, improve US research and development (R ampersand D), and support the international leadership the United States exercises in energy, economic, security, and environmental policy. The Strategy builds upon a number of Bush Administration initiatives. These include the following: (1) the 1990 revisions to the Clean Air Act; (2) natural gas wellhead decontrol legislation in 1989; (3) incentives provided to domestic renewable and fossil energy producers in the fiscal year 1991 budget agreement; (4) the uprecedented international consensus forged in the wake of the Persian Gulf crisis; (5) the fiscal year 1991 and 1992 realignments of the Department of Energy's research and program priorities; (6) the Administration's domestic energy supply and demand measures adopted in response to the Iraqi oil disruption; and (7) the science and mathematics education initiatives by the Secretary of Energy

  11. Strategies and directions of Malaysian energy research

    International Nuclear Information System (INIS)

    Baharudin Yatim

    1995-01-01

    Research on energy efficiency could reconcile environmental issues associated with economic development. It could enhance energy supplies, improve the environment and develop alternative energy sources. Author reviews some of Malaysia's best energy R and D programmes

  12. 2014 Navajo Nation Energy and Water Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Suzanne L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woods, Sam [Navajo Transitional Energy Company, Farmington, NM (United States)

    2017-03-31

    The Navajo Nation is the home of the largest land-based Indian reservation in the U.S., covering more than twenty-seven thousand square miles. The land in the southwestern U.S. holds an abundance of natural resources, which are intimately integrated in the history, economy, and growth of the Navajo tribe. This report aims to wholly visualize the Navajo Nation’s resources and energy and water consumption using quantitative data and systems engineering analysis. The energy and water flow chart visualizations provide structured information for tribal leaders, policymakers, and educators around energy and water system discussions, technology development opportunities, and policy decisions. The analysis of both energy and water is a first step to visualizing the interconnectedness and complexities of the energy-water-food nexus of the nation. The goal of this energy analysis was to first estimate coal resource consumption because of the considerable impact coal has on the Navajo economy, recently as much as $26 million per year in coal royalties.

  13. Decentralized energy studies: compendium of international studies and research

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, C.

    1980-03-01

    The purpose of the compendium is to provide information about research activities in decentralized energy systems to researchers, government officials, and interested citizens. The compendium lists and briefly describes a number of studies in other industrialized nations that involve decentralized energy systems. A contact person is given for each of the activities listed so that interested readers can obtain more information.

  14. National Energy Policy and Climate Change Prevention

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.; Mallant, R.K.A.M.; Van der Wart, R.; Muradin-Szweykowska, M.

    1992-06-01

    Climate change prevention has become one of the major concerns of environmental policy in the Netherlands. The Dutch government has set definite targets for CO 2 emissions in the coming decade. These targets and the measures necessary to reach them are described in the paper. In addition, the technical feasibility of realizing the Toronto objective of a 20% reduction in CO 2 emissions by the year 2005 in the Netherlands is discussed. It appears that energy conservation options are most crucial for the short-term, but that eventually new supply technologies are needed to obtain drastic reductions in the long term. The increased need for research and development efforts has led to two innovative research programmes on sustainable energy development in the Netherlands. The ENGINE (ENergy Generation In the Natural Environment) programme is implemented by the Netherlands Energy Research Foundation (ECN) and addresses the specific problems associated with the three major components of supply: cleanliness in the case of fossil fuels, safety in the case of nuclear energy, and costs in the case of renewable sources. The complementary SYRENE (SYstem integration of Renewable ENergy and End use) is implemented by the Netherlands Agency for Energy and Environment (NOVEM) and addresses the system aspects of sustainable energy development. The objectives and approaches of these two programmes are briefly presented. 1 fig., 1 tab., 4 refs

  15. National Bio-fuel Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly [NextEnergy Center, Detroit, MI (United States)

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  16. Public utility regulation and national energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  17. Energy Programs at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.

    1999-05-11

    Energy availability in a country is of great importance to its economy and to raising and maintaining its standard of living. In 1994, the United States consumed more than 88 quadrillion Btu (quads) of energy and spent about $500 billion on fuels and electricity. Fortunately, the United States is well endowed with energy sources, notably fossil fuels, and possesses a considerable nuclear power industry. The United States also has significant renewable energy resources and already exploits much of its hydropower resources, which represent 10% of electricity production. Nevertheless, in 1994, the United States imported about 45% of the petroleum products it consumed, equivalent to about 17 quads of energy. This dependence on imported oil puts the country at risk of energy supply disruptions and oil price shocks. Previous oil shocks may have cost the country as much as $4 billion (in 1993 dollars) between 1973 and 1990. Moreover, the production and use of energy from fossil fuels are major sources of environmental damage. The corresponding situation in many parts of the world is more challenging. Developing countries are experiencing rapid growth in population, energy demand, and the environmental degradation that often results from industrial development. The near-term depletion of energy resources in response to this rapid growth runs counter to the concept of ''sustainable development''--development that meets the needs of today without compromising the ability of future generations to meet their own needs. Energy research and development (R&D) to improve efficiency and to develop and deploy energy alternatives may be viewed, therefore, as an insurance policy to combat the dangers of oil shocks and environmental pollution and as a means of supporting sustainable development. These considerations guide the energy policy of the United States and of the U.S. Department of Energy (DOE). In its strategic plan, DOE identifies the fostering of &apos

  18. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    Makai, M.

    1998-01-01

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  19. The NEED (National Energy Education Development) Project

    Science.gov (United States)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  20. Political culture, national identity and nuclear energy

    International Nuclear Information System (INIS)

    Bayer, F.

    2013-01-01

    The paper 'Political culture, national identity and nuclear energy. The austrian controversy on nuclear energy between 1978 and 1986 within the national assembly' identifies the roots of the broad rejection of nuclear technologies in contemporary Austria within the controversy on neclear energy in the late 1970s and early 1980s. The close result of the referendum in November 1978 on the commissioning of the nuclear power plant in Zwentendorf - understood as a moment of severe polarisation - serves as a starting point for the investigation. In recent studies the explosion of the reactor in Chernobyl in April 1986 is considered the turning point of the austrian controversy and therefore marks the end of the examined period. Reviewing the history of nuclear energy in Austria the paper sheds light on events and aspects which turn out to be important for the rejection of nuclear technologies in contemporary Austria. On the one hand the analysis of the nuclear debate within the national assembly focuses on ways in which nuclear technologies were made sense of and ascribed with meaning and describes them as a sociotechnical imaginary. Next to highlighting the construction of national identity within these processes the analysis on the other hand explores the role of consensus and mutual action within the political culture of the Second Republic and its implications for the nuclear controversy. The integration of different perspectives enables to pinpoint several key aspects of the austrian nuclear controversy for the development of a broad rejection of nuclear technologies in the post-chernobyl era: the obligation to reach a consensus between the political parties, a specific set of ideas described as the imaginary of a ‘nuclear free Austria’ and its specific relations to national identity. (author) [de

  1. Renewable energy sources and Estonian national interests

    International Nuclear Information System (INIS)

    Veski, Rein

    2002-01-01

    There is only one national level document, The Long-term National Development Plan for the Fuel and Energy sector, regulating the development of renewable energy for Estonia. It was approved by the Parliament (Riigikogu) in 1998. This document planned a 2/3 (66,7%) increase in the share of renewable (according to the document: peat, biofuels and other renewables) to the year 2010 against 1996. At the same time a decrease of the share of domestic oil shale was planned 1/5 to the year 2010 against 1995. That means the use of domestic energy sources, both renewable and non-renewable, will decrease by 16,8% altogether. In reality the rapid projected growth of renewables in Estonia (+66,7% between 1996 and 2010) was changed with decrease of 20% by 2000. So the security of supply must shift to the first place in Estonia. It is also an issue of national sovereignty. Estonia is rich in renewable energy sources, mainly in wood, peat and wind, to achieve the goals set in the National Development Plan. Forest resources amount 352,7, total felling 6,44, allowed felling 7,81 million cubic meters solid volume in 2000. The future of fuel peat usage in Estonia is uncertain, as most of the EU member states, which have burned up their peat resources and/or drained their mires do not consider peat as a renewable fuel. Obviously Estonia has to explain its opinion about the renewability of its resources. Although progress is needed in all directions of additional use of all renewable energy sources in tactical consideration finance must be directed first to guarantee better use of wastes of woodworking and timber industry

  2. Energy market opening and the national energy programme in Slovenia

    International Nuclear Information System (INIS)

    Tomsic, M. G.; Urbancic, A.

    2000-01-01

    Slovenia is now moving fast toward market opening, at least in the electricity sector, due to the new Energy Law adopted in 1999. The Energy Law defines the main energy policy directions, including the sustainable development criterion. It also calls for the preparation of a National Energy Programme (NEP) to be adopted by the Parliament. According to the Law, local governments are expected to prepare local energy concepts, in line with the NEP and space planning decisions. Two most difficult challenges for national energy policies are: opening of the electricity market and meeting the Kyoto Protocol targets in the reduction of greenhouse gasses. The success of the energy sector reform depends on the fine-tuning of various instruments: market structuring and state interventions. The immediate concern for the sector in the secondary legislation, the fifty regulations that the Energy Law calls for. These regulations have to be prepared well before the date of internal electricity market opening on April 15th, 2001. The institutional structure to be established should be adapted for international competition that will start in electricity and gas no later than January 1st, 2003. It is expected that the NEP, to be prepared by spring of the year 2001, will propose complementary development strategies to cope with partially conflicting targets. Four groups of criteria shall be applied to compare the alternatives: security of supply, competitiveness of the society, preserving the space and environment quality and social cohesion. It is expected that energy market opening, not a final goal by itself, can be instrumental for the improvement of the energy sector performance on all accounts. (author)

  3. National Rehabilitation Hospital Assistive Technology Research Center

    Science.gov (United States)

    1995-10-01

    Shoulder-Arm Orthoses Several years ago, the Rehabilitation Engineering Research Center (RERC) on Rehabilitation Robotics in Delaware1 identified a... exoskeletal applications for persons with disabilities. 2. Create a center of expertise in rehabilitation technology transfer that benefits persons with...AD COOPERATIVE AGREEMENT NUMBER: DAMD17-94-V-4036 TITLE: National Rehabilitation Hospital Assistive Technology- Research Center PRINCIPAL

  4. Research needs for our national landscapes

    Science.gov (United States)

    Elwood L. Shafer

    1979-01-01

    The prevailing research problem for our national landscapes is: How shall we organize, control, and coordinate public and private development so as to protect, maintain, improve, and manage those landscape features that we value most? Research questions discussed include: environmental/political conflicts, taxation and zoning, landscape classification, public...

  5. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  6. National Renewable Energy Policy in a Global World

    Science.gov (United States)

    Jeong, Minji

    needed to be addressed by new and additional policies, and opportunities, which strengthened the political power of domestic solar industries. The three analyses show that the globalized renewable energy industry has led to the diversification of national renewable energy policies by increasing international interactions between actors and by introducing both challenges and opportunities to domestic renewable energy industries. This research contributes to the literature on trade and the environment by analyzing a new pattern of the conflicts between traditional environmental policies and "green" protectionist policies. It also contributes to the literature on protectionism by adding an empirical case of green protectionism, one of the forms of "murky" protectionism that has risen after the global financial crisis.

  7. Electricity supply: Supporting analysis for the National Energy Strategy

    International Nuclear Information System (INIS)

    1991-01-01

    This report has been prepared by the Energy Information Administration at the request of the Department of Energy's Office of Policy, Planning and Analysis. The results are based on assumptions provided by the Department of Energy's Office of Conservation and Renewable Energy, the Office of Nuclear Energy, the Office of Fossil Energy, and the Office of Policy, Planning and Analysis. This report serves as an auxiliary document to the publication, Improving Technology: Modeling Energy Futures for the National Energy Strategy, prepared by the Energy Information Administration (EIA), to be used as input to the development of a National Energy Strategy. The excursions discussed in this report are not necessarily the policy options which will be selected for inclusion in the National Energy Strategy (NES). This report examines the effects of various supply side options for electric utilities. The three excursions presented are: (1) Effects of the Clean Air Act Amendments on Reducing SO 2 /NO x Emissions which evaluates the impacts of proposed legislation to amend the Clean Air Act (Title V of H.R. 3030 as amended on May 23, 1990); (2) Nuclear Life Extension/New Nuclear Orders which illustrates the impact of new nuclear power plant orders and the life extension of existing nuclear plants; and (3) Nuclear and Accelerated Fossil-Fueled Generating Technologies which portrays accelerated research and development of advanced fossil-fueled generating technologies, making them commercially available earlier, with the inclusion of the nuclear option. The baseline case of this report is an update and an extension of the base case projections in the Energy Information Administration (EIA) publication, the Annual Energy Outlook 1990 (AEO), extending that forecast an additional 20 years to 2030. It represents the baseline case as it was on July 1990. 29 refs., 9 figs., 19 tabs. (JF)

  8. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  9. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  10. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  11. National Offshore Wind Energy Grid Interconnection Study

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  12. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q 2 ; Measurement of the 5th Structure Function in Deuterium and 12 C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of 117 Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from 13 C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of 3 He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e'p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N → Δ Excitation; Experiment E-140: Measurement of the x-, Q 2 and A-Dependence of R = σ L /σ T ; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2γ Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions

  13. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cheesbrough, Kate; Bader, Meghan

    2016-08-26

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing access to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.

  14. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  15. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  16. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  17. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  18. VA's National PTSD Brain Bank: a National Resource for Research.

    Science.gov (United States)

    Friedman, Matthew J; Huber, Bertrand R; Brady, Christopher B; Ursano, Robert J; Benedek, David M; Kowall, Neil W; McKee, Ann C

    2017-08-25

    The National PTSD Brain Bank (NPBB) is a brain tissue biorepository established to support research on the causes, progression, and treatment of PTSD. It is a six-part consortium led by VA's National Center for PTSD with participating sites at VA medical centers in Boston, MA; Durham, NC; Miami, FL; West Haven, CT; and White River Junction, VT along with the Uniformed Services University of Health Sciences. It is also well integrated with VA's Boston-based brain banks that focus on Alzheimer's disease, ALS, chronic traumatic encephalopathy, and other neurological disorders. This article describes the organization and operations of NPBB with specific attention to: tissue acquisition, tissue processing, diagnostic assessment, maintenance of a confidential data biorepository, adherence to ethical standards, governance, accomplishments to date, and future challenges. Established in 2014, NPBB has already acquired and distributed brain tissue to support research on how PTSD affects brain structure and function.

