WorldWideScience

Sample records for energy research development

  1. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  2. Rationale for energy research and development programme

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    This paper describes the rationale for the expenditure of government money on energy research and development. The Committee, organized in 1974, established the following order of project priorities: projects to determine current and future energy demand; projects concerned with the conservation and more efficient use of energy; projects concerned with the assessment of indigenous energy resources; projects concerned with the assessment of the human, financial, and organizational resources for energy production and use; and projects concerned with economic, technological, social, and environmental aspects of energy use and production over the next 15 years and beyond the next 15 years. Significant factors affecting the national energy economy, the strategy for energy research and development, and the results of committee activities are summarized. An energy scenario research is laid out. (MCW)

  3. USU Alternative and Unconventional Energy Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Behunin, Robert [Utah State Univ., Logan, UT (United States); Wood, Byard [Utah State Univ., Logan, UT (United States); Heaslip, Kevin [Utah State Univ., Logan, UT (United States); Zane, Regan [Utah State Univ., Logan, UT (United States); Lyman, Seth [Utah State Univ., Logan, UT (United States); Simmons, Randy [Utah State Univ., Logan, UT (United States); Christensen, David [Utah State Univ., Logan, UT (United States)

    2014-01-29

    The purpose and rationale of this project has been to develop enduring research capabilities at Utah State University (USU) and the Utah State University Research Foundation (USURF) in a number of energy efficient and renewable energy areas including primarily a) algae energy systems, b) solar lighting, c) intuitive buildings, d) electric transportation, 3) unconventional energy environmental monitoring and beneficial reuse technologies (water and CO2), f) wind energy profiling, and g) land use impacts. The long-term goal of this initiative has been to create high-wage jobs in Utah and a platform for sustained faculty and student engagement in energy research. The program’s objective has been to provide a balanced portfolio of R&D conducted by faculty, students, and permanent staff. This objective has been met. While some of the project’s tasks met with more success than others, as with any research project of this scope, overall the research has contributed valuable technical insight and broader understanding in key energy related areas. The algae energy systems research resulted in a highly productive workforce development enterprise as it graduated a large number of well prepared students entering alternative energy development fields and scholarship. Moreover, research in this area has demonstrated both the technological and economic limitations and tremendous potential of algae feedstock-based energy and co-products. Research conducted in electric transportation, specifically in both stationary and dynamic wireless inductive coupling charging technologies, has resulted in impactful advances. The project initiated the annual Conference on Electric Roads and Vehicles (http://www.cervconference.org/), which is growing and attracts more than 100 industry experts and scholars. As a direct result of the research, the USU/USURF spin-out startup, WAVE (Wireless Advanced Vehicle Electrification), continues work in wirelessly charged bus transit systems

  4. History of the Energy Research and Development Administration

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.L.

    1982-03-01

    Congress created the Energy Research and Development Administration on October 11, 1974 in response to the Nation's growing need for additional sources of energy. The new agency would coordinate energy programs formerly scattered among many federal agencies, and serve as the focus point for a major effort by the Federal Government to expand energy research and development efforts. New ways to conserve existing supplies as well as the commercial demonstration of new technologies would hopefully be the fruit of the Government's first significant effort to amalgamate energy resource development programs. This history briefly summarizes the accomplishments of the agency.

  5. Road map for renewable energy research and development in Egypt

    Directory of Open Access Journals (Sweden)

    Adel K. Khalil

    2010-01-01

    Full Text Available Egypt possesses excellent potential for renewable energy (RE including solar, wind and biomass energy. Renewable energy technologies (RETs and systems have different needs for support in terms of research and development, demonstration and market development. For this purpose, the Energy Research Center (ERC at Cairo University has carried out a study with the ultimate goal of formulating a national development strategy and action plan for the local manufacture of renewable energy systems (RESs and components. The present study positions the different RETs and RESs and identifies the research and development needs for each technology. The study also suggests how to establish a competitive market for RET. For this purpose it builds and analyses a set of likely scenarios, and proposes a practical development strategy and a detailed action plan for achieving it.

  6. Energy Efficient Community Development in California: Chula Vista Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing

  7. Research and Development Financing in the Renewable Energy Industry in Brazil

    Directory of Open Access Journals (Sweden)

    Muriel de Oliveira Gavira

    2014-09-01

    Full Text Available In the last decades, the Brazilian government has put many public policies in place in order to create a favourable environment to promote energy efficiency and clean energy. In this paper we discuss the use of research and development financing support by the clean energy industry in Brazil. To do so, we carried out an empirical research analysing secondary data from legislation, literature case studies, and public and industry reports in order to determine if the companies of the clean energy industry have public financial support to research and development. Our ongoing research shows that, despite incentives to stimulate the dissemination of clean energy, the participation of some of the clean energy is very small (especially solar. We believe that the contributions of this study will assist policy makers, and the whole industry, to improve clean energy research and development investments in Brazil.

  8. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  9. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  10. Energy research and development in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Hultberg, S.; Lindstroem Thomsen, P.

    1996-06-01

    The document describes some of the most important results produced during the last twenty years under the Danish government`s Energy Research Programme (ERP). Some of the involved research groups, and their current research projects, are described. The aim is to invite international cooperation on research in this field. Research areas are divided under the main headings of energy policy, energy supply and energy end-use. The document is illustrated with coloured photographs, diagrams and graphs. The names of contact persons, firms and institutions relevant to the described projects are listed. (AB)

  11. Japanese Strategy for Nuclear Energy Research and Development For the Future

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Yoshinori [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1988-04-15

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  12. Japanese Strategy for Nuclear Energy Research and Development For the Future

    International Nuclear Information System (INIS)

    Ihara, Yoshinori

    1988-01-01

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  13. Research and development program for transuranic-contaminated waste within the U.S. Energy Research and Development Administration

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1976-01-01

    This overview examines the research and development program that has been established within the U.S. Energy Research and Development Administration (ERDA) to develop the technology to treat transuranic-contaminated waste. Also considered is the waste expected within the total nuclear fuel cycle

  14. Long-term program on research, development and application of atomic energy

    International Nuclear Information System (INIS)

    2000-01-01

    As the Committee of Atomic Energy in Japan has established eight times of the 'long-term basic program on development and application of atomic energy at every five years since 1956, these have consistently done every important roles as a leader of programmable promotion of policies on research, development and application of atomic energy in Japan. And, they also have showed some basic concepts on its research, development and application such as safety security, keeping of peaceful application, and so on, and also done a role as a strength with universality for promotion of their sure practices. Then, the Committee requested some surveys and discussions on establishment decided as a new long-term program on May, 1999, to a meeting on establishment of the long-term program, so as to clearly show a basic plan and its promoting measures on research, development and application of atomic energy to be adopted by Japan through the 21st Century under understanding of changes of various affairs after establishment of the previous program, to Japanese peoples, international society and nuclear relatives. The finished program is composed of two parts which are the first part of describing some messages toward Japanese peoples and society and international society and the second part of expressing concrete indications and promoting measures for practicing research, development and application of atomic energy. Here was shown on all sentences of the establishment containing the two parts of present condition and future way on research, development and application of atomic energy' and 'future evolution of research, development and application of atomic energy'. (G.K.)

  15. Atlantic Canada's energy research and development website and database

    International Nuclear Information System (INIS)

    2005-01-01

    Petroleum Research Atlantic Canada maintains a website devoted to energy research and development in Atlantic Canada. The site can be viewed on the world wide web at www.energyresearch.ca. It includes a searchable database with information about researchers in Nova Scotia, their projects and published materials on issues related to hydrocarbons, alternative energy technologies, energy efficiency, climate change, environmental impacts and policy. The website also includes links to research funding agencies, external related databases and related energy organizations around the world. Nova Scotia-based users are invited to submit their academic, private or public research to the site. Before being uploaded into the database, a site administrator reviews and processes all new information. Users are asked to identify their areas of interest according to the following research categories: alternative or renewable energy technologies; climate change; coal; computer applications; economics; energy efficiency; environmental impacts; geology; geomatics; geophysics; health and safety; human factors; hydrocarbons; meteorology and oceanology (metocean) activities; petroleum operations in deep and shallow waters; policy; and power generation and supply. The database can be searched 5 ways according to topic, researchers, publication, projects or funding agency. refs., tabs., figs

  16. Proceedings of Nova Scotia's 2006 energy research and development forum

    International Nuclear Information System (INIS)

    2006-01-01

    The Nova Scotia 2006 energy research and development forum provided a venue for experts from industry, research institutions and government to discuss how research and development will shape the future of energy in the province. The forum was divided into 3 sessions: (1) building knowledge about the marine environment, (2) building knowledge about geoscience, and (3) building knowledge about sustainable energy. A wide ranges of issues related to the Nova Scotia region included whale identification; fisheries mapping; the commercialization of hydrocarbon discoveries; carbon capture and storage and petroleum system analysis and prospect evaluation. Keynote addresses were presented on produced water in Norway; deepwater exploration in Morocco; renewable energy and Canada's role as an energy superpower. The conference featured more than 57 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs

  17. Current status of research and development at Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    2015-01-01

    This paper introduces the current state and future prospects of Japan Atomic Energy Agency, with a focus on the main achievements of the research and development as of November FY2014. The items of research and development are as follows; (1) research and development related to measures for the accident of Fukushima Daiichi Nuclear Power Station, (2) technological assistance for ensuring safety in the research and development and utilization of nuclear power, (3) research science related to the research and development and utilization of nuclear power, (4) practical application of FBR cycle, (5) technological development related to back-end measures, (6) research and development of technological system to retrieve nuclear fusion energy, and (7) common projects (computational science / engineering / research, technological development and policy assistance on nuclear non-proliferation and nuclear security, and various activities such as dissemination of the fruits of research and development, human resource development, and technological cooperation). (A.O.)

  18. Renewable energy research and development in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, M S

    1979-12-01

    Canadian research and development (R and D) in renewable energy began as a result of the oil crisis in 1974, and in keeping with government policy, is predominantly carried out in the private sector under contract to the federal government. The variety in technical maturity of the renewable energy technologies is reflected in the non-uniform funding levels among the five constituent programs. The greatest support is allotted to solar energy in recognition of its enormous potential, both in low to mid-temperature thermal and in photovoltaic applications. This report describes the technical content of these five renewable energy and R and D programs, and outlines the organization and management structures used to direct the effort. Biomass energy R and D concentrates on the harvesting, processing and conversion of wood wastes into convenient fuel forms. Near-term applications will continue to be in the forest products industries. Wind energy R and D in geothermal energy are focussed on identification and quantification of the resource. A five-megawatt experimental geothermal heating system is being established at the University of Regina. The hydraulic energy R and D program does not consider conventional hydro-electric systems which are well developed; rather, it primarily covers laboratory-scale tests on conversion devices for wave, tidal, and river flow energy systems. A substantial effort is also underway in analytic and modelling techniques for hydraulic energy systems of all types. 3 figs., 2 tabs.

  19. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  20. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  1. Energy research and technology development data collection strategies. The case of Greece

    International Nuclear Information System (INIS)

    Doukas, Haris; Papadopoulou, Alexandra G.; Nychtis, Christos; Psarras, John; Van Beeck, Nicole

    2009-01-01

    The European Union (EU) from the beginning of 2007 has focused its emphasis on the development of a new policy that puts energy back at the heart of EU action. Indeed, it has very often been stated that the difficulty and complexity of achieving green energy targets in the EU will require strengthened measures to promote implementation of new energy technologies (NET), as well as measures to support the related energy Research and Technology Development (R and TD). Often forgotten is the fact, that most of all, a European-wide co-ordinated forum is needed to continuously develop and sophisticate the monitoring and methodology results, bringing together specialised statisticians, energy researchers and experts on energy socio-economics. Today a nebulous picture prevails on the existence of categorized data with regards to energy Research and Technology Development (R and TD) expenditure. In this context, aim of this paper is the presentation of energy R and TD data collection strategies, as well as the related findings for the Greek energy market. (author)

  2. Energy Innovation. IVO Group`s Research and Development Report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S. [eds.

    1996-11-01

    This annual booklet of the IVO Group`s research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  3. Energy Innovation. IVO group`s research and development report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S.; Fletcher, R. [eds.

    1997-11-01

    This annual booklet of the IVO Group`s research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  4. Energy Innovation 1996. IVO Group's Research and Development Report

    International Nuclear Information System (INIS)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S.

    1996-01-01

    This annual booklet of the IVO Group's research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  5. Research and development conference: California Institute for Energy Efficiency (CIEE) program

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    CIEE's first Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: building energy efficiency, air quality impacts of energy efficiency, and end-use resource planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured.

  6. Research and development for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Bernard, P.

    2002-01-01

    In the framework of the energy demand increase facing the environment protection, the three main objectives of the research and development for the nuclear energy are developed in this document: to support the today nuclear industry, to answer the public anxiety concerning the sanitary and environmental impact of nuclear activities, to design, evaluate and develop new reactors. (A.L.B.)

  7. Research and development needs in the Department of Energy. Interim report

    International Nuclear Information System (INIS)

    1980-01-01

    In April 1980, the Deputy Secretary requested that the Board participate in the Department's review of the technology base component of DOE's R and D programs and that the Board address the following broad concerns: (1) The adequacy of the research underpinning for technology development programs; (2) Possible gaps or duplications of effort; (3) The balance among research performers (universities, laboratories, industry); (4) Significant R and D opportunities that DOE's programs may be missing. The Board offered the following recommendations to the Secretary: (1) Place greater research emphasis on environmental and health issues to ensure the success of the national synfuels program. (2) Provide more research in energy use and productivity projects. (3) Increase the level of effort in basic research. (4) Place higher priority for high-level radioactive waste disposal R and D. (5) Evaluate the various energy technology options on a common comparison basis to clearly identify the costs, benefits and risks of each option. (6) Develop more effective DOE procurement practices. Additional recommendations were directed to the Under Secretary and Assistant Secretaries of Energy reviewing specific issues in conservation, fossil, nuclear and solar energy, resource applications, environment, and energy research

  8. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  9. FY2012 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nation’s light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

  10. Perspectives on Promoting Regional Renewable Energy Research and Development

    International Nuclear Information System (INIS)

    Dresselhaus, M.

    2008-01-01

    Recent discussions at the Washington International Renewable Energy Conference (WIREC), hosted in March 2008 by the United States Government, with nearly 9000 participants including 103 ministers from 126 countries, concluded that a major acceleration in the adoption of renewable energy technologies was needed by mid-century. Because of different climatic conditions and societal preferences, regional cooperation is expected to play a major role in the efficient adoption of appropriate renewable energy technologies, and countries with special expertise in specific technologies seem eager to collaborate internationally to promote global goals in renewable energy. A review will be given of what we learned from this conference about renewable energy research and development strategies with a special focus given to using this basic knowledge base to promote the development of renewable energy technologies appropriate to specific regions of the world.(author)

  11. Latin American research and development in the energy field

    International Nuclear Information System (INIS)

    Torres, J.E.

    1984-08-01

    This report is divided into six main sections. The first outlines the conceptual framework and methodology stressing the limitations that impede greater depth of analysis. The second, on the types and directions of research and development (R and D) activities in Latin America, is divided into three subsections, covering New and Renewable Sources of Energy (NRSE); conventional energy (including nuclear energy); and integrated energy resource R and D (primarily energy conservation and substitution, as well as energy policy and planning studies). In each subsection, I endeavoured to describe and critically assess R and D activities, achievements, and failures within the context of the limitations. Conclusions and recommendations in each case are implicitly or explicitly made depending on the field. In the third section, the state of science and technology policy on energy resources is presented. The fourth section draws together the conclusions and recommendations on further work to be done. The fifth section is a bibliography of 64 annotated and 52 unannotated items and the sixth, an appendix, is a directory of people working in the field of energy research

  12. Solar energy research and development: program balance. Annex, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    An evaluation of federal research, development, and demonstration options on solar energy is presented. This assessment treats seven groups of solar energy technologies: solar heating and cooling of buildings, agricultural and industrial process heat, biomass, photovoltaics, thermal power, wind, and ocean thermal energy conversion. The evaluation methodology is presented in detail. (MHR)

  13. Energy research and development projects in the Nordic countries. Directory 1987

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This is the fifth directory of research, development and demonstration projects in the Nordic countries within the field of energy. The directory includes projects running in 1987. 2378 projects are described, all of them financed through special public funds (i.e. external funding). The energy research organisation in each Nordic country is briefly reviewed in the appendixes, and a list of relevant newsletters are given. The directory is published at the request of the Nordic Council of Ministers and a special Energy Research Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  14. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  15. Research and development in alternative energy sources

    International Nuclear Information System (INIS)

    Lamptey, J.; Moo-Young, M.; Sullivan, H.F.

    1990-01-01

    This paper comprehensively discusses the various bioconversion and thermochemical processes. It recommends that the most urgent research and development issues should relate to direct microbial conversion systems for starch and cellulosic material and to basic biomass combustion rates and mechanisms. An overview of some of the major renewable energy resources and conversion technologies along with the potentials and problems associated with these are also presented.(author). 235 refs., 2 tabs

  16. Spain and the US sign bilateral agreements for energy research and development

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    On June 6, 1986, two Spanish Governmental agencies and the US Department of Energy (DOE) signed a Memorandum of Understanding for cooperation in energy research and development. One memorandum was signed by the DOE and the Spanish Junta de Energia Nuclear, and the other with the Spanish Instituto Geologico y Minero. The fields of cooperation covered by the Memoranda of Understanding include: nuclear energy, including nuclear safety technology; radioactive waste management; high energy physics; renewable energy, including biomass and geothermal; coal and gas technologies; environmental impact of energy technologies; and energy conservation. Cooperative mechanisms may include exchanges of scientists, engineers, and other specialists for participation in research, development, analysis, design, and experimental activities conducted in research centers, laboratories, and engineering offices. Exchanges also may be conducted in such areas as samples, materials, instruments, and testing components. Exchange of information will be conducted through seminars or other meetings held alternately in the US and Spain

  17. A study on the planning for the research and development of nuclear energy

    International Nuclear Information System (INIS)

    Noh, Byong Chull; Won, B. C.; Bang, J. K.; Jung, Y. H.; Kim, M. R.; Cho, C. Y.; Lee, H. S.; Kim, J. U.; Yeo, J. W.; Hong, Y. P.; Kim, I. C.; Rha, K. H.; Yoon, Y. S.; Park, J. H.; Ko, Y. S.; Kim, S. S.; Kang, W. J.; Lee, Y. H.; Shim, H. W.

    1997-01-01

    This study has performed aiming to provide the government with the basic input to establish 'the comprehensive promotion plan for utilization, research and development of nuclear energy' and 'the mid- and long-term nuclear research and development program', thus the government set it up as a national plan after endorsement of Atomic Energy Commission. Next, the feasibility study of the proton accelerators construction which is expected to use for nuclear research and development and industry. And a systematic and integrated research and development management system for the large-scale projects has been studied considering the inherent uncertainty and high risk of research and development. (author). 24 tabs., 6 figs

  18. PUBLIC HEARING TRANSCRIPT: FEDERAL NON-NUCLEAR ENERGY RESEARCH AND DEVELOPMENT PROGRAM

    Science.gov (United States)

    This document presents the proceedings of three days of public hearings on the Federal Non-nuclear Energy Research and Development Program. The document is presented in three sections: (1) Future Energy Patterns and Levels of Coal Use, (2) Solar Energy and Conservation, and (3) O...

  19. Proceedings of Nova Scotia's 2006 energy research and development forum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Nova Scotia 2006 energy research and development forum provided a venue for experts from industry, research institutions and government to discuss how research and development will shape the future of energy in the province. The forum was divided into 3 sessions: (1) building knowledge about the marine environment, (2) building knowledge about geoscience, and (3) building knowledge about sustainable energy. A wide ranges of issues related to the Nova Scotia region included whale identification; fisheries mapping; the commercialization of hydrocarbon discoveries; carbon capture and storage and petroleum system analysis and prospect evaluation. Keynote addresses were presented on produced water in Norway; deepwater exploration in Morocco; renewable energy and Canada's role as an energy superpower. The conference featured more than 57 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  20. Present state of research and development of atomic energy in five Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The survey group for Asian atomic energy cooperation was dispatched by the Japanese government, and toured Philippines, Indonesia, Malaysia, Thailand and Bangladesh from September 7 to 19, 1980. The present state of atomic energy development and the energy situation in respective countries were surveyed through the exchange of opinion and the inspection of related facilities. The Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology was concluded in June, 1972, and 12 countries have participated in it. It was impressive that respective countries have the peculiar energy policies corresponding to their objective conditions. They regard atomic energy as the important substitute energy for petroleum, but the fear about the safety of atomic energy and the movement against nuclear power generation have been growing considerably. The research and development on atomic energy are carried out very actively in respective countries, and the construction of large-scale research centers was commenced in Indonesia, Malaysia and Bangladesh. Research reactors have been operated in Philippines, Indonesia and Thailand since about 20 years ago, and the utilization of radioisotopes and radiation has been studied. The cooperation of Japan with these countries is far behind that of other advanced countries.

  1. Research and Development in the Energy Area; Forskning och utveckling inom energiomraadet. Resultatredovisning 2003

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Anita; Lundborg, Anna; Lundqvist, David; Westin, Paul; Oefverbeck, Lena; Aafelt, Sten

    2003-01-01

    The report gives a review of the Swedish energy research and how it has developed since 1975. In this period 1,200 million SEK (about 150 million USD) has been spent on governmentally funded energy research (excluding the supplementary financing by the businesses). The criteria used in evaluation and follow-up are reported, and the usefulness, efficiency and quality of energy research to society are discussed. Five case-studies are described, showing which factors are important in the development and giving insight in the process of technology development from research, development and demonstration up to market introduction. Beside the case-studies, a short review of the research connected with buildings is given. The case-studies are: Biofuel-based energy systems, Transport (Biofuels, Efficient engines, Electric drives), Power production and Power technology (Hydro power, Wind power, Solar cells, Power transmission and distribution), Industry (Energy efficient metal and paper processes), Support systems - fans, pumps, compressed air and lighting, Buildings (Heating, Cooling, Lighting)

  2. Integrating uncertainty into public energy research and development decisions

    Science.gov (United States)

    Anadón, Laura Díaz; Baker, Erin; Bosetti, Valentina

    2017-05-01

    Public energy research and development (R&D) is recognized as a key policy tool for transforming the world's energy system in a cost-effective way. However, managing the uncertainty surrounding technological change is a critical challenge for designing robust and cost-effective energy policies. The design of such policies is particularly important if countries are going to both meet the ambitious greenhouse-gas emissions reductions goals set by the Paris Agreement and achieve the required harmonization with the broader set of objectives dictated by the Sustainable Development Goals. The complexity of informing energy technology policy requires, and is producing, a growing collaboration between different academic disciplines and practitioners. Three analytical components have emerged to support the integration of technological uncertainty into energy policy: expert elicitations, integrated assessment models, and decision frameworks. Here we review efforts to incorporate all three approaches to facilitate public energy R&D decision-making under uncertainty. We highlight emerging insights that are robust across elicitations, models, and frameworks, relating to the allocation of public R&D investments, and identify gaps and challenges that remain.

  3. FY2010 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-28

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). Over the past few years, the emphasis of these efforts has shifted from high-power batteries for HEV applications to high-energy batteries for PHEV and EV applications.

  4. Proceedings of the fifth seminar on software development in nuclear energy research

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Maekawa, Hiroshi; Fujiki, Kazuo; Harada, Hiroo

    1989-02-01

    These proceedings are the compilations of papers presented to the Fifth Seminar on Software Development in Nuclear Energy Research held at Tokai Research Establishment, Japan Atomic Energy Research Institute (JAERI), October 17 - 18, 1988. The seminar was organized in cooperation with Japanese Committee on Reactor Physics (JCRP) and Japanese Nuclear Code Committee (JNCC). The topics of seminar include the invited papers on the subjects: - Net work for Atomic Energy Research - (1) Present and future of Networks, (2) Applications of Networks, (3) Panel Discussion : Usage of Networks in Atomic Energy Research, - Frontier of Simulation Softwares for the Environment Safety - (4) Numerical Simulation of Grobal Scale Dispersion on the Chernobyl Accident, and (5) Oceanic Diffusion and Safety Evaluation of High Level Waste Disposal in Geological Media. (author)

  5. Research for energy

    International Nuclear Information System (INIS)

    Garbers, C.F.

    1983-01-01

    This paper deals with energy R D and its funding in the South African public sector. The objectives of the National Programme for Energy Research are discussed within the framework of the country's manpower and financial needs and limitations. It is shown that energy research is multidisciplinary where the focus is on infrastructure development within the constraints of technical, economic and environmental factors. Possible mechanisms to cater for the country's energy research funding are suggested

  6. FY2009 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-19

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

  7. Swedish Energy Research 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Swedish Energy Research 2009 provides a brief, easily accessible overview of the Swedish energy research programme. The aims of the programme are to create knowledge and skills, as needed in order to commercialise the results and contribute to development of the energy system. Much of the work is carried out through about 40 research programmes in six thematic areas: energy system analysis, the building as an energy system, the transport sector, energy-intensive industries, biomass in energy systems and the power system. Swedish Energy Research 2009 describes the overall direction of research, with examples of current research, and results to date within various thematic areas and highlights

  8. New York State Energy Research and Development Authority. Research projects` update project status as of March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report provides an update of the New York State Energy Research and Development Authority (NYSERDA) program. The NYSERDA research and development program has five major areas: industry, buildings, energy resources, transportation, and environment. NYSERDA organizes projects within these five major areas based on energy use and supply, and end-use sectors. Therefore, issues such as waste management, energy products and renewable energy technologies are addressed in several areas of the program. The project descriptions presented are organized within the five program areas. Descriptions of projects completed between the period April 1, 1996, and March 31, 1997, including technology-transfer activities, are at the end of each subprogram section.

  9. Oil and gas activities in the program energy research and development (PERD)

    International Nuclear Information System (INIS)

    Billette, N.; Marshall, S.-L.

    2002-01-01

    A broad range of non-nuclear energy research and development activities are covered under the umbrella of the Program of Energy Research and Development (PERD) managed by Natural Resources Canada. The research and development budget amounts to 52.5 million dollars annually, and is distributed across twelve federal departments and agencies. Horizontal coordinated research activities are taking place. Of this total budget, approximately 14 million dollars annually are spent to carry out oil and gas research and development activities by five federal departments and one agency. A results-based management for PERD was recently implemented by the Office of Energy Research and Development in an effort to improve the strategic management. Some of the efforts are directed toward research in the following general classification: upstream activities, offshore and frontier activities, and cross-cutting activities. Upgrading technologies and advanced separation technologies with the focus on oil sands bitumen represent the main issues addressed under the heading upstream activities. The major issues studied in the offshore and frontier activities are: basin assessment and geotechnics, wind-wave-current modelling, managing sea ice, ice-structure interactions, transportation safety, marine operations and ship design, management of offshore drilling and production waste, oil spills remediation and environmental impact assessment of offshore wastes and produced waters. Flaring, pipelines and soil and groundwater remediation are topics classified under the heading cross-cutting activities. The authors provided an overview of the activities and identified the future trends in PERD to meet the requirements of the various stakeholders and the Canadian population. 1 tab

  10. Oil and gas activities in the program energy research and development (PERD)

    Energy Technology Data Exchange (ETDEWEB)

    Billette, N.; Marshall, S.-L. [Natural Resources Canada, Ottawa, ON (Canada)

    2002-06-01

    A broad range of non-nuclear energy research and development activities are covered under the umbrella of the Program of Energy Research and Development (PERD) managed by Natural Resources Canada. The research and development budget amounts to 52.5 million dollars annually, and is distributed across twelve federal departments and agencies. Horizontal coordinated research activities are taking place. Of this total budget, approximately 14 million dollars annually are spent to carry out oil and gas research and development activities by five federal departments and one agency. A results-based management for PERD was recently implemented by the Office of Energy Research and Development in an effort to improve the strategic management. Some of the efforts are directed toward research in the following general classification: upstream activities, offshore and frontier activities, and cross-cutting activities. Upgrading technologies and advanced separation technologies with the focus on oil sands bitumen represent the main issues addressed under the heading upstream activities. The major issues studied in the offshore and frontier activities are: basin assessment and geotechnics, wind-wave-current modelling, managing sea ice, ice-structure interactions, transportation safety, marine operations and ship design, management of offshore drilling and production waste, oil spills remediation and environmental impact assessment of offshore wastes and produced waters. Flaring, pipelines and soil and groundwater remediation are topics classified under the heading cross-cutting activities. The authors provided an overview of the activities and identified the future trends in PERD to meet the requirements of the various stakeholders and the Canadian population. 1 tab.

  11. Nuclear energy research and development in France

    International Nuclear Information System (INIS)

    Patarin, L.

    1981-02-01

    Having described the general organization and main participants in charge of nuclear energy development in France, headed by the C.E.A. since the start of this activity at the end of World War II, the author gives a glimpse of the programmes shared out between four main headings: fundamental research, reactors, fuel cycle and nuclear safety. Two tables sum up the financial means of the C.E.A. in 1981 on the one hand and the personnel strengths on the other. A graph also shows the operational framework of the C.E.A. and its main subsidiaries and participations [fr

  12. SIHTI - The research and development program of energy and environmental technology

    International Nuclear Information System (INIS)

    Pietilae, S.

    1991-01-01

    The SIHTI programme consists of the environmental part of the energy research programmes in Finland funded by the Ministry of Trade and Industry. Also industry participates in the funding of the projects especially the development projects. The main subject areas of the SIHTI programme are: Monitoring of international energy and environmental technology and national solution models, emissions from energy production, traffic emissions and emissions and discharges from fuel chains

  13. Danish energy research

    International Nuclear Information System (INIS)

    1976-04-01

    Review of current Danish research and development on energy, with the main weight laid on public financing. Based on this review, a proposal is presented for extended research and development i Denmark. (B.P.)

  14. Developing Research Capabilities in Energy Biosciences

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Donald D.