  19. A review of Ghana’s energy sector national energy statistics and policy framework

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward? The future research in Ghana cannot progress without consulting the past. In order to ensure access to affordable, reliable, sustainable, and modern energy for all, Ghana has begun expanding her economy with the growing Ghanaian population as a way to meet the SDG (1, which seeks to end poverty and improve well-being. There are a number of intervention strategies by Ghana’s Energy sector which provides new, high-quality, and cost-competitive energy services to poor people and communities, thus alleviating poverty. Ghana’s Energy sector has initiated the National Electrification Scheme, a Self-Help Electrification Program, a National Off-grid Rural Electrification Program, and a Renewable Energy Development Program (REDP. The REDP aims to: assess the availability of renewable energy resources, examine the technical feasibility and cost-effectiveness of promising renewable energy technologies, ensure the efficient production and use of the Ghana’s renewable energy resources, and develop an information base that facilitates the establishment of a planning framework for the rational development and the use of the Ghana’s renewable energy resources.

  20. National energy projections and plans of the USA

    International Nuclear Information System (INIS)

    1977-01-01

    Within the context of dwindling United States and world oil and gas resources, the development and evolution of the Energy Research and Development Administration's National Plan for Energy Research, Development and Demonstration is reviewed and basic goals and strategies are discussed. U.S. energy projections to the end of this century are estimated and ways of meeting them assessed. Options are then considered for the introduction of new technologies designed to lessen the nation's 75-per cent dependence on oil and gas fuels while simultaneously creating alternative energy choices for the future. The Plan singles out energy efficiency technologies for increased attention; identifies the major near and mid-term supply technologies; outlines initial program steps to overcome technological barriers to the large-scale implementation of these technologies, and reviews longer-range energy programs and prospects. To provide the basis for setting technology development priorities and for establishing implementation strategies, eight national energy technology goals are presented. Then, the strategies for attaining these goals are outlined for the near term (to 1985 and beyond), the mid term (1985-2000 and beyond), and the long term (21st century). Preliminary analyses have shown that only by introducing a number of these technologies in a combination of approaches can adequate solutions be found to pressing national energy problems. It is demonstrated that light water reactor power generation is crucial to the future U.S. energy supply. A number of nuclear areas requiring increased emphasis are then considered, including continued improvements in LWR technology; better definition of recoverable domestic uranium resources; expansion of U.S. capacity to meet future domestic and foreign demand for uranium enrichment services; development of a commercial fuel reprocessing and recycling capacity; demonstration of safe and environmentally acceptable waste treatment, storage

  1. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  2. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  3. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2009-08-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  4. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2009-08-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  5. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H [eds.

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  6. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2010-06-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  7. Journal of Research in National Development

    African Journals Online (AJOL)

    The Journal of Research in National Development aims to encourage interdisciplinary ... Favorite articles are quantitative, empirical and developmentally biased. .... Tax aggressiveness and corporate social responsibility fluidity in Nigerian firms ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  8. 3 CFR 8431 - Proclamation 8431 of October 2, 2009. National Energy Awareness Month, 2009

    Science.gov (United States)

    2010-01-01

    ... investments in energy efficiency and clean energy today. Well-funded energy research and development will not... global competitiveness and national security. Innovation in energy technology will decrease our oil use..., engineers, and entrepreneurs bring new and improved energy technologies to homes and businesses in this...

  9. Energy National Mediator activity report 2009

    International Nuclear Information System (INIS)

    2009-01-01

    After some data illustrating the activity of the Energy National Mediator in 2009, and an interview of a representative of this institution who comments its practice, this report proposes the opinions of the different involved actors (communities, consumer associations, providers, and so on) about the mediator. It puts the adopted strategy in perspective from the past year to the coming one. It describes the missions: information, advice, protection. It reports actions, recommendations and facts for 2009 in terms of consumer information, group mediation, poverty management, samples of analysed disputes. It presents the social organisation and gives a financial assessment of the institution

  10. History of the Energy Research and Development Administration

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.L.

    1982-03-01

    Congress created the Energy Research and Development Administration on October 11, 1974 in response to the Nation's growing need for additional sources of energy. The new agency would coordinate energy programs formerly scattered among many federal agencies, and serve as the focus point for a major effort by the Federal Government to expand energy research and development efforts. New ways to conserve existing supplies as well as the commercial demonstration of new technologies would hopefully be the fruit of the Government's first significant effort to amalgamate energy resource development programs. This history briefly summarizes the accomplishments of the agency.

  11. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  12. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  13. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  14. Proceedings of the 1987 socioeconomic energy research and analysis conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Department of Energy (the Department) convened the first Socioeconomic Energy Research and Analysis Conference in May 1987, in the spirit of constructive dialogue and mutual concern about numerous energy issues and problems. The objective was to provide a national forum for illuminating specific energy and related socioeconomic issues of our nation and discussing realistic approaches to energy policy assessments. This action was based on the Department's commitment to lead the way in developing a pragmatic framework or energy policy determinations, by incorporating constructive policy impact assessment methods into the decisionmaking process. In this rapidly developing industry with high energy technologies, a strong federal role and targeted government programs are essential for the development and integration of minorities into various industry segments. Furthermore, a responsive energy program for all segments of the population must be sensitive to (a) the impact of energy policies on the overall growth of the economy; (b) the differential impact of energy policies on various industries; and (c) the pattern of change in the structure of the social environment. The socioeconomic researchers and energy policy analysts who presented papers or participated in this national forum assisted the Department's efforts to build an energy structure which is truly responsive to the needs of the various population segmets of our nation. The conference participants were also given the opportunity to critique some unique energy policy assessment methodologies which have been conducted mainly at Argonne National Laboratory, under the sponsorship and guidance of the Research and Education Divisions of my Office. Individual papers, in this proceedings have been cataloged separately.

  15. Energy in Ireland: context, management and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the framework of the climatic change and the fossil fuels shortage, the Ireland defined a new energy policy. The priority is the energy supply security and the research programs present a great interest in the ocean energies, which represent an important source in Ireland. The report presents the context, the irish energy policy, the research programs on energy and the different actors of the domain. (A.L.B.)

  16. A proposed programme for energy risk research

    International Nuclear Information System (INIS)

    1979-01-01

    The report consists of two parts. Part I presents an overview of technological risk management, noting major contributions and current research needs. Part II details a proposed program of energy research, including discussions of some seven recommended projects. The proposed energy risk research program addresses two basic problem areas: improving the management of energy risks and energy risk communication and public response. Specific recommended projects are given for each. (Auth.)

  17. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    International Nuclear Information System (INIS)

    Domen, Kazunari

    2011-01-01

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, 'Global Perspectives on Frontiers in Energy Research.' In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  18. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    In the coming years, Denmark and other countries worldwide are set to increase their focus on transforming their energy supplies towards more sustainablew technologies. As part of this process, they can make extensive use of the knowledge generated by the Technical University of Denmark (DTU...... technologies, energy systems and energy consumption in buildings, the transport sector and for lighting purposes. The university alsolooks at challenges, opportunities and limitations.This publication present a selection of the sustainable energy related activities at DTU, which all point towards future...

  19. National Energy Plan 1997 - 2010; Sustainable Energy self-sufficiency

    International Nuclear Information System (INIS)

    1997-01-01

    The present revision of the PEN consists of two parts, a diagnosis and a strategy. In the diagnosis; the evolution and the changes are analyzed foreseen in the international and national environments to establish the form like the energy sector is affected and it responds to these conditions. In second part it revises the strategy to incorporate the required adjustments of agreement with the changes in the environment, the demand perspectives and sector and national politics limits. In the international thing, the process of transformation of the system economic World cup will contribute to strengthen the liberalization actions, deregulation and privatization of the economies of the development countries. Great part of the dynamics growth, will be sustained then in the private investment and in an atmosphere of global competition. The formation of regional blocks opens favorable perspectives for new cooperation forms and development of resources. In the case of the American hemisphere and with reference to the energy sector, one has an important potential to improve the self-sufficiency starting from regional supplies, especially starting from fossil resources. This expectation is important for Colombia that has well-known reservations and important potentials in these resources. The tendencies waited in the fossil resources are more favorable for the countries than they can have reservations and growing production of petroleum and of natural gas. Nevertheless, the development of the coal maintains favorable expectations, but with important requirements as for efficiency and quality in the production that it guarantee the positioning in a more and more concerned market. In the environmental thing, the growth foreseen in the consumption of fossil fuels also bears to the increment in the 2010 in the greenhouse gases, at levels between 36% and 49% superiors to those of 1990. That most of this increment will originate in the in the development countries and

  20. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  1. Nuclear power and national energy security

    International Nuclear Information System (INIS)

    Addae, A.K.

    2001-01-01

    The demand for energy in Ghana is expected to grow rapidly in the next couple of decades if the objectives of the Vision 2020 Programme are to become a reality. In particular, the demand for electric power is expected to increase 3 to 5 fold over 1997 levels by the year 2020.This calls for early planning. Adequate and dependable central station electric power supplies in the next couple of decades is therefore very critical to sustainable development and the achievement of the objective of the Vision 2020 Programme. Curtailment in electric power supplies cause disruption in economic activities and consequent economic losses. The recent cases in point are the 1983/84 and 1997/1998 power curtailments in Ghana due to low water levels in the Akosombo Reservoir. These led not only to substantial disruptions in economic activities but also to the erosion of invest confidence in the economy. It is, therefore, very essential that the country's central station electric power supply system should not continue to depend on hydro-electric power as in the past years but should be based on a mix of energy sources to provide an acceptable level of national energy security under all circumstances

  2. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  3. Energy and the capital of nations

    Science.gov (United States)

    Karakatsanis, Georgios

    2016-04-01

    significant production factor. This work enriches such studies via integrating the analysis all forms of capital and for a wider range of countries; estimating the trade-off -as output elasticity ratios- between the accumulation of various anthropogenic capital forms and the deterioration of natural capital -considered both as resource stock and carrying capacities of the environment. Keywords: energy, fossil fuels, industrial civilization, capital, production factor, natural capital, 2nd Law, entropy, irreversibility, exergy, LINEX function, output elasticity References 1. Ayres, Robert U. and Benjamin Warr (2009), The Economic Growth Engine: How Energy and Work Drive Material Prosperity, Edward Elgar and IIASA 2. Kümmel, Reiner (2011), The Second Law of Economics: Energy, Entropy and the Origins of Wealth, Springer 3. Lindenberger, Dietmar and Reiner Kümmel (2011), Energy and the state of nations, Energy 36, 6010 - 6018 4. Wall, Goran (2005), Exergy Capital and Sustainable Development, Proceedings of the Second International Exergy, Energy and Environment Symposium, Kos, Greece, Paper No. XII-I49

  4. Energy research and development in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Hultberg, S.; Lindstroem Thomsen, P.

    1996-06-01

    The document describes some of the most important results produced during the last twenty years under the Danish government`s Energy Research Programme (ERP). Some of the involved research groups, and their current research projects, are described. The aim is to invite international cooperation on research in this field. Research areas are divided under the main headings of energy policy, energy supply and energy end-use. The document is illustrated with coloured photographs, diagrams and graphs. The names of contact persons, firms and institutions relevant to the described projects are listed. (AB)

  5. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  6. National solar energy education directory. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Corcoleotes, G; Cronin, S; Kramer, K; O& #x27; Connor, K

    1980-01-01

    The information contained in this directory is derived from responses to a national survey of educational institutions and organizations involved in solar energy educational activities beyond the secondary school level. Phone calls and follow-up mail requests were used to gather additional information when necessary. Every survey instrument was read, coded, and edited before entry into the data base from which this directory was produced. The Directory is organized alphabetically by state. Institutions and organizations within each state are categorized according to type (Colleges and Universities, Junior/Community Colleges, Vocational/Technical Schools, and Other Educational Institutions and Organizations) and listed alphabetically within these categories. Within each institutional listing the amount of information provided will vary according to the completeness of the survey response received from that institution. (MHR)

  7. Jointly Sponsored Research Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-12-31

    Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nation’s fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: • Increase the production of United States energy resources – coal, natural gas, oil, and renewable energy resources; • Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; • Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and • Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by

  8. RESEARCH OF GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    О. Chernyak

    2015-10-01

    Full Text Available This article contains results of studying experiences of the leading countries in renewable energy technologies’ development. The classification of renewable energy was presented. In this article we investigated modern trends and prospects of wind power, solar energy, hydropower, bioenergy and geothermal energy. Authors analyzed different national strategies for attracting investments in “green” energy. Rating of the 10 countries with the largest investments in alternative energy was presented. Authors researched investments in developed countries and developing countries, depending on the type of renewable energy. A model for research and forecasting of investment in renewable energy based on annual data for the period 1990-2012 years was built. In addition, authors used methods such as moving average, exponential smoothing, Holt- Winters method and different types of trends based on quarterly data for 2004-2014 years.

  9. Energy supply today and tomorrow, national and global

    International Nuclear Information System (INIS)

    Ott, G.

    2003-01-01

    A status report about 'Energy Supply Today and Tomorrow, National and Global' focuses mainly on global aspects. Today's world energy consumption is dominated by more than 80% of fossil sources of energy followed by so-called non-commercial energies, such as wood and plant and animal wastes, contributing 10%; nuclear power, 7%; and hydroelectric power, 2%. The development of energy consumption until the middle of this century will continue to be driven by the further growth of the world population, and by the need to meet the rising demand for energy in the developing countries. Because of their availability and flexible uses, oil, natural gas, and coal as fossil sources of energy will continue to meet a considerable share of the requirement. The use of nuclear power, a source meeting all criteria, such as safety, waste management, and competitiveness, is both justifiable and desirable. Restrictive decisions about nuclear power taken today must not impair the freedom of choice of future generations. Using renewable energies is just as desirable as increasing energy efficiency; however, the technical and physical potentials available for this purpose should not be overrated. This makes it imperative to protect the supply of energy 'in this difficult interim phase' with all the options available, and to open up prospects for the future, also by conducting the appropriate energy and environmental research. The balance between continuity of supply, environmental compatibility, and competitiveness must be taken into account in this effort. In the second half of the 21 st century, it is possible that energy consumption will stabilize when the world's population ceases to grow. New technologies, some of which may not even be known today or may still be under development, could then pave the way for an energy supply system which, in toto, would be less of a burden on the environment. (orig.)

  10. The South African National Accelerator Centre and its research programme

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y. [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    An overview of the South African National Accelerator Centre and its research activities is given with emphasis on medium energy nuclear physics and nuclear data measurements for medical use. Also presented is a preliminary result of {sup 40}Ca(p,p`x) spectrum measurement for 392 MeV which has been carried out at RCNP, Osaka University, under the South Africa-Japan collaborative programme. (author)

  11. Energy research in the public sector

    International Nuclear Information System (INIS)

    Gfeller, J.

    1980-01-01

    The objects of state-sponsored energy research in Switzerland are stated to include specialist training in co-operation with the technical universities, and long term energy technology as well as international liaison. Tables are presented which indicate the trends in sources of funding for research, and the division between various technological areas, including energy conservation (10%), solar energy (10%), bioenergy, geothermal energy and wind power (4.5%), atomic energy (40%), nuclear fusion (20%), electricity (6%) and environmental studies (7%). These ratios are compared with those for other developed countries and it is concluded that the aim must be to approach smoothly the 'post-oil era'. (Auth.)

  12. Organizational Creativity in Japanese National Research Institutions

    Directory of Open Access Journals (Sweden)

    Naoko Kato-Nitta

    2016-10-01

    Full Text Available The effects of environmental or individual internal factors on organizational creativity are well documented, but the mediating mechanisms of intrinsic motivation that explain the linkages between such effects remain unclear. Questionnaires completed by scientists at Japanese national research institutions were statistically analyzed by using structural equation modeling for teams (n = 65 and individuals (n = 420, and the results showed that the two variables associated with intrinsic motivation mediated the work environment and creative performance at both the individual and team levels. In revealing the similarities and differences between the team and individual measurements, the results showed that the psychological aspects of intrinsic motivation (job satisfaction, supervision, and communication are relatively significant for teams and that the behavioral aspects of intrinsic motivation (research activity, communication, and involvement are key for individuals. Furthermore, both levels of analysis showed that “Western-style” meetings are detractors for intrinsic motivation. The implications for organizational creativity theory and research management are ultimately discussed.

  13. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  14. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  15. University of Maryland Energy Research Center |

    Science.gov (United States)

    breakthroughs into commercial, clean energy solutions. The Clark School Celebrates Women's History Month The Clark School is featuring our female engineering faculty members throughout March. UMD Researchers

  16. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  17. Between research and energy production

    International Nuclear Information System (INIS)

    Kirbus, F.B.

    1977-01-01

    When on March 20th, 1974, the nuclear power plant in Atucha, 100 km to the north-west of Argentine's capital Buenos Aires, built by Siemens, was taken into operation, it seemed as if South America had resolutely stepped into the atomic age. In the meantime, Brazil makes preparations for fortified construction of nuclear power plants and its own nuclear industry, and Mexico is accelerating its investigations in order to replace its dwindlung hydroelectric reserves as soon as possible with nuclear energy. The effect of the oil crisis was that Latin American countries, too, take a different look at the peaceful uses of atomic energy. (orig.) [de

  18. PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM

    International Nuclear Information System (INIS)

    MCDONALD, R.J.

    2002-01-01

    This is the PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, which was Held at Oilheat Visions Conference, Rhode Island Convention Center, Providence, Rhode Island, August 20-21, 2002. The specific objectives of this conference are to: (1) identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation

  19. PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    2002-08-20

    This is the PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, which was Held at Oilheat Visions Conference, Rhode Island Convention Center, Providence, Rhode Island, August 20-21, 2002. The specific objectives of this conference are to: (1) identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  20. Experimental program to stimulate competitive energy research in North Dakota: Summary and significance of DOE Trainee research

    Energy Technology Data Exchange (ETDEWEB)

    Boudjouk, Philip

    1999-07-01

    The general goals of the North Dakota DOE/EPSCoR Program are to enhance the capabilities of North Dakota's researchers to conduct nationally competitive energy-related research and to develop science and engineering human resources to meet current and future needs in energy-related areas. Doctoral students were trained and energy research was conducted.

  1. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.

    Science.gov (United States)

    Gallachóir, Brian P O; O'Leary, Fergal; Bazilian, Morgan; Howley, Martin; McKeogh, Eamon J

    2006-01-01

    The current conventional approach to determining the primary energy associated with non-combustible renewable energy (RE) sources such as wind energy and hydro power is to equate the electricity generated from these sources with the primary energy supply. This paper compares this with an approach that was formerly used by the IEA, in which the primary energy equivalent attributed to renewable energy was equated with the fossil fuel energy it displaces. Difficulties with implementing this approach in a meaningful way for international comparisons lead to most international organisations abandoning the primary energy equivalent methodology. It has recently re-emerged in prominence however, as efforts grow to develop baseline procedures for quantifying the greenhouse gas (GHG) emissions avoided by renewable energy within the context of the Kyoto Protocol credit trading mechanisms. This paper discusses the primary energy equivalent approach and in particular the distinctions between displacing fossil fuel energy in existing plant or in new plant. The approach is then extended provide insight into future primary energy displacement by renewable energy and to quantify the amount of CO2 emissions avoided by renewable energy. The usefulness of this approach in quantifying the benefits of renewable energy is also discussed in an energy policy context, with regard to increasing security of energy supply as well as reducing energy-related GHG (and other) emissions. The approach is applied in a national context and Ireland is case study country selected for this research. The choice of Ireland is interesting in two respects. The first relates to the high proportion of electricity only fossil fuel plants in Ireland resulting in a significant variation between primary energy and primary energy equivalent. The second concerns Ireland's poor performance to date in limiting GHG emissions in line with its Kyoto target and points to the need for techniques to quantify the potential

  2. National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    This brochure is an overview of NREL's innovations over the last 35 years. It includes the lab's history and a description of the laboratory of the future. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry partnerships. The Alliance for Sustainable Energy, LLC, a partnership between Battelle and MRIGlobal, manages NREL for DOE's Office of Energy Efficiency and Renewable Energy.

  3. Is nuclear energy reasonable with national economic regards?

    International Nuclear Information System (INIS)

    Scholz, L.

    1989-01-01

    In answering the question of whether a nuclear phaseout can be acceptable with national economic respects, one is confronted with the following basic question: Are the risks associated with nuclear energy reasonable in terms of safety and the conservation of the environment. Effective and responsible action in this question presupposes a clear political will and judgment. Because of the necessity of having to put up in the case of nuclear energy - a basic innovation whose development has yet a long way to go - with nuclear legal terms, are faced with a dilemma. In the opinion of energy engineers and the energy industry, the central part of the controversy on nuclear power is about the problem of coming to terms on what will be acceptable to the population as necessary precautionary measures for the event of an accident. Obviously, it is for the legislator to decide on the compatibility and social adequacy of a risk, not for the judge to interpret it on the basis of nuclear legal terms. Our national economy is now and in the future challenged with the task to research, develop, and realize hazard-prone technologies in order to shape the future. Where readiness to accept risks can no longer be assumed in the future, development prospects will be curbed in parallel. What national economic consequences will result from this, and whether they will be acceptable with national econiomic regards, is a question that has not so far been dealt with by the studies on a phaseout of nuclear energy. (orig./HSCH) [de

  4. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  5. Challenges and Opportunities To Achieve 50% Energy Savings in Homes. National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-07-01

    This report summarizes the key opportunities, gaps, and barriers identified by researchers from four national laboratories (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes.

  6. Empowered? Evaluating Japan's national energy strategy under the DPJ administration

    International Nuclear Information System (INIS)

    Valentine, Scott; Sovacool, Benjamin K.; Matsuura, Masahiro

    2011-01-01

    In August 2009, after 54 years of virtually unbroken rule, Japan's Liberal Democratic Party (LDP) was ousted from power by the Democratic Party of Japan (DPJ). The DPJ's campaign platform included a pledge to facilitate extreme reductions in greenhouse gas (GHG) emissions. Yet, at the COP16 meeting in Cancun, Japan announced that it would not accept further emission reduction targets without broader commitment from all nations. This paper seeks to explain this dichotomy by employing a targeted stakeholder evaluation based on surveys with 321 Japanese citizens to assess the extent to which influential stakeholder groups in Japan supports a potentially costly transition to a low-carbon energy infrastructure amidst severe economic challenges that the nation faces. Findings help explain Japan's adversarial role in COP16 negotiations in Cancun, despite the stated GHG reduction ambitions of Japan's current ruling party. The analysis concludes that if the DPJ does embrace aggressive CO 2 reduction targets in the future, the strategic focus will likely mirror the former ruling party's energy policy of bolstering nuclear power generation capacity and promoting energy efficiency improvements while exhibiting lukewarm commitment to supporting capacity development in alternative sources of energy supply such as solar panels and wind turbines. - Research highlights: → Public consensus exists regarding which energy policy goals are important in Japan. → Minor perceptual differences are not of a catalytic nature. → Public consensus does not deviate significantly from past LDP energy policy. → Unlikely that the DPJ will pursue costly energy transition initiatives. → Likely that the DPJ energy strategy will be substantively similar to LDP strategy. → Any differences in strategy will focus on CO 2 reduction magnitude not substance.

  7. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  8. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  9. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    Science.gov (United States)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  10. Research for energy efficiency; Forschung fuer Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The Federal Ministry of Economy enhanced its funding for research in the field of non-nuclear energy in the programme ''Forschung fuer Energieeffizienz'' (Research for Energy Efficiency). The programme focuses on established areas like modern power plant technologies (''Moderne Kraftwerkstechnologien''), fuel cells and hydrogen (''Brennstoffzelle, Wasserstoff''), and energy-optimized building construction (''Energieoptimiertes Bauen''). New subjects are energy-efficient towns and cities (''Energieeffiziente Stadt''), power grids for future power supply (''Netze fuer die Stromversorgung der Zukunft''), power storage (''Stromspeicher''), and electromobility (''Elektromobilitaet''). The brochure presents research and demonstration projects that illustrate the situation in 2010 when the programme was initiated. (orig.)

  11. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  12. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  13. Overview of energy-conservation research opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  14. Research@ARL: Energy & Energetics

    Science.gov (United States)

    2012-06-01

    LiNi0.80Co0.15Al0.05O2 ( NCA ), cathode in a full cell, we found that the activation energy, Ea, for the charge transfer at the graphite/electrolyte interface...kinetics at the graphite anode and the lithium nickel cobalt aluminum oxide, LiNi0.80Co0.15Al0.05O2 ( NCA ), cathode in a full cell, we found that the...Both the NCA and the graphite electrodes are porous electrodes. The dimension of the NCA cathode was 6.35 cm × 3.81 cm, the dimension of the graphite

  15. Energy storage research and development

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    In 2007, US consumers experienced the highest sustained gasoline prices in recent history, in real terms, including those seen in the early 1980s1. Partially as a result of the $3/gallon gasoline prices, sales of hybrid electric vehicles (HEVs) increased almost 60% in 20072, and several automakers announced plans to develop plug-in hybrid electric vehicles (PHEVs)3. However, total sales of HEVs remained in the 2-3 percent range of all vehicle sales. An important step for continued HEV market penetration, as well as electrifying the nation's personal transportation, is the development of cost effective, long lasting, and abuse tolerant Li-ion batteries.

  16. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1990-01-01

    The Office of Energy Research sponsors long-term research in certain fundamental areas and in technical areas associated with energy resources, production, use, and resulting health and environmental effects. This document describes these activities, including recent accomplishments, types of facilities, and gives some impacts on energy, science, and scientific manpower development. The document is intended to respond to the many requests from diverse communities --- such as government, education, and public and private research --- for a summary of the types of research sponsored by the Department of Energy's Office of Energy Research. This is important since the Office relies to a considerable extent on unsolicited proposals from capable university and industrial groups, self-motivated interested individuals, and organizations that may wish to use the Department's extensive facilities and resources. By describing our activities and facilities, we hope not only to inform, but to also encourage interest and participation

  17. Sociologies of energy. Towards a research agenda

    Directory of Open Access Journals (Sweden)

    Tomás Ariztía

    2017-12-01

    Full Text Available This article offers a panoramic view of the field of the social studies of energy while introducing the articles of the special issue. It begins by discussing the progressive interest on studying the social aspects of energy. We relate this interest to the increasing challenges imposed by global climate change as well as the growing sociological attention to the material dimension of social life. The article suggests understanding energy and energy related phenomena as a socio-technical object which involve material, social, cultural and technical elements. The article then briefly describes different research areas concerning the intersection between energy and society and present the contributions to the monograph. We suggest that the articles comprised in this special issue are not only relevant for social scientist interested on energy related issues; they might also help energy professionals and researchers from outside the social sciences to further problematize the social aspects and challenges of energy.

  18. Magnetic confinement fusion energy research

    International Nuclear Information System (INIS)

    Grad, H.

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10 8 degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface

  19. Solar Energy and the United Nations

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    Some applications of solar power have an easy technology, and are a matter for the present or immediate future. The methods for the large-scale production of electricity, however, cannot mature before the end of the century, even if determined efforts are begun now. May it be recalled that some 30 years also elapsed between the discovery of nuclear fission and the start of the first economic nuclear power stations. Investments into R and D were thus needed for decades. In nuclear science, it was relatively easy to find the finance because the military was interested. But in view of its tremendous importance for the welfare of mankind it should be at least equally easy to bridge the gap in respect to solar power. May it be underlined that far more money has indeed been found, and is being found, for CERN in Geneva, which is of purely scientific-academic interest and cannot promise much valuable practical 'spin-off'. The United Nations, the countries of the First, Second and Third World, ought to shoulder their responsibility in respect to solar energy. Energetic steps towards the founding of the International Solar Power Institute should be taken right now. (author)

  20. Nuclear energy development and national economy

    International Nuclear Information System (INIS)

    Fukami, Hiroaki

    1982-01-01

    The utilization and development of nuclear power in Japan are now advanced on the basis of a fact that nuclear power generation has taken root in the country. The scale of nuclear power generation is currently a total of 22 power plants with aggregate capacity over 15,500 MW, 16% of the total power generation. There are still two alternate arguments: i.e. whether nuclear energy can be a complete substitute of petroleum or not, because the consumption of petroleum is necessary for the fuel cycle. Due to the rise of petroleum price, the nuclear power generation is now positively economical. On the other hand, the promotion of nuclear power can lead to the saving in foreign currency. While the economy in nuclear power is through the use of LWRs presently, the research and development efforts in ATRs, FBRs, etc. are essential for the future. (Mori, K.)