    2008-01-01

    Scientists founded the Life Sciences Research Foundation (LSRF) in 1983 as a non-profit pass through foundation that awards post doctoral fellowships in all areas of the life sciences. LSRF scientists review hundreds of applications each year from PhDs seeking support. For example this year, our 26th, we received 800 applications and our peer review committee will choose about 50 finalists who are eligible for these awards. We have no endowment so we solicit sponsors each year. The fellowships are sponsored by research oriented companies, foundations, philanthropists, the Howard Hughes Medical Institute, and other organizations who believe in the value of awarding fellowships to the best and the brightest young scientists. Our web site has a complete listing of all details about LSRF (http://www.lsrf.org/). In the late 1980s the Division of Bioscience in the Office of Basic Energy Science, a granting agency of the Department of Energy, joined this partnership. Bioscience's mandate was to support non-medical microbiology and plant sciences. LSRF received a series of 5 year grants from DOE to award fellowships to our top applicants in these fields of research. We began to support DOE-Energy Bioscience post doctoral fellows in 1989. From 1989 through 2004 when DOE funding ended our partnership awarded 41 DOE-Energy Bioscience Fellows of the Life Sciences Research Foundation. Each of these was a three year fellowship. DOE-Energy Biosciences was well matched with LSRF. Our extensive peer review screened applicants in all areas of the life sciences. Most LSRF sponsors are interested in supporting fellows who work on diseases. At the time that we began our partnership with DOE we had no sponsors willing to support plant biology and non medical microbiology. For 15 years DOE played a major role in the training of the very best young scientists in these important fields of research simply through its support of LSRF post doctoral fellows. Young scientists interested in

  15. The first Studsvik AB - JAEA meeting for cooperation in nuclear energy research and development

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Yanagihara, Satoshi; Karlsson, Mikael; Stenmark, Anders

    2009-01-01

    Based on the implemental agreement between the Studsvik AB and the Japan Atomic Energy Agency (JAEA) for cooperation in nuclear energy research and development, the first annual meeting was held at Oarai Research and Development Center, Japan Atomic Energy Agency. In this meeting, information exchange on two cooperation areas, 'Radioactive waste treatment technology including recycling of materials' and 'Technical developments for the neutron irradiation experiments in materials testing reactors', was carried out, and future plan in cooperation was discussed. This report describes contents of information exchange and discussions in two cooperation areas. (author)

  16. An assessment of research and development leadership in ocean energy technologies

    International Nuclear Information System (INIS)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing

  17. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  18. Energy research strategic plan

    International Nuclear Information System (INIS)

    1995-08-01

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation's industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department's energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation

  19. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  20. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  1. Energy Innovation 1998. IVO group`s research and development report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P; Laiho, Y; Kaikkonen, H; Leisio, C; McConchie, R; Fletcher, R [eds.

    1998-07-01

    The IVO Group is a Finnish company mastering all aspects of the entire energy chain, and also operating extensively on the international market. The Group`s operations concentrate on five business areas: energy, engineering, operation and maintenance, grid services, and energy measurement. The personnel numbers well over 8 800, and the turnover is about FIM 14 billion. The services to customers include the supply of electricity and heat, the planning, construction, operation and maintenance of power plants and transmission systems, the transmission of power, and other services requiring expertise in all the key fields of energy engineering. Mastery of the entire energy chain gives us a substantial competitive edge on international markets, where the IVO Group has been a player for decades. The operations have expanded to the other Nordic countries, which now constitute the home market. Focal areas also include Great Britain, Central and Eastern Europe and Southeast Asia. The IVO Group annually invests some FIM 250 million in research and development. A large proportion of this money is used for the development of environmentally benign solutions

  2. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  3. Nuclear research and development: a program of the Atomic Energy Corporation of South Africa Limited

    International Nuclear Information System (INIS)

    Sonnekus, D.

    1985-01-01

    The research and development activities of the Atomic Energy Corporation of South Africa are briefly discussed. The activities consists of the following components: geotecnics, research and development, reactor development, research reactor, radiation technology, post-reactor fuel service, safety, research computers and library service

  4. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  5. Energy research program 99. Program for expansion of the Danish energy research and development in the period 1999-2001

    International Nuclear Information System (INIS)

    2000-08-01

    The present 'Energy research program 99' contains descriptions of projects under The Energy Research Programme (EFP) supported by the Danish Energy Agency. The research programme covers the areas Fuel oils and natural gas, biomass, production and distribution of electric power and heating, wind energy, energy consumption in buildings, solar energy, energy conservation, fuel cells, super conductors, industrial processes and international co-operation. The manuscript is based on print-outs of the Danish input from the database Nordic Energy Index (NEI). The descriptions give project titles, summary descriptions of aims, methods etc., names, addresses, telephone and tele fax numbers of institutions etc. responsible for the projects, names of project leaders, of other involved firms, institutes or institutions, and details of the total budget and the financing of the energy research projects. (EHS)

  6. Energy research for tomorrow

    International Nuclear Information System (INIS)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard

    2011-04-01

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial application and

  7. Energy research for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard (eds.)

    2011-04-15

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial

  8. Trend of Energy Saving in Electronic Devices for Research and Development

    Directory of Open Access Journals (Sweden)

    Rahmayanti R.

    2016-01-01

    Full Text Available In electronic industry, energy saving is one of the performance indicators of competitiveness beside price, speed, bandwidth and reliability. This affects research and development (R&D activity in mechatronic systems which uses electronic components and electronic systems. A review of trend of electronic devices technology development has been conducted with focus on energy saving. This review includes electronic devices, semiconductor, and nanotechnology. It can be concluded that the trend in electronic devices is mainly dictated by semiconductor technology development. The trend can be concluded as smaller size, lower voltage leading to energy saving, less heat, higher speed, more reliable, and cheaper. In accordance to such technology development, R&D activities in mechatronics especially in Indonesia is being pushed to make proper alignment.Some of such alignment actions are surface mount technology (SMT for installing surface mount devices components (SMD, design layout and SMD troubleshooting tools as well as human resources training and development.

  9. Army Mobility Energy Research & Development Plan.

    Science.gov (United States)

    1980-01-01

    Energy Utilization MAJOR TECHNOLOGICAL BARRIERS: None. APPROACH: Develop (1) movie simulator, or (2) computer simulator with video display, or (3) working...cut-up chicken from slaughter, 3.5 weeks frozen storage to cooked condition, has an energy requirement of 46,000 kJ/kg edible portion contrasted to...radiation sterilized, cooked individual servings which have a comparable energy requirement of 14,160 kJ/kg edible portion. APPROACH: Conduct basic and

  10. Energy Research & Development

    Science.gov (United States)

    Skip to Main Content CA.gov California Energy Commission CA.gov | Contact | Newsroom | Quick Links convenience of our website visitors and is for informational purposes only. The California Energy Commission Google Translate™. The California Energy Commission does not endorse the use of Google TranslateÂ

  11. Long-term atomic energy research, development and utilization program

    International Nuclear Information System (INIS)

    1980-01-01

    This is the revised version of the last long-range program (June, 1972), and covers the measures and plans for promoting the research, development and utilization of nuclear power in some in some ten years ahead. The basic policy lines include the assurance of peaceful use of atomic energy, safety assurence and public support, independence and international cooperation and the planned implementation of nuclear research and development projects. The target scale of nuclear power development is estimated at 33 million kilowatts by fiscal 1985 and 60 million kilowatts by fiscal 1990, respectively. The improvement and standardization of light water reactors are to be further carried on till fiscal 1980 and after. Sodium-cooled reactors, which use the oxide fuel based on the mixture of plutonium and uranium, will be developed. A prototype reactor of about 300,000 kilowatt electric capacity will reach criticality in the second half of 1980's. The research and development of the advanced thermal reactors, for which plutonium and depleted uranium are used, will be encouraged. Multipurpose high-temperature gas-cooled reactors are also to be developed. The measures for establishing the nuclear fuel cycle including the procurement of natural and enriched uranium, the reprocessing of spent fuel, the use of plutonium and the treatment and disposal of radioactive wastes are described. Nuclear fusion, nuclear ships, the use of radiation, safety studies, fundamental studies and the training of scientists and technicians are stipulated, respectively. The promotion of nuclear research and development projects is explained in detail. (Okada, K.)

  12. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  13. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  14. IAEA support of international research and development of materials for sustainable energy applications

    International Nuclear Information System (INIS)

    Zeman, Andrej; Kaiser, Ralf; Simon, Aliz

    2013-01-01

    Full-text:The key mandate of the International Atomic Energy Agency (IAEA) is to promote the peaceful application of nuclear science and technology, verification as well as nuclear safety in the world. This includes a number of activities which aim to support the Member States and stimulate international cooperation in order for sustainable development. During the last 35 years, a well-established mechanism called the Coordinated Research Projects (CRP) has been effectively used to stimulate international research and scientific interaction among the Member States, covering various topics in the nuclear science and technology. Besides direct support of, so called coordinated research, the IAEA is also involved in organizing a number of highly specific international conferences and technical meetings which help to provide a broader platform for the specialist and experts in dedicated areas of nuclear science and technology. In view of support for renewable energy and its application, the IAEA organized series of meetings in 2009 (IEA France), 2010 (UQTR Canada) and 2011 (ANL USA) in order to discuss the scientific and technical issues of particular of national research initiatives related to the hydrogen storage and conversion technologies. All selected outputs of the meetings were published in a technical document publication series which are available to all member states. More recent initiatives are focus on the key nuclear techniques which are extremely valuable in research and development of new innovative materials, methods and technologies, characterization and performance testing of functional materials for innovative energy technologies and their application in sustainable energy sources (nuclear and non-nuclear). It is also important to underline that these programmatic activities are an integral part of the IAEA program on the Road to Rio+20: Applying Nuclear Technology for Sustainable Development. The paper summarizes the IAEA actions relevant to the

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  16. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Ahlfeldt, Christopher [Navigant Consulting, Inc., Burlington, MA (United States); Hiraiwa, Hirokazu [Navigant Consulting, Inc., Burlington, MA (United States); Sathe, Amul [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States)

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  17. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  18. Healthcare Energy Efficiency Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M; Parrish, Kristen D.; Singer, Brett C.

    2011-01-31

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that can be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.

  19. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  20. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  1. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  2. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  3. Results at Mallik highlight progress in gas hydrate energy resource research and development

    Science.gov (United States)

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  4. Energy research and development in the United Kingdom: a discussion document. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This paper provides a framework for the future planning of United Kingdom research and development in energy technologies. It contains the first steps in the formulation of a national energy R and D strategy. Decision on energy R and D must be taken in the light of the overall aims of energy policies. The main objectives of energy policy are to meet the energy needs of the country at minimum cost in real resources over time, while paying due regard to security of supply, to public safety, to protection of the environment and, where major change is in prospect, to the social consequences of change.

  5. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  6. Report of the summative evaluation by the advisory committee on research and development of nuclear energy technology

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an advisory Committee on Research and Development of Nuclear Energy Technology in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Research and Development of Nuclear Energy Technology evaluated the adequacy of the plans of safety research to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of nine specialists from outside the JAERI conducted its activities from July 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Advisory Committee meeting which was held on August 10, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Research and Development on Nuclear Energy Technology. (author)

  7. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  8. Overview of energy-conservation research opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  9. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  10. Power sector reforms in Brazil and its impacts on energy efficiency and research and development activities

    International Nuclear Information System (INIS)

    Jannuzzi, G.M. de

    2005-01-01

    Since the mid-nineties Brazil has implemented significant changes in the country's power sector, including privatization, introduction of competition and the creation of regulatory agency. As reform started in Brazil traditional support to energy efficiency and energy research and development suffered a discontinuation, budget cuts and re-definition of roles of the public agents in charge. At the same time, new regulatory measures and the creation of a national public interest fund have helped to maintain and potentially enhance the country's effort to promote energy efficiency and investments in energy R and D. This paper analyses the impacts of these changes in the areas of energy efficiency and energy research and development and argues for an increased role of developing countries to provide solutions for a meeting energy demand requirements more suitable to their internal markets

  11. Programs of the Office of Energy Research: Revision

    International Nuclear Information System (INIS)

    1987-06-01

    In establishing each of the Federal Agencies that have been successively responsible for energy technologies and their development - the Atomic Energy Commission, the Energy Research and Development Administration, and, currently, the US Department of Energy (DOE) - Congress made specific provisions for the conduct of advanced and fundamental research. The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research of this nature, which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the Unites States. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large. 5 figs., 6 tabs

  12. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  13. Advances in energy research

    CERN Document Server

    Acosta, Morena J

    2013-01-01

    This book presents a comprehensive review of energy research studies from authors around the globe, including recent research in new technologies associated with the construction of nuclear power plants; oil disperse systems study using nuclear magnetic resonance relaxometry (NMRR); low energy consumption for cooling and heating systems; experimental investigation of the performance of a ground-source heat pump system for buildings heating and cooling; sustainable development of bioenergy from agricultural wastes and the environment; hazard identification and parametric analysis of toxic pollutants dispersion from large liquid hydrocarbon fuel-tank fires; maintenance benchmarking in petrochemicals plants by means of a multicriteria model; wind energy development innovation; power, people and pollution; nature and technology of geothermal energy and clean sustainable energy for the benefit of humanity and the environment; and soil thermal properties and the effects of groundwater on closed loops.

  14. Research and development

    Energy Technology Data Exchange (ETDEWEB)

    Harlow, Jr, J G

    1977-09-01

    The need for increased research and development programs to provide technological advances to meet future energy demands, particularly electric power demands, is discussed. It is concluded that the future energy needs of the world can only be supplied through technological improvements. The cost of these technological improvements can be minimized by cooperative, unified research and development programs. The financial support of the energy industry, the equipment manufacturing industry and the consumer will be required to finance these vital developments. The energy problems of the world can be solved by an adequately financed unified R and D effort. The U.S. must assume a major role of leadership in this world-wide effort. (LCL)

  15. U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion

    International Nuclear Information System (INIS)

    Nemet, Gregory F.; Kammen, Daniel M.

    2007-01-01

    Investment in energy research and development in the U.S. is declining despite calls for an enhancement of the nation's capacity for innovation to address environmental, geopolitical, and macroeconomic concerns. We examine investments in research and development in the energy sector, and observe broad-based declines in funding since the mid-1990s. The large reductions in investment by the private sector should be a particular area of concern for policy makers. Multiple measures of patenting activity reveal widespread declines in innovative activity that are correlated with research and development (R and D) investment-notably in the environmentally significant wind and solar areas. Trends in venture capital investment and fuel cell innovation are two promising cases that run counter to the overall trends in the sector. We draw on prior work on the optimal level of energy R and D to identify a range of values which would be adequate to address energy-related concerns. Comparing simple scenarios based on this range to past public R and D programs and industry investment data indicates that a five to ten-fold increase in energy R and D investment is both warranted and feasible

  16. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  17. Energy Research and Development at Kuwait Institute for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    Debs, A. S.

    1980-07-01

    The Kuwait program encompasses five complimentary areas. These are: the energy data base and technology assessment program, the energy conservation program, the electric power program, the solar energy program, and the energy policy analysis program. The accomplishments up until 1980 of the energy activities at KISR include activities in the solar cooling area, solar electric power generation, solar water desalinatin, and in solar agriculture applications. Furthermore there were some activities in the energy conservation area with emphasis on the use of insulating materials and the thermal response of buildings for energy conservation in the building sector. At present major project activities concentrate on energy conservation with emphasis on the development of an energy building code for Kuwait and an experimental and theoretical evaluation of various energy conservation alternatives for Kuwaiti buildings. In the solar area the emphasis will continue to be in the solar cooling area with possible introduction of Rankine Cycle Cooling as a more viable alternative to absorption cooling than has been experienced so far.

  18. New energy technologies. Research, development and demonstration; Denmark; Nye energiteknologier. Forskning, udvikling og demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, B.; Muenster, M.

    2010-12-15

    This report was commissioned by the Danish Climate Commission in 2009 to analyse how research, development and demonstration (RD and D) on sustainable energy technologies can contribute to make Denmark independent on fossil energy by 2050. It focuses on the RD and D investments needed as well as adequate framework conditions for Danish knowledge production and diffusion within this field. First part focuses on the general aspects related to knowledge production and the challenges related to research. Energy technologies are categorized and recent attempt to optimize Danish efforts are addressed, including RD and D prioritisation, public-private partnerships and international RD and D cooperation. Part two describes the development and organisation of the Danish public RD and D activities, including benchmark with other countries. The national energy RD and D programmes and their contribution to the knowledge value chain are described as well as the coordination and alignment efforts. Part Three illustrates three national innovation systems for highly different technologies - wind, fuel cells and intelligent energy systems. Finally, six recommendations are put forward: to make a national strategic energy technology plan; to enforce the coordination and synergy between national RD and D programmes; to strengthen social science research related to the transition to a sustainable energy system; to increase public RD and D expenditure to at least 0.1% of GDP per year; to strengthen international RD and D cooperation; and to make a comprehensive analysis of the capacity and competence needs for the energy sector. (Author)

  19. Renewable energies in the United States: support policies and tendencies for research and development

    International Nuclear Information System (INIS)

    2009-11-01

    Illustrated by figures, graphs and tables of data, nine articles give overviews of the present evolutions and tendencies for research and development in the energy sector in the United States of America. After a first article commenting the possible evolution of the energy model in this country, the authors are commenting the priority given to innovation for clean energies, the evolution of patents claimed by US companies, the smart-grid-based energy strategy, the evolution of the wind energy sector, the technological evolutions and decreasing prices of the solar energy, the large investments required for a large scale development of geothermal energy, the voluntary policy and the ambitious objectives in the field of bio-energies and bio-fuels, and California as a leader in the field of renewable energies

  20. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  1. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  2. Federal role in energy research and development

    International Nuclear Information System (INIS)

    1983-02-01

    The appropriateness of the federal role in each of DOE's major energy R and D programs was evaluated. Several subcriteria were identified by which each program would be judged: (1) the current and expected future scope and amount of private-sector funding relative to requirements for an orderly R and D program; (2) amount of development time to first commercial payoff; (3) degree of market, technical, and policy risks of R and D to private sector development; (4) need for federal energy R and D involvement to support regulatory, environmental, or policy responsibilities. Appropriate primary, complementary, or minimal roles were assigned in each of the energy technology programs: electric-related supply, liquids and gas related supply, conservation and improved end-use utilization, and technology base

  3. High Temperature Reactors for a new IAEA Coordinated Research Project on energy neutral mineral development processes

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils, E-mail: n.haneklaus@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, 4118 Etcheverry Hall, MC 1730, Berkeley, CA 94720-1730 (United States); Reitsma, Frederik [IAEA, Division of Nuclear Power, Section of Nuclear Power Technology Development, VIC, PO Box 100, Vienna 1400 (Austria); Tulsidas, Harikrishnan [IAEA, Division of Nuclear Fuel Cycle and Waste Technology, Section of Nuclear Fuel Cycle and Materials, VIC, PO Box 100, Vienna 1400 (Austria)

    2016-09-15

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used as raw material for nuclear reactor fuel enabling “energy neutral” processing of the primary ore if the recovered uranium and/or thorium is sufficient to operate the greenhouse gas lean energy source used shall be discussed according to the participants needs. This paper specifically focuses on the aspects to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project.

  4. High Temperature Reactors for a proposed IAEA Coordinated Research Project on Energy Neutral Mineral Development Processes

    International Nuclear Information System (INIS)

    Haneklaus, Nils; Reitsma, Frederik; Tulsidas, Harikrishnan

    2014-01-01

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used to run the HTR for “energy neutral” processing of the primary ore shall be discussed according to the participants needs. This paper specifically focuses on the aspects that need to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project. (author)

  5. Analysis of international efforts in energy research and development

    International Nuclear Information System (INIS)

    Rezaiyan, A.J.; Gill, R.T.

    1995-09-01

    Research and experimental development comprise innovative and creative work undertaken systematically to increase the stock of knowledge of science, engineering, and society. This knowledge reserve is used to improve living conditions and standards, including economic growth. Research and development (R ampersand D) expenditures are useful measures of the scale and direction of technological innovation within a country, industry, or scientific field. Administrators concerned with economic growth and performance rely on R ampersand D statistics as one possible type of indicator of technological change. R ampersand D statistics are an essential tool in many government programs and evaluations (OECD 1993). The objective of the analysis was to identify and evaluate R ampersand D funding sources, levels, and trends in the energy sectors of selected industrialized countries (Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Sweden, Switzerland, United Kingdom, United States) and the European Union (EU). Fossil fuel technologies, particularly fuel cells and advanced gas turbines, were the focus of the analysis, whose results are presented in this report

  6. Japan's Sunshine Project. 1988 annual summary of solar energy research and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Mentioned in relation to the research and development of photovoltaic power generation systems are fundamental research on solar cells, research on advanced photovoltaic system technologies, research and development of amorphous solar cells, etc. Mentioned in relation to the technical development for the practical use of photovoltaic power generation systems are low-cost SOG(spin on glass)-silicon experimental production and verification, solar cell panel experimental manufacture and verification, technical development of high efficiency cell fabrication, research and development of amorphous silicon solar cells, research and development of evaluation systems for photovoltaic cells and modules, development of support technology for photovoltaic power generation (power generation support technology, interconnection and control of photovoltaic systems), etc. Also discussed are a stand-alone dispersed system, meteorological analysis, centralized solar power system, development of photovoltaic thermal hybrid solar power generation system, etc. In relation to solar thermal energy, a solar thermal power generation system, and an evaluation system are taken up, and the development is discussed of a fixed heat process type system, an advanced heat process type system, and a long-term heat storage system, these for application to industrial processes. Reference is also made to international cooperation. (NEDO)

  7. The Role of the Department of Defense (DoD) in Solar Energy Research, Development and Diffusion

    National Research Council Canada - National Science Library

    Benham, Jr., William T; Cabral, III, Noel J

    2008-01-01

    ... for a national transformation toward a new energy future. This report examines the feasibility of niche solar energy applications and the methods that DoD might positively impact solar energy research, development and technology diffusion.

  8. Research and development on super heat pump energy accumulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This is the final report on research and development of super heat pump energy accumulation system, which has been carried out from FY 1985 to 1992. It describes outline of the research and development program, R and D results, final evaluation methodology, evaluation of the R and D, proposals for the commercialization, and so on. The super high performance compression heat pumps are technically evaluated for highly efficient type (for heating, and cooling and heating), high temperature type (utilizing high temperature heat source, and low temperature heat source), working fluids (alcohol-based and nonalcohol-based), stainless steel plate fin type heat exchanger, EHD heat exchanger, and so on. The other techniques evaluated include those for chemical heat storage, combined systems, plant simulation, and systemization. The evaluation works are also directed to the economic and environmental aspects. Finally, the R and D themes are proposed to leap over various hurdles, e.g., reliability and economic viability, for the eventual commercialization of the energy accumulation system. (NEDO)

  9. Using scenarios of North Slope energy and resource development to assess research and monitoring needs

    Science.gov (United States)

    Payne, J. F.

    2016-12-01

    Significant Arctic environmental and socio-economic change has been observed on the North Slope of Alaska, presenting challenges for resident communities and management agencies that need to adapt to future changes that are difficult to model or predict. Continued climate change coupled with new or modified energy development could substantially alter the landscape and ecosystem in the future. The North Slope Science Initiative (NSSI) recognized the value of using a participatory scenarios process to consider plausible future energy and resource development scenarios through the year 2040 to help identify and prioritize research and monitoring needs on the North Slope. The scenarios process engaged diverse stakeholders, including subject matter experts and local knowledge holders. Through identification and ranking of key drivers and uncertainties relevant to the focus of the study, a series of spatially explicit scenarios was developed, analyzed in terms of low, medium and high development activities. Climate change and economic factors were key drivers affecting plausible energy development scenarios. The implications from each of the scenarios were then used to identify important research and monitoring activities and their relevant spatial scales. The scenarios project identified over 40 research and monitoring needs. The top five research needs addressed data gaps and key concerns related to how the scenarios could affect: hunting and trapping on land, health and community well-being, permafrost and hydrology, marine mammal subsistence and potential marine oil spills. The use of a participatory scenarios process was essential for identifying a range of plausible energy and resource development scenarios using a framework that involved a systematic assessment of complex interacting drivers of change, consideration of key uncertainties, and transparency throughout the project.

  10. A National Plan for Energy Research, Development and Demonstration: Creating Energy Choices for the Future (1976)

    Energy Technology Data Exchange (ETDEWEB)

    Seamans, Jr., Robert C. [Energy Research and Development Administration (ERDA), Washington, DC (United States)

    1976-04-15

    This is the first annual update of the initial report submitted to you in June 1975 (ERDA-48), and complies with the requirements of Section 15 of the Federal Nonnuclear Energy Research and Development Act of 1974. This report represents an evolution in approach over the previous document. ERDA's proposed National Plan has been expanded in scope and depth of coverage and the basic goals and strategy are refined, but remain essentially intact. The Plan summarizes ERDA's current views on the energy technologies the Nation will need to achieve longer-term energy independence, specifically: The paramount role of the private sector in the development and commercialization of new energy technologies is addressed; Conservation (energy efficiency) technologies are singled out for increased attention and are now ranked with several supply technologies as being of the highest priority for national action; The President's 1977 budget requests a large increase - 30% over 1976 - in funding for energy RD&D with particular emphasis on accelerating energy RD&D programs directed at achieving greater long-term energy independence, encouraging cost-sharing with private industry and avoiding the undertaking of RD&D more appropriately the responsibility of the private sector, and supporting the commercial demonstration of synthetic fuel production by providing loan guarantees beginning in FY 76; Federal programs to assist industry in accelerating the market penetration of energy technologies with near-term potential are a key element of the Plan.

  11. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  12. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  13. International research and development projects in nuclear energy: Experience and future prospects

    International Nuclear Information System (INIS)

    Strohl, P.

    1983-01-01

    From the very beginning nuclear energy appeared as a fruitful field for international co-operation and particularly for international projects and joint ventures. By pooling scientific, technical and financial resources, the participating countries sought to promote the development of technology and the transition of nuclear energy to the industrial stage. Governments and therefore intergovernmental organizations were the driving force behind the establishment of joint projects in various R and D sectors, often in association with industry and private research institutes. The situation changed considerably from the end of the 1960s onwards. Despite some remarkable technical achievements, international co-operation did not develop to the extent predicted at the outset. Industry took over in the exploitation of proven technologies, and industrial co-operation agreements have become an important feature in some key areas of nuclear energy. This trend raises questions as to the future of joint R and D projects organized through intergovernmental co-operation. Although such projects are still very useful, they tend to be concentrated in those few sectors which continue to be of direct interest to the Governments; for instance, fundamental research, radioactive waste management and nuclear safety. The position of nuclear energy has changed, and the benefits to be drawn from this form of international co-operation must be critically re-assessed accordingly. While advantage to be gained from international projects for countries which are the most advanced in the development of nuclear energy is not the same as it was at the beginning, the transfer of experience and knowledge to less advanced countries is still the main concern of projects dealing with safety and regulatory matters. The experience thus gained provides a very useful insight into the legal and institutional framework of joint projects

  14. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  15. Summary of international energy research and development activities, 1974--1976

    International Nuclear Information System (INIS)

    1977-11-01

    This directory includes information covering 3017 ongoing and recently completed energy research projects conducted in Canada, Italy, the Federal Republic of Germany, France, The Netherlands, the United Kingdom, Denmark, Sweden, Israel, and 18 other countries. This information was registered with the Smithsonian Science Information Exchange (SSIE) by supporting organizations in the nine countries listed and by international organizations such as the International Atomic Energy Agency. All narrative information presented in the directory and, in some cases, organization names were translated into English. In addition to the title and text of project summaries, the directory contains the following indexes: Subject Index, Investigator Index, Performing Organization Index, and Supporting Organization Index. To reflect particular facets of energy research, the Subject Index is cross-referenced. The Subject Index is based upon the SSIE classification system, which organizes index terms in hierarchies to relate groups of narrow subject areas within broad areas. The following types of energy information are included: organic sources of energy (gas and oil; coal; peat, hydrocarbons, and nonfossil organic sources); thermonuclear energy and plasma physics; fission sources and energy production (reactor fuels assemblies and fuel management; reactor materials; reactor components; reactor thermodynamics, thermohydraulics, and mechanics; reactor safety and control; reactor testing, operations, and analysis; reactor and nuclear physics; uranium exploration and mining; reactors--general); geophysical energy sources (geothermal, hydro, solar, wave, and wind); conversion technology; environmental aspects of energy conversion and use; transport and transmission of energy; energy utilization and conservation; and energy systems and other energy research

  16. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  17. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1985-01-01

    The Act for Japan Atomic Energy Research Institute has been promulgated anew. Contents are the following : general rules, officials, advisors and personnel, duties, financial affairs and accounts, supervision, miscellaneous rules, penal provisions, and additional rules. (In the additional rules, the merger into JAERI of Japan Nuclear Ship Research and Development Agency is treated.) Japan Atomic Energy Research Institute conducts research etc. for the development of atomic energy comprehensively and efficiently, thereby contributing to the promotion of atomic energy research, development and utilization, according to the Atomic Energy Fundamental Act. Duties are atomic energy basic and application research, reactor relation, training of the personnel, RIs relation, etc. (Mori, K.)

  18. Research for the energy transition. The organization of the energy systems

    International Nuclear Information System (INIS)

    2017-01-01

    The volume on research for the energy transition includes contributions to the FVEE annual meeting 2016 concerning the following issues: status and perspectives of the energy transition, key technologies for the energy transition, political boundary conditions, development trends in photovoltaics, components for the energy supply (wind energy, hydrogen technologies, smart bioenergy concept, contribution of the geosphere), grids and storage systems for the energy transition, research network renewable energies.

  19. Energy research and development projects in the Nordic countries. Directory 1985. Energiforskningsprojekter i Norden. Katalog 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This is the third directory of research, development and demonstration projects in the Nordic countries within the field of energy. The 1985 directory includes projects running in 1985. 1757 projects are described and all of them are financed through special public funds (i.e. external funding). The directory is published at the request of the Nordic Council of Ministers and a special Energy Research Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  20. Strategies and directions of Malaysian energy research

    International Nuclear Information System (INIS)

    Baharudin Yatim

    1995-01-01

    Research on energy efficiency could reconcile environmental issues associated with economic development. It could enhance energy supplies, improve the environment and develop alternative energy sources. Author reviews some of Malaysia's best energy R and D programmes

  1. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report

  2. A portfolio decision analysis approach to support energy research and development resource allocation

    International Nuclear Information System (INIS)

    Kurth, Margaret; Keisler, Jeffrey M.; Bates, Matthew E.; Bridges, Todd S.; Summers, Jeffrey; Linkov, Igor

    2017-01-01

    Research sponsored by the US Department of Energy (DOE) aims to facilitate a clean and independent energy future for the nation. Strategic planning for energy research and development (R&D) can be complex and dynamic, in part due to federal budgetary constraints and volatility. Managing R&D funding to advance energy technologies, in spite of these challenges, is a crucial component of the nation's long term energy policy. This study demonstrates a portfolio decision analysis (PDA) approach to support R&D resource allocation decisions for the DOE Office of Fossil Energy's Carbon Capture and Storage R&D program. A multi-attribute value model uses technology readiness levels (TRLs) and other metrics to represent the overall objectives of the R&D program in order to evaluate alternative research portfolios given limited funding. Mathematical optimization identifies efficient funding allocations for each technology program area to maximize the multi-attribute value generated from the total budget. This is especially useful for responding to externally imposed budget changes. As the case study demonstrates, explicitly funding the most value-generating options leads to greater expected R&D programmatic value than typical strategies of equal or proportional distributions of a budget change among technology program areas. - Highlights: • Decision analysis can minimize the effect of a budget decrement on an R&D program. • Greater expected benefits are yielded by differentially funding technologies. • Budget scenario testing illustrates factors that influence value generation. • Coordinating with US DOE bridges gap between decision research and practice.