  1. Solar energy storage researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  2. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  3. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  4. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  5. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  6. Energy. Political contacts at national, state and European level; Energie. Politikkontakte Bund, Land, Europa

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Andreas (ed.)

    2013-04-01

    The manual is in three sections: 1. Parliaments and governments, survey and organization; 2. Biographic section, with 304 biography; 3. Index of names. The first section informs on the organizational structure of parliaments and governments. The subject of energy is discussed three times, i.e. in 'Economics', 'Environment', and 'Research'. For each parliament, the members of the energy policy TCs are listed, followed by names and contact addresses of the senior officials and departments with contact data, both on a national, state, and European scale. The second section contains the biographies of energy policy experts of the German parliament and government, the sixteen land parliaments and governments, and the European Commissions. As the subject of energy is highly interdisciplinary, the authors selected the energy policy committees of the German parliament and state parliaments. The biographies of the committee members are presented in the text.

  7. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  8. Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)

    International Nuclear Information System (INIS)

    Chu, Steven

    2011-01-01

    Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to 'unleash America's science and research community' to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  9. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  10. Road map for renewable energy research and development in Egypt

    Directory of Open Access Journals (Sweden)

    Adel K. Khalil

    2010-01-01

    Full Text Available Egypt possesses excellent potential for renewable energy (RE including solar, wind and biomass energy. Renewable energy technologies (RETs and systems have different needs for support in terms of research and development, demonstration and market development. For this purpose, the Energy Research Center (ERC at Cairo University has carried out a study with the ultimate goal of formulating a national development strategy and action plan for the local manufacture of renewable energy systems (RESs and components. The present study positions the different RETs and RESs and identifies the research and development needs for each technology. The study also suggests how to establish a competitive market for RET. For this purpose it builds and analyses a set of likely scenarios, and proposes a practical development strategy and a detailed action plan for achieving it.

  11. ANCRE - Stage report 2011, coordination of research on energy

    International Nuclear Information System (INIS)

    Bigot, Bernard; Fuchs, Alain; Ouabdesselam, Farid; Appert, Olivier; Freyssinet, Philippe; Moisan, Francois

    2011-11-01

    This document aims at proposing an assessment of works performed by ANCRE (the French National Alliance of Coordination of Research on Energy) after its first two years of existence. The main objective is to prepare the energy transition by boosting the French research in the field of energy. The report presents the ANCRE's organization as an efficient one, based on strong relationships with the industry sector. It indicates the various thematic work-groups (five 'energy sources' groups and three 'usages' groups), and the different objectives. It comments the contribution to the European research. These works and activities are commented by some high representatives of the alliance. A second part proposes an overview of the current status for the different energy sources group (biomass, fossil and geothermal, nuclear, solar, sea, hydraulic and wind) and usages groups (transports, buildings, industries and agriculture). It also presents the different actions related to coordination, programmatic synergies and prospective

  12. National energy data profile - Brazil 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This report presents a more detailed study on the chances of further developing the clean brazilian energy matrix up to the year of 2030. The report intends to discuss the options compatible with Brazilian energy resources and existing viable technologies. The report also forecasts data on energy up to the year of 2030, concerned to the fields of energy supply, processing sector and demand

  13. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  14. International energy: Research organizations, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, P.; Jordan, S. (eds.) (USDOE Office of Scientific and Technical Information, Oak Ridge, TN (USA))

    1991-03-01

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  15. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  16. Research planning in the energy sector

    International Nuclear Information System (INIS)

    Graenicher, H.

    1977-06-01

    The author considers research planning split into four separate aspects: the character of the research situation; the function of planning stages; the type of research target; and the limit of the application of research planning by planning stages. He then considers the specific problem of energy research and discusses the question of what the state is to do and how to do it with particular attention to the Swiss situation. (G.T.H)

  17. National soft science research task item-organization and implementation

    International Nuclear Information System (INIS)

    Zhang Yiming

    2014-01-01

    nuclear fusion energy research development road suitable to China's situation. This report has obtained the high praise from the domestic fusion experts. At present, this item is waiting for the acceptance check organized by the Ministry of Science and Technology. It is the first time for the Division to take on such a large-scale national level soft task item. It started a good beginning for the Division to further carry out related subject research tasks and knowledge services such as the comparative analyses of the related subjects and international attractive advanced subjects in the near future, train professional talents, as well as to provide information support of making scientific research further at SWIP. This paper discussed how to organize, implement and fulfil a large-scale strategic soft science task item based on the practice and experience of the completed soft science task item. (author)

  18. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out b...... by 11 university and industry partners has improved the basis for decision-making within energy planning and energy scenario making by providing new and improved tools and methods for energy systems analyses.......This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...

  19. Wind2050 – a transdisciplinary research partnership about wind energy

    DEFF Research Database (Denmark)

    Borch, Kristian; Nyborg, Sophie; Clausen, Laura Tolnov

    2017-01-01

    Strategic orientation and priority setting in energy planning are high on the political agenda in Denmark due to the ambitious national goal of fossil-free energy systems. One key issue concerns the involvement of stakeholders – and non-expert stakeholders in particular – in discussions on how to...... based on an exhaustive contextual understanding of interplay, divergences and relationships between stakeholders and methods for transparent strategic priority setting in research....

  20. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  1. National Offshore Wind Energy Grid Interconnection Study Full Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  2. The National Energy Strategy: A balanced program?. Proceedings of the nineteenth annual Illinois energy conference

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The Nineteenth Annual Illinois Energy Conference was held in Chicago, Illinois November 1991. It was organized by the Energy Resources Center, University of Illinois at Chicago with major support provided by the US Environmental Protection Agency, the US Department of Energy, the Illinois Commerce Commission, the Illinois Department of Energy and Natural Resources, and the Citizens Council on Energy Resources. The conference program was developed by a planning committee who drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The members of the planning committee were brought together for a full-day session where they were asked to assess the political, economic, and social impacts of the proposed National Energy Strategy as it relates to Illinois and the Midwest region. Within this context, the planning committee identified several major issues including: (1) Is the proposed plan a balanced strategy; (2) What are the NES impacts on the transportation sector; (3) What are the opportunities for improved efficiency in the Electric Utility Sector; and (4) What is the role of advanced research and development.

  3. National Biological Service Research Supports Watershed Planning

    Science.gov (United States)

    Snyder, Craig D.

    1996-01-01

    The National Biological Service's Leetown Science Center is investigating how human impacts on watershed, riparian, and in-stream habitats affect fish communities. The research will provide the basis for a Ridge and Valley model that will allow resource managers to accurately predict and effectively mitigate human impacts on water quality. The study takes place in the Opequon Creek drainage basin of West Virginia. A fourth-order tributary of the Potomac, the basin falls within the Ridge and Valley. The study will identify biological components sensitive to land use patterns and the condition of the riparian zone; the effect of stream size, location, and other characteristics on fish communities; the extent to which remote sensing can reliable measure the riparian zone; and the relationship between the rate of landscape change and the structure of fish communities.

  4. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  5. Netherlands Energy Research Foundation Annual Report 1987

    International Nuclear Information System (INIS)

    1988-06-01

    This Annual Report includes a brief survey of the nuclear research activities of the Netherlands Energy Research Center (ECN) in Petten during 1987. They cover the following subjects: reactor safety, processing, storage and disposal of radioactive waste, advanced nuclear reactors, radiation protection, nuclear analysis, and contributions to the European thermonuclear-fusion research. (H.W.). 20 figs.; 18 fotos; 1 tab

  6. National energy data profile, Austria 1992

    International Nuclear Information System (INIS)

    1993-12-01

    Detail information about the energy consumption, energy demand and supply, general features of energy economy and the analysis of the development of energy economy in Austria in 1992 as well as preliminary data on energy consumption in the first 6 months of 1993 is given. Statistical data about the development of energy demand by sectors, development of total final energy demand by energy carriers (articulated in coal, refined petroleum products, natural gas, other, electricity and heat), development of energy consumption in industry (articulated in coal, refined petroleum products, natural gas, other, electricity and heat) and development of energy consumption of domestic consumers (articulated in coal, refined petroleum products, natural gas, other, electricity and heat) is shown. Graphical data about (1) primary energy supply by source, (2) primary energy, economic activity and electricity, (3) indigenous energy production, (4) conventional energy resources, (5) electricity supply by source, (6) electricity consumption by sector is presented for the years 1970 - 1992. Data about the development and exploitable hydro-power potentials by rivers and the main sources of man-made emissions of air pollutants in Austria 1990 according to the results of the CORINE-inventory are added. (blahsl)

  7. Italy: a national energy strategy in transition

    International Nuclear Information System (INIS)

    Spaes, Joel

    2014-01-01

    This article discusses the status and perspectives of the Italian energy policy. It outlines that this policy has known many changes during the past decades. The country has been depending for years on oil imports and on electricity imports from its neighbours even though ENI and ENEL are major world actors. It had chosen nuclear energy to gain independence until the Chernobyl accident which resulted in a moratorium. On the side of renewable energies, Italy has notably developed geothermal energy, and possesses an important hydraulic energy fleet, while solar photovoltaic and wind energy started their development rather late and still at a rather slow pace. Thus, a new energy strategy has been implemented in 2012 with some main objectives: reduction of energy costs, meeting of European objectives regarding energy and climate, improvement of energy supply security and of energy independence, and development of a sustainable economy through the development of the energy sector. This strategy resulted in very good results in terms of energy efficiency, and of growth rate for the photovoltaic sector

  8. Energy conservation-problems and perspectives for developing nations

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P. R. [National Productivity Council, New Delhi, India; Padrmanabhan, S.

    1980-03-15

    While studies of the past indicated a tight coupling of energy consumption and GNP, longer range indications are that they can be mutually decoupled. Developing nations can move forward towards achieving significant energy savings in their economics without fear of economic stagnation. Conservation policies at the national level are difficult to enunciate and the implementation mechanisms have to be strengthened. Macro-level economics may not be easily apparent as unit level economics. If energy conservation is not practiced, we would require the development of additional energy supply capacity with all of its economic implications. The role of science and technology inputs in industrial processes for minimizing energy consumption is significant. Sufficient funds should be allocated for pursuance of R and D activities in energy conservation and in developing alternative energy resources to supplement and later replace the existing costly transient fuels. A climate to promote conservation of energy should formulate policies which lays emphasis on energy conservation strategies rather than soley on energy growth issues. The effort should be directed towards energy programs that are a judicious mix up of energy and energy conservation strategies for achieving economic growth and a reasonable standard of living commensurate with the aspirations of the people. In capital-scarce economies, an account of the fact that energy conservation requires far less investment than energy capital supplies, conservation policies must play a central role in the overall framework of developing nation's national energy policies.

  9. Energy - politics - history. National and international energy politics since 1945

    International Nuclear Information System (INIS)

    Hohensee, J.; Salewski, M.

    1993-01-01

    All articles focus on historical aspects of the development of energy politics in the Federal Republic of Germany (energy enconomy and industry, hard coal, nuclear energy). Some articles also look at international developments (oil boycott, Saudia Arabias's oil policies, International Energy Agency). (UA) [de

  10. Energy in Ireland: context, strategy and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the present day situation of sudden awareness about climatic change and announced fossil fuels shortage, Ireland has defined a new strategy for its energy future. Context: Ireland is strongly dependent of oil and gas imports which increase regularly to meet the demand. A small part of the electricity consumed is imported from Ulster. The share of renewable energies remains weak but is increasing significantly. Therefore, from 1990 to 2006, the proportion of renewable energies increased from 1.9% (mainly of hydroelectric origin) to 4.5%. Wind power represents now the main renewable energy source. The transportation sector is the most energy consuming and the biggest source of greenhouse gases. Strategy: the Irish policy is driven by pluri-annual strategic plans which define the objectives and means. Priority is given to the security of supplies at affordable prices: 8.5 billion euros will be invested during the 2007-2013 era for the modernization of existing energy infrastructures and companies, and in a lesser extent for the development of renewable energy sources. During this period, 415 million euros more will be devoted to the research, development and demonstration (RD and D) of new energy solutions. Research: in 2005 the energy RD and D expenses reached 12.8 million euros shared between 54% for R and D and 46% for demonstration projects. Half of the financing is given to higher education schools and is devoted to energy saving purposes (33%) and to renewable energies (29%, mainly wind power and biomass). Academic research gives a particular attention to ocean energy which represents an important potential resource in Ireland and which has already led to the creation of innovative companies. The integration of renewable energy sources to the power grid and the stability of supplies are also the object of active researches. (J.S.)

  11. Energy and Environmental Systems Division 1981 research review

    International Nuclear Information System (INIS)

    1982-04-01

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems

  12. Environmental Programs: National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    Major NREL environmental programs and initiatives include: integrated energy and environmental strategies; implementation of air pollution programs and climate change programs; Green Power Network; environmental and economic impacts and benefits of energy efficiency and renewable energy (EERE) technologies; technology transfer between developed and developing countries; greenhouse gas emission reduction projects; climate change action plans with developing countries and development of life cycle assessments.

  13. National Energy Strategy: Technical annex 7

    International Nuclear Information System (INIS)

    1992-01-01

    This paper provides analyses of nuclear energy options and the role of nuclear power as a future energy source for the United States. The Current Policy Base case reflects an energy future with no new nuclear policy initiatives and the gradual phaseout of nuclear power. This paper compares such a phaseout to the expanded use of nuclear power and identifies the consequences

  14. National energy plan. V. 1 and 2

    International Nuclear Information System (INIS)

    1992-01-01

    The first volume, presents a general outlook of the energy situation of the country where the demand and supply, prices of energy are analyzed. The second volume, describes alternatives of short, medium and long terms, making emphasis in structural strengthening of energy sector

  15. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  16. Energy-efficient mortgages and home energy rating systems: A report on the nation`s progress

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.C.; Eckert, J.

    1993-09-01

    This report summarizes progress throughout the nation in establishing voluntary programs linking home energy rating systems (HERS) and energy-efficient mortgages (EEMs). These programs use methods for rating the energy efficiency of new and existing homes and predicting energy cost savings so lenders can factor in energy cost savings when underwriting mortgages. The programs also encourage lenders to finance cost-effective energy-efficiency improvements to existing homes with low-interest mortgages or other instruments. The money saved on utility bills over the long term can more than offset the cost of such energy-efficiency improvements. The National Collaborative on HERS and EEMs recommended that this report be prepared.

  17. Role of national labs in energy and environmental R ampersand D: An industrial perspective

    International Nuclear Information System (INIS)

    Vaz, N.

    1995-01-01

    The perceived role of national laboratories in energy and environmental research and development is examined from an industrial perspective. A series of tables are used to summarize issues primarily related to the automotive industry. Impacts of policy on energy, environment, society, and international competition are outlined. Advances and further needs in automotive efficiency and pollution control, and research roles for national labs and industry are also summarized. 6 tabs

  18. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  19. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  20. Research challenges for energy data management (panel)

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Lehner, Wolfgang

    2013-01-01

    This panel paper aims at initiating discussion at the Second International Workshop on Energy Data Management (EnDM 2013) about the important research challenges within Energy Data Management. The authors are the panel organizers, extra panelists will be recruited before the workshop...

  1. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  2. On energy conservation and energy research. Om energioekonomisering og energiforskning

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report to the Storting (Parliament) is the third one on energy conservation during the last 10 years. As earlier, the report mainly treats the use of energy for stationary objects. The background for this report is, above all, the increased environmental requirements to the energy policy attached to the use of fossil fuels. The economic energy conservation potential of Norway is estimated on the basis of the present energy prices and available technology. For stationary energy use it amounts to ca 23 TWh, of which 16 TWh refer to electric power and 7 TWh to oil. Among the measures of the authorities to realize this potential, information about energy economy and energy technology is one of the most important. Other important measures are research and development activities as well as temporary arrangements for economic support. Energy conservation efforts, and efforts for a better environment should often be considered together, because higher energy efficiency in general can result in important positive environmental impacts. In the long term, the global enviromental problems may be the strongest motive power for an increased effort in energy conservation. 38 figs., 22 tabs.

  3. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  4. Industrial energy economy, national and international aspects

    International Nuclear Information System (INIS)

    1993-01-01

    VDI-report 1061 contains the papers given on the Conference of the same name in Essen on the 22 and 23.6.1993. German industry suffers not only from high wage and on-cost but high, energy costs as well. Waste disposal problems and impending taxes on wages are the cause of these difficulties. The EC believes that competition between energy supplies may help to reduce energy costs. This report deals with cost-efficient energy supply for the German industry and books at the background of this scenario. This industry puts forward its wishes and demands to politicians and energy economy. Representatives of energy suppliers discuss energy supplies, demand, availability, safety of supplies, competitiveness, quality and environmental aspects. The influence of energy costs and environmental taxation on the industrial and economic future of Germany and the situation in the Eastern States of Germany are a further subject of discussion. The views of the EC commission, the industry and the energy suppliers on energy transports across the EC are discussed as well. (orig./UA) [de

  5. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  6. Tomorrow the energy. Words of researchers

    International Nuclear Information System (INIS)

    Metenier, Beatrice; Huret, Christophe; Bordenave, Aurelie; Tourrasse, Corinne; Nourry, Didier; Bellet, Daniel; Blanquet, Elisabeth; Bonjour, Jocelyn; Brochier, Elisabeth; Fave, Alain; Grunenwald, Perrine; Herri, Jean-Michel; Menanteau, Philippe; Normand, Bernard; Raison, Bertrand; Stutz, Benoit

    2015-01-01

    Based on interviews of researchers in various disciplines and areas, this book proposes a prospective vision of energy. It starts with a presentation of points of view of a philosopher, a climatologist, an economist and a scientific on the definition of energy transition. The second part addresses how to be committed in energy efficiency by saving energy in buildings (towards an inter-seasonal storage and an active management of energy), in transports (a change of behaviours, lighter materials), and in industry (optimised air conditioning, a more efficient industry). The next part discusses how to diversify resources: hydraulic resources where the main issue or challenge is to produce and store a more flexible production, nuclear energy (to improve safety and to develop technologies towards the use of extreme materials), solar energy (to capture this energy at a reduced cost by using highly efficient cells), fossil energies (to optimize the exploitation and to decrease emissions by capturing CO 2 ), and biomass (to assess the resource). The last chapter discusses the challenges related to energy storage and distribution: how to store energy and for which use (towards solid hydrogen storage), and how to adapt the grid to the emergence of renewable energies (towards a grid self-healing)

  7. PROCEEDINGS OF THE 2004 NATIONAL OILHEAT RESEARCH RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    2004-08-31

    This meeting is the seventeenth oilheat industry technology meeting held since 1984 and the forth since the National Oilheat Research Alliance was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program under the United States Department of Energy, Building Technologies Program within the Office of Energy Efficiency and Renewable Energy. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  8. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  9. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  10. European national strategies to move towards very low energy buildings

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    high energy performance. It is important to stress the need for MS to introduce a national or regional definition of very low energy buildings in their building regulation and to develop a national strategy towards this level of energy performance to become the standard. This market transformation...... the ambition in the EU Action plan - to develop an EU strategy towards very low energy houses. The current recast of the EPBD is an opportunity, which must not be missed to introduce the requirement to MS to define very low energy buildings and a national strategy towards this level of energy performance....... A strategy for improved energy efficiency of existing buildings is a necessity if the energy consumption is to be reduced significantly over a limited period of time. The life time of buildings ranges from 50 to 100 years and improvement of the existing building stock will thus have much higher impact than...

  11. National Action Plan for Energy Efficiency Report

    Energy Technology Data Exchange (ETDEWEB)

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  12. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  13. Energy in Mexico: a profile of solar energy activity in its national context

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.

    1980-04-01

    The geopolitical, economic, and cultural aspects of the United States of Mexico are presented. Mexico's energy profile includes the following: energy policy objectives, government energy structure, organizations for implementation, indigeneous energy sources, imported energy sources, solar energy research and development, solar energy organizations and solar energy related legislation and administrative policies. International agreements, contacts, manufacturers, and projects are listed. (MRH)

  14. Energy transitions research: Insights and cautionary tales

    International Nuclear Information System (INIS)

    Grubler, Arnulf

    2012-01-01

    This short essay first reviews the pioneers of energy transition research both in terms of data as well as theories. Three major insights that have emerged from this nascent research fields are summarized highlighting the importance of energy end-use and services, the lengthy process of transitions, as well as the patterns that characterize successful scale up of technologies and industries that drive historical energy transitions. The essay concludes with cautionary notes also derived from historical experience. In order to trigger a next energy transition policies and innovation efforts need to be persistent and continuous, aligned, as well as balanced. It is argued that current policy frameworks in place invariably do not meet these criteria and need to change in order to successfully trigger a next energy transition towards sustainability. - Highlights: ► Includes the first literature review of early energy transition research. ► Summarizes three major research findings from the literature. ► Reviews policy implications of recent case studies of energy technology innovation. ► Argues that current policy frameworks are deficient in view of above lessons.

  15. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  16. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  17. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  18. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  19. Energy engineering: Student-researcher collaboration

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Beckowska, Patrycja Maria

    2013-01-01

    This article reports on cooperation methods between researchers and students at different levels. Levels included in this work are BSc, MSc and PhD student levels. At Aalborg University, Department of Energy Technology education and research are closely linked. The relationship between student...

  20. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  1. Developing the (ASTM) voluntary consensus standards required to help implement the National Energy Plan

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The recommended guide is the first American Society for Testing and Materials (ASTM) matrix in a family of such documents that combined, will help manage the development of the ASTM standards considered necessary to implement the current National Plan for Energy Research, Development, and Demonstration. It is expected that the guide will provide a framework for standards development to complement the nation's research and development in support of critical energy needs. The recommended guide identifies the energy-critical areas that are to be developed, the master ASTM recommended guide for developing the standards required to help the National Plan, the section in which each energy-critical area is covered, and the suggested ASTM lead committee responsible for each area (fossil, solar, geothermal, conservation, fusion, and fission reactor development). A comprehensive matrix to identify the areas of need for which ASTM standards will be required to help implement the National Energy Plan is also presented

  2. Solar and wind energy utilization at Sarawak Southern national parks

    International Nuclear Information System (INIS)

    Abdul Rahman, N.; Kolot, A.

    2006-01-01

    The intentions of renewable energy utilization in Sarawak national parks were to reduce the environmental impacts to the protected surrounding and to overcome fuel transportation problem, as most national parks in Sarawak are not viable for the state electricity grid connection. The study was conducted at three national parks in southern Sarawak; viz. Samusan, Tanjung Datu and Pulau Talang-Talang Besar National Park. The study focused on the effectiveness of the system implementation, energy load and associated problems. Both Samusan and Tanjung Datu National systems are hybrids, which consist of solar photovoltaic panels, wind turbine and diesel generators, whereas, Pulau Talang-Talang Besar National Park is a stand alone system of solar photovoltaic panels only. In addition, the inefficient energy usage was observed at Samusan National Park. The study have identified that lack of local expertise, spare parts availability, transportation and inefficient energy management as the major problems associated to the solar and wind energy system in all national parks studied. Albeit the problems mentioned, the study discovered that the systems were acceptably reliable and satisfactorily supply fraction of the energy requirements to the national parks communities

  3. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1991--March 31, 1993

    International Nuclear Information System (INIS)

    Carlson, P.T.

    1993-06-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities for the Department of Energy (DOE) Assistant Secretary for Fossil Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory's fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1991, through March 31, 1993

  4. Introduction to the national energy situation

    International Nuclear Information System (INIS)

    Perera, K.K.Y.W.

    1994-01-01

    For improvement of the quality of people economic development is a key factor. To enhance the quality of life, availability of energy is vital. Principle sources of gross energy supply are biomass, petroleum, hydroelectricity. Biomass is responsible for 70.9% of energy supply. The energy consumption is shared by household, industry, transport. Commercial with household consumption is responsible for nearly 69% of the total. The use of electricity for industrial purposes has diminished from 50% in 1977 to 36% in 1989 whereas domestic share has doubled during the same period. Fuel wood supply will also contribute to energy demand and supply will increase gradually. Reduction of imports such as oil will help to maintain the balance of payment, as Sri Lanka Rupee had been gradually slipping down in relation to the US dollar, the Sterling Pound. Effective use of fuel wood and biomass will reduce consumption of oil

  5. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  6. Research on Utilization of Geo-Energy

    Science.gov (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  7. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  8. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  9. Ocean energy researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on ocean energy systems. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Only high-priority groups were examined. Results from 2 groups of researchers are analyzed in this report: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  10. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  11. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  12. Energy Transition Initiative: Island Energy Snapshot - Belize; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This profile provides a snapshot of the energy landscape of Belize, a Central American country bordering Mexico to the north, Guatemala to the west and south, and the Caribbean Sea to the east. Although not an island nation, Belize is included in this energy snapshot series because it is a member of the Caribbean Community (CARICOM), an alliance of 15 Caribbean nations in the region.

  13. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: → Spillover of global technology learning may be forwarded into a macroeconomic model. → The national electricity price differs significantly between the different global scenarios. → Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  14. Summaries of research in high energy physics

    International Nuclear Information System (INIS)

    1987-11-01

    The compilation of summaries of research and technology R and D efforts contained in this volume is intended to present a detailed narrative description of the scope and nature of the HEP activities funded by the Department of Energy in the FY 1985/FY 1986 time period. Topic areas covered include the following: experimental research using the accelerators and particle detector facilities and other related research; theoretical research; conception, design, construction, and operation of particle accelerators and detectors facilities; and research and development programs intended to advance accelerator technology, particle detector technology, and data analysis capabilities

  15. Samish Indian Nation Long-Term Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Christine Woodward; B. Beckley; K. Hagen

    2005-06-30

    The Tribes strategic energy planning effort is divided into three phases: (1) Completing an Energy Resource Assessment; (2) Developing a Long-Term Strategic Energy Plan; and (3) Preparing a Strategic Energy Implementation Plan for the Samish Homelands. The Samish Indian Nation developed a comprehensive Strategic Energy plan to set policy for future development on tribal land that consists of a long-term, integrated, systems approach to providing a framework under which the Samish Community can use resources efficiently, create energy-efficient infrastructures, and protect and enhance quality of life. Development of the Strategic Energy plan will help the Samish Nation create a healthy community that will sustain current and future generations by addressing economic, environmental, and social issues while respecting the Samish Indian Nation culture and traditions.

  16. Energy research shows the way to sustainable energy policy

    International Nuclear Information System (INIS)

    Glatthard, T.

    2000-01-01

    This article takes a look at the work of the Swiss research programme on energy economics basics that aims to provide advice for policy makers. The programme investigates not only the technological but also the social and economic factors to be taken into consideration. In particular, the article reviews the programme's work on promotion strategies for sustainability in the energy area in connection with a proposed levy on energy. Examples are given of possible implementation strategies concerning new and existing buildings. The responsibilities of the parties to be involved in the implementation of promotional measures such as cantonal authorities, professional associations and agencies are discussed

  17. National rf technology research and development program plan

    International Nuclear Information System (INIS)

    1983-05-01

    This plan was prepared by the Oak Ridge National Laboratory at the request of the Office of Fusion Energy, Division of Development and Technology, to define the technology development needs and priorities. The US rf research and development community, with a wide representation from universities, laboratories and industries, participated in many discussions, meetings and in a three-day workshop in developing the needs and priorities definition. This very active and effective involvement of the rf leaders from all of these groups was an essential feature of the activity and results in the plan representing a broad consensus from the magnetic fusion energy development community. In addition, a number of scientists from Japan and Europe participated by providing data

  18. National seminar on nuclear energy in everyday life: lectures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The document includes 8 lectures presented at the National Seminar on Nuclear Energy in Everyday Life organized by the International Atomic Energy Agency (Vienna) and the Atomic Energy Authority (Egypt) between 28-29 June 1994 in Cairo. A separate abstract was prepared for each lecture.