  3. The Danish energy crop research and development project - main conclusions

    International Nuclear Information System (INIS)

    Gylling, Morten

    2003-01-01

    Production of energy crops in Denmark is more or less non-existent in Denmark at the time being. However, the need for biomass on the other side of year 2005 exceeds the existing biomass resources and a substantial amount of energy crops will be necessary in order to fulfil the goals in Energy 21. The targeted share of the use of renewable energy sources by year 2030 is approximately 30%. Energy crops are seen as the most important new resource in order to create a balanced input mix of renewable in the energy system. The energy crops are mainly seen as fuel in small and medium sized CHP plants and in the big power plants. The Danish energy crop project consists of three main parts: a demonstration part, a research and development part, and an overall assessment part. Based on the results from the project the following overall conclusions can be made: Seen from a strictly market and production economic point of view energy crops will not be competitive in a foreseeable future, neither as a production for farmers nor as a fuel at the utility companies; The costs per GJ of energy crops are still higher than a GJ of straw; The cost difference between annual and perennial energy crops are slightly in favour of perennials, however the conditions on the individual farms should govern the choice between annual and perennial energy crops; Energy crops must be seen as part of an overall environmental scheme covering both agriculture and the energy sector; Given the right production scheme energy crops can be grown on environmental sensitive areas and on most ground water protection areas; Adding the potential sustainability benefits like reduced nutrient leakage and reduced CO 2 emissions energy crops seem to be a sensible and sustainable solution; Due to different handling, storage and fuel characteristics an all year delivery scheme of energy crops should include a mix of different energy crops to keep overall cost down. (BA)

  4. The Solar Energy Consortium of New York Photovoltaic Research and Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M.

    2012-10-15

    Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

  5. Assessment of energy research, development, and demonstration priorities for New York State. Interim report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Allentuck, J; Appleman, J; Carroll, T O; Palmedo, P F; Nathans, R

    1977-11-01

    In compliance with its mandate to accelerate the development and use of energy technologies in furtherance of the state's economic growth and the best interests of its population, the New York State Energy Research and Development Authority (NYSERDA) initiated, in March 1977, an assessment of energy research and development priorities. This report presents a view of the energy supply-demand future of the state, and the ways in which this future can be affected by external contingencies and concerted policies. That view takes into consideration energy supplies that may be available to the state as well as energy demands as they are affected by demographic and economic changes within the state. Also included are the effects of national energy policies and technological developments as they modify both supplies and demands in New York State. Finally, this report proceeds to identify those general technological areas in which the Authority's program can be of greatest potential benefit to the state's social and economic well being. This effort aims at a cost/benefit analysis determination of RD and D priorities. The preliminary analysis thus far indicates these areas as being of highest priority: energy conservation in buildings (promotion and execution of RD and D) and industry; district heating; fuel cell demonstration;solar heating and cooling (analysis, demonstration, and information dissemination); energy-environment interaction (analysis); energy information services; and, in general, the attraction of Federal RD and D programs to the state.

  6. Bioprocessing research for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Gaden, E.L. Jr.; Humphrey, A.E.; Carta, G.; Kirwan, D.J.

    1989-04-01

    The new biotechnology that is emerging could have a major impact on many of the industries important to our country, especially those associated with energy production and conservation. Advances in bioprocessing systems will provide important alternatives for the future utilization of various energy resources and for the control of environmental hazards that can result from energy generation. Although research in the fundamental biological sciences has helped set the scene for a ''new biotechnology,'' the major impediment to rapid commercialization for energy applications is the lack of a firm understanding of the necessary engineering concepts. Engineering research is now the essential ''bridge'' that will allow the development of a wide range of energy-related bioprocessing systems. A workshop entitled ''Bioprocessing Research for Energy Applications'' was held to address this technological area, to define the engineering research needs, and to identify those opportunities which would encourage rapid implementation of advanced bioprocessing concepts.

  7. Energy research, national and international

    International Nuclear Information System (INIS)

    Rhijn, A.A.T. van

    1976-01-01

    The Dutch Energy Research Programme inaugurated by the National Steering Group for Energy Research (LSEO) is discussed. Three types of criteria to be borne in mind in the selection of new directions in development are considered: the setting of targets for energy policy: the general central social and economic aims of the country; and the scientific, financial and organisational possibilities. International aspects are reviewed with reference to the IEA, CERN, Euratom, ELDO and ESRO. (D.J.B.)

  8. Focal points and developments in wind energy research of the Federal Ministry for the Environment since 2001

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, J. [Forschungszentrum Juelich GmbH (DE). Projekttraeger Juelich (PTJ)

    2007-07-01

    This article gives a short review on the wind energy research supported by the German Federal Government since 2001. The basis for this governmental support is the 5th Energy Research Programme of the Federal Government and under this programme the publication of funding schemes for wind energy research of November 2004 and of September 2006. The overall objectives of funding are directed towards a still improved and competitive position of wind energy in the national energy market as a renewable source with high potential. Further improvement of generator technologies, grid characteristics and production processes shall enable the wind industry to successfully participate in the rapidly growing world market and expand the wind energy deployment as a climate compatible technology worldwide. A focus in research is given to new offshore specific aspects especially for offshore wind energy deployment far from the shore, as it will be the case in Germany. The article gives some information about the development of the research budget and highlights some important research projects without being able to consider the complete spectrum of research of the last years. (orig.)

  9. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  10. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  11. The trend of the research and development for the upgrade of the high current energy system

    International Nuclear Information System (INIS)

    2010-01-01

    The high current energy technology ranges from a basic technology of the electric power field to a state-of-the-art technology and has been used extremely variously. In addition, as the energy technology advances, the expansion of applied field, such as the nuclear fusion and the exhaust thing processing, etc., requires a further upgrade of the large current technology. In this report, the trend of the research and development for the upgrade of the high current energy technology are summarized. In the following, the elemental technology including arc/plasma phenomena and the pulse power system is described in Chapter 2. In Chapter 3, the trend of the research and development for the upgrade of various equipments and devices such as the nuclear fusion development, the superconducting applications of SMES and the maglev transportation system, and the arc application of the exhaust processing for a medical waste, the radio active waste and a detrimental gas and the next generation lithography system. In Chapter 4, the analysis and the measurement technology of the arc phenomenon and the standardization of current shunt, etc are described. We hope this research report can contribute to the promotion of technical exchanges in different fields, and offer guidelines for future development in this high current energy technology. (author)

  12. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1995-01-01

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  13. U.S.– India Joint Center for Building Energy Research and Development (CBERD) Caring for the Energy Health of Healthcare Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Srivastava, Rohini [Carnegie Mellon Univ., Pittsburgh, PA (United States); Shukla, Rash [Center for Environmental Planning and Technology (India)

    2016-03-01

    The U.S.-India Joint Center for Building Energy Research & Development (CBERD), created through the Partnership to Accelerate Clean Energy (PACE) agreement between the United States and India, is a research and development (R&D) center with over 30 institutional and industry partners from both nations. This five-year presidential initiative is jointly funded by the U.S. Department of Energy and the Government of India. CBERD aims to build upon a foundation of collaborative knowledge, tools, and technologies, and human capabilities that will increase development of high-performance buildings. To reach this goal, the R&D focuses on energy use reduction throughout the entire life cycle of buildings—i.e., design, construction, and operations. During the operations phase of buildings, even with best-practice energy-efficient design, actual energy use can be much higher than the design intent. Every day, much of the energy consumed by buildings serves no purpose (Roth et al. 2005). Building energy information systems (EIS) are commercially available systems that building owners and facility managers use to assess their building operations, measure, visualize, analyze, and report energy cost and consumption. Energy information systems can enable significant energy savings by tracking energy use, identifying consumption patterns, and benchmarking performance against similar buildings, thereby identifying improvement opportunities. The CBERD team has identified potential energy savings of approximately 2 quads of primary energy in the United States, while industry building energy audits in India have indicated potential energy savings of up to 30 percent in commercial buildings such as offices. Additionally, the CBERD team has identified healthcare facilities (e.g., hospitals, clinics), hotels, and offices as the three of the highest-growth sectors in India that have significant energy consumption, and that would benefit the most from implementation of EIS.

  14. Characteristics of networks in energy efficiency research, development and demonstration – a comparison of actors, technological domains and network structure in seven research areas

    DEFF Research Database (Denmark)

    Ruby, Tobias Møller

    2013-01-01

    efficiency research and development. The results show how certain knowledge institutions that connect the scientific knowledge with specific applications seem to be especially important for progress in the field. Overall the study enriches the understanding of RD&D in energy efficiency with a new view......The need for more energy efficient products and technologies has increased recently in connection with meeting today’s energy and environmental issues. Research, development and demonstration (RD&D) is one way of supporting technological innovation and knowledge diffusion...

  15. Summary of research achievements in fiscal 1980 in research and development of new energy technologies (Research and development expense); Shin energy gijutsu kenkyu kaihatsu 1980 nendo kenkyu seika no gaiyo. Kenkyu kaihatsuhi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    This paper describes the achievements in fiscal 1980 of new energy research at the General Research Institute of Electronics Technologies using the NEDO's development expense. To optimize the heat and electric power composite solar system, analyses were performed on heat production, devices and materials, and economy of the whole experimental facilities of the original model. Fundamental researches are being made on crystalline silicon, thin amorphous film and compound semiconductor solar cells. The solar thermionic generation element producing equipment installed in the previous fiscal year has produced and tested different types of electrodes, and operated the modules for an extended period of time. Measurement data of solar beam in ultraviolet, visible and near infrared zones were processed statistically, whereas the research work has been completed in the current fiscal year, having established successfully the reference solar radiation. In the hydrogen manufacturing technology using high-temperature direct pyrolysis, fundamental discussions were given on effects of electric and magnetic fields on dissociation of steam, and diffusion and separation of hydrogen by using permeation membranes. For hydrogen fuel cells, trial fabrication and tests were continued on single cells by using mainly the high frequency sputtering process. Experiments were continued on a solid electrolyte fuel cell system. Researches are under way as comprehensive study on such technological seeds as power generation using ocean temperature difference, and superconduction magnets for energy storage (NEDO)

  16. Research on Utilization of Geo-Energy

    Science.gov (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  17. IRM National Reference Series: Japan: An evaluation of government-sponsored energy conservation research and development

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C.D.

    1987-07-01

    Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and are usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.

  18. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  19. Energy research and development projects in the Nordic countries. Directory 1986. Energiforskningsprojekter i Norden. Katalog 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This is the fourth directory of research, development and demonstration projects in the Nordic countries within the field of energy. The 1986 directory includes projects running in 1986. 2172 projects are described and all of them are financed through special public funds (i.e. external funding). The energy research organisation in each Nordic country is briefly reviewed in the appendixes, and a list of relevant newsletters are given. The directory is published at the request if the Nordic Council of Ministers and a special Energy Reseach Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  20. Final Report for NIREC Renewable Energy Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Walt [Nevada Institute for Renewable Energy Commercialization (NIREC), Las Vegas, NV (United States)

    2017-05-02

    This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption of renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.

  1. Jointly Sponsored Research Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-12-31

    Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nation’s fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: • Increase the production of United States energy resources – coal, natural gas, oil, and renewable energy resources; • Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; • Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and • Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by

  2. Necessity for Industry-Academic Economic Geology Collaborations for Energy Critical Minerals Research and Development

    Science.gov (United States)

    Hitzman, M.

    2012-12-01

    Economic geology is a highly interdisciplinary field utilizing a diverse set of petrologic, geochemical, geophysical, and tectonic data for improved scientific understanding of element migration and concentration in the crust (ore formation). A number of elements that were once laboratory curiosities now figure prominently in new energy technologies (e.g. wind turbines, solar energy collectors). If widely deployed, such technologies have the capacity to transform the way we produce, transmit, store, and conserve energy. To meet domestic and worldwide renewable energy needs these systems must be scaled from laboratory, to demonstration, to widespread deployment. Such technologies are materials intensive. If widely deployed, the elements required by these technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. There is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology to secure sufficient energy critical elements to undertake large-scale renewable energy development. Available federal funding for critical elements focuses on downstream areas such as metallurgy, substitutions, and recycling rather than primary deposits. Undertaking the required research to discover and mine critical element deposits in an environmentally friendly manner will require significant partnering with industry due to the current lack of federal research support.

  3. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  4. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  5. Research and development for solar thermal energy system. Research on advanced solar component; Taiyonetsu energy system no kenkyu kaihatsu. Kiki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Doi, T; Takashima, T; Ando, Y; Masuda, T; Fujii, T [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for research on advanced solar components as part of research and development of solar thermal energy. The catalyst for liquid-film reactions is prepared, and the flask tests are conducted as the preliminary experiments for development of the reactor in which 2-propanol is fallen in liquid film over the catalyst dispersed to accelerate its decomposition. It is decomposable when fallen in liquid film even in the presence of 35% of acetone. The catalyst of ruthenium carried by activated coal is used to produce 2-propanol under an exothermic condition from acetone and hydrogen. Diisopropyl ether and 4-methyl-2-pentanone are produced as by-products, when the reactor tube is kept at 140 to 200{degree}C at the external wall, diminishing as temperature is increased. There is a temperature differential of 20 to 30{degree}C in the reactor tube between the center axis and external wall. 3 figs.

  6. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    Science.gov (United States)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  7. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  8. Soil and groundwater remediation through the program of energy research and development at Environment Canada

    International Nuclear Information System (INIS)

    Bacchus, P.

    2005-01-01

    Research and development in groundwater and soil remediation within the federal Program of Energy Research and Development (PERD) are conducted in the context of activities related to the oil and gas industry. Contamination of groundwater and soil by the oil and gas sector affects the health of ecosystems and the economic viability of impacted lands. This paper presented an outline of remediation research and development activities associated with PERD, as well as an overview of PERD's development of improved generic remediation technologies and approaches for use by industries. In addition, issues concerning the development of key guidelines, methods and protocols for use by regulators were discussed. Science and technology efforts within PERD contribute to the development of national standards and guidelines concerning public safety and environmental needs

  9. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 16. Development and execution of pilot research projects at the CASINDO partner universities

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2011-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Each of the five Indonesian universities managed to develop pilot research projects and wrote research proposals to outline and strengthen their ideas. All of the universities also purchased equipment for the purpose of executing this research. UNCEN (Cenderawasih University, Jayapura, Papua, Indonesia) and UNDIP (Diponegoro University in Semarang, Java, Indonesia) managed to finalize their research within the project period and wrote reports on their results. The other universities could not yet present results due to delay in one or several of the steps within the procedure.

  10. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  11. Developing a plasma focus research training system for the fusion energy age

    International Nuclear Information System (INIS)

    Lee, S.

    2014-01-01

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  12. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  13. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 15. Research agendas of the Indonesian partner universities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2010-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report provides an overview of the status of development of research agendas at the five partner universities. The research agendas consists of a research proposals, purchasing and installation of research equipment, cooperation with industries and conducting the research proposals. Start of the development of the agendas is determining the fields of interest and formulating research projects. Research development is an ongoing process and therefore by the end of 2011 part 2 of this report will be prepared which will present the new developments in the research agendas over the coming year.

  14. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-25

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  15. Progressing opportunities for Australian renewable energy technology research, development and demonstration

    International Nuclear Information System (INIS)

    Beckitt, A.; Kile, R.

    2004-01-01

    In May 2004, a team of experienced Australian specialists in the field of renewable energy technology conducted a Mission to the United States of America led by the Renewable and Sustainable Energy ROUNDTABLE. The Mission was made possible by a generous grant from the Department of Education Science and Training (DEST), administered through the Australian Academy of Technological Sciences and Engineering (ATSE) under the Innovation Access Programme. Mission participants engaged in a three day structured workshop with the US National Renewable Energy Laboratory (NREL), and the opportunity was taken to meet leading USA research teams and visit relevant facilities ranging from solar thermal and photovoltaic testing, wind through to bioenergy an biorefining. The Mission concluded in Washington DC with a series of meetings with the US Department of Energy, the World Bank and Austrade. The Mission was extremely successful in terms of relationship building, technical learning and the development of future commercial opportunities for Australian businesses. It was conducted within the context of the United States - Australia Climate Action Partnership (CAP). This paper provides an overview of the Mission, its objectives and key outcomes

  16. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.T. [comp.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  17. Energy research in the public sector

    International Nuclear Information System (INIS)

    Gfeller, J.

    1980-01-01

    The objects of state-sponsored energy research in Switzerland are stated to include specialist training in co-operation with the technical universities, and long term energy technology as well as international liaison. Tables are presented which indicate the trends in sources of funding for research, and the division between various technological areas, including energy conservation (10%), solar energy (10%), bioenergy, geothermal energy and wind power (4.5%), atomic energy (40%), nuclear fusion (20%), electricity (6%) and environmental studies (7%). These ratios are compared with those for other developed countries and it is concluded that the aim must be to approach smoothly the 'post-oil era'. (Auth.)

  18. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  19. US Department of Energy Three Mile Island research and development program. 1985 annual report

    International Nuclear Information System (INIS)

    Brown, G.R.

    1986-04-01

    In 1985, the US Department of Energy's Three Mile Island Research and Development Program at Three Mile Island Unit 2 (TMI-2), the Idaho National Engineering Laboratory, and other supporting laboratories, concentrated on three major areas: fuel and waste handling and disposition, accident evaluation, and reactor evaluation. While the general technology being developed is of direct benefit to the recovery operations at TMI-2, this technology will be of generic benefit to the entire nuclear power industry. Others engaged in research and development, design, construction, operation, maintenance, and regulation of nuclear plants will have access to this technology to enhance plant safety and reliability

  20. Outline of geothermal energy research and development in fiscal 1999; Heisei 11 nendo chinetsu enerugi kenkyu kaihatsu no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, T. [Agency of Industrial Science and Tehcnology, Tokyo (Japan)

    1999-11-18

    In this paper, the outline of the budget of geothermal energy relation in fiscal 1999, the system of research and development and the outline of research and development are described. Budgets in fiscal 1999 are the general account 17 million yen, the power development special account 3,222 million yen, sum total 323,900 million yen and it is a 33 million yen decrease compared with the preceding year. Within research and development, the following are included as a survey investigation research; a geothermal energy survey and picking technology, a verification investigation of a geothermal energy exploration technique, a deep geothermal resource investigation and an analysis and evaluation therefor. As a development of geothermal energy power plants using hot water, the following are included; development of the 10 MW binary cycle power generation plant, development of the bottom hole information system (MWD) in geothermal well drilling, technology development of the geothermal hot dry rock source system. As an analysis and evaluation of the bottom hole information detection system in geothermal well drilling, the following are included; an analysis and evaluation of the hot dry rock thermal extraction system, an analysis and evaluation of the deep geothermal resources picking technology, an analysis and evaluation of metallic materials for the geothermal deep direction and an analysis and evaluation of high polymer materials for the geothermal deep direction. (NEDO)

  1. Japan's Sunshine Project. 1988 annual summary of solar energy research and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Mentioned in relation to the research and development of photovoltaic power generation systems are fundamental research on solar cells, research on advanced photovoltaic system technologies, research and development of amorphous solar cells, etc. Mentioned in relation to the technical development for the practical use of photovoltaic power generation systems are low-cost SOG(spin on glass)-silicon experimental production and verification, solar cell panel experimental manufacture and verification, technical development of high efficiency cell fabrication, research and development of amorphous silicon solar cells, research and development of evaluation systems for photovoltaic cells and modules, development of support technology for photovoltaic power generation (power generation support technology, interconnection and control of photovoltaic systems), etc. Also discussed are a stand-alone dispersed system, meteorological analysis, centralized solar power system, development of photovoltaic thermal hybrid solar power generation system, etc. In relation to solar thermal energy, a solar thermal power generation system, and an evaluation system are taken up, and the development is discussed of a fixed heat process type system, an advanced heat process type system, and a long-term heat storage system, these for application to industrial processes. Reference is also made to international cooperation. (NEDO)

  2. The U.S. Department of Energy's Reference Facility for Offshore Renewable Energy (RFORE): A New Platform for Research and Development (Invited)

    Science.gov (United States)

    Shaw, W. J.

    2013-12-01

    Offshore renewable energy represents a significant but essentially untapped electricity resource for the U.S. Offshore wind energy is attractive for a number of reasons, including the feasibility of using much larger and more efficient wind turbines than is possible on land. In many offshore regions near large population centers, the diurnal maximum in wind energy production is also closely matched to the diurnal maximum in electricity demand, easing the balancing of generation and load. Currently, however, the cost of offshore wind energy is not competitive with other energy sources, including terrestrial wind. Two significant contributing reasons for this are the cost of offshore wind resource assessment and fundamental gaps in knowledge of the behavior of winds and turbulence in the layer of the atmosphere spanned by the sweep of the turbine rotor. Resource assessment, a necessary step in securing financing for a wind project, is conventionally carried out on land using meteorological towers erected for a year or more. Comparable towers offshore are an order of magnitude more expensive to install. New technologies that promise to reduce these costs, such as Doppler lidars mounted on buoys, are being developed, but these need to be validated in the environment in which they will be used. There is currently no facility in the U.S. that can carry out such validations offshore. Research needs include evaluation and improvement of hub-height wind forecasts from regional forecast models in the marine boundary layer, understanding of turbulence characteristics that affect turbine loads and wind plant efficiency, and development of accurate representations of sea surface roughness and atmospheric thermodynamic stability on hub height winds. In response to these needs for validation and research, the U.S. Department of Energy is developing the Reference Facility for Offshore Renewable Energy (RFORE). The RFORE will feature a meteorological tower with wind, temperature

  3. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  4. Solar Energy - It's Growth, Development, and Use

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Resources with Additional Information Solar has played a major role in solar energy development through previous research and ongoing activities . As a result of research and development, the "cost of solar energy has been reduced 100-fold

  5. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  6. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Survey and research on patent and information (Survey of new energy technology development information - Hydrogen and other energies); 1981nendo shin energy gijutsu kaihatsu joho chosa seika hokokusho. Suiso sonotano energy hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Surveys are conducted and the results are reported on the development of technologies in the U.S., Canada, Britain, West Germany, and France, for hydrogen energy, and for wind power, biomass power, marine power, wave power, etc. In the U.S., development funds are being introduced by the Government into wind power systems since 1975, and part of the power is utilized in the fields of agriculture and power supply business. The task is now being transferred from the Government to private sector businesses. Probabilities are that hydrogen will not be an important source of energy in the U.S. In the Province of Ontario, Canada, where there is surplus electricity, people have a great interest in the development of hydrogen energy, and there is a task force to discuss hydrogen energy. As for wind power, it is already in the realm of practical application. In Britain, wind power is expected to come into practical use very early, and the first practical plant will begin its service operation by 1984. As for the study of tidal power, however, it is narrowed down to a project at the mouth of the Severn river. As for hydrogen energy, the research remains at the basic stage, and the energy enjoys but a low precedence. (NEDO)

  7. Summary of research achievements in fiscal 1978 in research and development of new energy technologies (Research and development expense for the former half period); 1978 (kamihanki) nendo kenkyu seika no gaiyo. Kenkyu kaihatsuhi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-07-01

    This paper describes the summary of research achievements in fiscal 1978 in research and development of new energy technologies at the General Research Institute of Electronics Technologies using the NEDO's development expense. For measurement of solar beam spectral radiation illuminance, measurement data in ultraviolet and visible zones were collected. Comprehensive adjustment was performed on near infrared zone measuring devices. In solar thermal power generation, discussions were given on three kinds of collector combinations as a study on enhancement and optimization of functions in small-size system models. Fundamental studies on solar cells are continuing, including those for compound and amorphous semiconductors. Development of new electrode materials having large work function, and module performance tests are being progressed in order to realize solar heat electron power generation. In hydrogen manufacturing using the high-temperature direct pyrolysis method, studies are being performed on thermal decomposition performance and the hydrogen separation method (using separation membranes). Regarding hydrogen fuel cells, power generation experiments were executed by using zirconia solid electrolyte type fuel cells. Methodological development is being moved forward to realize a total energy system including the future societies and nature. This paper also describes experimental studies on power generation using ocean temperature difference. It also describes high-temperature ionization gases and superconducting magnets as the seeds of new energy technologies. (NEDO)

  8. Summary of research achievements in fiscal 1978 in research and development of new energy technologies (Research and development expense for the former half period); 1978 (kamihanki) nendo kenkyu seika no gaiyo. Kenkyu kaihatsuhi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-07-01

    This paper describes the summary of research achievements in fiscal 1978 in research and development of new energy technologies at the General Research Institute of Electronics Technologies using the NEDO's development expense. For measurement of solar beam spectral radiation illuminance, measurement data in ultraviolet and visible zones were collected. Comprehensive adjustment was performed on near infrared zone measuring devices. In solar thermal power generation, discussions were given on three kinds of collector combinations as a study on enhancement and optimization of functions in small-size system models. Fundamental studies on solar cells are continuing, including those for compound and amorphous semiconductors. Development of new electrode materials having large work function, and module performance tests are being progressed in order to realize solar heat electron power generation. In hydrogen manufacturing using the high-temperature direct pyrolysis method, studies are being performed on thermal decomposition performance and the hydrogen separation method (using separation membranes). Regarding hydrogen fuel cells, power generation experiments were executed by using zirconia solid electrolyte type fuel cells. Methodological development is being moved forward to realize a total energy system including the future societies and nature. This paper also describes experimental studies on power generation using ocean temperature difference. It also describes high-temperature ionization gases and superconducting magnets as the seeds of new energy technologies. (NEDO)

  9. Science Forum of the renewables 2004: Networked knowledge for renewable energies - Research, development and education - Basis for wide-spread deployment of renewable energies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wienges, S.; Stadermann, G.; Szczepanski, P. (eds.)

    2004-09-01

    Energy was one of five foci of the World Summit on Sustainable Development (WSSD) in Johannesburg in 2002. While the access to modern energy is crucial for poverty reduction in particular and development in general, the way of producing and providing that energy is as crucial for environmental and social sustainability. Hence, the renewables 2004 - the International Conference for Renewable Energies was the logical consequence and next step on the way forward. It was held from 1st June to 4th June 2004 in Bonn, Germany, and turned out to be a forum for stakeholders from all sectors: Governments as well as parliamentarians, the private sector, NGOs, International Organisations, and International Financial Institutions. On 1st June this multisectoral approach to the dissemination of renewables was completed by the Science Forum - Education, Research, and Training: Basis for Wide-spread Deployment of Renewable Energies. This one-day side-event brought together scientists and practitioners from allover the world, discussing the future requirements of research and development as well as needs and potentials of education and training for renewables in developing and industrialized countries. (orig.)

  10. RESEARCH OF GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    О. Chernyak

    2015-10-01

    Full Text Available This article contains results of studying experiences of the leading countries in renewable energy technologies’ development. The classification of renewable energy was presented. In this article we investigated modern trends and prospects of wind power, solar energy, hydropower, bioenergy and geothermal energy. Authors analyzed different national strategies for attracting investments in “green” energy. Rating of the 10 countries with the largest investments in alternative energy was presented. Authors researched investments in developed countries and developing countries, depending on the type of renewable energy. A model for research and forecasting of investment in renewable energy based on annual data for the period 1990-2012 years was built. In addition, authors used methods such as moving average, exponential smoothing, Holt- Winters method and different types of trends based on quarterly data for 2004-2014 years.

  11. Energy Research and Development Administration, Division of Safety, Standards, and Compliance respirator manual

    International Nuclear Information System (INIS)

    Douglas, D.D.; Hack, A.L.; Held, B.J.; Revoir, W.H.

    1976-05-01

    The manual has been prepared to provide technical information for contractors of the Energy Research and Development Administration (ERDA) on the application of respiratory protective devices for protection against airborne contaminants, both radioactive and nonradioactive. The various elements of a respirator program including selection and maintenance of equipment and training of personnel are described to assist in establishing adequate programs

  12. Energy Research and Development Administration, Division of Safety, Standards, and Compliance respirator manual

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, D.D.; Hack, A.L.; Held, B.J.; Revoir, W.H.

    1976-05-01

    The manual has been prepared to provide technical information for contractors of the Energy Research and Development Administration (ERDA) on the application of respiratory protective devices for protection against airborne contaminants, both radioactive and nonradioactive. The various elements of a respirator program including selection and maintenance of equipment and training of personnel are described to assist in establishing adequate programs.

  13. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  14. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  15. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  16. The second Studsvik AB - JAEA meeting for cooperation in nuclear energy research and development

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Yanagihara, Satoshi; Karlsson, Mikael; Stenmark, Anders

    2010-03-01

    The second annual meeting was held at Studsvik AB in Sweden to exchange information on radioactive waste treatment technology including recycling of materials and technical developments for the neutron irradiation experiments in materials testing reactors. The information exchange meeting was held on the basis of the implemental agreement between the Studsvik AB and the Japan Atomic Energy Agency (JAEA) for cooperation in nuclear energy research and development. The major items of the information exchange were the present status of waste treatment in both organizations including acceptance criteria of wastes in Studsvik facilities, experience and current status of RI production technology in both organizations as well as the sensor development. The future plan in cooperative program was also discussed. This report describes contents of the information exchange and discussions in two cooperation areas. (author)

  17. Energy research and technology in Bavaria; Energieforschung und -technologie in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The intensification of research and development of new energy conversion technologies contribute significantly to the energy supply. In particular, the research and development in the fields of power generation, energy supply, energy conservation and efficient use of energy in buildings and production processes, innovation in grids and infrastructure as well as improved, promoted innovative storage technologies are intensively reported. This brochure shows how the research and development have an important contribution to the success of the energy policy tunaround in Bavaria.

  18. Jointly working on research for the energies of the future. Objectives of research 2013; Gemeinsam forschen fuer die Energie der Zukunft. Forschungsziele 2013

    Energy Technology Data Exchange (ETDEWEB)

    Szczepanski, Petra (comp.)

    2012-11-01

    The Renewable Energy Research Association (Berlin-Adlershof, Federal Republic of Germany) is a nationwide cooperation of research institutes. The members of this Research Association develop technologies for renewable energies and their system oriented cooperation as well as technologies for energy efficiency, energy storage and power distribution grids. The spectrum of research areas covers all renewable energy sources. These renewable energy sources complement each other quantitatively and temporarily in an electrical-thermal-chemical energy mix which is optimized by system technology, efficiency and storage technologies.

  19. Annual report of the Japan Atomic Energy Research Institute, for fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    At present, a half century has elapsed since the discovery of nuclear fission, and atomic energy has taken the position of basic energy already, accordingly the development and utilization of atomic energy is very important as the energy source which can supply energy for long term economically and stably. Along the long term plan of atomic energy development and utilization decided in 1987, Japan Atomic Energy Research Institute (JAERI) advanced the research and development, thus it has borne the role as the nucleus general research institute in atomic energy fields. It has exerted efforts to obtain the understanding and trust of the nation on atomic energy, and has promoted the pioneering project research, such as safety research, high temperature engineering test and research, the research and development of nuclear fusion, the research on radiation utilization and the research and development of nuclear-powered ships. In the safety research, in order to contribute to the further rooting of LWRs and the establishment of nuclear fuel cycle, the research on the engineering safety of nuclear facilities and environmental safety has been advanced. The activities in respective research fields are summarized. Also the international cooperation with USA, FRG, China and others were carried out smoothly. (K.I.)

  20. Oil substitution and energy saving - A research and development strategy of the International Energy Agency /IEA/

    Science.gov (United States)

    Rath-Nagel, S.

    1981-03-01

    Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.

  1. The European space of research: what fundamental role for the development of nuclear energy

    International Nuclear Information System (INIS)

    Kaluzny, Y.; Chaix, P.

    2010-01-01

    The SET (Strategic Energy Technology) plan draws the priority axis for the development of no-carbon energies on the whole and of nuclear energy in particular. The double aim of SET for 2020 is to maintain the competitiveness of fission reactors and to find a valid solution for the management of radioactive wastes. The SET plan also includes a system (SETIS) for assessing the progress made and an organization (ESFRI) whose role is to earmark the projects that are most relevant for research infrastructure projects. The SNETPR (Sustainable Nuclear Energy Technology Platform) gathers the actors of a given sector with the objective to develop the public-private collaboration around strategic topics. The purpose of the European sustainable Nuclear Industrial Initiative (ESNII) is to assure a sustainable nuclear energy by the management of radioactive wastes and by a better use of natural resources. ESNII has led to the selection of fast reactor with a closed cycle. ESNII includes the design of a sodium prototype (ASTRID), of a gas cooled demonstrator (ALLEGRO) and of lead cooled pilot plant (MYRRHA). The achievement of all these projects is very dependent on the financial perspectives of the E.U. (A.C.)

  2. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1990-01-01

    The Office of Energy Research sponsors long-term research in certain fundamental areas and in technical areas associated with energy resources, production, use, and resulting health and environmental effects. This document describes these activities, including recent accomplishments, types of facilities, and gives some impacts on energy, science, and scientific manpower development. The document is intended to respond to the many requests from diverse communities --- such as government, education, and public and private research --- for a summary of the types of research sponsored by the Department of Energy's Office of Energy Research. This is important since the Office relies to a considerable extent on unsolicited proposals from capable university and industrial groups, self-motivated interested individuals, and organizations that may wish to use the Department's extensive facilities and resources. By describing our activities and facilities, we hope not only to inform, but to also encourage interest and participation

  3. Energy-related indoor environmental quality research: A priority agenda

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J.; Brager, G.; Burge, H.; Cummings, J.; Levin, H.; Loftness, V.; Mendell, M.J.; Persily, A.; Taylor, S.; Zhang, J.S.

    2002-08-01

    A multidisciplinary team of IEQ and energy researchers has defined a program of priority energy-related IEQ research. This paper describes the methods employed to develop the agenda, and 35 high priority research and development (R&D) project areas related to four broad goals: (1) identifying IEQ problems and opportunities; (2) developing and evaluating energy-efficient technologies for improving IEQ; (3) developing and evaluating energy-efficient practices for improving IEQ; and (4) encouraging or assisting the implementation of technologies or practices for improving IEQ. The identified R&D priorities reflect a strong need to benchmark IEQ conditions in small commercial buildings, schools, and residences. The R&D priorities also reflect the need to better understand how people are affected by IEQ conditions and by the related building characteristics and operation and maintenance practices. The associated research findings will provide a clearer definition of acceptable IEQ that is required to guide the development of technologies, practices, standards, and guidelines. Quantifying the effects of building characteristics and practices on IEQ conditions, in order to provide the basis for development of energy efficient and effective IEQ control measures, was also considered a priority. The development or advancement in a broad range of IEQ tools, technologies, and practices are also a major component of the priority research agenda. Consistent with the focus on ''energy-related'' research priorities, building ventilation and heating, ventilating and air conditioning (HVAC) systems and processes are very prominent in the agenda. Research related to moisture and microbiological problems, particularly within hot and humid climates, is also prominent within the agenda. The agenda tends to emphasize research on residences, small commercial buildings, and schools because these types of buildings have been underrepresented in prior research. Most of

  4. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  5. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  6. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  7. The comparison and coordination of national policies and programmes in the energy research and development sector

    International Nuclear Information System (INIS)

    1978-01-01

    Inventory of programmes and expenditures in the field of energy research and development, which are financed from the public sector funds of the Member States and of the European Communities (1974-1976)

  8. Research and development of fusion grid infrastructure based on atomic energy grid infrastructure (AEGIS)

    International Nuclear Information System (INIS)

    Suzuki, Y.; Nakajima, K.; Kushida, N.; Kino, C.; Aoyagi, T.; Nakajima, N.; Iba, K.; Hayashi, N.; Ozeki, T.; Totsuka, T.; Nakanishi, H.; Nagayama, Y.

    2008-01-01

    In collaboration with the Naka Fusion Institute of Japan Atomic Energy Agency (NFI/JAEA) and the National Institute for Fusion Science of National Institute of Natural Science (NIFS/NINS), Center for Computational Science and E-systems of Japan Atomic Energy Agency (CCSE/JAEA) aims at establishing an integrated framework for experiments and analyses in nuclear fusion research based on the atomic energy grid infrastructure (AEGIS). AEGIS has been being developed by CCSE/JAEA aiming at providing the infrastructure that enables atomic energy researchers in remote locations to carry out R and D efficiently and collaboratively through the Internet. Toward establishing the integrated framework, we have been applying AEGIS to pre-existing three systems: experiment system, remote data acquisition system, and integrated analysis system. For the experiment system, the secure remote experiment system with JT-60 has been successfully accomplished. For the remote data acquisition system, it will be possible to equivalently operate experimental data obtained from LHD data acquisition and management system (LABCOM system) and JT-60 Data System. The integrated analysis system has been extended to the system executable in heterogeneous computers among institutes

  9. Conference on energy research at historically black universities

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A conference was convened to present and discuss significant research and development in Historically Black Institutions (current and past); areas that show potential for inter-institutional collaboration and the sharing of facilities; existing capabilities to sustain funded research activities and future potential for expansion and enhancement; and appropriate arrangements for maximum interaction with industry and government agencies. Papers were presented at small group meetings in various energy research areas, and abstracts of the projects or programs are presented. The Solar Energy small group provided contributions in the areas of photovoltaics, biomass, solar thermal, and wind. Research reported on by the Fossil Fuel small group comprises efforts in the areas of fluidized bed combustion of coal, coal liquefaction, and oil shale pyrolysis. Five research programs reported on by the Conservation Research small group involve a summer workshop for high school students on energy conservation; use of industrial waste heat for a greenhouse; solar energy and energy conservation research and demonstration; energy efficiency and management; and a conservation program targeted at developing a model for educating low income families. The Environment Impact groups (2) presented contributions on physical and chemical impacts and biological monitors and impacts. The Policy Research group presented four papers on a careful analysis of the Equity issues; one on a model for examining the economic issue in looking at the interaction between energy technology and the state of the economy; and a second paper examined the institutional constraints on environmental oriented energy policy. Six additional abstracts by invited participants are presented. (MCW)

  10. Marine renewable energies: status and development perspectives

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes an overview of the marine renewable energy (MRE) market, of the development perspectives, of the industrial, academic and institutional actors, of current technologies and technologies under development, and of French and European research and development programs. These energies comprise: tidal energy, the exploitation of sea temperature differences with respect with depth, wave energy, marine current power energy, osmotic and marine biomass energy

  11. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research-I. 7. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, Eric V.; Ghosh, Tushar K.; Prelas, Mark A.; Tompson, Robert V.; Loyalka, Sudarshan K.

    2001-01-01

    The topic of this paper is the development of the radioisotope energy conversion system (RECS) in a project that utilizes analytical computational assisted design and laboratory research. RECSs shall supplement and ideally replace the radioactive thermal generator (RTG) power systems, which supply the crucial electricity currently on the deep space mission capsules and potentially on future satellites. Indeed, a very efficient radiation-driven electrical generator presents many advantages over a solar-driven generator. RTG systems used by the United States (i.e., Voyager spacecraft) have a maximum efficiency in electrical power from a radiative kinetic power of only 8%.A 238 Pu-driven RECS could have an efficiency of 20% in the ratio of electrical power over radiative kinetic power. Some RECSs driven radiatively by isotopes other than 238 Pu could potentially have efficiencies somewhat higher than 20%. This efficiency is due to the involvement of mediating fluorescing gas. For example, an energy conversion system that uses fission for its power source and has fluorescing ionic mediators plus robust photovoltaic cells could have efficiencies as high as 40% (Refs. 2 and 3). Indeed, a compact generator system of even 20% efficiency is better than a compact system with only 8% efficiency (of RTG). The promise of a high-efficiency, durable energy conversion system affirmatively justifies the committed research and development of RECS. RECS consists of the following components: 1. a radioisotope for producing fluxes of particles; 2. ambient fluorescent gas that readily produces photons at the blue and ultraviolet range when energetically perturbed; 3. photovoltaic cells to convert the blue and ultraviolet photons into electrical energy; 4. electrical circuitry that includes a load in order to harness the converted energy. The ambient fluorescent gas shall either surround or be mixed 'homogeneously' with the radioisotope material. The radioisotope material shall be either

  12. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  13. The case for a new energy research, development and promotion policy for the UK

    International Nuclear Information System (INIS)

    Jamasb, Tooraj; Nuttall, William J.; Pollitt, Michael

    2008-01-01

    This paper is a critical assessment of the current balance of efforts towards energy research and development (R and D) and the promotion of low-carbon electricity technologies in the UK. We review the UK's main technological options and their estimated cost ranges in the medium term. We contrast the energy R and D spending with the current and expected future cost of renewable promotion policies and point out the high cost of carbon saving through existing renewable promotion arrangements. We also note that liberalisation of the electricity sector has had significant implications for the landscape of energy R and D in the UK. We argue that there is a need for reappraisal of the soundness and balance of the energy R and D and renewable capacity deployment efforts towards new energy technologies. We suggest that the cost-effectiveness of UK deployment policies needs to be more closely analysed as associated costs are non-trivial and expected to rise. We also make a case for considering increasing the current low level of energy R and D expenditure. Much of energy R and D is a public good and we should consider whether the current organisation of R and D effort is fit for purpose. We argue that it is important to build and maintain the research capability in the UK in order to absorb spillovers of technological progress elsewhere in the world. Against this background, the recent signs that an energy R and D renaissance could be underway are therefore positive and welcome

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  16. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 1. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 1. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements of the researches during fiscal 1998 on researching a highly efficient and effective energy utilization technology. With regard to technologies to recover and convert unutilized energies, a process simulator was developed, basic internal structure was discussed by experiments and simulation, and substance migrating and heat exchanging characteristics were identified by using partial testing devices. These researches and developments were performed for the waste heat reforming and recovering systems used in chemical plants. In developing a thermoelectric generation system using low calorie exhaust gases, thermoelectric power generating materials were developed, a powder manufacturing technology was developed, a thermoelectric conversion element bulking technology was developed, a thermoelectric power generation system using porous structures was simulated, development and concept design were carried out on system element technologies. In the research and development of the thermoelectric generation system using low calorie exhaust gases, advanced materials and modules were manufactured, the modules were evaluated, and power generation systems were researched. In addition, researches were performed on energy transportation, supply and utilization technologies, and on environmental load reducing technologies. (NEDO)

  17. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  18. Energy research

    International Nuclear Information System (INIS)

    1979-03-01

    Status reports are given for the Danish Trade Ministry's energy research projects on uranium prospecting and extraction, oil and gas recovery, underground storage of district heating, electrochemical energy storage systems, wind mills, coal deposits, coal cambustion, energy consumption in buildings, solar heat, biogas, compost heat. (B.P.)

  19. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  20. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 3. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements during fiscal 1998 on researching part of the energy transportation and storage technologies, energy supply and utilization technologies, environmental load reducing technologies, and optimal system design in the 'research on highly efficient and effective energy utilization technology'. With regard to energy transportation and storage technologies, researches and developments were performed on a vacuum adiabatic transportation piping system, surfactants used for high-density heat transportation and high-density latent heat transportation technologies. In the field of energy supply and utilization technologies, researches and developments were carried out on a heat supply system using high-performance heat pumps capable of using multiple kinds of fuels, and a compression and absorption type hybrid heat utilization system. For the environmental load reducing technologies, research and development were performed on a power saving heat pump system utilizing natural coolant. In researching the optimal system design technologies, overall adjustment was made on the element technologies, whereas technological discussions and site surveys were executed by the committees at the same time. The latest achievements accomplished to date was published in a book. (NEDO)

  1. Energy in Ireland: context, strategy and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the present day situation of sudden awareness about climatic change and announced fossil fuels shortage, Ireland has defined a new strategy for its energy future. Context: Ireland is strongly dependent of oil and gas imports which increase regularly to meet the demand. A small part of the electricity consumed is imported from Ulster. The share of renewable energies remains weak but is increasing significantly. Therefore, from 1990 to 2006, the proportion of renewable energies increased from 1.9% (mainly of hydroelectric origin) to 4.5%. Wind power represents now the main renewable energy source. The transportation sector is the most energy consuming and the biggest source of greenhouse gases. Strategy: the Irish policy is driven by pluri-annual strategic plans which define the objectives and means. Priority is given to the security of supplies at affordable prices: 8.5 billion euros will be invested during the 2007-2013 era for the modernization of existing energy infrastructures and companies, and in a lesser extent for the development of renewable energy sources. During this period, 415 million euros more will be devoted to the research, development and demonstration (RD and D) of new energy solutions. Research: in 2005 the energy RD and D expenses reached 12.8 million euros shared between 54% for R and D and 46% for demonstration projects. Half of the financing is given to higher education schools and is devoted to energy saving purposes (33%) and to renewable energies (29%, mainly wind power and biomass). Academic research gives a particular attention to ocean energy which represents an important potential resource in Ireland and which has already led to the creation of innovative companies. The integration of renewable energy sources to the power grid and the stability of supplies are also the object of active researches. (J.S.)

  2. Report on surveys and researches at the New Energy General Development Organization in fiscal 1980. Surveys and researches on hydrogen energy; 1980 nendo suiso energy ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-09-01

    This paper describes surveys and researches on hydrogen energy in fiscal 1980. The high-temperature high-pressure water decomposition process in hydrogen manufacturing technologies had development proceeded on membranes and electrodes, and succeeded operating a 4 Nm{sup 3}/hr plant. Also for the solid electrolyte electrolytic process, a test plant of 1.3 m{sup 3}/hr was completed. The paper describes iodine and bromine system cycle, high-temperature gas atomic reactor cycle, and hybrid process with regard to the thermo-chemical method cycle. Problems in different cycles include necessities to advance the development paying attention on sufficient discussions on thermal efficiency of 35% or higher, heat regeneration and recovery, discussions on separation and transportation, and durability of reactive device materials. The paper also introduces research on hydrogen manufacturing utilizing chemical conversion of solar energy, biomass, and microorganisms. For technologies to store and transport hydrogen, the paper introduces metal hydrides, whereas Ti-based and misch metal-based alloys were found suitable. For transportation, Mg-based alloy hydrides were regarded as the most expected hydrogen absorbing material. Surveys were made also on the current status of the manufacturing industry, production and utilization of hydrogen. (NEDO)

  3. Research and development and industrial informatization

    International Nuclear Information System (INIS)

    1995-08-01

    This book deals with research and development and industrial informatization with development of technology international trend, the present conditions of scientific technology in the major nations, politics of technical development and trend, process of national research and development, research for industrial research and development, strengthen cooperation for scientific technology among nations, current situation and development of technology by field such as energy, software and system, and technology for industrial informatization.

  4. Assessment Report on the national research strategy for energy

    International Nuclear Information System (INIS)

    2009-01-01

    This report was issued in 2009 by the French Parliament commission in charge of evaluating the scientific and technological choices of France's research in the field of energy. With environmental, economical and national independence concerns in view, the objective of the report is to assess the national research strategy for energy and to propose some directions for its future development. The scientific priority given in France to nuclear energy, petroleum, photovoltaic energy, second generation bio fuels and energy storage should be maintained. Mass energy storage should be considered as an essential condition for the development of renewable energies, such as offshore wind farms and storage systems

  5. Program for Energy Research and Technologies 1977--1980. Annual report 1977 on efficient uses of energy fossil sources of primary energy new sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main objectives within the policy of the Federal Government Program for Energy Research and Technologies 1977--1980 can be summarized as follows: guaranteeing the continuity of energy supply in the medium to long term in the Federal Republic at economically favourable costs considering the requirements necessary for the protection of the environment and population. The financial support is effected under the general headings of Development of Energy Resources, Energy Conservation and Efficient Use of Energy. An additional aspect of the support policy is the development of technologies which are of importance for other countries, specifically for the developing countries. Support of a project is effected through a research and development grant from the Federal Government and this can range from less than 50% to 100%. For this the Government receives an irrevocable, free of charge and non-exclusive right to make use of research and development results. In special cases full repayment is agreed subject to commercial success. Based on agreements signed by the Federal Minister of Research and Technology and the Federal Minister of Economic Affairs on the one hand and the Juelich Nuclear Research Establishment (KFA) on the other, the Project Management for Energy Research (PLE) in KFA Juelich is acting on behalf of these Ministries. The Project Management's activities in non-nuclear energy research in general (for the Federal Ministry of Research and Technology) and development and innovation in coal mining and preparation (for the Federal Ministry of Economic Affairs) have the following general objectives: to improve the efficiency of Government support; to ensure that projects are efficiently handled; and to reduce the workload of the Ministries. The individual projects are listed and described briefly.

  6. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  7. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  8. Good Practice Policy Framework for Energy Technology Research Development and Demonstration (RD and D)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The transition to a low carbon economy clearly requires accelerating energy innovation and technology adoption. Governments have an important role in this context. They can help by establishing the enabling environment in which innovation can thrive, and within which effective and efficient policies can be identified, with the specific goal of advancing research, development, demonstration and, ultimately, deployment (RDD&D) of clean energy technologies. At the front end of the innovation process, significant increases in, and restructuring of, global RD&D efforts will be required, combined with well-targeted government RD&D policies. The development of a clear policy framework for energy technology RD&D, based on good practices, should include six elements: Coherent energy RD&D strategy and priorities; Adequate government RD&D funding and policy support; Co-ordinated energy RD&D governance; Strong collaborative approach, engaging industry through public private partnerships (PPPs); Effective RD&D monitoring and evaluation; and Strategic international collaboration. While countries have been favouring certain technologies over others, based on decisions on which areas are to receive funding, clear priorities are not always determined through structured analysis and documented processes. A review of stated energy RD&D priorities, based on announced technology programmes and strategies, and recent spending trends reveals some important deviations from stated priorities and actual RD&D funding.

  9. Jointly working on research for the energies of the future. Objectives of research; Gemeinsam forschen fuer die Energie der Zukunft. Forschungsziele

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, G.; Szczepanski, P. (comps.)

    2006-07-01

    The booklet consists of chapters and various articles: Doing research work with joint efforts; R and D - political objectives of FVS; fields of research and development; electrical system techniques; network management and separated power plants; heat and coolness from renewable energies; solar construction works: building covers and system techniques; generating and utilizing chemical energy sources from renewable energies; estimating consequences of techniques.

  10. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  11. Research and Development. Annual Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report discusses the research and development activities in which NVE has been involved in 2000. These activities fall into three categories: watercourse research, hydrological research and energy related research. The HYDRA research programme, which studied flooding and human intervention, is discussed in particular. The report includes a list of research and development reports that were published in 2000.

  12. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  13. Summaries of FY 1984 research in high energy physics

    International Nuclear Information System (INIS)

    1984-12-01

    The US Department of Energy, through the Office of Energy Research, Division of High Energy and Nuclear Physics, provides approximately 90 percent of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major US high energy accelerator facilities and over 90 universities under contract to do experimental and theoretical investigations on the properties, structure, and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the US Department of Energy. The areas covered include: (1) conception, design, construction, and operation of particle accelerators; (2) experimental research using the accelerators and ancillary equipment; (3) theoretical research; and (4) research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of unerstanding the basic nature of matter and energy

  14. 78 FR 46331 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2013-07-31

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY: Energy.... Appointments to the Biomass Research and Development Technical Advisory Committee will be made by the Secretary... Energy is soliciting nominations for candidates to fill vacancies on the Biomass Research and Development...

  15. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  16. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 3); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy (continued), energy supply and utilization, reducing environmental loads, and designing the optimum systems). The R and D on heat transfer system through the vacuum heat insulation pipes involves fabrication, on a trial basis, the vacuum insulation covers for the vacuum insulation tubes, joints, flanges and valves for the 80A pipes, and the heat loss evaluation test for each item. The R and D on the energy supply and utilization techniques involves the heat transfer systems for a variety of fuels by the highly functional heat pump, and compression/absorption hybrid type heat-utilization system. The hybrid type heat-utilization system simulation results suggest possibility of achieving exergy efficiency of 56% as the development target by use of the new medium. The R and D on the environmental load reduction involves the power-saving type heat pump systems which use a natural coolant. (NEDO)

  17. Contracting knowledge: the organizational limits to interdisciplinary energy efficiency research and development in the US and the UK

    Energy Technology Data Exchange (ETDEWEB)

    Lutzenhiser, Loren [Washington State Univ., Pullman, WA (United States); Shove, Elizabeth [Lancaster Univ., Centre for Science Studies, Lancaster (United Kingdom)

    1999-04-01

    Comparison of the organization and management of government funded energy efficiency research and development in the United States and the United Kingdom reveals a number of common features as well as as some important differences. The UK pattern is one of centralized agenda-setting and competition in which rival research contractors bid for small, pre-determined, ``bite-sized`` pieces of work. By contrast, the US approach involves complex negotiations between federal energy and environmental policy agencies and semi-entrepreneurial national laboratories. How do these differing research environments influence the knowledge we have of energy efficiency? How do these organizational features affect the shaping of research agendas, the definition of research problems and the management and dissemination of resulting expertise? More specifically, what consequences do these arrangements have for the conduct of needed social science studies within this conventionally technical field? In exploring these questions, the paper identifies a variety of ways in which opportunities for inter-disciplinarity are inadvertently structured by the mechanics of research management. (Author)

  18. Annual report of the Japan Atomic Energy Research Institute for fiscal 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Energy Research Institute (JAERI) has promoted some researches for contributing to general development of science and technology based on nuclear research and development such as neutron science research, light quantum and radiation beam science research, radiation application research, high level computational science research, advanced basic research, and so forth, along the 'Long-term plan on nuclear research, development and application' established on June, 1994. And, researches and developments on leading energy system bringing breakthrough of nuclear technology such as study on future type energy system, research and development of nuclear fusion, and high temperature engineering test research. In addition, as a research containing both fields of general nuclear science and nuclear energy, safety research and health and physics research were also promoted. Furthermore, together with not only inland co-operation with industry, university and institute, but also promotion of diverse international co-operation, effective research and development has been carried out by various research assistant business. Here were described in details on researches on neutron science, light quantum and radiation beam science, radiation application, material science, environmental science, advanced basic research, high level computational science, nuclear fusion, future type energy system, high-temperature engineering test, safety, and relative research, and on operation and safety management, relative technology and outsider operation, and construction arrangement. (G.K.)

  19. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  20. 77 FR 26276 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2012-05-03

    ... business of the Biomass Research and Development Technical Advisory Committee. To attend the meeting and/or... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory Committee AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION...

  1. 78 FR 44105 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2013-07-23

    ... Research and Development Technical Advisory Committee. To attend the meeting and/or to make oral statements... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory Committee AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION...

  2. 76 FR 63614 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2011-10-13

    ... Biomass Research and Development Technical Advisory Committee. To attend the meeting and/or to make oral... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory Committee AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION...

  3. A History of Geothermal Energy Research and Development in the United States. Energy Conversion 1976-2006

    Energy Technology Data Exchange (ETDEWEB)

    Mines, Gregory L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2010-09-01

    This report, the last in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in energy conversion and to make generation of electricity from geothermal resources more cost-competitive.

  4. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  5. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  6. Research and Development of High-Power and High-Energy Electrochemical Storage Devices

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2014-04-30

    The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers to leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOE’s effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology

  7. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  8. Photonics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Elizabeth [UNLV Research Foundation, Las Vegas, NV (United States)

    2010-01-15

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV's Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home's electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation's energy consumption by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve

  9. Federal role and activities in energy research and development 1946-1980: an historical summary

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, R.G.; Dierenfield, B.J.

    1983-02-01

    The federal role in energy research and development has changed substantially in the three decades since World War II. In nuclear technology, the federal presence shifted from government monopoly in the 1940s and early 1950s, to a lesser federal role in the mid-1950s, as the private sector commercialized nuclear power, to an increasing federal role in the 1960s, but now focused on the breeder reactor as a long-term option. Conventional fuel technologies such as coal and oil enjoyed only modest federal support in the immediate postwar years, with only slow increases before 1974. Renewable energy technologies have received substantial federal support only since 1973.

  10. Federal role and activities in energy research and development 1946-1980: an historical summary

    International Nuclear Information System (INIS)

    Hewlett, R.G.; Dierenfield, B.J.

    1983-02-01

    The federal role in energy research and development has changed substantially in the three decades since World War II. In nuclear technology, the federal presence shifted from government monopoly in the 1940s and early 1950s, to a lesser federal role in the mid-1950s, as the private sector commercialized nuclear power, to an increasing federal role in the 1960s, but now focused on the breeder reactor as a long-term option. Conventional fuel technologies such as coal and oil enjoyed only modest federal support in the immediate postwar years, with only slow increases before 1974. Renewable energy technologies have received substantial federal support only since 1973

  11. 3rd programme 'Energy research and energy technologies'

    International Nuclear Information System (INIS)

    1990-01-01

    In the light of developments in the 80s, the questions of dependence and available resources seem less grave in the long and medium term; on the other hand, a further problem has arisen which might prove even more serious with a view to the safeguarding of long-term energy supply: the use of fossil energy sources such as coal; petroleum, and natural gas involves effects constituting a considerable threat to the environment and the world climate. Examples are acid rain and the greenhouse effect. Furthermore, new safety issues and, to a larger extent, also acceptance issues have arisen as regards nuclear energy utilization. To contribute towards solving these problems by research and development is the main objective of this programme. The strategy adopted comprices two approaches complementary to each other: elaboration of scientific bases, system connections, and new techniques permitting - continued use of primary and secondary energy sources to the extent required while taking into account the needs of an increasingly more vulnerable environment; - to ensure the lowest possible energy consumption in the future, reducing, at the same time, considerably the amount of greenhouse gases emitted. (orig./UA) [de

  12. Energy research projects in the Nordic countries - catalogue 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The Nordic energy ministers at their meeting February 9, 1982 agreed upon a working plan for the Nordic energy cooperation. As part of this plan a contact group was established in order to maintain coordination and cooperation within the area of energy research and development. This group decided April 1982 to establish a catalogue of energy research projects in the Nordic countries. A pilot catalogue was published in June 1982. The 1983 catalogue gives an up-to-date survey of energy research and development projects in the Nordic countries. About 2125 projects are described, and information is given on investigator(s), performing organization, financing body, funds, and period. The catalogue is prepared by the Nordic energy libraries through their cooperation in Nordic Atomic Libraries Joint Secretariat. The information is also included in the data base Nordic Energy Index (NEI), which is online accessible at I/S Datacentralen, Copenhagen, via EURONET, SCANNET, TYMNET, AND TELENET. (BP)

  13. Institutional research and development, FY 1987

    International Nuclear Information System (INIS)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87

  14. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  15. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  16. 77 FR 20377 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2012-04-04

    ... Biomass Research and Development Technical Advisory Committee under Section 9008(d) of the Food... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory Committee AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  17. Sustainable energy systems and the EURATOM research programme

    International Nuclear Information System (INIS)

    Webster, S.; Van Goethem, G.; )

    2007-01-01

    We are at a turning point in European research. With the launch of the EU's 7th Framework Programme, committing some Euro 53 billion of public funds to the European research effort over the next 7 years, Europe has finally woken up to the importance of Research and Development in the realisation of the most fundamental objectives defining the Union: growth, competitiveness, and knowledge. At the same time, and with strong links to growth and competitiveness but also to environmental protection, the Union is in the throws of an intense debate on future energy policy and climate change. Part of the research budget, some would say too small a part, is earmarked for energy - in particular the technological aspects of low carbon systems such renewables. This effort, together with measures to improve the EU's security and independence of supply, are essential if Europe is to respond effectively to solve the future energy conundrum. But where does nuclear fit in all this? What will the Union be doing in the area of nuclear research? Indeed, does nuclear figure at all in the long-term plans of the Union? Through the EURATOM part of the Framework Programme, the EU is maintaining important support to up-stream research in the area of advanced reactor technologies. This effort is being coordinated at the global level through EURATOM's membership of the Generation-IV International Forum. Though EU research in this field still has its critics among the Member States, and despite the relatively small sums currently committed, the leverage effect of current actions is significant and this is set to grow in the future. The imminent setting up of a Strategic Energy Technology Plan, as part of the European Commission on-going activities in the field of energy policy, and the feedback from independent experts in the Advisory Group on Energy and the EURATOM Scientific and Technical Committee all point to following conclusions: EU support for research on advanced nuclear fission

  18. FY2011 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-01-31

    The FY 2011 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  19. US Department of Energy Nuclear Research and Development Program

    International Nuclear Information System (INIS)

    Griffith, J.D.

    1989-01-01

    The presentation includes a discussion of nuclear power in the United States with respect to public opinion, energy consumption, economics, technology, and safety. The focus of the presentation is the advanced light water reactor strategy, liquid metal cooled reactor program, the modular high temperature gas cooled reactor program, and DOE research and test reactor facilities utilization. The discussion includes programmatic status and planning

  20. Draft South African wind energy technology platform: preliminary wind energy research and development framework

    CSIR Research Space (South Africa)

    Szewczuk, S

    2011-08-01

    Full Text Available The South African Wind Energy Technology Programme (SAWEP) Phase 1 aims to achieve two key strategic outputs that will guide South Africa on wind energy development. One of these outputs is the Wind Atlas for South Africa (WASA) which will play a...