  19. National seminar on nuclear energy in everyday life: lectures

    International Nuclear Information System (INIS)

    1994-06-01

    The document includes 8 lectures presented at the National Seminar on Nuclear Energy in Everyday Life organized by the International Atomic Energy Agency (Vienna) and the Atomic Energy Authority (Egypt) between 28-29 June 1994 in Cairo. A separate abstract was prepared for each lecture

  20. sustainable development of national energy resources

    African Journals Online (AJOL)

    RAYAN_

    293, noting its coverage of investment in energy projects, particularly in oil ..... Exportation of Various Raw Materials – Appellate Body Report (30 January 2012) ..... 61 Investigation Report: Ghana: West African Gas Pipeline Project, World Bank.

  1. RENEWABLE ENERGY IN UKRAINE: TOWARDS NATIONAL ECO ...

    African Journals Online (AJOL)

    RAYAN_

    on the renewable energy sources, including solar, wind, hydro, biomass and geothermal. It is emphasized that ... structures. Keywords: renewable ..... has three wind power plants with the capacity for 2; 2,5; and 3 MW, respectively. Its special ...

  2. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  3. Renewable energy research and development in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, M S

    1979-12-01

    Canadian research and development (R and D) in renewable energy began as a result of the oil crisis in 1974, and in keeping with government policy, is predominantly carried out in the private sector under contract to the federal government. The variety in technical maturity of the renewable energy technologies is reflected in the non-uniform funding levels among the five constituent programs. The greatest support is allotted to solar energy in recognition of its enormous potential, both in low to mid-temperature thermal and in photovoltaic applications. This report describes the technical content of these five renewable energy and R and D programs, and outlines the organization and management structures used to direct the effort. Biomass energy R and D concentrates on the harvesting, processing and conversion of wood wastes into convenient fuel forms. Near-term applications will continue to be in the forest products industries. Wind energy R and D in geothermal energy are focussed on identification and quantification of the resource. A five-megawatt experimental geothermal heating system is being established at the University of Regina. The hydraulic energy R and D program does not consider conventional hydro-electric systems which are well developed; rather, it primarily covers laboratory-scale tests on conversion devices for wave, tidal, and river flow energy systems. A substantial effort is also underway in analytic and modelling techniques for hydraulic energy systems of all types. 3 figs., 2 tabs.

  4. National energy balance - 1977-1996 - Chile

    International Nuclear Information System (INIS)

    1997-01-01

    The present document summarizes the historic document related to energy production, transformation and consumption in the country between 1977 and 1996. The manner the figures are presented allows their usage for diverse analyses. Certain modifications have been added to this introduction according to the suggestions received due to the publication of the 1975-1994 statement. This work will be periodically updated, including possible new energy sources as well as new consumption sectors. (author)

  5. National energy balance 1979-1998 Chile

    International Nuclear Information System (INIS)

    1998-01-01

    The present document summarizes the historic document related to energy production, transformation and consumption in the country between 1979 and 1998. The manner the figures are presented allows their usage for diverse analyses. Certain modifications have been added to this introduction according to the suggestions received due to the publication of the 1977-1996 statement. This work will be periodically updated, including possible new energy sources as well as new consumption sectors

  6. National energy balance - 1977-1996 - Chile

    International Nuclear Information System (INIS)

    1997-01-01

    The present document summarizes the historic document related to energy production, transformation and consumption in the country between 1977 and 1996. The manner the figures are presented allows their usage for diverse analyses. Certain modifications have been added to this introduction according to the suggestions received due to the publication of the 1975-1994 statement. This work will be periodically updated, including possible new energy sources as well as new consumption sectors

  7. A National Framework for Energy Audit Ordinances

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Cody; Costa, Marc; Long, Nicholas; Antonoff, Jayson

    2016-08-26

    A handful of U.S. cities have begun to incorporate energy audits into their building energy performance policies. Cities are beginning to recognize an opportunity to use several information tools to bring to real estate markets both motivation to improve efficiency and actionable pointers on how to improve. Care is necessary to combine such tools as operational ratings, energy audits, asset ratings, and building retro-commissioning in an effective policy regime that maximizes market impact. In this paper, the authors focus on energy audits and consider both the needs of the policies' implementers in local governments and the emerging standards and federal tools to improve data collection and practitioner engagement. Over the past two years, we have compared several related data formats such as New York City's existing audit reporting spreadsheet, ASHRAE guidance on building energy auditing, and the DOE Building Energy Asset Score, to identify a possible set of required and optional fields for energy audit reporting programs. Doing so revealed tensions between the ease of data collection and the value of more detailed information, which had implications for the effort and qualifications needed to complete the energy audit. The resulting list of data fields is now feeding back into the regulatory process in several cities currently working on implementing or developing audit policies. Using complementary policies and standardized tools for data transmission, the next generation of policies and programs will be tailored to local building stock and can more effectively target improvement opportunities through each building's life.

  8. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  9. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS

  10. 75 FR 65613 - National Estuarine Research Reserve System

    Science.gov (United States)

    2010-10-26

    ... based on priority issues defined by the reserve. The objectives described in this plan are designed to... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research..., National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce...

  11. The effect of building regulations and energy conservation measures in domestic sector on national energy consumption

    International Nuclear Information System (INIS)

    Samo, S.R.; Akhund, M.A.; Brohi, K.M.

    2004-01-01

    In England, housing accounts for some 30% of total fuel consumption and a similar proportion of energy-related carbon dioxide (CO/sub 2/) emission. A study has been conducted to analyse the effect of the legislations and UK thermal building regulations on national energy consumption in housing. This research paper presents data on the percentage of dwelling stock, the energy consumption, energy cost and carbon dioxide (CO/sub 2/) emission in different types of dwellings, which comply different building regulations from 1965 to 1995. It was found that. 66% of the dwelling stock, which comply the building Regulations before 1965, consumes 73% of total energy used in housing. This dwelling stock is also responsible for 75% of carbon dioxide (CO/sub 2/) emission. Whereas currently only 4% of the dwelling stock complies the latest building regulations 1995 which consume 2 % of energy and produce a similar percentage of carbon dioxide (CO/sub 2/) emission in housing. Since the large portion of the dwelling stock is comprised of old dwellings, therefore the greatest potential for energy conservation measures can be found in improving these dwellings instead of constructing new dwellings. (author)

  12. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  13. Large scale computing in the Energy Research Programs

    International Nuclear Information System (INIS)

    1991-05-01

    The Energy Research Supercomputer Users Group (ERSUG) comprises all investigators using resources of the Department of Energy Office of Energy Research supercomputers. At the December 1989 meeting held at Florida State University (FSU), the ERSUG executive committee determined that the continuing rapid advances in computational sciences and computer technology demanded a reassessment of the role computational science should play in meeting DOE's commitments. Initial studies were to be performed for four subdivisions: (1) Basic Energy Sciences (BES) and Applied Mathematical Sciences (AMS), (2) Fusion Energy, (3) High Energy and Nuclear Physics, and (4) Health and Environmental Research. The first two subgroups produced formal subreports that provided a basis for several sections of this report. Additional information provided in the AMS/BES is included as Appendix C in an abridged form that eliminates most duplication. Additionally, each member of the executive committee was asked to contribute area-specific assessments; these assessments are included in the next section. In the following sections, brief assessments are given for specific areas, a conceptual model is proposed that the entire computational effort for energy research is best viewed as one giant nation-wide computer, and then specific recommendations are made for the appropriate evolution of the system

  14. National Atomic Energy Commission. Decree No. 1540, August 30 1994

    International Nuclear Information System (INIS)

    1994-01-01

    One of the objectives of the reorganization process of Argentina's public sector was to transfer to the private sector some of the Nation's productive activities, including those concerning the nuclear field. As a consequence, by Decree No. 1540 of August 30, 1994, (B.O. 2-Dec-94), CNEA's functions were partially reorganized. According to Decree No. 1540, the National Atomic Energy Commission (CNEA) maintained the missions and functions established by Decree-Law No. 22.498/56, with the exception of the regulation and surveillance of nuclear activities and the nuclear power generation activities. For the fulfillment of these activities, both the National Board of Nuclear Regulation (Ente Nacional Regulador Nuclear - ENREN) and Nucleoelectrica Argentina S.A. (NASA), were created. The National Board of Nuclear Regulation (ENREN), as an autarchical entity reporting to the Presidency of the Nation, shall be administered by a Board of Directors and shall be responsible for surveying and controlling all nuclear activities, shall suggest regulations and standards to ensure radiological and nuclear safety, personal protection, a controlled use of nuclear materials, licensing and surveillance of nuclear installations, and compliance with international safeguards. Nucleoelectrica Argentina S.A. (NASA) shall be organised as a corporation, reporting to the Ministry of Economy and Public Works and Services (Ministerio de Economia y Obras y Servicios Publicos) who will approve its statures. NASA shall take care of nuclear power generation at the Atucha I and Embalse nuclear power plants, as well as the construction, start-up and operation of the Atucha II nuclear power plant. As far as royalties are concerned, the Decree obliges Nucleoelectrica Argentina S.A. to pay CNEA for the performance of research and development activities, and to the ENREN an yearly regulatory tax per megawatt of installed nuclear power generation capacity. Also, Nucleoelectrica Argentina S.A. is declared

  15. National energy programmes and plans of the USA

    International Nuclear Information System (INIS)

    Fri, R.W.

    1977-01-01

    Following President Carter's direction, the United States of America has developed a major new national energy policy which places greater emphasis on energy conservation as well as the intensified use of alternate technologies to reduce US dependence on petroleum and natural gas. The President's programme includes a multi-pronged coal conversion effort, the goal of installing two-and-a-half million US solar-equipped homes by 1985, and continued US execution of a wide-ranging programme of research and development. Nuclear power also continues to figure prominently in the US energy programme, with significant reliance being placed on the light water reactor which has proven its safety and value through years of reliable experience. The US Government is taking major steps to facilitate further the wide-scale domestic use of light water reactors by seeking major simplifications in the domestic licensing process; by expanding US enrichment capacity; by conducting a major effort to exploit its resources of natural uranium feed and by moving decisively to resolve effectively the problem of waste disposal by targeting to install a prototypical long-term waste repository by 1985. The USA, however, recognizes that uranium reserves ultimately may run out and to this end it is launching a comprehensive assessment of the type of second-generation facilities that it should construct, giving higher priority than ever before to the investigation of alternate systems that may be more attractive from a non-proliferation standpoint. (This includes an examination of the feasibility of options that might serve to reduce or avoid access to weapons-usable materials.) The USA is approaching this evaluation without preconceptions and believes its review can occur on a timely basis without adversely impacting on continued timely use of light water systems. The USA, however, recognizes that, depending on their energy circumstances, various nations have differing views as to how best to

  16. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  17. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  18. The main provisions of the Lithuanian National Energy Strategy

    International Nuclear Information System (INIS)

    Miskinis, V.; Galinis, A.

    2006-01-01

    The aim of this paper is to set out findings from analysis of the Lithuanian economy and energy sector development and to discuss the main provisions of the draft of the updated National Energy Strategy. The paper presents a short description of tendencies in the Lithuanian economy and energy sector during transition to a free market economy. A significant reduction of final and primary energy intensity in Lithuania is confirmed by analysis based on data published in the recent national and international publications. Positive changes in the energy sector, favourable for implementation of market economy, are discussed. The methodology applied for analysis of the energy sector development and for preparation of the National Energy Strategy is presented. Strategic objectives of the Lithuanian energy sector, the measures to provide for a higher energy security and guidelines for the energy sector development are presented as well. The main provisions in the draft of the updated National Energy Strategy are established taking into consideration the obligations of Lithuania presented in the Treaty of Accession to the EU, the EU directives and other international documents. (author)

  19. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  20. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  1. National energy ombudsman - 2010 activity report

    International Nuclear Information System (INIS)

    2010-01-01

    This report first gives an overview of the evolutions noticed on the energy market (natural gas and electric power) from the mediator's point of view for the consumer protection: improvement of transparency, struggle against energy precariousness, improvement of the protection of European consumers. Some figures and a description of a typical week of work are given to illustrate the mediator's activity. Solutions are proposed to improve practices: excess payment, index correction, set prices, first necessity tariff, and bill readability. Some social indicators are given and a financial report is provided

  2. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  3. Practical application of Integrated National Energy Planning (INEP) using microcomputers

    International Nuclear Information System (INIS)

    Munasinghe, M.

    1989-01-01

    The paper describes the use of a practical microcomputer-based, hierarchical modelling framework for Integrated National Energy Planning (INEP), and policy analysis. The rationale for the concept and the development of the methodology are traced, following the energy crises of the 1970s. Details of the INEP process, which includes analysis at three hierarchical levels (the energy-microeconomic, energy sector and energy subsector) are given. A description of the various models, the scenarios and assumptions used in the analysis, as well as the linkages and interactions, is provided. The Sri Lanka energy situation is summarized, and the principal energy issues and options derived from the modelling are used to synthesize a national energy strategy. (author). 11 refs, 8 figs, 11 tabs

  4. The Center for Frontiers of Subsurface Energy Security (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Pope, Gary A.

    2011-01-01

    'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  5. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  6. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  7. Albert Einstein Distinguished Educator Fellowship Act of 1994. Hearing on S. 2104 To Establish within the National Laboratories of the Department of Energy a National Albert Einstein Distinguished Educator Fellowship Program, before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources. United States Senate, One Hundred Third Congress, Second Session.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Senate Committee on Energy and Natural Resources.

    These hearings addressed proposed Bill S. 2104 to create a Department of Energy (DOE) fellowship program for math and science teachers that would provide them opportunities to work at DOE labs in order to enhance coordination and communication among the educational community, the Congress, and the Executive Agencies responsible for developing and…

  8. Inventory of Dutch National Research on Global Climate Change: Inside and outside the National Research Programme

    International Nuclear Information System (INIS)

    Smythe, K.D.; Bernabo, C.; Kingma, J.; Vrakking, W.