  1. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  2. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    Science.gov (United States)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  3. Institutional research and development, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  4. Survey of public green energy research, development and demonstration in Denmark; Kortlaegning af offentlig groen energiforskning, -udvikling og -demonstration i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    The Danish energy research has a leading position in the world - both in terms of volume and quality. This is the result of a survey of the public green energy research, development and demonstration. The Danish Ministry of Climate, Energy and Building and the Ministry of Science, Innovation and Higher Education have prepared the survey, which provides a factual status with a number of key figures for the public green energy-related RD and D. The survey shows the basic fact that Denmark has a good foundation for RD and D in green energy. Moreover, the survey shows that prioritisation of energy research can be a major driving force behind increased growth and employment. (LN)

  5. Synthesis of the 1. ANR Energy Assessment colloquium - Which research for tomorrow's energy?

    International Nuclear Information System (INIS)

    Lecourtier, Jacqueline; Pappalardo, Michele; Bucaille, Alain; Falanga, Anne; Fouillac, Christian; Amouroux, Jacques; Bouchard, Patrick; Cadet, Daniel; Fioni, Gabriele; Appert, Olivier; Le Quere, Patrick; Bernard, Herve; Moisan, Francois; Witte, Marc de; Cochevelou, Gilles; Bastien, Remi; Heitzmann, Martha; Lefebvre, Thierry; Michon, Ulysse; Perrier, Olivier; Tarascon, Jean-Marie; Lincot, Daniel; Hadziioannou, Georges; Jacquemelle, Michele; Mermilliod, Nicole; Saulnier, Jean-Bernard

    2009-11-01

    Proposed by representatives of the main involved companies, agencies and institutions, the contributions of this colloquium addressed the following issues: the role of new energy technologies in the French and World sustainable development; The programmes 'New energy technologies'; Research priorities for these new technologies; Industry Perspectives and challenges; SMEs and the ANR; Research perspectives and challenges (electrochemical storage of energy, solar photovoltaic energy, new materials for energy, integration of renewable energies in electric systems, technological innovations for new energy technologies)

  6. New York State Energy Research and Development Authority annual report, 1991--1992

    International Nuclear Information System (INIS)

    1992-01-01

    To meet its energy and environmental goals, the Energy Authority faces a number of challenges affecting New York State's citizens. These include: Managing a nationally recognized energy research program of more than 250 ongoing projects located throughout the State that, through cutting-edge, energy-efficient technologies, identifies alternative energy sources; Participating in the joint Federal/State cleanup of a former nuclear fuel reprocessing plant at West Valley, an effort that will cost more than a billion dollars; Cleanup of the Malta Rocket Fuel Area Superfund site and maintenance of the shut-down State Low Level Radioactive Waste Disposal Area at West Valley; Issuing innovative tax-exempt bonds to finance utility projects, with $4.3 billion currently issued saving New York State citizens more than $4 billion; and Designing, building and operating a new low-level radioactive waste disposal facility for the State. In addition to these broad-based programs, the Energy Authority cosponsors the Student Energy Research Competition, a yearly science competition for high school students. Now in its eleventh year, the Competition continues to challenge students to explore solutions to meet our energy needs. This year, some 600 project proposals were submitted by 1217 students representing 85 schools throughout New York State. The Competition is cosponsored by the State Energy Office. Energy Authority programs help to ensure that, as we protect environmental values and promote economic growth, New York State has secure and economical future supplies of energy

  7. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  8. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  9. 77 FR 64970 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2012-10-24

    ... Biomass Research and Development Technical Advisory Committee. The Federal Advisory Committee Act (Pub. L... observe the business of the Biomass Research and Development Technical Advisory Committee. To attend the... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Biomass Research and...

  10. 78 FR 29125 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2013-05-17

    ... Biomass Research and Development Technical Advisory Committee. The Federal Advisory Committee Act (Pub. L... public are welcome to observe the business of the Biomass Research and Development Technical Advisory... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Biomass Research and...

  11. Energy consumption and economic development after the energy price increases of 1973

    International Nuclear Information System (INIS)

    Danielewski, J.

    1993-01-01

    The interdependence between energy consumption and economic development are highlighted in this research, which focuses on energy price rises between 1973 and 1989. Three groups of countries are identified, developing and developed market economies and centrally planned economies. Two areas of interdependence are examined, firstly the dynamic relationship between primary energy consumption growth and real economic growth and secondly the static relationship between primary energy consumption and national income. In the period under review, developing market economies reacted most strongly to higher energy prices, with lower energy consumption while maintaining real growth in the Gross Domestic Product. However developing countries and centrally planned economies increased their energy consumption per unit of national income although the rate of increase slowed after 1975. (UK)

  12. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  13. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  14. Summaries of FY 1977, research in high energy physics

    International Nuclear Information System (INIS)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977

  15. Fiscal 1998 achievement report. Research and development of advanced clean energy vehicles; 1998 nendo kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The efforts aim to develop advanced clean energy vehicles (ACEVs) which drive on substitutes of oil low in pollution, consuming 1/2 or less energy and emitting 1/2 or less CO2 than the existing vehicles. Studies conducted in fiscal 1998 covered high-efficiency hybrid power systems and ACEVs. Efforts to develop ACEVs involved a reformed methanol fuel cell hybrid passenger car of Nissan Motor Co., Ltd. (improvement on element technologies, study of methanol concentration); CNG (compressed natural gas) engine hybrid passenger car of Honda Research and Development Co., Ltd. (improvement on flywheels, studies of ANG (adsorbent natural gas) adsorbent and ANG tank); CNG ceramics engine hybrid cargo truck of Isuzu Ceramics Research Institute Co., Ltd. (fabrication of ceramics single-cylinder engine, design and fabrication of vehicle control system, fabrication of prototype); CNG lean burn engine hybrid cargo truck of Mitsubishi Motors Co., Ltd. (studies, designing, and fabrication of engine element parts); LNG engine hybrid bus of Nissan Diesel Motor Co., Ltd. (development of engine and power storage); and DME (dimethylether) engine hybrid bus of Hino Motors, Ltd. (development of DME fuel injection system and high-efficiency power storage). (NEDO)

  16. A preliminary assessment of the potential for 'team science' in DOE Energy Innovation Hubs and Energy Frontier Research Centers

    International Nuclear Information System (INIS)

    Boardman, Craig; Ponomariov, Branco

    2011-01-01

    President Obama has called for the development of new energy technologies to address our national energy needs and restore US economic competitiveness. In response, the Department of Energy has established new R and D modalities for energy research and development designed to facilitate collaboration across disciplinary, institutional, and sectoral boundaries. In this research note, we provide a preliminary assessment of the potential for essential mechanisms for coordinated problem solving among diverse actors within two new modalities at the DOE: Energy Innovation Hubs and Energy Frontier Research Centers. - Highlights: → Energy Frontier Research Centers may lack the basic mechanisms for coordinating diverse actors. → Divergent goals across diverse actors may hinder coordination in Energy Innovation Hubs. → The implementation of these and similar energy policies require further investigation.

  17. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    CIEE`s second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director`s discretionary research, and exploratory research will also be featured in this report.

  18. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    CIEE's second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured in this report.

  19. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  20. Research and development on nuclear energy for the future

    International Nuclear Information System (INIS)

    Bouchard, J.; Bernard, P.; Brunel, L.; Carre, F.

    2001-01-01

    Over the past century energy consumption worldwide has increased thirteen-fold and by the year 2050 is likely to be twice what it is today. Unless some major changes take place, the pursuit of energy production in the current conditions, essentially based on fossil energy sources, would result in the depletion of all the known oil and gas sources in the world, within a few generations, a doubling of the annual emissions of greenhouse effect gases by the year 2050 and the economies of many countries suffering under hardships and uncertainties relating to the oil and gas prices and the risks of scarcity of supply, particularly countries who do not have natural fossil resources. To avoid such risks, the global stakes are therefore the following: to stabilize the concentrations of greenhouse effect gases in the atmosphere at a level that will avoid any dangerous anthropic climatic perturbation and reduce those emissions to their 1990 level; over the next half-century, to meet the energy consumption of 9 billion inhabitants across the planet; to contribute to the long-term conditions for next generations that will allow them a sustainable means of energy production and development. Energy savings and renewable energy sources will and must be able to contribute to these objectives, however it will not be enough and nuclear energy should provide a sustainable solution for the very high stakes involved: long-term and no greenhouse effect or toxic gas emissions. (author)

  1. Exchange of researchers of oil substituting energies in EU countries; EU shokoku no sekiyu daitai energy kenkyusha koryu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to further promote smoother introduction of oil substituting energies and development of new energies and energy saving technologies, it was intended to exchange and acquire items of information effective to learn the current state and policy trends on research and development of new energies and energy conservation in the EU countries who are the industrialized countries like Japan and enthusiastic in developing oil substituting energies. Therefore, exchange of researchers was carried out with an objective to contribute to research and development of oil substituting energies by deepening mutual understanding on the development efforts and forming efficient cooperative relationship. The researchers who visited Japan are Dr. Robert Durand (France) and Prof. and Dr. Bruno Scrosati (Italy). Dr. Durand has a great knowledge about fuel cells and storage batteries, and Dr. Scrosati about electrolytes and lithium batteries. Both gentlemen have visited the Agency of Industrial Science and Technology and the Agency of Natural Resources and Energy of the Ministry of International Trade and Industry, NEDO, Toshiba, Sony, Sanyo Electric, Japan Storage Battery, Matsushita Battery Industry, the Industrial Technology Research Institute of Osaka, and Kansai Electric Power Company. Views and information were exchanged and a number of good results were rewarded.

  2. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  3. The Swiss Federal Energy Research Concept for the Years 2000-2003

    International Nuclear Information System (INIS)

    1999-05-01

    The Swiss Federal Energy Research Concept provides details within the framework set by the Swiss Parliament and the Swiss Federal Council (Government). It maps out how publicly supported research shall be used to achieve politically decided energy goals. Information is provided on the manner in which energy education, research and technology developments will be supported during the period from 2000-2003. The Concept facilitates coordination among federal and cantonal decision makers as well as municipal authorities. Swiss energy research is dedicated to sustainable development, including the massive reduction of CO 2 emissions. This is also implicit in the concept of the '2000 W society'. A two-pronged approach strives to reduce pollution by energy systems and increase system efficiencies. Technical progress is buttressed by socio-economic measures. Priorities for publicly funded energy research have been set in the context of long-term perspectives, harmonized with European and worldwide goals. Swiss energy research must be high-level research and this requires adequate means being made available to assure both quality and continuity. It is important that the attractiveness and competitiveness of Switzerland as a home for science and technology be maintained, indeed strengthened. It has been proved worldwide that energy research needs public funding. Particularly favored is application oriented research, including pilot and demonstration projects. (author)

  4. The Swiss Federal Energy Research Concept for the Years 2000-2003

    International Nuclear Information System (INIS)

    1999-05-01

    The Swiss Federal Energy Research Concept provides details within the framework set by the Swiss Parliament and the Swiss Federal Council (Government). It maps out how publicly supported research shall be used to achieve politically decided energy goals. Information is provided on the manner in which energy education, research and technology developments will be supported during the period from 2000-2003. The concept facilitates coordination among federal and cantonal decision makers as well as municipal authorities. Swiss energy research is dedicated to sustainable development, including the massive reduction of CO 2 emissions. This is also implicit in the concept of the '2000 W society'. A two-pronged approach strives to reduce pollution by energy systems and increase system efficiencies. Technical progress is buttressed by socio-economic measures. Priorities for publicly funded energy research have been set in the context of long-term perspectives, harmonized with European and worldwide goals. Swiss energy research must be high-level research and this requires adequate means being made available to assure both quality and continuity. It is important that the attractiveness and competitiveness of Switzerland as a home for science and technology be maintained, indeed strengthened. It has been proved worldwide that energy research needs public funding. Particularly favored is application oriented research, including pilot and demonstration projects. (author)

  5. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  6. 78 FR 64932 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2013-10-30

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY: Energy... announces an open meeting of the Biomass Research and Development Technical Advisory Committee under Section... Biomass Research and Development Technical Advisory Committee. To attend the meeting and/or to make oral...

  7. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  8. Knowledge in the energy sector : what research and development expenditures and patents reveal about innovation

    International Nuclear Information System (INIS)

    Bointner, R.

    2015-01-01

    This work is dealing with knowledge in the energy sector and structured in three main parts. Part I is dealing with energy research expenditures and patents in IEA countries. A broad literature review on innovation drivers and barriers is followed by an analysis of the knowledge induced by public research and development expenditures (R&D) and patents in the energy sector. The cumulative knowledge stock induced by public R&D expenditures in 14 investigated IEA-countries is 102.3 bn. EUR in 2013. Nuclear energy has the largest share of 43.9 bn. EUR, followed by energy efficiency accounting for 14.9 bn. EUR, fossil fuels with 13.5 bn. EUR, and renewable energy with 12.1 bn. EUR. A regression analysis indicates a linear relation between the GDP and the cumulative knowledge, with each billion EUR of GDP leading to an additional knowledge of 3.1 mil. EUR. However, linearity is not given for single energy technologies. Further, the results show that appropriate public R&D funding for research and development associated with a subsequent promotion of the market diffusion of a niche technology may lead to a breakthrough of the respective technology. Part II aims to examine public expenditures for energy R&D in the European Union and the resulting energy knowledge stock. The energy R&D distribution among technologies of the EU member states and the European Commission was similar in the 1980s with a strong focus on nuclear energy. Nowadays energy efficiency and renewable energy technologies are of growing importance. For instance, the new programme Horizon 2020 is expected to have an equal distribution between non-nuclear and nuclear R&D expenditures. The cumulative energy knowledge stock induced by public R&D expenditures amounts to 35.8 bn. EUR in 2013, whereupon the EU member states’ share is more than three times larger than the European Commission’s share. Moreover, knowledge stock scenarios for the next decade are provided, followed by an investigation, if there

  9. Analysis of the energy development variants

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    Analysis of the variants of energy development is made as the third stage of a procedure of energy-economy interrelations dynamics study, the other two stages being the scenarios description and the formulation of the variants. This stage includes a research on the dimensions and the dynamics of the resources demands, the general features and the trends of the national energy development. There is a presentation of a comparative analysis of the variants in terms of economic indices and energy values, computed by the model IMPACT-B. A resource evaluation of the development variants is given in terms of investments, requirements (direct, indirect and total) and limited national resources demands of the energy system. The trends of the national energy development discussed are: trends characterizing the changes in the structure of the energy consumption, resulting from changes in the economy; trends of the energy system impact on the productivity of labor; general trends of the proportionality in the industrial, the household and services sector development. 16 refs., 16 figs., 4 tabs. (R.Ts.)

  10. Annual report of the Japan Atomic Energy Research Institute for fiscal 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) promotes some researches such as neutron science research, light quantum/synchrotron radiation science research, radiation application research, science research, advanced basic research, and so on, based on nuclear energy R and D and contributing to general development on scientific technology, along the Long-term program on research, development and application of nuclear energy' established on June, 1994, as a general organization on nuclear energy R and D in Japan. And, as an R and D on advanced energy system bringing breakthrough on nuclear energy technology, JAERI also promotes research on future type energy system, R and D on nuclear fusion, and trial research on high temperature engineering. Furthermore, JAERI progresses research on safety and health physics, as occupying both fields of general nuclear energy science and nuclear energy. In addition, by carrying out not only interdisciplinary cooperation in Japan but also versatile international one, various research assisting business and effective R and D are promoted. Here were described in details in fiscal year 2000, on 6 items on the neutron science research (SR), 13 items on light quantum/radiation light SR, 13 items on radiation application SR, 6 items on matter SR, 3 items on environment SR, 19 items on advanced basic SR, and so on. (G.K.)

  11. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  12. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  13. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  14. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  15. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-07-20

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  16. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-01-01

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  17. Development and utilization of new energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Qu Shiyuan (Academia Sinica, Beijing (CN). Energy Research Inst.)

    1990-01-01

    Since the foundation of the People's Republic of China, the Chinese Government has paid great attention to the development and utilization of new energy resources. Besides the development of biomass gas to provide energy for daily life in rural areas, China has also done much research and development in solar, wind, geothermal and marine energy to substitute alternative energy supplies, especially in the remote regions. Although China has abundant conventional energy resources the average energy resource per capita is low due to the large population. In recent years, the gap between energy consumption and supply has become larger and China will have to develop actively new energy industries at the same time as developing conventional energy. (author).

  18. French National Alliance for Energy Research Coordination - Ancre, Activity Report 2015-2016

    International Nuclear Information System (INIS)

    Alazard-Toux, Nathalie; Allard, Francis; Becue, Thierry; Bernard, Herve; Bourgoin, Jean-Philippe; Brault, Pascal; Carre, Franck; Chabrelie, Marie-Francoise; Charrue, Herve; Colonna, Paul; Compere, Chantal; Criqui, Patrick; David, Sylvain; Devezeaux, Jean-Guy; Dollet, Alain; Duplan, Jean-Luc; Fabre, Francoise; Ferrant, Pierre; Flamant, Gilles; Forti, Laurent; Gentier, Sylvie; Gouy, Jean-Philippe; Hadj-Said, Nouredine; Lacour, Jean-Jacques; Latroche, Michel; Legrand, Jack; Lemoine, Fabrice; Le Net, Elisabeth; Le Thiez, Pierre; Lhomme-Maublanc, Julie; Lucchese, Paul; Malbranche, Philippe; Mermilliod, Nicole; Most, Jean-Michel; Rondot, Yolande; Tilagone, Richard; Touboul, Francoise; Uster, Guillaume; Vidal, Olivier

    2017-01-01

    Created on 17 July 2009, ANCRE (French National Alliance for Energy Research Coordination) brings together 19 research and innovation bodies and higher education institution consortia in the field of energy. Its missions, carried out in liaison with competitiveness clusters and funding agencies, are to: - reinforce synergies and partnerships between research bodies, universities and companies, - identify scientific and technical challenges hampering industrial development, - propose research and innovation programs and approaches to their implementation, - contribute to the development of national research strategy in the field of energy, as well as funding agency program development. Its 2 main societal challenges are: Clean, secure and efficient energy, and Sustainable mobility and urban systems. ANCRE mobilizes 200 scientists involved in 10 programmatic groups (1 - Energy from biomass, 2 - Fossil energy, geothermal energy, critical metals, 3 - Nuclear energy, 4 - Solar energy, 5 - Ocean, hydraulic and wind energy, 6 - Transport, 7 - Buildings, 8 - Industries and agriculture, 9 - Energy forecasting and economics, 10 - Energy networks and associated storage) and 2 cross-disciplinary groups (Strategy, Europe and international). This activity report presents the ANCRE's 2015-2016 Highlights, its future challenges, its contribution to public policy-making, its close cooperation with the French national research agency and active participation in European programs, its mobilizing, structuring and uniting communities, and its knowledge production and dissemination

  19. Research and development and management of technology

    International Nuclear Information System (INIS)

    Kim, Yeong Gil

    1989-04-01

    This book mentions current state of affairs on research and development and prospect : activity of business, field like information and materials, energy and resource, public welfare, general industry technology. It introduces policy on promotion of research and development such as propel of special research and development business, propel strategy for 10 priority tasks, reinforcement of basic research, promotion of information industry and propel for technical development of business.

  20. Report on the development/comprehensive research of new hydrogen energy demonstrative technology; Shinsuiso energy jissho gijutsu kaihatsu sogo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    In this project, the excess heat phenomenon caused by electrolyzing heavy water using palladium metal, etc. as electrode was captured as `new hydrogen energy.` To make a possibility of being as a future energy source clear, the abnormal heating phenomenon was verified. By elucidating the mechanism, the paper aimed at quantitatively controlling the heat generation. The R and D period was four years from fiscal 1993, and the details of the research are about the excess heat measuring test, material analysis/development tests, test on detection of reaction products, information collection/arrangement, international research cooperation. As a result of the research, a part of the excess heat measurement was surely able to be reproduced. However, when a confirmation experiment on the excess heat was conducted by another more positive method under the same conditions, it was found that the excess heat quantity was not the absolute excess heat quantity exceeding the measuring sensitivity/errors of the system. Supposing the excess heat of 0.1W order is generated in nuclear reaction, any of reaction products should be detected in a considerable quantity. However, no reaction products were not detected. 42 refs., 241 figs., 55 tabs.

  1. The national strategy synthesis on the research in the energy domain

    International Nuclear Information System (INIS)

    2007-01-01

    The energy research strategy takes into account two main orientations: the identification, the design and the industrial validation of new technologies generating no or less greenhouse gases, progresses relative to the today technologies in order to decrease the energy consumption. The report discusses the following axis of research: technologies of poor greenhouse gases emission and alternative energy resources, the nuclear energy for the electric power production, the biomass, the photovoltaic energy by the development of less expensive technologies, the CO 2 capture and storage, the energy efficiency, the energy storage, the transport sector and the fuel cells development. (A.L.B.)

  2. Research for the energy turnaround. Phase transitions actively shape. Contributions

    International Nuclear Information System (INIS)

    Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas

    2015-01-01

    The Annual Conference 2014 of the Renewable Energy Research Association was held in Berlin on 6 and 7 November 2014. This book documents the contributions of the conference on research for the energy turnaround, phase transitions actively shape. After an introduction and two contributions to the political framework, the contributions to the economic phases of the energy transition, the phase of the current turn, the phases of social energy revolution, the stages of heat turnaround (Waermewende), and the stages of the mobility turn deal with the stages of development of the energy system. Finally, the Research Association Renewable Energy is briefly presented. [de

  3. Annual report of the Japan Atomic Energy Research Institute for fiscal 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Japan Atomic Energy Research Institute has promoted the research on high temperature engineering, the research and development of nuclear fusion, the research on radiation utilization and the research and development of nuclear powered ships as the advanced project researches which bring about the breakthrough of atomic energy technology as well as the research on the safety, following the long term plan of atomic energy development and utilization which was decided in 1987, as the general research institute in Japanese atomic energy field. The progress of the above mentioned researches in fiscal 1992 is reported. The operation of JRR-2, JRR-3M, JRR-4 and JMTR was carried out as scheduled. 9 cases of the medical irradiation on brain tumors were performed at JRR-2. As to the practical test of the disassembling of JPDR, the machinery and equipment in the reactor containment vessel were removed, and the development of a high performance decontamination testing device and others was advanced. The efficient operation of the large computer system, the production and sales of radioisotopes and radioactive waste business were continued. (K.I.)

  4. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  5. Laboratory Directed Research and Development Program annual report to the Department of Energy, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  6. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums

  7. Research and development project plans for FY 1995; 1995 nendo kenkyu kaihatsu jigyo keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The present research and development project plans for FY 1995 administrated by NEDO consist of research and development of new energy, and research and development of industrial technology. Are illustrated further enhancement of new energy introduction promotion measures, new stage of international projects, promotion of new energy and new energy technology development, further enhancement of industrial and scientific technology research and development, integrated measures against global and urban environment problems, and budget of NEDO projects in FY 1995. The research and development of new energy includes coal conversion technology, solar energy technology, geothermal energy technology, energy conversion and storage technology, hydrogen, alcohol and biomass energy technology, geothermal energy resources, coal resources development, new energy promotion department activities, NEDO information center activities, and so on. On the other hand, the research and development of industrial technology includes research and development of industrial technology, and global environment technology. The research and development of industrial technology consists of superconductivity, new materials, biotechnology, electronics, information and communications, machinery and aerospace, natural resources, humanity, life and society, and various leading researches.

  8. Energy in Ireland: context, strategy and research; Energie en Irlande: contexte, strategie et recherche

    Energy Technology Data Exchange (ETDEWEB)

    Saintherant, N.; Lerouge, Ch.; Welcker, A

    2008-01-15

    In the present day situation of sudden awareness about climatic change and announced fossil fuels shortage, Ireland has defined a new strategy for its energy future. Context: Ireland is strongly dependent of oil and gas imports which increase regularly to meet the demand. A small part of the electricity consumed is imported from Ulster. The share of renewable energies remains weak but is increasing significantly. Therefore, from 1990 to 2006, the proportion of renewable energies increased from 1.9% (mainly of hydroelectric origin) to 4.5%. Wind power represents now the main renewable energy source. The transportation sector is the most energy consuming and the biggest source of greenhouse gases. Strategy: the Irish policy is driven by pluri-annual strategic plans which define the objectives and means. Priority is given to the security of supplies at affordable prices: 8.5 billion euros will be invested during the 2007-2013 era for the modernization of existing energy infrastructures and companies, and in a lesser extent for the development of renewable energy sources. During this period, 415 million euros more will be devoted to the research, development and demonstration (RD and D) of new energy solutions. Research: in 2005 the energy RD and D expenses reached 12.8 million euros shared between 54% for R and D and 46% for demonstration projects. Half of the financing is given to higher education schools and is devoted to energy saving purposes (33%) and to renewable energies (29%, mainly wind power and biomass). Academic research gives a particular attention to ocean energy which represents an important potential resource in Ireland and which has already led to the creation of innovative companies. The integration of renewable energy sources to the power grid and the stability of supplies are also the object of active researches. (J.S.)

  9. Experimental program to stimulate competitive energy research in North Dakota: Summary and significance of DOE Trainee research

    Energy Technology Data Exchange (ETDEWEB)

    Boudjouk, Philip

    1999-07-01

    The general goals of the North Dakota DOE/EPSCoR Program are to enhance the capabilities of North Dakota's researchers to conduct nationally competitive energy-related research and to develop science and engineering human resources to meet current and future needs in energy-related areas. Doctoral students were trained and energy research was conducted.

  10. Real options valuation of US federal renewable energy research, development, demonstration, and deployment

    International Nuclear Information System (INIS)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2007-01-01

    Benefits analysis of US Federal government research, development, demonstration, and deployment (RD 3 ) programmes for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and non-renewable fuels. The benefits estimate for the programme derives from the difference between two forecasts, with and without the RD 3 programme in place. Three deficiencies of this approach are that it ignores: (1) uncertainty in the cost of non-renewable energy (NRE); (2) the possibility of adjustment to the RD 3 effort commensurate with the evolving state of the world; and (3) the underlying technical risk associated with RD 3 . In this paper, an intuitive approach to determining the option value of RE RD 3 is developed. This approach seeks to tackle the first two deficiencies noted above by providing an estimate via a compound real option of an RE RD 3 programme in a future with uncertain NRE costs. A binomial lattice reveals the economic intuition underlying the decision-making process, while a numerical example illustrates the option components embedded in a simplified representation of current US Federal RE RD 3

  11. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  12. Basic research on energy conservation in developing countries. Basic research on promotion of activities implemented jointly (AIJ) (research on possibility of AIJ in developing countries); Hatten tojokoku energy shohi koritsuka kiso chosanado jigyo kyodo jisshi suishin kiso chosa. Hatten tojokoku ni okeru kyodo jisshi katsudo no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The activities implemented jointly (AIJ) is expected as global measures to reduce greenhouse gas (such as CO2) emission. In this report, the possibility of AIJ projects in developing countries was researched. The United Nations Framework Convention on Climate Change was signed by 155 countries in 1992. This convention parties approved AIJ projects for measures against global warming. The 1st Conference of the Parties (COPI) held in 1995 approved the pilot phase of AIJ by voluntary workers jointly with developing countries until the end of this century. The trend, level and future plan of energy conservation technologies were researched and analyzed for steelmaking, cement and electric power supply industries in both the Philippine and Thailand. The possibility of AIJ projects was studied by selecting several Japanese energy conservation technologies transferable to both countries. The same research was also carried out for forest as carbon absorption source. 5 refs., 23 figs., 58 tabs.

  13. Minutes from Department of Energy/Hazardous Waste Remedial Actions Program research and development technology needs assessment review meeting

    International Nuclear Information System (INIS)

    1989-01-01

    On November 1--2, 1988, representatives of the Department of Energy (DOE) Headquarters, DOE Operations Offices, DOE contractors, and the Hazardous Waste Remedial Actions Program met in Salt Lake City, Utah, to select and prioritize candidate waste problems in need of research and development. The information gained will be used in planning for future research and development tasks and in restructuring current research activities to address the priority needs. All Operations Offices were represented by DOE staff and by contractor delegates from the area. This document summarizes the results of the meeting and lists the priority waste problems established

  14. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  15. Neutrons and sustainable energy research

    International Nuclear Information System (INIS)

    Peterson, V.

    2009-01-01

    Full text: Neutron scattering is essential for the study of sustainable energy materials, including the areas of hydrogen research (such as its separation, storage, and use in fuel-cells) and energy transport (such as fuel-cell and battery materials). Researchers at the Bragg Institute address critical questions in sustainable energy research, with researchers providing a source of expertise for external collaborators, specialist analysis equipment, and acting as a point of contact for the study of sustainable energy materials using neutron scattering. Some recent examples of sustainable energy materials research using neutron scattering will be presented. These examples include the storage of energy, in the form of hydrogen through a study of its location in and interaction with new porous hydrogen storage materials [1-3] and in battery materials through in-situ studies of structure during charge-discharge cycling, and use of energy in fuel cells by studying proton diffusion through fuel cell membranes.

  16. Research activities on dosimetry for high energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The external dosimetry research group of JAERI has been calculating dose conversion coefficients for high-energy radiations using particle transport simulation codes. The group has also been developing radiation dose measurement techniques for high-energy neutrons in collaboration with some university groups. (author)

  17. Research and development project report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report summarizes results of research and development projects administered by NEDO for FY 1996. Overview of new energy projects and twelve chapters for individual projects are provided in the report. The new energy technology development projects administered by NEDO are classified into twelve categories, i.e., Development of technologies for solar energy utilization, Development of geothermal resources, Development of technologies for exploration and utilization of geothermal energy, Development of coal energy utilization technologies, Development of coal resources, Development of energy conversion and storage technologies, Development of hydrogen, alcohol and biomass technologies, Development of other oil-alternative energy technologies, Introduction and promotion of new energy sources, International energy-promotion activities, Promotion of development and introduction, and Activities of the NEDO Information Center. To ensure energy security and actively cope with environmental problems such as by taking carbon dioxide emission control measures, NEDO has stepped up its efforts to develop new energy- and energy saving-related technologies and introduce and diffuse them. 79 figs., 37 tabs.

  18. Status of the U.S. Department of Energy/National Renewable Energy Laboratory Avian Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K. C.

    1999-06-21

    As wind energy development expands, concern over possible negative impacts of wind farms on birds remains an issue to be addressed. The concerns are twofold: (1) possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act and/or the Endangered Species Act, and (2) the effect of avian mortality on bird populations. To properly address these concerns, the National Renewable Energy Laboratory (NREL), working collaboratively with stakeholders including utilities, environmental groups, consumer advocates, regulators, government officials, and the wind industry, supports an avian-wind interaction research program. The objectives of the program are to conduct and sponsor scientifically based research that will ultimately lead to the reduction of avian fatality due to wind energy development throughout the United States. The approach for this program involves cooperating with the various stakeholders to study the impacts of current wind plants on avian populations, developing approaches to siting wind plants that avoid avian problems in the future, and investigating methods for reducing or eliminating impacts on birds due to the development of wind energy. This paper summarizes the research projects currently supported by NREL.