    1993-04-01

    This summary of Dutch research on global climate change was compiled from a survey of the major research organisations in the Netherlands. The scope and structure of the survey and this report were based on a request for information from the World Meteorological Organisation for an intergovernmental meeting on the World Climate Programme (WCP) held (from 14 to 16 April 1993). The WMO request emphasized activities related to the WCP and its associated programmes. To extend the usefulness of the exercise, an attempt has been made to broaden the focus to give additional attention to the Intergovernmental Geosphere-Biosphere Programme (IGBP) and the Human Dimensions Programme (HDP). This was the first attempt to inventory the research projects on global climate change underway in the Netherlands - both inside and outside the National Research Programme. Other surveys on Dutch climate-related research have been conducted. The most extensive effort was a cataloging of publications from climate research in the Netherlands from 1981 to 1991, which was conducted by the Netherlands Royal Academy of Sciences (KNAW). That inventory is being updated to include publications through 1992. The database resulting from this exercise will be a useful tool for organisations sponsoring and conducting global climate change research in their efforts to stimulate cooperation and promote coordination among research groups in the Netherlands and abroad. There are plans to update the inventory in the future and to provide the information to participating Dutch organisations as well as research organisations in other countries. An overview of the current research is provided in Volume 1 with a list of projects

  9. Integrating research with management: The case of Katavi National ...

    African Journals Online (AJOL)

    Integrating research with management: The case of Katavi National Park, Tanzania. ... national park: (i) reduced water flow caused by local damming of the Katuma River, ... to both management and policy makers for tackling these problems.

  10. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  11. 77 FR 60107 - National Estuarine Research Reserve System

    Science.gov (United States)

    2012-10-02

    ... awareness and community involvement in stewardship, incompatible use by visitors, and ecological impacts of... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research Reserve System AGENCY: Estuarine Reserves Division, Office of Ocean and Coastal Resource Management...

  12. Healthcare Energy Efficiency Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M; Parrish, Kristen D.; Singer, Brett C.

    2011-01-31

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that can be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.

  13. Fenestration system energy performance research, implementation, and international harmonization

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Raymond F [National Fenestration Rating Council, Greenbelt, MD (United States)

    2014-12-23

    The research conducted by the NFRC and its contractors adds significantly to the understanding of several areas of investigation. NFRC enables manufacturers to rate fenestration energy performance to comply with building energy codes, participate in ENERGY STAR, and compete fairly. NFRC continuously seeks to improve its ratings and also seeks to simplify the rating process. Several research projects investigated rating improvement potential such as • Complex Product VT Rating Research • Window 6 and Therm 6 Validation Research Project • Complex Product VT Rating Research Conclusions from these research projects led to important changes and increased confidence in the existing NFRC rating process. Conclusions from the Window 6/Therm 6 project will enable window manufacturers to rate an expanded array of products and improve existing ratings. Some research lead to an improved new rating method called the Component Modeling Approach. A primary goal of the CMA was a simplification of the commercial energy rating process to increase participation and make the commercial industry more competitive and code compliant. The project below contributed towards CMA development: • Component Modeling Approach Condensation Resistance Research NFRC continues to implement the Component Modeling Approach program. The program includes the CMA software tool, CMAST, and several procedural documents to govern the certification process. This significant accomplishment was a response the commercial fenestration industry’s need for a simplification of the present NFRC energy rating method (named site built). To date, most commercial fenestration is self-rated by a variety of techniques. The CMA enables commercial fenestration manufacturers to rate according to the NFRC 100/200 as most commercial energy codes require. International Harmonization NFRC achieved significant international harmonization success by continuing its licensing agreements with the Australian Fenestration

  14. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  15. 1997: BMBF expenditures for energy research

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Departmental budget No. 30 in the 1997 draft federal budget covers the activities of the Federal Ministry for Research and Technology (BMFT). It level of DM 15,000 million represents a 4.5% decrease from the funds earmarked for the current year of 1996. DM 72.600 million is to be spent on safety research for nuclear plants, and DM 239.978 million has been planned for decommissioning and demolition of nuclear experimental and demonstration plants. The operation of, and investements into, the research centers are funded to the tune of DM 1314.268 million and DM 325.728 million, respectively. Institutions of basic research will receive DM 444.088 million, and renewable energies, economical energy uses, conversion and combustion technologies will be funded in the amount of DM 328.100 million. (orig.) [de

  16. 1999: BMBF expenditures for energy research

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Departmental budget No. 30 in the 1999 draft federal budget covers the activities of the Federal Ministry for Education, Science, Research and Technology (BMBF). Its level of DM 15428 million represents a 3,34% increase from the funds earmarked for the current year of 1998. DM 66 million is to be spent on safety research for nuclear plants, and DM 220 million has been planned for decommissioning and demolition of nuclear experimental and demonstration plants. The operation of, and investments into, the research centers are funded to the tune of DM 1307 million and DM 350 million, respectively. Institutions of basic research will receive DM 471 million, and renewable energies, economical energy uses, conversion and combustion technologies will be funded in the amount of DM 234 million [de

  17. Consumer energy research: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.D.; McDougall, G.H.G.

    1980-01-01

    This document is an updated and expanded version of an earlier annotated bibliography by Dr. C. Dennis Anderson and Carman Cullen (A Review and Annotation of Energy Research on Consumers, March 1978). It is the final draft of the major report that will be published in English and French and made publicly available through the Consumer Research and Evaluation Branch of Consumer and Corporate Affairs, Canada. Two agencies granting permission to include some of their energy abstracts are the Rand Corporation and the DOE Technical Information Center. The bibliography consists mainly of empirical studies, including surveys and experiments. It also includes a number of descriptive and econometric studies that utilize secondary data. Many of the studies provide summaries of research is specific areas, and point out directions for future research efforts. 14 tables.

  18. Environmental impact tool to assess national energy scenarios

    CSIR Research Space (South Africa)

    Taviv, R

    2009-04-01

    Full Text Available ) in terms of environmental impacts. The system quantifies the national energy demand for the domestic, commercial, transport, industry and agriculture sectors, the supply of electricity and liquid fuels, and the resulting emissions. The South African...

  19. It's Time for a National Energy Security Strategy

    National Research Council Canada - National Science Library

    Wright, George G

    2008-01-01

    .... can preserve that standing in the world. Colonel Greg Wright argues that what is needed to retain our military and economic superpower advantage is a new overarching United States National Energy Security Strategy...

  20. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  1. Inventory of Dutch National Research on Global Climate Change: Inside and outside the National Research Programme

    International Nuclear Information System (INIS)

    Smythe, K.D.; Bernabo, C.; Kingma, J.; Vrakking, W.

    1993-04-01

    This report contains brief descriptions of research projects in the field of global climate change, performed both within and outside the Dutch National Research Programme on Global Air Pollution and Climate Change (NRP). The descriptions result from a survey of the major research institutions in The Netherlands, conducted by two consultancies (Science and Policy Associates, SPA and Holland Consulting Group, HCG) at the request of the NRP. The inventory had to be completed within a relatively brief period; it is thus unavoidable that one or more projects may sometimes contain inaccuracies. Taken as a whole, this report presents a good picture of the Dutch research activities in this area. The scope and structure of this survey and the contents of this report are based on a request for information from the World Meteorological Organization (WMO) for an intergovernmental meeting on the World Climate Programme (WCP), held on 14-16 April 1993. The WMO request emphasised activities related to the WCP and its associated programmes. The database resulting from this exercise will be a useful tool for organisations which sponsor and conduct research into global climate change in their efforts to stimulate cooperation and to promote coordination between the research groups in The Netherlands and abroad. There are plans to update the inventory in the future and to provide the information to participating organisations in The Netherlands, as well as to research organisations in other countries. An overview of the current research is provided in Volume 1, a list of projects being provided in Annex 3. The projects are presented according to the themes and subthemes which are used in the NRP

  2. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  3. [Research and analysis to Shui nationality medicine treatment orthopedics & traumatology].

    Science.gov (United States)

    Hu, Jian-Shan; Li, Pu; Yang, Yong; Chen, Xin-Chun; Lin, Li

    2013-05-01

    To investigated Shui nationality folk medicine's awareness to orthopedics & traumatology, the history of orthopedics & traumatology treatment, Shui nationality folk doctors' practicing medicine, heritage, diagnosis and treatment methods and tools, etc, through investigated drug resources category and distribution characteristics of Shui nationality medicine to orthopedics & traumatology treatment, explored and finished Shui nationality medicine orthopedics & traumatology treatment theoretical system. After more than 5 years' exploration and finishing, preliminarily formed the theoretical system framework and medicine application characteristics of Shui nationality medicine treating orthopedics & traumatology. Shui nationality medicine treatment orthopedics & traumatology has distinctive national style, and worthy to further exploration and research.

  4. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    In legislation appropriating funds for DOE's fiscal year (FY) 2000 energy R&D budget, the House Interior Appropriations Subcommittee directed an evaluation of the benefits that have accrued to the nation...

  5. National facility for neutron beam research

    Indian Academy of Sciences (India)

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview ...

  6. 77 FR 47913 - The National Center for Mobility Management Under FTA's National Research Program

    Science.gov (United States)

    2012-08-10

    ... Management Under FTA's National Research Program AGENCY: Federal Transit Administration (FTA), DOT. ACTION: Notice. SUMMARY: Federal Transit Administration (FTA), as the primary staff agency to the Federal... transportation service delivery. FTA, under its National Research Program, plans to fund a National Center for...

  7. National strategic planing for the utilization and development of nuclear energy

    International Nuclear Information System (INIS)

    Won, B. C.; Lee, Y. J.; Lee, T. H.; Oh, K. B.; Kim, S. H.; Lee, J. W.

    2011-12-01

    It is followed that results and contents of National strategic planning for the utilization and development of nuclear energy. Our team makes an effort to carry out pre-research on establishment of the fourth Comprehensive Nuclear Energy Promotion Plan(CNEPP). To establish CNEPP, we analyzed domestic and global environment and trends of nuclear energy including the result of patent analysis, and find ways to link and coordinate other national plans concerned with nuclear energy. Upon the analysis we produce the final draft absorbing comments from the above-mentioned public discussions

  8. Advancing prion science: guidance for the National Prion Research Program

    National Research Council Canada - National Science Library

    Erdtmann, Rick; Sivitz, Laura

    2004-01-01

    ...€™s National Prion Research Program (NPRP). Transmissible spongiform encephalopathies (TSEs), also called prion diseases, are invariably fatal neurodegenerative infectious diseases that include bovine spongiform encephalopathy...

  9. The Research Focus of Nations: Economic vs. Altruistic Motivations.

    Science.gov (United States)

    Klavans, Richard; Boyack, Kevin W

    2017-01-01

    What motivates the research strategies of nations and institutions? We suggest that research primarily serves two masters-altruism and economic growth. Some nations focus more research in altruistic (or non-economic) fields while others focus more research in fields associated with economic growth. What causes this difference? Are there characteristics that would suggest why a nation is more aligned with altruism or economic growth? To answer this question, we have identified nine major fields of research by analyzing the publication activity of 4429 institutions using Scopus data. Two fields of research are clearly altruistic (there is relatively little involvement by industry) and two fields are clearly aligned with economic growth. The altruistic vs. economic nature of nations based on their publication profiles across these fields is correlated with national indicators on wealth, education, capitalism, individualism, power, religion, and language. While previous research has suggested that national research strategy is aligned with national wealth, our analysis shows that national wealth is not highly correlated with the tradeoff between altruistic and economic motives. Instead, the tradeoff is largely captured by a culture of individualism. Accordingly, implications for national research strategies are discussed.

  10. Solar energy in Italy: a profile of renewable energy activity in its national context

    Energy Technology Data Exchange (ETDEWEB)

    Shea, C.A.

    1980-12-01

    The following are included: country overview; energy summary; Italian Republic-geopolitical, economic, and cultural aspects; the energy profile; imported energy sources; solar energy research and development; solar energy organizations; solar energy related legislation and administration policies; and international agreements, contacts, manufacturers, and projects. (MHR)

  11. High energy physics at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Samios, N.P.

    1982-01-01

    The high energy plans at BNL are centered around the AGS and ISABELLE, or a variant thereof. At present the AGS is maintaining a strong and varied program. This last year a total of 4 x 10 19 protons were delivered on target in a period of approximately 20 weeks. Physics interest is very strong, half of the submitted proposals are rejected (thereby maintaining high quality experiments) and the program is full over the next two years. The future colliding beam facility will utilize the AGS as an injector and will be a dedicated facility. It will have six intersection regions, run > 10 7 sec/year, and explore a new domain of energy and luminosity. Common to all the considered alternatives is a large aperture proton ring. These possible choices involve pp, ep, and heavy ion variants. The long term philosophy is to run the AGS as much as possible, continuously to upgrade it in performance and reliability, and then to phase it down as the new collider begins operation

  12. Two methods for decreasing the flexibility gap in national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola; Krajačić, Goran; Duić, Neven

    2016-01-01

    More variable renewable energy sources and energy efficiency measures create an additional flexibility gap and require a novel energy planning method for sustainable national energy systems. The firstly presented method uses only EnergyPLAN tool in order to decrease the flexibility gap in a national energy system. Generic Optimization program (GenOpt"®) is an optimization program for the minimization of a cost function that is evaluated by an external simulation program, such as EnergyPLAN, which was used as the second method in this research. Successful strategies to decrease the flexibility gap are verified on the case of the Serbian national energy system using two methods for its structure design: (1) the iterative method, based on heuristics and manual procedure of using only EnergyPLAN, and (2) the optimization method, based on soft-linking of EnergyPLAN with GenOpt"®. The latter method, named EPOPT (EnergyPlan-genOPT), found the solution for the structure of the sustainable national energy system at the total cost of 8190 M€, while the iterative method was only able to find solutions at the cost in the range of 8251–8598 M€ by targeting only one sustainability goal. The advantages of the EPOPT method are its accuracy, user-friendliness and minimal costs, are valuable for planners. - Highlights: • Heuristic and optimization method for sustainable national energy system structure. • The same input assumptions resulting in different energy system structure. • Both methods are successful in decreasing of the flexibility gap. • The EPOPT method advantages are in the speed, accuracy and planner comfort. • Advanced method for the sustainable national energy policy planning.

  13. Ranking national research systems by citation indicators

    DEFF Research Database (Denmark)

    Aksnes, Dag W.; Schneider, Jesper Wiborg; Gunnarsson, Magnus

    2012-01-01

    This paper presents an empirical analysis of two different methodologies for calculating national citation indicators: whole counts and fractionalised counts. The aim of our study is to investigate the effect on relative citation indicators when citations to documents are fractionalised among the...