  19. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  20. Why do we conduct energy research in Alabama?

    Science.gov (United States)

    Hills, D. J.

    2017-12-01

    The purpose of the Energy Investigations Program (EIP) at the Geological Survey of Alabama is to research all geological topics related to energy that would affect the state. The state of Alabama has a rich history of coal, oil, and natural gas production. These traditional fuels are still a necessary part of power production, even as other energy sources are being developed. EIP helps assess the remaining reserves of these hydrocarbons, both from areas that have had extensive production as well as new regions that have yet to have viable production. Our research helps people decide how (or even if) they want to develop the resource. Even so, the research in EIP is not all about fossil fuels. We also investigate how carbon dioxide produced from burning these traditional fuels might be captured and then either used or stored permanently. The same types of geology that are good for producing oil and gas are also often good for geologic storage of carbon dioxide permanently. Carbon dioxide can also be used to produce more oil and gas from an older, less productive field, as it can be used to push more of the hydrocarbon out of the rock. This type of research can lead to job development and economic stability or growth within the state.

  1. 76 FR 22091 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2011-04-20

    ... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory Committee AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces an open meeting of the Biomass Research and...

  2. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 2); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy). The R and D on methanol energy systems involves the R and D on decomposition and synthesis catalyst of methanol and methyl formate for the waste heat sources of relatively low temperature. The R and D on high-efficiency techniques using hydrogen-occluding alloys involves development of heat exchangers of low sensible heat ratio, fabrication of double-effect type MH heat pump cycle devices, and demonstration tests for the system operation. It is found that the heat output of the hydrogen-occluding alloy for high temperature use is 0.18kW/kg at 90 degrees C, and that the alloy can be massively produced. A thermal utilization efficiency COP of 0.68 is obtained for the double-effect type MH heat pump cycles. The R and D on the heat-hydrogen recovery, transportation and utilization techniques involves designs and fabrication on a trial basis of a sensible heat recovery unit. (NEDO)

  3. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  4. Energy research program: energy in buildings for the years 2008-2011; Energieforschungsprogramm. Energie in Gebaeuden fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Filleux, Ch.

    2009-08-15

    In Switzerland, existing buildings account for approximately 50% of primary energy consumption. Climate change, as well as the demand on supply, require that Swiss construction practices be immediately adapted. For new buildings, innovative technologies are now widely available. However, their integration into new construction is still too slow due to the fact that current construction practices still lack a holistic approach. Today there also lacks practical solutions for renovations of existing buildings. Therefore, the great challenge for research and development today are 1.5 million pre-existing buildings, which will dictate the future energy consumption for decades. The Federal Energy Research Commission (CORE) has recognized the situation and has considered these issues in its 2008 - 2011 concept for federal energy research. The present research programme Energy in Buildings of the Swiss Federal Office of Energy focuses on the long-term objectives of CORE. This results in the following actions in the building sector: (a) Reducing energy consumption and improving energy efficiency; (b) Integration of renewable energy sources; (c) Reduction of CO{sub 2} emissions through the use of improved technologies. The research programme is therefore focused on concepts and technologies that have long-term objectives, without neglecting the short and medium term goals. The objectives for the period 2008 - 2011 are: (i) Concepts for buildings and housing developments concerning the development of construction methods that are compatible with the goal of a 2,000-watt society (preservation of architectural diversity, use of passive solar energy and daylight); (ii) Concepts, technologies and planning tools for the improvement of energy systems in buildings; (iii) Heating, cooling and ventilation systems in buildings that are compatible with the goal of a 2,000-watt society (efficient cooling systems, heat pumps, etc.); (iv) Increase in efficient use of electricity in

  5. Total-factor energy efficiency in developing countries

    International Nuclear Information System (INIS)

    Zhang Xingping; Cheng Xiaomei; Yuan Jiahai; Gao Xiaojun

    2011-01-01

    This paper uses a total-factor framework to investigate energy efficiency in 23 developing countries during the period of 1980-2005. We explore the total-factor energy efficiency and change trends by applying data envelopment analysis (DEA) window, which is capable of measuring efficiency in cross-sectional and time-varying data. The empirical results indicate that Botswana, Mexico and Panama perform the best in terms of energy efficiency, whereas Kenya, Sri Lanka, Syria and the Philippines perform the worst during the entire research period. Seven countries show little change in energy efficiency over time. Eleven countries experienced continuous decreases in energy efficiency. Among five countries witnessing continuous increase in total-factor energy efficiency, China experienced the most rapid rise. Practice in China indicates that effective energy policies play a crucial role in improving energy efficiency. Tobit regression analysis indicates that a U-shaped relationship exists between total-factor energy efficiency and income per capita. - Research Highlights: → To measure the total-factor energy efficiency using DEA window analysis. → Focus on an application area of developing countries in the period of 1980-2005. → A U-shaped relationship was found between total-factor energy efficiency and income.

  6. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  7. Scenarios for Benefits Analysis of Energy Research, Development,Demonstration and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Gumerman, Etan; Marnay, Chris

    2005-09-07

    For at least the last decade, evaluation of the benefits of research, development, demonstration, and deployment (RD3) by the U.S. Department of Energy has been conducted using deterministic forecasts that unrealistically presume we can precisely foresee our future 10, 25,or even 50 years hence. This effort tries, in a modest way, to begin a process of recognition that the reality of our energy future is rather one rife with uncertainty. The National Energy Modeling System (NEMS) is used by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EE) and Fossil Energy (FE) for their RD3 benefits evaluation. In order to begin scoping out the uncertainty in these deterministic forecasts, EE and FE designed two futures that differ significantly from the basic NEMS forecast. A High Fuel Price Scenario and a Carbon Cap Scenario were envisioned to forecast alternative futures and the associated benefits. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) implemented these scenarios into its version of NEMS,NEMS-LBNL, in late 2004, and the Energy Information Agency created six scenarios for FE in early 2005. The creation and implementation of the EE-FE scenarios are explained in this report. Both a Carbon Cap Scenario and a High Fuel Price Scenarios were implemented into the NEMS-LBNL. EIA subsequently modeled similar scenarios using NEMS. While the EIA and LBNL implementations were in some ways rather different, their forecasts do not significantly diverge. Compared to the Reference Scenario, the High Fuel Price Scenario reduces energy consumption by 4 percent in 2025, while in the EIA fuel price scenario (known as Scenario 4) reduction from its corresponding reference scenario (known as Scenario 0) in 2025 is marginal. Nonetheless, the 4 percent demand reduction does not lead to other cascading effects that would significantly differentiate the two scenarios. The LBNL and EIA carbon scenarios were mostly identical. The only major

  8. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  9. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  10. Energy research for practice; Energieforschung fuer die Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Johannes (ed.) [FIZ Karlsruhe, Bonn (Germany). BINE Informationsdienst

    2006-07-01

    The BINE editorial team, experts with a background in engineering and journalism, provide information in an independent, experienced and critical manner. Current information from research and pilot projects is thoroughly researched and prepared in a target-group-oriented way. The three series of brochures (Projektinfo, Themeninfo and basisEnergie), which describe results and experience gathered from research projects, are geared toward those who could potentially apply this information in practice, i.e. developers, planners, consultants, investors, energy suppliers and occupants. These publications, as well as the BINE newsletter, can be subscribed to at no cost. At www.bine.info, the information provided is systematically interconnected with additional information. The BINE Information Service facilitates the transfer of knowledge and information from energy research to practice, while cooperating closely with companies and institutions which, within the framework of sponsored projects, work to make efficiency technologies and renewable energy sources ready for use. Numerous collaborations with establishments in the fields of research, education and practice, as well as with trade press and politicians, serve to accelerate the application of energy research topics. The BINE Information Service is provided by FIZ Karlsruhe and sponsored by the German Federal Ministry of Economics and Technology. (orig.)

  11. Annual report of the Japan Atomic Energy Research Institute, for fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Japan Atomic Energy Research Institute has promoted the research on nuclear safety, the research and development of high temperature engineering and nuclear fusion which are the leading projects bringing about the breakthrough in atomic energy technology, the research on radiation utilization and the research and development of nuclear-powered ships, following the 'Plan of development and long term utilization of atomic energy' decided in 1987, as the central, general research institute in atomic energy field in Japan. Also the advanced basic research for opening atomic energy frontier and various international cooperation as well as the cooperation in Japan have been promoted. The engineering safety of nuclear facilities and environmental safety, the construction of the Nuclear Fuel Cycle Safety Engineering Research Facility, the design of the High Temperature Engineering Test Reactor and the various tests related to it, the reconstruction of JT-60 for increasing the current, the design of a nuclear fusion reactor, the high utilization of radiation using ion beam, the construction of Sekinehama Port for the nuclear-powered ship 'Mutsu', the power increasing test of the reactor of the Mutsu, the reconstruction of JRR-3 and others are reported. (K.I.)

  12. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  13. The Centres for Environment-friendly Energy Research (FME)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    High expectations for Norway's Centres for Environment-friendly Energy Research (FME).The FME centres address a broad range of areas, allcentral to developing the energy sector of the future. The activities of the eight centres established in 2009 focus on renewable energy, raising energy efficiency, energy planning, and carbon capture and storage (CCS). In 2011 three new FME centres were established which focus on social science-related energy research. The FME scheme is a direct follow-up of the broad-based political agreement on climate policy achieved in the Storting in January 2008, and of the national RandD Energi21 strategy submitted in February 2008 to the Ministry of Petroleum and Energy. In April 2008 the Research Council of Norway's Executive Board decided to launch a process to establish centres for environment-friendly energy research, and a funding announcement was issued that same year. In 2010 it was decided that additional FME centres would be established in the field of social science-related energy research. After a thorough assessment of each project (based on feasibility, scientific merit, potential to generate value creation and innovation, and composition of the consortium) eight applicants were selected to become FME centres in February 2009. A new call for proposals was issued in 2010, and three more centres were awarded FME status in February 2011. The objective of the FME scheme is to establish time-limited research centres which conduct concentrated, focused and long-term research of high international calibre in order to solve specific challenges in the energy sphere. The selected centres must exhibit higher goals, a longer-term perspective and a more concentrated focus than is required under other funding instruments for the same scientific area. The make-up of the centres is critical to achieving this objective. The centres bring together Norway's leading research institutions and key players in private enterprise, the

  14. A preliminary assessment of the potential for 'team science' in DOE Energy Innovation Hubs and Energy Frontier Research Centers

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Craig, E-mail: boardman.10@osu.edu [John Glenn School of Public Affairs, Ohio State University (United States); Ponomariov, Branco, E-mail: branco.ponomariov@utsa.edu [Department of Public Administration, University of Texas at San Antonio (United States)

    2011-06-15

    President Obama has called for the development of new energy technologies to address our national energy needs and restore US economic competitiveness. In response, the Department of Energy has established new R and D modalities for energy research and development designed to facilitate collaboration across disciplinary, institutional, and sectoral boundaries. In this research note, we provide a preliminary assessment of the potential for essential mechanisms for coordinated problem solving among diverse actors within two new modalities at the DOE: Energy Innovation Hubs and Energy Frontier Research Centers. - Highlights: > Energy Frontier Research Centers may lack the basic mechanisms for coordinating diverse actors. > Divergent goals across diverse actors may hinder coordination in Energy Innovation Hubs. > The implementation of these and similar energy policies require further investigation.

  15. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the

  16. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  17. The joint center for energy storage research: A new paradigm for battery research and development

    International Nuclear Information System (INIS)

    Crabtree, George

    2015-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments

  18. The joint center for energy storage research: A new paradigm for battery research and development

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA and University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607 (United States)

    2015-03-30

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  19. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  20. The application of contrast explanation to energy policy research: UK nuclear energy policy 2002–2012

    International Nuclear Information System (INIS)

    Heffron, Raphael J.

    2013-01-01

    This paper advances the application of the methodology, contrast explanation, to energy policy research. Research in energy policy is complex and often involves inter-disciplinary work, which traditional economic methodologies fail to capture. Consequently, the more encompassing methodology of contrast explanation is assessed and its use in other social science disciplines explored in brief. It is then applied to an energy policy research topic—in this case, nuclear energy policy research in the UK. Contrast explanation facilitates research into policy and decision-making processes in energy studies and offers an alternative to the traditional economic methods used in energy research. Further, contrast explanation is extended by the addition of contested and uncontested hypotheses analyses. This research focuses on the methods employed to deliver the new nuclear programme of the UK government. In order to achieve a sustainable nuclear energy policy three issues are of major importance: (1) law, policy and development; (2) public administration; and (3) project management. Further, the research identifies that policy in the area remains to be resolved, in particular at an institutional and legal level. However, contrary to the literature, in some areas, the research identifies a change of course as the UK concentrates on delivering a long-term policy for the nuclear energy sector and the overall energy sector. - Highlights: ► Energy policy research is interdisciplinary and needs additional methodological approaches. ► New method of contrast explanation advanced for energy policy research. ► This methodology is based on dialectical learning which examines conflict between sources of data. ► Research example used here is of UK nuclear energy policy. ► Major issues in UK nuclear energy policy are planning law, public administration, and project management

  1. The AECL research and development program

    International Nuclear Information System (INIS)

    Hart, R.G.; Woods, A.D.B.

    1980-02-01

    The research and development program of the Atomic Energy of Canada Research Company is briefly described. Goals and objectives are emphasized, some recent highlights are given and the importance of technology transfer is discussed. A short representative bibliography is included. (auth)

  2. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    Energy Technology Data Exchange (ETDEWEB)

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  3. Solar Energy: A Necessary Investment in a Developing Economy ...

    African Journals Online (AJOL)

    Electrical Energy is the pivot of all developmental efforts in both the developed and the developing nations. Due to the fact that sources or conventional means of energy generation arc finite and fast depleting, most industrialized countries have started research on solar energy as a renewable sources or energy. This paper ...

  4. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described. Thi...

  5. The importance of iteration and deployment in technology development: A study of the impact on wave and tidal stream energy research, development and innovation

    International Nuclear Information System (INIS)

    MacGillivray, Andrew; Jeffrey, Henry; Wallace, Robin

    2015-01-01

    The technological trajectory is the pathway through which an innovative technology develops as it matures. In this paper we model the technological trajectory for a number of energy technologies by analysing technological change (characterised by unit-level capacity up-scaling) and diffusion (characterised by growth in cumulative deployed capacity) using sigmoidal 5 Parameter Logistic (5PL) functions, observed and reported as a function of unit deployment. Application of 5PL functions allows inference of technology development milestones, such as initiation of unit-level up-scaling or industry growth, with respect to the number of unit deployments. This paper compares the technological trajectory followed by mature energy technologies to that being attempted by those in the nascent wave and tidal energy sectors, particularly with regards to unit deployment within a formative phase of development. We identify that the wave and tidal energy sectors are attempting to bypass a formative phase of technological development, which is not in line with technological trajectories experienced by historic energy technologies that have successfully diffused into widespread commercial application, suggesting that demand-pull support mechanisms are premature, and a need for technology push focused policy support mechanisms is vital for stimulating economically sustainable development and deployment of wave and tidal stream energy. - Highlights: • Technology up-scaling should take place after a formative phase of development. • Ocean energy technologies are attempting to bypass a formative phase. • Unit up-scaling has taken place prior to successful technology demonstration. • The cost of the formative phase may be insurmountable using MW-scale technology. • A shift in the research, development and innovation environment is necessary.

  6. Solar energy in progress and future research trends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Zekai [Istanbul Technical Univ., Dept. of Meteorology, Istanbul (Turkey)

    2004-07-01

    Extensive fossil fuel consumption in almost all human activities led to some undesirable phenomena such as atmospheric and environmental pollutions, which have not been experienced before in known human history. Consequently, global warming, greenhouse affect, climate change, ozone layer depletion and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel uses because they emit greenhouse gases such as carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) which hinder the long wave terrestrial radiation to escape into space, and consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or more significantly to replace fossil fuel usage as much as possible with environmentally friendly, clean and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance, and more evenly distribution in nature than any other renewable energy types such as wind, geothermal, hydro, wave and tidal energies. It must be the main and common purpose of humanity to sustain environment for the betterment of future generations with sustainable energy developments. On the other hand, the known limits of fossil fuels compel the societies of the world in the long run to work jointly for their gradual replacement by renewable energy alternatives rather than the quality improvement of fossil sources. Solar radiation is an integral part of different renewable energy resources. It is the main and continuous input variable from practically inexhaustible sun. Solar energy is expected to play a very significant role in the future especially in developing countries, but it has also potential prospects for developed

  7. Fiscal 1997 research report. Basic research project on improving energy consumption efficiency in developing countries (Database construction); 1998 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo hokokusho. Database kochiku jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The New Energy and Industrial Technology Development Organization (NEDO) in fiscal 1993 started a database construction project, which involves energy conservation related primary information on the 11 countries concerned, for encouraging 11 Asian countries, namely, Japan, China, Indonesia, the Philippines, Thailand, Malaysia, Taiwan, Korea, Vietnam, Myanmar, and Pakistan, to promote their energy conservation endeavors. As part of the database construction effort under this research project, the so-far accomplished collection of and analysis into energy related information about the countries, surveys of the utilization and popularization of databases, and development of database systems are taken into consideration. On the basis of these efforts to improve on the database systems for enhanced operability, a program is formulated for database diffusion under which data are collected and updated for storage in databases. Also exerted under the program are endeavors to make use of the above-said database systems and to disseminate the constructed databases into the 11 countries for effective utilization. In the future, it is desired that the NEDO database will win popularity in the 11 countries and be utilized in their formulation of domestic energy conservation policies. (NEDO)

  8. Energy Technologies Research and Education Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Abbas [New Mexico State Univ., Las Cruces, NM (United States); Ranade, Satish [New Mexico State Univ., Las Cruces, NM (United States)

    2014-12-31

    For this project, the intended goal of the microgrid component was to investigate issues in policy and technology that would drive higher penetration of renewable energy, and to demonstrate implementation in a utility system. The work accomplished on modeling the dynamics of photovoltaic (PV) penetration can be expanded for practical application. Using such a tool those involved in public policy can examine what the effect of a particular policy initiative, e.g., renewable portfolio standards (RPS) requirements, might be in terms of the desired targets. The work in the area of microgrid design, protection, and operation is fundamental to the development of microgrids. In particular the “Energy Delivery” paradigm provides new opportunities and business models for utilities. Ultimately, Energy Delivery could accrue significant benefits in terms of costs and resiliency. The experimental microgrid will support continued research and allow the demonstration of technology for better integration of renewables. The algal biofuels component of the project was developed to enhance the test facility and to investigate the technical and economic feasibility of a commercial-scale geothermal algal biofuels operation for replication elsewhere in the arid Southwest. The project was housed at New Mexico State University’s (NMSU’s) Geothermal Aquaculture Facility (GAF) and a design for the inoculation train and algae grow-out process was developed. The facility was upgraded with modifications to existing electrical, plumbing and structural components on the GAF and surrounding grounds. The research work was conducted on biomass-processing, harvesting, dewatering, and extraction. Additionally, research was conducted to determine viability of using low-cost, wastewater from municipal treatment plants in the cultivation units as make-up water and as a source of nutrients, including nitrogen and soluble phosphorus. Data was collected on inputs and outputs, growth evaluation and

  9. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  10. Research & Development Roadmap for Next-Generation Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Foley, Kevin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-03-01

    Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on the proposed initiatives.

  11. Need for research and development in fusion: Economical energy for a sustainable future with low environmental impact

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Moir, R.W.; Ryutov, D.D.

    1995-01-01

    Fusion, advanced fission, and solar-electric plants are the only unlimited nonfossil options for a sustainable energy future for the world. Fusion poses the only indigenous fuel reserve that will last as long as the earth itself lasts. However, continued innovation and diversity in fusion R ampersand D will be required to meet its economic goal. The long-term nature of fusion research means that the required R ampersand D investment will not come from the private sector. However, once fusion is realized commercially, the dividend for humanity will be profound in terms of the welfare of the global community. We should also not underestimate the huge potential export opportunities that would then open up for industry. Federal energy R ampersand D at nearly 1% of U.S. energy costs is prudent and justified to allow pursuit of all three primary energy options for a sustainable energy future. Multiple parallel paths are essential to ensure success. The projected timescale for significant shortfalls in world energy supply to become apparent is nearly 30 to 40 yr depending on assumptions. The time to develop fusion from near-term R ampersand D through significant commercial market penetration is at least of the same order, so its development must not be delayed. 6 refs., 2 figs

  12. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  13. Proceedings of the 1987 socioeconomic energy research and analysis conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Department of Energy (the Department) convened the first Socioeconomic Energy Research and Analysis Conference in May 1987, in the spirit of constructive dialogue and mutual concern about numerous energy issues and problems. The objective was to provide a national forum for illuminating specific energy and related socioeconomic issues of our nation and discussing realistic approaches to energy policy assessments. This action was based on the Department's commitment to lead the way in developing a pragmatic framework or energy policy determinations, by incorporating constructive policy impact assessment methods into the decisionmaking process. In this rapidly developing industry with high energy technologies, a strong federal role and targeted government programs are essential for the development and integration of minorities into various industry segments. Furthermore, a responsive energy program for all segments of the population must be sensitive to (a) the impact of energy policies on the overall growth of the economy; (b) the differential impact of energy policies on various industries; and (c) the pattern of change in the structure of the social environment. The socioeconomic researchers and energy policy analysts who presented papers or participated in this national forum assisted the Department's efforts to build an energy structure which is truly responsive to the needs of the various population segmets of our nation. The conference participants were also given the opportunity to critique some unique energy policy assessment methodologies which have been conducted mainly at Argonne National Laboratory, under the sponsorship and guidance of the Research and Education Divisions of my Office. Individual papers, in this proceedings have been cataloged separately.

  14. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    Science.gov (United States)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  15. Guide to energy R and D programs for universities and other research groups

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this guide to provide researchers in universities and other research institutions with summary-level information on the various research and development programs supported by the Department. Collectively, DOE programs support a wide range of research activities - from studies on the fundamental nature of matter and energy to exploratory and advanced research on the development of new technical approaches leading to new energy technologies. The guide summarizes, in one source, basic information on DOE's energy research and development and related programs, interests and needs. It supplies information on current Federal and DOE grant and contract policies and procedures and lists the names of DOE staff, by program area, from whom additional information may be obtained

  16. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  17. Fossil energy research meeting

    Energy Technology Data Exchange (ETDEWEB)

    Kropschot, R. H.; Phillips, G. C.

    1977-12-01

    U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

  18. Overview of FAR-TECH's magnetic fusion energy research

    Science.gov (United States)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  19. The Renewable Energy In Vietnam Potential Development Orientation

    OpenAIRE

    Van Vang Le; Danh Chan Nguyen; Van Huong Dong

    2017-01-01

    Up to 2014 the development of renewable energy in Vietnam has undergone a process of nearly three decades with many ups and downs. This change depends on the concern of the state Ministries in research development project implementation and financial support for renewable energy development. It is easy to see that only when the development of renewable energy has the attention and direction of the state through a policy system a unified program the proper funding of the budget and Internation...

  20. On energy conservation and energy research. Om energioekonomisering og energiforskning

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report to the Storting (Parliament) is the third one on energy conservation during the last 10 years. As earlier, the report mainly treats the use of energy for stationary objects. The background for this report is, above all, the increased environmental requirements to the energy policy attached to the use of fossil fuels. The economic energy conservation potential of Norway is estimated on the basis of the present energy prices and available technology. For stationary energy use it amounts to ca 23 TWh, of which 16 TWh refer to electric power and 7 TWh to oil. Among the measures of the authorities to realize this potential, information about energy economy and energy technology is one of the most important. Other important measures are research and development activities as well as temporary arrangements for economic support. Energy conservation efforts, and efforts for a better environment should often be considered together, because higher energy efficiency in general can result in important positive environmental impacts. In the long term, the global enviromental problems may be the strongest motive power for an increased effort in energy conservation. 38 figs., 22 tabs.

  1. Description of how the Atomic Energy Control Board research and development program is administered

    International Nuclear Information System (INIS)

    1985-06-01

    The Regulatory Research Program should be seen as augmenting and extending the capability of in-house resources. The overall objective of the research program is to produce pertinent and independent information that will assist the Board and its staff in making correct, timely and credible decisions on regulating atomic energy. Within the framework of the general objective, the specific objectives are: (i) to verify information, claims or analyses from licensees in support of licensing actions; (ii) to fill gaps in knowledge to enable the Board to contribute to the establishment of health and safety requirements or guidelines or to aid in arriving at licensing decisions; (iii) to stimulate licensees to do more work on certain topics relating to health, safety or security; (iv) to develop information on the regulatory process and the evaluation of the regulatory process; (v) to develop equipment or procedures to enhance health, safety or security in those cases where the industry is not competent or inclined to do so; and (vi) to enhance the competence of the Board and its credibility in the eyes of licensees and the public

  2. PROSPECTS OF ENERGY EFFICIENCY IMPROVEMENT AND DEVELOPMENT OF THE RENEWABLE ENERGY SOURCES IN PROVINCE OF VOJVODINA

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdenac, D.; Ciric, R.; Tesic, M.

    2007-07-01

    The paper presents the outcome of the research in the field of energy efficiency improvement and development of the renewable energy sources in province of Vojvodina (Serbia). The summarized results of the paper are: - Potentials for energy efficiency improvement in Vojvodina, - Potentials for development of renewable energy sources in Vojvodina, - Proposal of measures of the energy policy for the promotion of research and development (R and D) which will use local scientific and technical potentials in the field of renewable energy sources and energy efficiency and improve the sustainability on the long run. - Proposal of measures for the energy policy in the domain of renewable energy sources development and energy efficiency and estimation of potentials for improvements by applying proposed measures in order to accomplish established tasks. - Synthesizing findings and proposals in the Action Plan of the Executive Council of the Autonomous Province of Vojvodina for the realization of the medium term program as well as the establishment of the monitoring plan for the assessment of program objectives progress. (auth)

  3. Research for the energy transition. The organization of the energy systems; Forschung fuer die Energiewende. Die Gestaltung des Energiesystems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-03-15

    The volume on research for the energy transition includes contributions to the FVEE annual meeting 2016 concerning the following issues: status and perspectives of the energy transition, key technologies for the energy transition, political boundary conditions, development trends in photovoltaics, components for the energy supply (wind energy, hydrogen technologies, smart bioenergy concept, contribution of the geosphere), grids and storage systems for the energy transition, research network renewable energies.

  4. Energy political self-sufficiency endangers sustainable development

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The world energy council (WEC), in its report, draws attention to questions which, in its opinion, deserve better attention. The decision-makers, to whom this report is mainly aimed, are meant to be encouraged to deal with these subjects. These are: - measures to increase global energy efficiency, - technology transfer, - the prices of energy, -research and development financing, - preventative measures against air pollution, - nuclear energy

  5. Research and development project reports for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper reported NEDO`s research and development project in fiscal 1995. As for the development of solar energy utilization technology, conducted were R and D of solar cells and development of the photovoltaic power generation. As to the solar heat utilization technology, R and D were carried out on the chemical energy conversion technology and high efficient solar heat space heating and cooling technology. About the geothermal energy utilization technology, developments were made of exploration techniques for fracture-type geothermal reservoirs and the binary cycle geothermal power generation technology. Concerning the coal energy utilization technology, conducted were R and D of coal liquefaction and coal gasification. Relating to the NEDOL process, a 150t/d pilot plant is under construction. As to environmental issues on coal utilization, made was a research on the basic technology of clean coal. In addition, technical developments on the following were done: efficient power generation using fuel cells, hydrogen, alcohol, biomass, wind power generation, etc. 73 figs., 56 tabs.

  6. The Atomic Energy Control Board's regulatory research and support program

    International Nuclear Information System (INIS)

    1988-04-01

    The purpose of the Regulatory Research and Support Program is to augment and extend the capability of the Atomic Energy Control Board's (AECB) regulatory program beyond the capability of in-house resources. The overall objective of the program is to produce pertinent and independent scientific and other knowledge and expertise that will assist the AECB in making correct, timely and credible decisions on regulating the development, application and use of atomic energy. The objectives are achieved through contracted research, development, studies, consultant and other kinds of projects administered by the Research and Radiation Protection Branch (RRB) of the AECB

  7. 77 FR 6791 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY: Energy... announces an open meeting of the Biomass Research and Development Technical Advisory Committee. The Federal... leading to the production of biobased fuels and biobased products. Tentative Agenda Update on USDA Biomass...

  8. Renewable energy research 1995–2009: a case study of wind power research in EU, Spain, Germany and Denmark

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Garcia- Zorita, J. Carlos; Serrano-López, Antonio Eleazar

    2013-01-01

    The paper reports the developments and citation patterns over three time periods of research on Renewable Energy generation and Wind Power 1995–2011 in EU, Spain, Germany and Denmark. Analyses are based on Web of Science and incorporate journal articles as well as conference proceeding papers...... terms to map knowledge export areas. Findings show an increase in citation impact for Renewable Energy and Wind Power research albeit hampered by scarcely cited conference papers. Although EU maintains its global top position in producing Renewable Energy and Wind Power research the developments of EU...... Wind Power research are EU-self citations. An expected intensified EU collaboration in the Wind Energy field does not come about. The most productive research institutions in Denmark and Spain are also the most cited ones....

  9. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  10. Measuring scientific research in emerging nano-energy field

    Science.gov (United States)

    Guan, Jiancheng; Liu, Na

    2014-04-01

    The purpose of this paper is to comprehensively explore scientific research profiles in the field of emerging nano-energy during 1991-2012 based on bibliometrics and social network analysis. We investigate the growth pattern of research output, and then carry out across countries/regions comparisons on research performances. Furthermore, we examine scientific collaboration across countries/regions by analyzing collaborative intensity and networks in 3- to 4-year intervals. Results indicate with an impressively exponential growth pattern of nano-energy articles, the world share of scientific "giants," such as the USA, Germany, England, France and Japan, display decreasing research trends, especially in the USA. Emerging economies, including China, South Korea and India, exhibit a rise in terms of the world share, illustrating strong development momentum of these countries in nano-energy research. Strikingly, China displays a remarkable rise in scientific influence rivaling Germany, Japan, France, and England in the last few years. Finally, the scientific collaborative network in nano-energy research has expanded steadily. Although the USA and several major European countries play significantly roles on scientific collaboration, China and South Korea exert great influence on scientific collaboration in recent years. The findings imply that emerging economies can earn competitive advantages in some emerging fields by properly engaging a catch-up strategy.