  14. The Role of the Department of Defense (DoD) in Solar Energy Research, Development and Diffusion

    National Research Council Canada - National Science Library

    Benham, Jr., William T; Cabral, III, Noel J

    2008-01-01

    ... for a national transformation toward a new energy future. This report examines the feasibility of niche solar energy applications and the methods that DoD might positively impact solar energy research, development and technology diffusion.

  15. A preliminary assessment of the potential for 'team science' in DOE Energy Innovation Hubs and Energy Frontier Research Centers

    International Nuclear Information System (INIS)

    Boardman, Craig; Ponomariov, Branco

    2011-01-01

    President Obama has called for the development of new energy technologies to address our national energy needs and restore US economic competitiveness. In response, the Department of Energy has established new R and D modalities for energy research and development designed to facilitate collaboration across disciplinary, institutional, and sectoral boundaries. In this research note, we provide a preliminary assessment of the potential for essential mechanisms for coordinated problem solving among diverse actors within two new modalities at the DOE: Energy Innovation Hubs and Energy Frontier Research Centers. - Highlights: → Energy Frontier Research Centers may lack the basic mechanisms for coordinating diverse actors. → Divergent goals across diverse actors may hinder coordination in Energy Innovation Hubs. → The implementation of these and similar energy policies require further investigation.

  16. National energy decisionmaking: rationalism and rationalization

    International Nuclear Information System (INIS)

    Roberts, M.J.

    1980-01-01

    This paper is an attempt at institutional engineering. Unlike many economic analyses of social choice, it does not explore the implications of various hypothetical voting schemes under highly simplified circumstances. Instead, it considers how current social and political arrangements for making energy policy have actually functioned, and how we might make them function more effectively. The first two sections of this paper present necessary theoretical preliminaries: first, the kinds of relations we can expect between the structure of institutions on the one hand, and social and political decisions on the other, and second, the criteria we can and should use for choosing among institutional alternatives. The third section reviews what is known about the consequences of current decisionmaking arrangements. The final section considers the implications of this review and argues for a series of changes in how we organize our affairs

  17. The three C's of a national energy strategy

    International Nuclear Information System (INIS)

    Franklin, H.A.

    1991-01-01

    This article discusses the major issues of a National Energy Strategy that could profoundly affect the customers and stockholders of the investor-owned electric utilities. The topics discussed are conservation and energy efficiency, competition in the power generation market, amending the Holding Company Act, caution in amending the Holding Company Act for the sake of competition and at the possible expense of reliability

  18. 2011 activity report of the national energy ombudsman

    International Nuclear Information System (INIS)

    Merville, Denis; Lechevin, Bruno; Le Tallec, Marie-Francoise; Ladoucette, Philippe de; Brottes, Francois; Bazot, Alain; Poniatowski, Ladislas; Cohen, Elsa; Loos, Francois; Lapostolet, Bertrand; Kosciusko-Morizet, Nathalie; Besson, Eric; Bellon, Michele; Aldebert, Marc; Chone, Fabien; Herve, Jean-Pierre; Roberton, Alain; Goyens, Monique; Mogg, John

    2012-01-01

    The national energy ombudsman is an independent administrative authority set up by the law of 7 December 2006 governing the liberalisation of the French gas and electricity markets. Consumers fund its activities by way of a fee levied on electricity bills. The national energy ombudsman is a unique mediation service in France and is the only public institution in the consumer sector to have the remit of seeking alternative settlements to disputes in accordance with European directives. The national energy ombudsman's role is to recommend solutions to disputes 'arising from the execution of supply contracts' between energy market operators and their private consumer or small business clients. The legislator has also invested the ombudsman with the remit of participating in the process of informing consumers of their rights. The ombudsman proposes straightforward and equitable solutions to disputes referred to it and formulates recommendations based on an in-depth legal and technical analysis, during which it may call for comments on the part of the stakeholders involved, within a set deadline. While its recommendations have no binding effect on operators, the latter are obliged to keep the ombudsman informed of their follow-up action within a maximum period of two months. This report summarizes the 2011 national energy ombudsman's activity in the domains of consumer protection, energy markets, Combat against energy poverty, mediation, market improvement, development of smart meters for consumers' real-time information, recommendations to the Minister of Energy etc

  19. Summary results of an assessment of research projects in the National Photovoltaics Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Office of Energy Research (OER) undertook an assessment of 115 research projects (listed in Appendix A) sponsored by the National Photovoltaics Program. The Program is located within the Office of Energy Efficiency and Renewable Energy (EE). This report summarizes the results of that review. The Office of Solar Energy Conversion is responsible for the management of the National Photovoltaics Program. This program focuses on assisting US industry in development of fundamental technology to bring advanced photovoltaic energy systems to commercial use. The purpose of the assessment was to determine the following: (1) the quality of research of individual projects; (2) the impact of these individual projects on the mission of the program; and (3) the priority of future research opportunities.

  20. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  1. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  2. The German energy policy: between national requirements and community exigencies

    International Nuclear Information System (INIS)

    Notz, K.

    2007-01-01

    Taking into account the strategic and economic stakes that are associated with the security of energy supplies, the German federal government has made of this question one of the priorities of its european presidency. In this note, the author observes a radical change in the German energy policy with the future phaseout of nuclear energy and the perspectives of Russian gas supply. The author also reviews the challenges of the elaboration of a European energy policy, with certain member States refusing to transfer their sovereignty in the energy domain, and the large split between national requirements and community exigencies in this field

  3. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  4. 3rd programme 'Energy research and energy technologies'

    International Nuclear Information System (INIS)

    1990-01-01

    In the light of developments in the 80s, the questions of dependence and available resources seem less grave in the long and medium term; on the other hand, a further problem has arisen which might prove even more serious with a view to the safeguarding of long-term energy supply: the use of fossil energy sources such as coal; petroleum, and natural gas involves effects constituting a considerable threat to the environment and the world climate. Examples are acid rain and the greenhouse effect. Furthermore, new safety issues and, to a larger extent, also acceptance issues have arisen as regards nuclear energy utilization. To contribute towards solving these problems by research and development is the main objective of this programme. The strategy adopted comprices two approaches complementary to each other: elaboration of scientific bases, system connections, and new techniques permitting - continued use of primary and secondary energy sources to the extent required while taking into account the needs of an increasingly more vulnerable environment; - to ensure the lowest possible energy consumption in the future, reducing, at the same time, considerably the amount of greenhouse gases emitted. (orig./UA) [de

  5. Economic analysis of the energy national strategy 2012-2026

    International Nuclear Information System (INIS)

    Alonso, G.

    2012-10-01

    The energy national strategy contemplates the execution of the climatic change law, which establishes that at 2024 the 35% of the electric generation should be given by means of the clean sources use (non originators of greenhouse gases). In the energy national strategy 2012-2026 three possible scenarios to execute this goal are proposed, in two of them is considered the participation of the nuclear energy, the economic implications of these three scenarios are analyzed in this study as well as the reduction in emissions that would derive of their implementation. (Author)

  6. Energy strategy in the national strategy of economy development

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Boshevski, Tome; Hadzi-Mishev, Dimitar

    1997-01-01

    This paper is based on the sectorial study on energy, prepared by authors within the project 'National Strategy of Economic Development of Republic of Macedonia', carried out by the Macedonian Academy of Sciences and Arts. The aim is to define the basic lines for the development of energy sector in Macedonia until 2020. The main topics discussed comprise: fuel resources, thermal energy, electric power, price policy, forms of ownership and the environmental impacts. (author)

  7. A review of Ghana’s energy sector national energy statistics and policy framework

    OpenAIRE

    Samuel Asumadu-Sarkodie; Phebe Asantewaa Owusu

    2016-01-01

    In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward...

  8. The National Energy Policy Institute (NEPI) at The University of Tulsa (F INAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Blais, Roger [Univ. of Tulsa, OK (United States)

    2013-10-31

    NEPI, a non-profit organization located at The University of Tulsa (TU), was established to develop and disseminate national energy policy recommendations. Research under this grant covered a wide variety of projects, including research into the future of nuclear power, oil market pricing, and the feasibility of biofuels.

  9. Energy Frontier Research Centers: Impact Report, January 2017

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-31

    Since its inception in 2009, the U. S. Department of Energy’s Energy Frontier Research Center (EFRC) program has become an important research modality in the Department’s portfolio, enabling high impact research that addresses key scientific challenges for energy technologies. Funded by the Office of Science’s Basic Energy Sciences program, the EFRCs are located across the United States and are led by universities, national laboratories, and private research institutions. These multi-investigator, multidisciplinary centers bring together world-class teams of researchers, often from multiple institutions, to tackle the toughest scientific challenges preventing advances in energy technologies. The EFRCs’ fundamental scientific advances are having a significant impact that is being translated to industry. In 2009 five-year awards were made to 46 EFRCs, including 16 that were fully funded by the American Recovery and Reinvestment Act (ARRA). An open recompetition of the program in 2014 resulted in fouryear awards to 32 centers, 22 of which are renewals of existing EFRCs and 10 of which are new EFRCs. In 2016, DOE added four new centers to accelerate the scientific breakthroughs needed to support the Department’s environmental management and nuclear cleanup mission, bringing the total number of active EFRCs to 36. The impact reports in this document describe some of the many scientific accomplishments and greater impacts of the class of 2009 – 2018 EFRCs and early outcomes from a few of the class of 2014 – 2018 EFRCs.

  10. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  11. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  12. Inclusive Education National Research Advocacy Agenda: A Call to Action

    Science.gov (United States)

    Morningstar, Mary E.; Allcock, Heather C.; White, Julia M.; Taub, Deborah; Kurth, Jennifer A.; Gonsier-Gerdin, Jean; Ryndak, Diane L.; Sauer, Janet; Jorgensen, Cheryl M.

    2016-01-01

    The TASH Inclusive Education National Committee responded to Horner and Dunlap's call to ensure that future research integrates inclusive values with strong science by developing an inclusive education national research advocacy agenda. Qualitative methods were implemented to answer three questions: (a) "What is the state of inclusive…

  13. A National Coordinating Center for Trauma Research

    Science.gov (United States)

    2016-10-01

    subcommittee. Several existing platforms have been reviewed in-depth with online demonstrations (such as Research Electronic Data Capture (REDCap), FITBIR...to maximize its ability to advertise the existence of data, promote re-use and assist in data management. It is interesting to note that: Most...just as ethics forms are normal for many now. We present two scenarios here: one when a grant starts, and the researcher is prompted to finish and

  14. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  15. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  16. Synthesis of the national debate on France's energy transition presented by the debate national Council

    International Nuclear Information System (INIS)

    2013-07-01

    This synthesis of the French national debate on energy transition highlights and discusses fifteen challenges which deal with the respect of France's commitments, the struggle against energy poverty, the role of energy efficiency and of energy saving in a new economic growth model with stakes of improved competitiveness and job creation, an energy mix which results in low carbon emissions, and in a secure, diversified, balanced and competitive energy supply. These challenges also concern levers of success for transition (investment, development of local abilities, a more ambitious and better coordinated European policy), and transition governance

  17. Energy Audit Practices in China: National and Local Experiences and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; Price, Lynn; Lu, Hongyou

    2010-12-21

    China has set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Since the industrial sector consumes about two-thirds of China's primary energy, many of the country's efforts are focused on improving the energy efficiency of this sector. Industrial energy audits have become an important part of China's efforts to improve its energy intensity. In China, industrial energy audits have been employed to help enterprises indentify energy-efficiency improvement opportunities for achieving the energy-saving targets. These audits also serve as a mean to collect critical energy-consuming information necessary for governments at different levels to supervise enterprises energy use and evaluate their energy performance. To better understand how energy audits are carried out in China as well as their impacts on achieving China's energy-saving target, researchers at the Lawrence Berkeley National Laboratory (LBNL) conducted an in-depth study that combines a review of China's national policies and guidelines on energy auditing and a series of discussions with a variety of Chinese institutions involved in energy audits. This report consists of four parts. First, it provides a historical overview of energy auditing in China over the past decades, describing how and why energy audits have been conducted during various periods. Next, the report reviews current energy auditing practices at both the national and regional levels. It then discusses some of the key issues related to energy audits conducted in China, which underscore the need for improvement. The report concludes with policy recommendations for China that draw upon international best practices and aim to remove barriers to maximizing the potential of energy audits.

  18. Research and development in alternative energy sources

    International Nuclear Information System (INIS)

    Lamptey, J.; Moo-Young, M.; Sullivan, H.F.

    1990-01-01

    This paper comprehensively discusses the various bioconversion and thermochemical processes. It recommends that the most urgent research and development issues should relate to direct microbial conversion systems for starch and cellulosic material and to basic biomass combustion rates and mechanisms. An overview of some of the major renewable energy resources and conversion technologies along with the potentials and problems associated with these are also presented.(author). 235 refs., 2 tabs

  19. Simulation-based optimization of sustainable national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola

    2015-01-01

    The goals of the EU2030 energy policy should be achieved cost-effectively by employing the optimal mix of supply and demand side technical measures, including energy efficiency, renewable energy and structural measures. In this paper, the achievement of these goals is modeled by introducing an innovative method of soft-linking of EnergyPLAN with the generic optimization program (GenOpt). This soft-link enables simulation-based optimization, guided with the chosen optimization algorithm, rather than manual adjustments of the decision vectors. In order to obtain EnergyPLAN simulations within the optimization loop of GenOpt, the decision vectors should be chosen and explained in GenOpt for scenarios created in EnergyPLAN. The result of the optimization loop is an optimal national energy master plan (as a case study, energy policy in Serbia was taken), followed with sensitivity analysis of the exogenous assumptions and with focus on the contribution of the smart electricity grid to the achievement of EU2030 goals. It is shown that the increase in the policy-induced total costs of less than 3% is not significant. This general method could be further improved and used worldwide in the optimal planning of sustainable national energy systems. - Highlights: • Innovative method of soft-linking of EnergyPLAN with GenOpt has been introduced. • Optimal national energy master plan has been developed (the case study for Serbia). • Sensitivity analysis on the exogenous world energy and emission price development outlook. • Focus on the contribution of smart energy systems to the EU2030 goals. • Innovative soft-linking methodology could be further improved and used worldwide.

  20. Energy Efficient Community Development in California: Chula Vista Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Gas Technology Institute

    2009-03-31

    energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.