  11. Energy and Environmental Systems Division 1981 research review

    International Nuclear Information System (INIS)

    1982-04-01

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems

  12. Research and development toward Monju

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro; Ikegami, Tetsuo; Sikakura, Sakae; Iwata, Koji; Yamaguchi, Katsuhisa; Kodaira, Kiyoshi

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation aimed at the development of the experimental FBR ''Joyo'' and the prototype FBR ''Monju'', and has promoted the research and development of respective fields of reactor physics, shielding, fuel, safety, sodium technology, machinery and equipment, structural materials, measurement and control by cooperating with Japan Atomic Energy Research Institute, universities, national and public research institutes, electric power and manufacturing companies. Also the promotion of the development by international cooperation has been carried out positively. As for the core and fuel, the Japan-UK joint research ''MOZART project'' for the increase of reactor power output and the heightening of fuel burnup, and the test of MOX fuel, as for machinery, equipment and structure, the rationalization of structural design, the development of steam generator, the test with sodium testing facility, and as for safety, the test on the events related to the core, decay heat removing system and containment system were carried out. (K.I.)

  13. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  14. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 1); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 1 Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the 'techniques for recovery and conversion of unutilized energy'. The R and D on waste heat recovery and conversion for chemical plants designs an internal structure of the 'wetted wall column for shell side as the stripping section' for increasing quantity of heat exchanged inside, and stably operates the bench plant for 100 hours or more. The R and D on thermoelectric power generating systems using low calorie exhaust gases involves development of materials, production of fine particle materials and sinters, and evaluation of their functions, among others. The program for application of the techniques to commercial plants confirms applicability of a 3kg thermoelectric power generating system to automobile coating process. The R and D on systems for thermoelectric recovery of low-temperature waste heat finds cracks on the ceramic plate for the power generating system WATT100, disassembled for repair. (NEDO)

  15. The Austrian Research Centers activities in energy risks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    1998-01-01

    Among the institutions involved in energy analyses in Austria the risk context is being treated by three different entities: the Energy Consumption Agency, internationally known as EVA, the Federal Environmental Protection Agency, or Urnweltbundesarnt assessing mainly the environmental risks involved and the Austrian Research Centers, working on safety and risk evaluation. The Austrian Research Center Seibersdorf draws form its proficiency in Reactor Safety and Fusion Research, two fields of experience it has been involved in since its foundation, for some 40 years now. Nuclear energy is not well accepted by the Austrian population. Therefore in our country only energy systems with advanced safety level might be accepted in the far future. This means that the development of methods to compare risks is an important task. The characteristics of energy systems featuring advanced safety levels are: A very low hazard potential and a focus on deterministic safety instead of probabilistic safety, meaning to rely on inherently safe physics concepts, confirmed by probabilistic safety evaluation results. This can be achieved by adequate design of fusion reactors, advanced fission reactors and all different renewable sources of energy

  16. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  17. Base program on energy related research. Quarterly report, August 1--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. The goals of the JSR and Base Programs are accomplished by focusing research, development, demonstration, and commercialization in three major technology areas: energy programs emphasize the increased production and utilization of domestic energy resources and include enhanced oil recovery, coal beneficiation and upgrading, coalbed methane recovery, and renewable energy resources; environmental programs minimize the impact of energy production and utilization by providing technology to clean underground oily wastes, mitigate acid mine drainage, and demonstrate uses for clean coal technology (CCT) and pressurized fluidized bed combustion (PFBC) waste solids; technology enhancement activities encompass resource characterization studies, the development of improved environmental monitors and sensors, and improved techniques and models for predicting the dispersion of hazardous gas releases. Significant accomplishments under the Base Research program are reported.

  18. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  19. Developments on the wind energy scene

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The recently published report of the British Wind Energy Association (BWEA), entitled ''Power for a Sustainable Future'', is summarised. It calls on the government to: set a target of 10% of United Kingdom electricity from wind by 2025; encourage green energy trading by not charging value added tax on electricity from renewable sources; establish a fair market price for wind power; adopt a new development policy for renewable energies based on a rolling programme of equitable fixed contracts to encourage long-term investment; broaden the basis of the final Non Fossil Fuel Option, introducing new development bands and increasing the number of projects in Scotland which has half of Britain's wind resource; continue support for research and development into wind energy technologies and manufacturing methods; implement foreign aid programmes to benefit the British wind industry as well as aid recipients; continue to develop international standards for turbine design and construction to facilitate trade for manufacturers throughout the European Union. (UK)

  20. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Sato, Y.

    2001-01-01

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  1. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  2. Innovative and practical technical development of nuclear energy. Efforts on proposal and recruitment type technical development of nuclear energy

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Shioiri, Akio; Hamada, Jun; Kanagawa, Takashi; Mori, Yukihide; Kouno, Koji

    2003-01-01

    In technical development of nuclear energy conceiving a view on energy environment problem at the 21st Century, technical development on innovative nuclear energy system as well as next generation LWR is an important subject. Even in Japan, on the 'Long-term program for research, development and utilization of nuclear energy (LPRNE)' summarized by the Atomic Energy Commission, investigation on R and Ds of innovative reactors under cooperation of government, industrial field, and universities is required. In the Energy Generalized Engineering Institute, by receiving a subsidy from the Ministry of Economy and Industry since 2000, a proposal recruitment business on innovative and practical technical development of nuclear energy has been carried out. Here were introduced hopeful and unique five themes out of them applied to the recruitment, such as a super-critical pressure water cooling reactor (SCPR), an integrated modular LWR (IMR): technical development for practice, technical development on general purpose boiling transitional analysis method, technical development on direct extraction of U and Pu from consumed fuels based on super-DIREX reprocessing method, and material transfer forecasting in natural barriers at landfill disposal of radioactive wastes. (G.K.)

  3. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  4. Development research: The environmental challenge

    International Nuclear Information System (INIS)

    Winpenny, J.T.

    1991-01-01

    This book represents papers from a 1990 conference 'The environment, Development and Economic Research'. The focus of the book is the environmental and natural resource use problems, though economic development is a strong co-theme. Chapters cover the following topic areas: international issues; macroeconomic policies; natural resource degradation; urban problems; social dimensions; bio-diversity; energy; economic valuation

  5. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  6. Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  7. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Oyama, Yukio; Okamoto, Koji; Yamana, Hajime; Yamaguchi, Akira

    2011-01-01

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  8. Cooperation in research and development

    International Nuclear Information System (INIS)

    Ramanna, R.

    1977-01-01

    In planning scientific programs for rapid and extensive peaceful applications of atomic energy in any developing country, it is not fully realized that one of the most important inputs is a strong research and development (R and D) base with a well-oriented training program. The paper discusses the various ways in which R and D is required to assist in both indigenous and turnkey projects. The R and D organization should be broad based; i.e., it should have physicists, chemists (particularly specialists in water chemistry), health physicists, and engineers (particularly metallurgists for materials development, study of corrosion problems, etc.). The role of electronic engineers is also very significant from the viewpoint of designing reactor control systems. Another important advantage of having an R and D program is its general technological fallout, which aids the entire industrial structure of the country. The concept of regional cooperation is very important, particularly for atomic energy programs in developing countries that have similar conditions and levels of technological skills. This cooperation can be bilateral or multilateral under the auspices of the International Atomic Energy Agency. Scientists from several countries have been trained in our Center, and we also had a very successful India-Philippines-Agency Project in which scientists from many countries in the region participated in cooperative research programs

  9. Physics Research Integrated Development Environment (PRIDE)

    International Nuclear Information System (INIS)

    Burton, J.; Cormell, L.

    1993-12-01

    Past efforts to implement a Software Engineering approach to High Energy Physics computing have been met with significant resistance and have been, in many cases, only marginally successful. At least a portion of the problem has been the Lick of an integrated development environment, tailored to High Energy Physics and incorporating a suite of Computer Aided Software Engineering tools. The Superconducting Super Collider Physics Research Division Computing Department is implementing pilot projects to develop just such an environment

  10. A review of building energy regulation and policy for energy conservation in developing countries

    International Nuclear Information System (INIS)

    Iwaro, Joseph; Mwasha, Abraham

    2010-01-01

    The rapid growth of energy use, worldwide, hfs raised concerns over problems of energy supply and exhaustion of energy resources. Most of the developed countries are implementing building energy regulations such as energy standards, codes etc., to reduce building energy consumption. The position of developing countries with respect to energy regulations implementation and enforcement is either poorly documented or not documented at all. In addition, there is a lack of consistent data, which makes it difficult to understand the underlying changes that affect energy regulation implementation in developing countries. In that respect, this paper investigates the progress of building energy regulations in developing countries and its implication for energy conservation and efficiency. The present status of building energy regulations in 60 developing countries around the world was analysed through a survey of building energy regulations using online survey. The study revealed the present progress made on building energy regulations in relation to implementation, development and compliance; at the same time the study recommends possible solutions to the barriers facing building energy regulation implementation in the developing world. - Research Highlights: →Progress and implications of energy regulations in developing countries. →Investigation assessed the progress made on energy regulations using online survey. →Energy regulation activities is progressively increasing in developing countries. →The study identified 25 developing countries without energy regulatory standards. →The study shows relationship between energy regulation and energy consumption.

  11. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  12. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    Science.gov (United States)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  13. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  14. Energy Harvesting Research: The Road from Single Source to Multisource.

    Science.gov (United States)

    Bai, Yang; Jantunen, Heli; Juuti, Jari

    2018-06-07

    Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New laser research and development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    New types of lasers must be developed to provide the desired energy per pulse, pulse length, pulse shape, wavelength, and efficiency for laser-fusion applications. This advanced laser research has focused on rare-gas oxides and on Hg 2 excimers

  16. Summaries of research in high energy physics

    International Nuclear Information System (INIS)

    1987-11-01

    The compilation of summaries of research and technology R and D efforts contained in this volume is intended to present a detailed narrative description of the scope and nature of the HEP activities funded by the Department of Energy in the FY 1985/FY 1986 time period. Topic areas covered include the following: experimental research using the accelerators and particle detector facilities and other related research; theoretical research; conception, design, construction, and operation of particle accelerators and detectors facilities; and research and development programs intended to advance accelerator technology, particle detector technology, and data analysis capabilities

  17. Research on biomass energy and environment from the past to the future: A bibliometric analysis.

    Science.gov (United States)

    Mao, Guozhu; Huang, Ning; Chen, Lu; Wang, Hongmei

    2018-09-01

    The development and utilization of biomass energy can help to change the ways of energy production and consumption and establish a sustainable energy system that can effectively promote the development of the national economy and strengthen the protection of the environment. Here,we perform a bibliometric analysis of 9514 literature reports in the Web of Science Core Collection searched with the key words "Biomass energy" and "Environment*" date from 1998 to 2017; hot topics in the research and development of biomass energy utilization, as well as the status and development trends of biomass energy utilization and the environment, were analyzed based on content analysis and bibliometrics. The interaction between biomass energy and the environment began to become a major concern as the research progressively deepened. This work is of great significance for the development and utilization of biomass energy to put forward specific suggestions and strategies based on the analysis and demonstration of relationships and interactions between biomass energy utilization and environment. It is also useful to researchers for selecting the future research topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Towards sustainable development in Austria. Renewable energy contributions

    International Nuclear Information System (INIS)

    Faninger, G.

    2003-01-01

    Besides energy conservation, the exploration of renewable energy sources, in particular biomass and solar energy, are central aspects of the Austrian energy policy, regarded as an optimal option for achieving CO2-emission reduction objectives. The market penetration of Renewable Energy Technologies in the last twenty years was supported by the Austrian Energy Research Programme. The result of successful developments of biomass heating, solar thermal, solar electrical and wind energy technologies is the key for the market development of these renewable energy technologies. With the market penetration of renewable energy technologies new business areas were established and employment created. Today, some renewable energy technologies in Austria have reached economic competitiveness. Some technologies not reached commercialisation, and need more development to improve efficiency, reliability and cost to become commercial. This would include material and system development, pilot plants or field experiments to clarify technical problems, and demonstration plants to illustrate performance capabilities and to clarify problems for commercialisation

  19. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    International Nuclear Information System (INIS)

    Sinclair, K.C.; Morrison, M.L.

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects

  20. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.C. [National Renewable Energy Lab., Golden, CO (United States); Morrison, M.L. [California State Univ., Sacramento, CA (United States). Dept. of Biological Sciences

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects.

  1. Magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1984-02-01

    This report on the Department of Energy's Magnetic Fusion Program was requested by the Secretary of Energy. The Panel finds that substantial progress has been made in the three years since the previous ERAB review, although budget constraints have precluded the engineering initiatives recommended in that review and authorized in the Magnetic Fusion Energy Engineering Act of 1980 (the Act). Recognizing that the goals of the Act cannot now be met, the Panel recommends that the engineering phase be further postponed in favor of a strong base program in physics and technology, including immediate commitment to a major new tokamak-based device for the investigation of an ignited long-pulse plasma designated in this report as the Burning Core Experiment or BCX. Resources to design such a device could be obtained from within the existing program by redirecting work toward to BCX. At this time it is not possible to assess accurately the potential economic viability of fusion power in the future. The Panel strongly recommends expansion of international collaboration, particularly the joint construction and operation of major new unique facilities, such as the proposed BCX

  2. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  3. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  4. International energy: Research organizations, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, P.; Jordan, S. (eds.) (USDOE Office of Scientific and Technical Information, Oak Ridge, TN (USA))

    1991-03-01

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  5. Public-Private Partnership for Regional Development of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Andreea ZAMFIR

    2011-11-01

    Full Text Available This study investigates the public-private partnership as a possible solution for regional development of renewable energy. Firstly, the study reveals the strong connection between renewable energy and sustainable regional development, and secondly, the study discloses some reasons for developing renewable energy through public-private partnerships in Romania’s regions. The findings of this study reveal that there is a strong need for a renewable energy partnership between public authorities, business community and civil society in order to achieve the regional development of renewable energy. The results of this study may be used for upcoming research in the area of implementing renewable energy projects through public-private partnerships in order to achieve sustainable regional development.

  6. Application of diffusion research to solar energy policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, J. D.; Posner, D.; Shoemaker, F.; Shama, A.

    1979-03-01

    This paper examines two types of information requirements that appear to be basic to DOE solar-energy-policy decisions: (1) how can the future market success of solar energy technologies be estimated, and (2) what factors influence the adoption of solar energy technologies, and what specific programs could promote solar energy adoption most effectively. This paper assesses the ability of a body of research, referred to here as diffusion research, to supply information that could partially satisfy these requirements. This assessment proceeds, first, by defining in greater detail a series of policy issues that face DOE. These are divided into cost reduction and performance improvement issues which include issues confronting the technology development component of the solar energy program, and barriers and incentives issues which are most relevant to problems of solar energy application. Second, these issues are translated into a series of questions that the diffusion approach can help resolve. Third, various elements within diffusion research are assessed in terms of their abilities to answer policy questions. Finally, the strengths and limitations of current knowledge about the diffusion of innovations are summarized, the applicability of both existing knowledge and the diffusion approach to the identified solar-energy-policy issues are discussed, and ways are suggested in which diffusion approaches can be modified and existing knowledge employed to meet short- and long-term goals of DOE. The inquiry covers the field of classical diffusion research, market research and consumer behavior, communication research, and solar-energy market-penetration modeling.

  7. Future energy options for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z P

    1982-05-01

    An educated guess is made of the energy demand in developing countries well into the next century in order to estimate the possible role of new and renewable sources in meeting this demand. The world is roughly divided into industrialized (IND) and developing (LDC) countries. A plot of energy demand in both parts shows a possible structure of mixed energy to meet LDC demand, but there is a gap between demand and supply from conventional sources in LDCs that has to be met by new and renewable sources. When the demand for specific energy forms is projected, as much as two thirds of the final energy needed from new sources should be based on centralized-electricity and liquid-fuels technologies. Solar and geothermal energy must compete with nuclear and thermonuclear breeders, while solar prospects for chemical fuel supply in LDCs lacking adequate coal reserves seems promising. There is a large gap in research and development (R and D) spending on new energy between the two parts, which means that LDCs will have inappropriate technology at a high price. An increase in R and D spending on a regional basis should target funds to appropriate options. 6 references, 7 figures.

  8. 78 FR 8500 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2013-02-06

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Biomass Research and... Biomass Research and Development Technical Advisory Committee. The Federal Advisory Committee Act (Pub. L... fuels and biobased products. Tentative Agenda: Agenda will include the following: Update on USDA Biomass...

  9. Energy efficiency survey in Nigeria. A guide to developing policy and legislation

    Energy Technology Data Exchange (ETDEWEB)

    Uyigue, Etiosa; Agho, Matthew; Edevbaro, Agharese; Godfrey, Ogbemudia Osamuyi; Uyigue, Osazee Paul; Okungbowa, Ose Golden

    2009-09-15

    In Nigeria, experts have asserted that Nigeria can save up to half of the energy currently consumed in the country if energy is efficiently utilized. The major challenge has been that energy policy in Nigeria has undermined the importance and gains of energy efficiency to the environment and economic growth. In the midst of the prevailing energy crisis in Nigeria, energy efficiency will play a pivotal role in ensuring access to energy. Efficiency is not only cheaper than all other options; it also leads to growth in jobs and personal income. By reducing energy bills, it frees up money that can be spent elsewhere in the economy. It appears that the concept of energy efficiency seems to be poorly developed in Nigeria. Having discovered the policy gaps in the Nigerian system on energy efficiency, the Community Research and Development Centre designed and embarked on a research that will help to provide guideline for developing policy and legislation in the energy sector. We discovered that there is absence of research materials and data that will guide and strengthen regulatory measures to use energy efficiently in Nigeria. Hence the research was embarked upon to elicit information that will guide the development of energy efficiency policy which will in turn strengthen regulatory measures to use energy efficiently in Nigeria. In this study, we are focusing on the management of electricity; though energy efficiency is applicable to other forms of energy. Another objective of the study is to identify commercially and behaviorally low-cost ways of reducing energy consumption in the residential, public and private sectors in Nigeria. The information from this study, we believe will help to develop energy efficiency policy document applicable in Nigeria. The research will also help to identify renewable energy potential in the different regions of Nigeria. This document will also serve as a training manual for conferences and workshops.

  10. Survey report of FY 1997 on the long-term energy technology strategy. Survey on the pre-assessment system of energy and environmental technology research and development; 1997 nendo chosa hokokusho (choki energy gijutsu senryaku chosa). Energy kankyo gijutsu kenkyu kaihatsu no jizen hyoka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To select projects of the New Sunshine Program which is the locomotive for Japan`s research and development of energy and environmental technologies and to map out the Program`s long-term strategy, it is required to develop an effective methodology of assessing research and development themes. It is also necessary to establish the pre-assessment system which makes the assessment process more logical and which will enable the priority setting among different themes on the basis of objective and quantitative analysis. Additionally, transparency should be ensured for such a pre-assessment process through disclosure to the public and other means. The present survey aims to concretize the pre-assessment system by studying the system and techniques of an assessment system which is applicable to the research and development themes of the New Sunshine Program and is objective, quantitative and logical and which can ensure transparency and by receiving suggestions on the pre-assessment of Japan`s research and development of energies and environmental technologies through research on overseas trends of government-led research and development. 3 refs., 7 figs., 26 tabs.

  11. Tomorrow the energy. Words of researchers

    International Nuclear Information System (INIS)

    Metenier, Beatrice; Huret, Christophe; Bordenave, Aurelie; Tourrasse, Corinne; Nourry, Didier; Bellet, Daniel; Blanquet, Elisabeth; Bonjour, Jocelyn; Brochier, Elisabeth; Fave, Alain; Grunenwald, Perrine; Herri, Jean-Michel; Menanteau, Philippe; Normand, Bernard; Raison, Bertrand; Stutz, Benoit

    2015-01-01

    Based on interviews of researchers in various disciplines and areas, this book proposes a prospective vision of energy. It starts with a presentation of points of view of a philosopher, a climatologist, an economist and a scientific on the definition of energy transition. The second part addresses how to be committed in energy efficiency by saving energy in buildings (towards an inter-seasonal storage and an active management of energy), in transports (a change of behaviours, lighter materials), and in industry (optimised air conditioning, a more efficient industry). The next part discusses how to diversify resources: hydraulic resources where the main issue or challenge is to produce and store a more flexible production, nuclear energy (to improve safety and to develop technologies towards the use of extreme materials), solar energy (to capture this energy at a reduced cost by using highly efficient cells), fossil energies (to optimize the exploitation and to decrease emissions by capturing CO 2 ), and biomass (to assess the resource). The last chapter discusses the challenges related to energy storage and distribution: how to store energy and for which use (towards solid hydrogen storage), and how to adapt the grid to the emergence of renewable energies (towards a grid self-healing)

  12. Achievement report for fiscal 1998 on development of environmentally friendly high-efficiency energy utilization system. 2. Research of technology of effectively utilizing high-efficiency energy / research of optimum system designing technology; 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu, saiteki system sekkei gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This 2nd volume deals with the transportation and storage of energy in the above-named research. In search of technologies for transporting exhausted heat from the industrial area to the urban section for consumers to utilize the heat for driving their air-conditioners and hot water supply systems, the decomposition and composition reactions of methanol are utilized for a long-range transportation system. The subjects taken up in this connection include the research and development of a methanol energy system, non-equilibrium high-efficiency methanol decomposition technology, multifunctional catalysts, and highly active/selective catalysts capable of promoting reversible endoergic/exoergic reactions. Research and development is also conducted of a high-efficiency heat pump technology using hydrogen-absorbing alloys, and such a pump will realize an air-conditioning system not dependent on chlorofluorocarbon. In the research and development of a long-range heat transportation system using hydrogen-absorbing alloys, a study is made of technologies of heat/hydrogen recovery, transportation, and utilization. (NEDO)

  13. The national laboratory business role in energy technology research and development. Panel Discussion

    International Nuclear Information System (INIS)

    Sackett, John; Sullivan, Charles J.; Aumeier, Steve; Sanders, Tom; Johnson, Shane; Bennett, Ralph

    2001-01-01

    Full text of publication follows: Energy issues will play a pivotal role in the economic and political future of the United States. For reasons of both available supply and environmental concerns, development and deployment of new energy technologies is critical. Nuclear technology is important, but economic, political, and technical challenges must be overcome if it is to play a significant role. This session will address business opportunities for national laboratories to contribute to the development and implementation of a national energy strategy, concentrating on the role of nuclear technology. Panelists have been selected from the national laboratories, the U.S. Department of Energy, and state regulators. (authors)

  14. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  15. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  16. The research and training of human resources to produce renewable resources of energy

    Directory of Open Access Journals (Sweden)

    José Ernesto Rangel Delgado

    2008-10-01

    Full Text Available The prospective technique approach used as a context, this paper emphasizes the importance of a long term vision on the human resources development for renewable energies production. In the same sense it outlines the connection between the professions associated with the generation of renewable energy and the labor market. Results are presented on the research intellectual capacity of Mexico, highlighting, the public universities, specialized research centers, researchers, and the associated academic programs to renewable energies. Finally, it is presented the conclusions, and suggestions oriented to increase strategically, the renewable energies research for the technology development. Also it might incorporate our country towards the international market for renewable technologies, in the long term.

  17. 76 FR 9339 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2011-02-17

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Biomass Research and... Biomass Research and Development Technical Advisory Committee under Section 9008(d) of the Food.... Tentative Agenda: Agenda will include the following: Update on USDA Biomass R&D Activities. Update on DOE...

  18. Long tracks Energy: Views on ten years of research on green energy; Lange spor Energi: Blikk paa ti aar med forskning paa miljoevennlig energi

    Energy Technology Data Exchange (ETDEWEB)

    Coldevin, Grete Haakonsen

    2011-07-01

    RENERGI is the The Research Council of Norway's strategic research program aimed the energy sector. The program has given and gives us central knowledge about technologies, solutions, policies and instruments that could help solve the energy and climate challenges and support the Norwegian business opportunities for value creation.The program period extending from 2004 to 2013. This booklet presents an analysis Research shows the development of the research program has funded from the beginning to the present. The analysis of RENERGI, we call it 'Long Track' follows selected projects and portfolios of projects through more year to track the effectiveness Research Council funding had. And what are the key findings? Experiences from RENERGI and from the precursors to the program, show that increased funding for research in this field triggers innovative research and innovation.The program means adapted to industry characteristics: Energy requires strong communities, and the program has helped to build up such over time. These strong communities nest ground for the establishment of Centres for environmentally friendly energy (FME), the newest addition by the Research Council of instruments in this area. Analysis of research over time are important because they show effect of investing public funds in research. When initiate research, there is great expectations to short-term results. We know it can take time before results come. What gives returns today often based on research many years. Research using these analyzes as part of our knowledge base for future priorities and in our dialogue with research funding ministries. Research teams can use the results to summarize own operations over time. Businesses can benefit greatly Long-term analysis showing that energy research has opened for business start-ups and established companies given new products they can create value from. 'Long Track' emphasizes the importance of thinking long-term: When a research starts up, it

  19. Long tracks Energy: Views on ten years of research on green energy; Lange spor Energi: Blikk paa ti aar med forskning paa miljoevennlig energi

    Energy Technology Data Exchange (ETDEWEB)

    Coldevin, Grete Haakonsen

    2011-07-01

    RENERGI is the The Research Council of Norway's strategic research program aimed the energy sector. The program has given and gives us central knowledge about technologies, solutions, policies and instruments that could help solve the energy and climate challenges and support the Norwegian business opportunities for value creation.The program period extending from 2004 to 2013. This booklet presents an analysis Research shows the development of the research program has funded from the beginning to the present. The analysis of RENERGI, we call it 'Long Track' follows selected projects and portfolios of projects through more year to track the effectiveness Research Council funding had. And what are the key findings? Experiences from RENERGI and from the precursors to the program, show that increased funding for research in this field triggers innovative research and innovation.The program means adapted to industry characteristics: Energy requires strong communities, and the program has helped to build up such over time. These strong communities nest ground for the establishment of Centres for environmentally friendly energy (FME), the newest addition by the Research Council of instruments in this area. Analysis of research over time are important because they show effect of investing public funds in research. When initiate research, there is great expectations to short-term results. We know it can take time before results come. What gives returns today often based on research many years. Research using these analyzes as part of our knowledge base for future priorities and in our dialogue with research funding ministries. Research teams can use the results to summarize own operations over time. Businesses can benefit greatly Long-term analysis showing that energy research has opened for business start-ups and established companies given new products they can create value from. 'Long Track' emphasizes the importance of thinking long-term: When

  20. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  1. Countermeasures for Developing New Energy Bus Standards in China

    Science.gov (United States)

    Shi, Xin

    2018-01-01

    With the rapid development of new energy vehicle technology, new energy bus has become more and more popular in China, and the relevant standards and policy are urgently needed to guide the market. According to the assessment of the development situation on new energy vehicle technology and new energy bus, combing with traffic policy guidance and the development trend of new energy vehicles, this paper aims to put forward the countermeasures of the new energy bus standard in China, including standard system, key standards and relevant recommendations. Research result is expected to provide decision support for the wide application of new energy bus in China.

  2. SIHTI 2. Energy and environmental technology. Yearbook 1994 of the research programme. Project reports

    International Nuclear Information System (INIS)

    Korhonen, M.; Saviharju, K.

    1995-01-01

    The SIHTI 2 research programme on energy and environmental technology is concentrating on areas of environmental technology that are vital to Finland or in which Finns can engage in pioneering research. The promotion of product development within the environmental technology industry produces solutions for reducing the emissions of the energy sector. It is also a way of boosting Finland's share of the world market for such technology. The objectives of the programme are to cut down harmful emissions, recycle raw materials, reduce the amount of byproducts and wastes and achieve a greater utilisation of wastes. In additions, an objective is to create basic information about the effects of environmental protection technology for the other national research programmes. The development of internationally comparable research, monitoring and measurement methods creates a basis for wide-ranging international cooperation. The area of research also covers environmental problems connected with energy in the forest and base metal industries as well as the systematic development of life-cycle analyses. The programme will be carried out in 1993 - 1998. As of 1 January 1995 the Technology development Centre TEKES took over the responsibility for energy technology research and development activities, which were previously administered by the Energy Department of the Ministry of Trade and Industry. This yearbook 1994 contains project reports of the research and joint development projects and information about the participating institutions. (orig.)

  3. 48 CFR 927.408 - Cosponsored research and development activities.

    Science.gov (United States)

    2010-10-01

    ... Cosponsored research and development activities. Because of the Department of Energy's statutory duties to disseminate data first produced under its contracts for research, development, and demonstration, the... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Cosponsored research and...

  4. 10 CFR 1021.212 - Research, development, demonstration, and testing.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Research, development, demonstration, and testing. 1021... ACT IMPLEMENTING PROCEDURES DOE Decisionmaking § 1021.212 Research, development, demonstration, and testing. (a) This section applies to the adoption and application of programs that involve research...

  5. Integrated modelling of ecosystem services and energy systems research

    Science.gov (United States)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    /generation, transmission, distribution, and finally, end energy use. Although each step clearly impacts upon natural capital, links to the natural environment are rarely identified or quantified within energy research. In short, the respective conceptual frameworks guiding ecosystem service and energy research are not well integrated. Major knowledge and research gaps appear at the system boundaries: while energy models may mention flows of residuals, exploring where exactly these flows enter the environment, and how they impact ecosystems and natural capital is often considered to be 'outside the system boundary'. While integrated modelling represents the frontier of ecosystem service research, current efforts largely ignore the future energy pathways set out by energy systems models and government carbon targets. This disconnect means that policy-oriented research on how best to (i) maintain natural capital and (ii) meet specific climate targets may be poorly aligned, or worse, offer conflicting advice. We present a re-imagined version of the ecosystem services conceptual framework, in which emphasis is placed on interactions between energy systems and the natural environment. Using the UK as a case study, we employ a recent integrated environmental-economic ecosystem service model, TIM, developed by Bateman et al (2014) and energy pathways developed by the UK Energy Research Centre and the UK Government Committee on Climate Change to illustrate how the new conceptual framework might apply in real world applications.

  6. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  7. Research and development project reports for FY1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The paper reported the results of the NEDO R and D in fiscal 1994. NEDO`s activities are not only on the R and D of new energy/industrial technology, but on a wide range of business including alcohol production. The developmental work is classified below: solar energy utilization, survey and development of geothermal resource and development of geothermal energy utilization technology. As to coal, coal energy utilization and survey/development of coal resource. Concerning energy storage technology, research was conducted on fuel cells, advanced batteries, etc. The technical development was described of the unconventional new energy sources such as clean hydrogen energy, alcohol fuel and biomass energy. As to the technical development of the other petroleum substitution energy, the paper stated the large scale wind power generation, construction of environmentally-harmony type energy community, measures to reduce power peak loads, household solar cell power systems, dispersed power source systems, the use of unused energy, the waste-fueled power generation, etc. The international cooperation was also touched on. 73 figs., 32 tabs.

  8. The four decades of Korea Atomic Energy Research Institute through pictures

    International Nuclear Information System (INIS)

    2000-04-01

    This reports the process and development of Korea Atomic Energy Research Institute with a lot of photos. It is divided five parts, which includes the introduction of the purpose of publication, the quickening period of nuclear Atomic Energy during 1960s the period of building foundation on nuclear power during 1970s the period for technical independence for nuclear atomic energy during 1980s and maturity on technical independence for nuclear atomic energy during 1990s. It deals with the history of Korea Atomic Energy Research Institute from 1959 to 1990.

  9. Research Capabilities Directed to all Electric Engineering Teachers, from an Alternative Energy Model

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Ordóñez Navea

    2017-08-01

    Full Text Available The purpose of this work was to contemplate research capabilities directed to all electric engineering teachers from an alternative energy model intro the explanation of a semiconductor in the National Training Program in Electricity. Some authors, such as. Vidal (2016, Atencio (2014 y Camilo (2012 point out to technological applications with semiconductor electrical devices. In this way; a diagnostic phase is presented, held on this field research as a descriptive type about: a how to identify the necessities of alternative energies, and b The research competences in the alternatives energies of researcher from a solar cell model, to boost and innovate the academic praxis and technologic ingenuity. Themselves was applied a survey for a group of 15 teachers in the National Program of Formation in electricity to diagnose the deficiencies in the research area of alternatives energies. The process of data analysis was carried out through descriptive statistic. Later the conclusions are presented the need to generate strategies for stimulate and propose exploration of alternatives energies to the development of research competences directed to the teachers of electrical engineering for develop the research competences in the enforcement of the teachers exercise for the electric engineering, from an alternative energy model and boost the technologic research in the renewal energies field.

  10. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  11. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  12. Energy research 2002 - Overview; Energie-Forschung 2002 / Recherche energetique 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy presents an overview of advances made in energy research in Switzerland in 2002. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energy sources, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, fuel cells and combustion. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, geothermal energy, wind energy and small-scale hydro are presented. Nuclear safety and controlled thermonuclear fusion are discussed.

  13. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    ... from the R&D conducted since 1978 in DOE's energy efficiency and fossil energy programs. In response to the congressional charge, the National Research Council formed the Committee on Benefits of DOE...

  14. Research using energy landscape

    International Nuclear Information System (INIS)

    Kim, Hack Jin

    2007-01-01

    Energy landscape is a theoretical tool used for the study of systems where cooperative processes occur such as liquid, glass, clusters, and protein. Theoretical and experimental researches related to energy landscape are introduced in this review

  15. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  16. 75 FR 30804 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2010-06-02

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY.... SUMMARY: This notice announces an open meeting of the Biomass Research and Development Technical Advisory... public are welcome to observe the business of the Biomass Research and Development Technical Advisory...

  17. 75 FR 11526 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2010-03-11

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY.... SUMMARY: This notice announces an open meeting of the Biomass Research and Development Technical Advisory... public are welcome to observe the business of the Biomass Research and Development Technical Advisory...

  18. 75 FR 74026 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2010-11-30

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY.... SUMMARY: This notice announces an open meeting of the Biomass Research and Development Technical Advisory... participation. This notice announces the meeting of the Biomass Research and Development Technical Advisory...

  19. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  20. Energy in the strategy to Sahel Development : Situation - Perspectives - Recommendations

    International Nuclear Information System (INIS)

    1995-01-01

    Burkina Faso does not have fossil energy source. The problem of energy thus arises with acuity for the rural and urban populations. The energy sources used are primarily the hydrocarbons, electrical energy, the woody fuels as new and renewable energies which are the biomass, the solar energy and the wind energy. The hydrocarbons are 100% imported, which makes the country very depend on over sea with respect to its conventional energy supply. These imports represent, for the years 1987 to 1992, 12 to 29% of the export earnings of the country. In addition to this dependence, there is a great weakness of the electrical communication and the too high cost of energy which led to the development of a strategic planning of the scientific research centered on the energy sector. In this field, research made it possible to undertake a study of the Burkina Faso energy system, to evaluate and exploit solar energy and wind mill, to develop the use of new methods allowing the energy saving in the households and the safeguard of the environment. In addition research shows that an economy is possible in the administrative buildings. Work is undertaken on air-conditioning by evaporation, the technology of the cold and the valorization of nonfood plant oils. There is also a work done on the de-pollution of industrial waste water, the energy valorization of the biomass as well as the improvement of the technology of the dolo, local beer containing sorghum. All these scientific research activities aim at the definition of a development policy on the energetic sector which takes into account the reduction of the cost of energy, the access of the populations to this resource, the reduction in the invoice of oil products imports as well as the promotion of environmental protection, the industrial development and that of the new methods of local technology as regards energy in Burkina Faso [fr

  1. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    The institute is established under the atomic energy basic law to make effectively research of development of atomic energy in general and help to promote investigation, development and utilization of it. The institute is a legal person and has its main office in Tokyo. Its capital is the amount of yen 2,500 million plus contributions by persons other than the government. The government invests the said yen 2,500 million at the time of its establishment. The articles of the institute shall prescribe matters, such as: capital, contributions and assets; officer and meeting; business and its execution; accounting, etc. The officers are consisted of a chief director, a deputy chief director and less than 7 directors and less than 2 auditors. The chief director is appointed by the Prime Minister with the consent of the atomic energy commission. The term of the chief director, the deputy chief director and directors is 4 years and that of auditors is 2 years. Functions of the institute include basic and application research of atomic energy, planning, building and operation of reactors, training of researchers and engineers of atomic energy, etc. The budget, the business program and the financial project shall be prepared each business year and authorized by the Prime Minister. The institute is subject to the supervision of the Prime Minister. (Okada, K.)

  2. The Main Problems in the Development of Geothermal Energy Industry in China

    Science.gov (United States)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  3. Renewable Energy for Rural Economic Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Cathy L. [Utah State Univ., Logan, UT (United States); Stafford, Edwin R. [Utah State Univ., Logan, UT (United States)

    2013-09-30

    When Renewable Energy for Rural Economic Development (RERED) began in 2005, Utah had no commercial wind power projects in operation. Today, the state hosts two commercial wind power plants, the Spanish Fork Wind Project and the Milford Wind Corridor Project, totaling 324 megawatts (MW) of wind capacity. Another project in San Juan County is expected to break ground very soon, and two others, also in San Juan County, are in the approval process. RERED has played a direct role in advancing wind power (and other renewable energy and clean technology innovations) in Utah through its education outreach and research/publication initiatives. RERED has also witnessed and studied some of the persistent barriers facing wind power development in communities across Utah and the West, and its research expanded to examine the diffusion of other energy efficiency and clean technology innovations. RERED leaves a legacy of publications, government reports, and documentary films and educational videos (archived at www.cleantech.usu.edu) to provide important insights for entrepreneurs, policymakers, students, and citizens about the road ahead for transitioning society onto a cleaner, more sustainable future.

  4. Fiscal year 2013 energy department budget: Proposed investments in clean energy research

    Science.gov (United States)

    Balcerak, Ernie

    2012-03-01

    Energy and environmental research programs generally fared well in President Barack Obama's proposed budget for the Department of Energy (DOE) for fiscal year (FY) 2013. In his State of the Union address, Obama called for the United States to pursue an "all of the above" energy strategy that includes fossil fuels, as well as a variety of renewable sources of energy. The DOE budget request supports that strategy, Energy Secretary Steven Chu said in a 13 February press briefing announcing the budget proposal. The proposed budget gives DOE 27.2 billion overall, a 3.2% increase from the FY 2012 enacted budget (see Table 1). This budget "reflects some tough choices," Chu said. The proposed budget would cut 4 billion in subsidies for oil and gas companies; many Republican members of Congress have already indicated that they oppose such cuts, suggesting that congressional approval of this budget may run into stumbling blocks. The budget would also cut funding for research and development projects that are already attracting private-sector investment or that are not working, and would reduce some of the department's operational costs.

  5. Developing markets for renewable energy technologies

    International Nuclear Information System (INIS)

    Charters, W.W.S.

    2001-01-01

    Although renewable energy resources are now being utilised more on a global scale than ever before, there is no doubt their contribution to the energy economy can still be greatly increased. Recently international support for developing these relatively new sources of energy has been driven by their benefits as assessed by reduced environmental impact, particularly reduced greenhouse gas emissions. After several decades of continuous but somewhat erratic funding for research and development of renewables, it is time to take stock of the key issues to be addressed in terms of implementation of major renewable energy programmes on a large scale worldwide. One of the first steps in this process is the identification and encouragement of reliable continuous markets both in developed and developing nations. Future energy policy and planning scenarios should take into account the factors necessary to integrate renewables in all their diverse forms into the normal energy economy of the country. Other critical factors in market development will include the mass production of high quality, reliable and reasonable cost technical products and the provision of adequate finance for demonstrating market ready and near market renewables equipment. Government agencies need to aid in the removal of legislative and institutional barriers hindering the widespread introduction of non-conventional energy sources and to encourage the implementation of government purchasing schemes. Recent moves by companies in Australia to market 'green energy' to customers should also aid in the public awareness of the ultimate potential of renewables leading to greater use in the industrial, commercial and domestic sectors. (author)

  6. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001; Forschung, Entwicklung und Demonstration im Bereich der Energie in der Schweiz. Liste der Projekte 2000/2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report.

  7. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  8. Advanced energy systems and technologies research in Finland. NEMO 2 annual report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Advanced energy technologies were linked to the national energy research in beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry set up many energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on technological solutions. In the beginning of the 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies such as energy storage and hydrogen technology. Resources has been focused on three specific areas: Arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). It seems that in Finland the growth of the new energy technology industry is focused on these areas. The sales of the industry have been growing considerable due to the national research activities and support of technology development. The sales have increased 6 - 7 times compared to the year 1987 and is now over 200 million FIM. The support to industries and their involvement in the program has grown more than 15 times compared to 1988. The total funding of the NEMO 2 program me was 30 million FIM in 1994 and 21 million FIM in 1995. The programme consists of 20 research projects, 15 joint development projects, and 5 EU projects. In this report, the essential research projects of the programme in 1994-1995 are described. The total funding for these projects was about 25 million FIM, of which the TEKES`s share was about half. When the research projects and joint development projects are

  9. 75 FR 56525 - Biomass Research and Development Technical Advisory Committee

    Science.gov (United States)

    2010-09-16

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY.... SUMMARY: This notice announces an open meeting of the Biomass Research and Development Technical Advisory... business of the Biomass Research and Development Technical Advisory Committee. To attend the meeting and/or...

  10. Nuclear energy and Ecuadorian agriculture development

    International Nuclear Information System (INIS)

    Molineros Andrade, J.

    1979-09-01

    The Ecuadorian Atomic Energy Commission has elaborated a plan for development of nuclear energy, the construction of a 1-3 MW Nuclear Reactor for Research and production of radioisotopes and of the related laboratories. Agriculture is a very important part of this plan, in the following areas: genetics, irrigation, plant and animal nutrition and metabolisms, and pest and disease control. Ecuadorian agriculture institutions have also been considered in this plan. (Author)

  11. Transformation research for a sustainable energy system. Contributions; Transformationsforschung fuer ein nachhaltiges Energiesystem. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, Gerd; Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas (comps.)

    2012-03-15

    Within the 2011 annual meeting of the Renewable Energy Research Association (Berlin, Federal Republic of Germany) from 12th to 13th October 2011, the following lectures were held: (1) Environmentally safe and socially compatible transformation of energy systems (G. Schuette); (2) Open questions on the transformation of energy systems (E. Weber); (3) System analysis on the transformation of energy systems up to 2050 (J. Schmid); (4) Economic aspects: Chances, markets and workplaces (F. Staiss); (5) Perspectives for an interplay of energy efficiency and renewable energy resources as well as their implementation in the energy system (A. Bett); (6) New accents of research promotion for a more rapid development of renewable energy sources (K. Deller); (7) The 6th Energy Research Program of the Federal Government (R. Tryfonidou); (8) Recommendations of the FVEE for the research policy of the Research Government (G. Sadermann); (9) How can research and politics promote the system transformation (M. Hustedt); (10) The energy system of tomorrow - Strategies and research for the transformation of high amounts of renewable energy resources (W. Duerrschmidt); (11) Long-term strategies for the development of renewable energies in Germany (J. Nitsch); (12) Development of storage capacities for an efficient power generation by renewable energy resources in Germany and Europe by 2050 (Y. Scholz); (13) Prognoses of temporal and spatial variability of renewable energy resources (B. Lange); (14) Smart Grids - Transformation of our electrical energy supply (G. Ebert); (15) Model regions for intelligently networked energy systems; (16) Cities and concepts of neighbourhood - model cities (D. Schmidt); (17) Transformation of the German power system to a decentral regenerative economy (U. Leprich); (18) Alteration of the general conditions for new incentive models, heat acts, restoration of buildings (M. Schmidt); (19) Acceptance and participation research on energy sustainability (P

  12. Basic research on energy conservation in developing countries. Joint research on oil conservation (research report on the industrial basis of Socialist Republic of Vietnam); Hatten tojokoku energy shohi koritsuka kiso chosanado jigyo sekiyu shohi koritsuka kyoryoku chosa. Betonamu shakai shugi kyowakoku sangyo kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The field research of oil conservation was conducted in developing countries, in particular, Vietnam where a steep increase in oil consumption is anticipated in the future. Energy conservation is the most effective direct measures to control combustion of fossil fuels, and an important issue to be promoted by all countries in the world to prevent global warming and reserve energy resources. In fiscal 1994, main industries in the northern part of Vietnam were researched. In fiscal 1995, the report meeting of plant survey results in the northern part and the technical seminar of energy-saving in industrial field were held, and plants around Ho Chi Minh City in the southern part of Vietnam were researched. Although Vietnam has recently acquired membership in ASEAN and is undergoing dramatic economic growth, has many problems in environmental measures. Japan has top-ranking results on energy-saving in industrial field, and the transfer of such superior technologies and techniques will greatly contribute to resource and global warming problems as well as pollution control measures in Vietnam. 13 refs., 25 figs., 26 tabs.

  13. Energy and economic development [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Machado, G.; Schaeffer, R.

    2006-01-01

    When energy specialists discuss the relationships between energy use and economic development, the focus is usually on how energy supports economic growth, alleviates poverty and increases people's well-being. On rare occasions, though, the effect that a country's choices for promoting economic development have on energy production and use is a matter of concern. The purpose of this chapter is to evaluate the way Brazil's choices for promoting economic development over time have impacted primary and final energy use in the country. Economic growth has different levels of quality, which lead to different economic development paths. Some paths are more effective than others in creating wealth and in protecting and preserving natural resources and the environment for future generations. Quality actually matters as much for economic development as for energy. This chapter is divided into four sections covering energy and economic development relationships, the evolution of final energy use in Brazil, strategies to enhance sustainable energy development in the country and a summary of main issues. In Section 5.1, energy and economic development relationships are discussed, setting the background for the analysis of the impacts on final energy use of some of Brazil's choices for promoting economic development. The section begins by focusing on the basics of energy and economic development relationships. It should be noted that most energy specialists usually discuss only the basics of energy and economic development (the 'energy in support of economic development' theme), but this approach alone is not enough to explain differences in countries' final energy use patterns, or to identify strategies to enhance sustainable energy development. In this sense, the main contribution of this section is to further illuminate the role of social and economic choices in determining the effectiveness of a given country's economic development and that country's primary and final

  14. UCLA accelerator research and development

    International Nuclear Information System (INIS)

    Cline, D.B.

    1992-01-01

    This progress report covers work supported by the above DOE grant over the period November 1, 1991 to July 31, 1992. The work is a program of experimental and theoretical studies in advanced particle accelerator research and development for high energy physics applications. The program features research at particle beam facilities in the United States and includes research on novel high power sources, novel focussing systems (e.g. plasma lens), beam monitors, novel high brightness, high current gun systems, and novel flavor factories in particular the φ Factory

  15. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  16. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  17. On new evolution in development of basic technology of atomic energy

    International Nuclear Information System (INIS)

    1993-01-01

    In 1988, the expert committee on the promotion of basic technology organized in the Atomic Energy Commission presented the report and showed concretely the subjects of research and development to be promoted in four fields of material technology, artificial intelligence technology, laser technology and the technology for evaluating and reducing radiation risks for atomic energy, and the measures of efficiently promoting the technical development. The research and development achieved the steady results following this report. The creation of radiation resistant materials, the development of knowledge base system and robot technology, the development of the laser technology required for atomic energy, and the technology for evaluating and reducing radiation risks and so on have been carried out. As the measures for efficiently promoting the technical development, the promotion of the active interchange of researches, the intentional rearing of creative men, the positive development of international interchange, the introduction of the new evaluation of research and the promotion of spread of the results of research have been carried out. The state of execution and the new development measures of the development of the basic technology are reported. (K.I.)

  18. Establishing an agenda for social studies research in marine renewable energy

    International Nuclear Information System (INIS)

    Kerr, Sandy; Watts, Laura; Colton, John; Conway, Flaxen; Hull, Angela; Johnson, Kate; Jude, Simon; Kannen, Andreas; MacDougall, Shelley; McLachlan, Carly; Potts, Tavis; Vergunst, Jo

    2014-01-01

    To date, academic research relating to Marine Renewable Energy (MRE) has largely focused on resource assessment, technical viability and environmental impact. Experiences from onshore renewable energy tell us that social acceptability is equally critical to project success. However, the specific nature of the marine environment, patterns of resource distribution and governance means experiences from onshore may not be directly applicable to MRE and the marine environment. This paper sets out an agenda for social studies research linked to MRE, identifying key topics for future research: (i) economic impacts; (ii) wealth distribution and community benefits; (iii) communication and knowledge flow; (iv) consultation processes; (v) dealing with uncertainty; (vi) public attitudes; and (vii) planning processes. This agenda is based on the findings of the first workshop of ISSMER, an international research network of social scientists with interests in marine renewable energy. Importantly, this research agenda has been informed by the experiences of developers, regulators and community groups in Orkney. The Orkney archipelago, off the north coast of Scotland, is home to the most intense cluster of MRE research, development and deployment activity in the world today. - Highlights: • Existing marine renewable energy (MRE) research fails to address many social issues. • Social acceptability is essential to the future viability of the MRE industry. • An agenda is established for social science research into MRE

  19. The ITER program and its impact on China's nuclear energy development

    International Nuclear Information System (INIS)

    Pan Yuan; Zhuang Ge; Zhang Ming; Wang Zhijiang; Ding Yonghua; Yu Kexun

    2010-01-01

    Due to the increasingly intensive impact of population growth and economy development,energy shortage is becoming more and more severe, so countries around the world are searching for substitutes for the fossil energy resources of coal,oil and gas. Nuclear fusion energy, characterized by its cleanness, high efficiency and inexhaustibility, is considered to be one of the most possible ways to solve the energy problem. This paper outlines the importance of the development of fusion energy and reviews the history of magnetic confinement fusion research, with a brief introduction to the progress of the international thermonuclear experimental reactor program and related research in China as well. The prospect of this strategy for China's nuclear energy development is given at the end. (authors)

  20. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  2. U.S. Department of Energy thermal energy storage research activities review: 1989 Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W. [ed.] [PAI Corp., Oak Ridge, TN (United States); Tomlinson, J.J. [ed.] [Oak Ridge National Lab., TN (United States)

    1989-03-01

    Thermal Energy Storage (TES) offers the opportunity for the recovery and re-use of heat currently rejected to the ambient environment. Further, through the ability of TES to match an energy supply with a thermal energy demand, TES increases efficiencies of energy systems and improves capacity factors of power plants. The US Department of Energy has been the leader in TES research, development, and demonstration since recognition in 1976 of the need for fostering energy conservation as a component of the national energy budget. The federal program on TES R and D is the responsibility of the Office of Energy Storage and Distribution within the US Department of Energy (DOE). The overall program is organized into three program areas: diurnal--relating primarily to lower temperature heat for use in residential and commercial buildings on a daily cycle; industrial--relating primarily to higher temperature heat for use in industrial and utility processes on an hourly to daily cycle; seasonal--relating primarily to lower temperature heat or chill for use in residential complexes (central supply as for apartments or housing developments), commercial (light manufacturing, processing, or retail), and industrial (space conditioning) on a seasonal to annual cycle. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Federal agencies active in chemical industry-related research and development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  4. The industrial development of atomic energy

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    Countries with large stock of fissile material and producing large quantity of nuclear pure 235 U and 239 Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material ( 235 U or 239 Pu) or concentrated material ( 235 U mixed with small quantities of 238 U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with 238 U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate 238 U or Thorium with the regeneration of fissile material in 239 Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and 238 U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England and Scotland. The third class of reactor using

  5. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  6. THE DEVELOPMENT OF AN ENTERPRISE RESOURCE PLANNING SYSTEM (ERP FOR A RESEARCH AND TECHNOLOGY INSTITUTE: THE CASE OF THE NUCLEAR AND ENERGY RESEARCH INSTITUTE -IPEN

    Directory of Open Access Journals (Sweden)

    Willy Hoppe de Souza

    2011-05-01

    Full Text Available This paper reports the history of the development of an enterprise resource planning (ERP dedicated to managing the technical activities of the Nuclear and Energy Research Institute, a governmental research and technology institute in Brazil. After the implementation of the new planning process, the development of a new management information system named SIGEPI was immediately initiated. The implementation of this system followed a strategy of integrating databases already available and developing new ones in order to facilitate the data collecting process and to improve the quality and the reliability of these data. This paper describes the evolution of SIGEPI, its main features and it also reports the difficulties faced for almost ten years of developments. The success factors of the case were classified into three groups: strategic, technical and behavioral ones. The impact of these factors and recommendation for future similar developments are presented.

  7. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  8. Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences

    Science.gov (United States)

    2016-09-01

    1.2 DOD Renewable Energy Applications 1 1.3 Atmospheric Renewable Energy Research Strategy 2 1.4 Microgrid Definitions 3 1.4.1 Mobile Microgrid 4...1.4.2 Hybrid Microgrid 4 1.4.3 Smart Microgrid 4 1.5 Long-Term Atmospheric Renewable Energy Research Vision 5 2. Atmospheric Dependencies 5 2.1...developed-for-Army “ smart ” mobile hybrid microgrid that will incorporate both traditional and renewable energy power resources. A significant

  9. Integrated assessment of global climate change with learning-by-doing and energy-related research and development

    International Nuclear Information System (INIS)

    Mueller-Fuerstenberger, Georg; Stephan, Gunter

    2007-01-01

    This paper presents a small-scale version of an Integrated Assessment Model (IAM) of global climate change, which is based on a global, regionally differentiated computable general equilibrium (CGE) model with endogenous technological change. This model can be viewed as a basic framework for analyzing a broad range of economic issues related to climate change, in particular since technological change is represented in two ways: on the one hand, there is learning-by-doing (LbD) in non-fossil energy supply technologies, and on the other hand there is research and development (R and D)-driven energy-saving technical progress in production. Computational experiments are added for illustrating the role of technological innovation in a world both with and without cooperation in the solution of the global climate problem

  10. A health and research organization to meet complex needs of developing energy technologies

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    An increasing number of laboratories are conducting studies in a wide variety of energy technologies. Laboratories that once dealt with nuclear energy development are now involved in studies of fossil fuels, geothermal energy sources, and solar energy. Often the primary safety organization is required to expand its expertise into nonnuclear areas. At Lawrence Livermore Laboratory, the Special Projects Division of the Hazards Control Department provides health and safety technology development support to the Laboratory-wide safety program. The division conducts studies in fire science, industrial hygiene, and industrial safety as well as health physics. Availability of experts in fields such as aerosol physics, engineering, industrial hygiene, health physics, and fire science permits the solution of problems in a multidisciplined manner, with a minimum of duplication of resources and effort. (H.K.)

  11. Ecotribology research developments

    CERN Document Server

    2016-01-01

    This book presents resent research advances in the area of eco-triobology. In the last years, eco-tribology or environmentally friendly tribology has gained increasing importance in sustainable engineering. Environmentally acceptable tribological practices save resources by optimizing product usage and reducing energy. This book covers current developments in all areas covered by the term eco-tribology, including biomimetics surfaces, control of friction and wear, environmental aspects of lubrication and surface modification techniques as well as tribological aspects of green applications, such wind-power turbines or solar panels.

  12. Energy development and CO2 emissions in China

    International Nuclear Information System (INIS)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO 2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO 2 emissions from burning fossil fuels and projects future energy use and resulting CO 2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO 2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO 2 emissions reduction in China during the 1985-2020 period are examined

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  14. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  15. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  16. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Nakicenovic, Nebojsa

    2003-01-01

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  17. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  18. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  19. Wind energy developments in the Americas

    International Nuclear Information System (INIS)

    Swisher, R.; Ancona, D.F.

    1990-01-01

    This paper will highlight the key wind energy activities and programs of American countries. In South and Central America, wind technology awareness and opportunity is spreading. Countries have projects in the beginning stages of development and many sites with excellent wind resources are believed to exist. Argentina, Costa Rica, Colombia, Mexico, and several Caribbean countries are among those active in wind energy development. In Canada, after a decade of research and systems development, the Department of Energy Mines and Resources is conducting a review of all renewable energy technologies, including wind, to develop a strategic plan for future activities. Canadian industry continues development of various vertical axis projects and the Province of Alberta has begun a program to assess wind potential in that region. In the United States, commercial application of wind energy is continuing to expand. During 1989, over 140 MW of new wind turbine capacity was installed in wind power plants, bringing the total operating in the U.S. to 14600 turbines and 1,400 MW. During 1989, these machines produced over 2.1 billion kWh, enough to supply the residential needs of Washington D.C. or San Francisco. This is an increase of 15% over the 1988 total, even though installed operating capacity dropped by about 10% as smaller, out-dated turbines were phased out or replaced. The U.S. government is in the process of formulating a new National Energy Strategy. It seems clear that renewable energy and energy efficiency will play an increasingly important role in this strategy. The U.S. wind program continues to emphasize broad-based technology development, but has also initiated conceptual design studies for an advanced wind turbine for power generation in the late 1990s. (Author)

  20. Fire-protection research for energy technology: Fy 80 year end report

    Science.gov (United States)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  1. Scientific research in front of energy challenges - Committee of prospective on energy of the Academy of Sciences

    International Nuclear Information System (INIS)

    Candel, Sebastien; Tissot, Bernard; Andre, Jean-Claude; Balian, Roger; Brechet, Yves; Brezin, Edouard; Cesarsky, Catherine; Rebut, Paul-Henri; Jacquinot, Jean; Combarnous, Michel; Pouchard, Michel; Courtillot, Vincent; Jaupart, Claude; Duplessy, Jean-Claude; Laval, Guy; Encrenaz, Pierre; Pironneau, Olivier; Fontecave, Marc; Joliot, Pierre; Guillaumont, Robert; Henry, Claude; Pelegrin, Marc; Roux, Didier; Salencon, Jean; Tarascon, Jean-Marie; Bamberger, Yves; Clement, Daniel; Moisan, Francois; Montagne, Xavier; Singh, Satish

    2012-01-01

    This report proposes a contribution to the debate on energy, mainly from the point of view of researches to be undertaken to face the successive challenges which will appear within the next decades. The authors starts from the acknowledgement of constraints which are acting on the development of the energy sector: increase of CO 2 emissions leading to an increase of CO 2 in the atmosphere, scarcity of fossil resources, project financing, increased demand of energy (notably electricity), environmental issues, reactions from society, and European and international context. After an overview of the status and perspectives of renewable energies, the report addresses that of fossil energies (shale gas, hydrates of natural gas), nuclear energy (evolution, fourth generation reactors, the ITER project and thermonuclear fusion), vectors and storage (electricity grids, role of hydrogen, energy storage, CO 2 valorization), energy management and saving (energy management in housing and office buildings, proximity mobility of people and goods), and the energy for tomorrow's aeronautics (future characteristics of air transport, aeronautic fuels, oil perspectives and kerosene availability). Appendices address research and development in energy at the international level, the fuel cycle for fast breeders, fusion-fission hybrid reactors, ageing of PWR nuclear power plants, characteristics of lignocellulosic plants)

  2. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  3. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  4. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001; Forschung, Entwicklung und Demonstration im Bereich der Energie in der Schweiz. Liste der Projekte 2000/2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report.

  5. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  6. Research highlights in energy and eco-efficient built environment

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M. (ed.)

    2012-06-15

    This publication presents a compilation of VTT's recent research on energy and eco-efficient built environment. Sustainability as a dominating driver of technology development can also be seen in the R and D portfolio of VTT Technical Research Centre of Finland. A clear focus of our research for the building sector is sustainable construction, particularly the energy efficiency of the built environment. Buildings and the whole built environment are in a key role when societies are mitigating climate change and adapting to its consequences. Despite the temporary economic downturn, construction globally remains one of the most significant areas of human activities globally. Due to the urgency of measures related to climate change and the need to provide a proper environment for living and working, a large number of national and international measures have been agreed to guarantee the future development of sustainable built environment for all. Indirectly, this has lead to a need to develop existing and completely new technologies and processes for the built environment with a speed faster than ever and with a more holistic performance metrics than ever.

  7. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  8. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001; Liste des projets 2000/2001: recherche, developpement et demonstration dans le domaine de l'energie en Suisse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report.

  9. Energy research and energy technologies. Fossil energy sources. Annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    After an introduction into the research programme and an overview of the sponsored projects, the main part of the book gives a description of the projects in the research area fossile energy sources. Several indexes provide access to this comprehensive compilation: a project number index, an index of interconnected projects, and an index of companies. The organization plan of ''BEO'', the project group biology, energy, ecology, is appended. (UA) [de

  10. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  11. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  12. Identification of energy conservation research opportunities: a review and synthesis of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, W.J.; Hane, G.J.; Gurwell, W.E.; Hauser, S.G.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1982-03-01

    Thirty-eight studies of energy conservation research opportunities are reviewed. The 38 studies chosen for review include many of the major efforts in the identification of energy conservation research and development (R and D) opportunities and provide a representative sample of the types of studies that have been performed. The sample includes studies that focus on specific energy use (e.g., auto transport), as well as studies that focus on specific types of research (e.g., materials science). The sample also includes studies that can be further contrasted in terms of long-term vs. short-term projects, evolutionary vs. revolutionary ideas, generic vs. process-specific activities, and technology base research vs. hardware development. Each of these perspectives contributes toward assuring coverage of the breadth of energy conservation R and D opportunities. In each review the technical or end-use focus is described, the research ideas identified in the study are listed, and a critical summary is given. The reviews also indicate whether the studies present end-use consumption data, estimate potential energy savings, estimate times to commercialization, summarize existing research programs, or describe the identification methodology. In Section 2.0 the various research studies are compared. In Section 3.0 the characteristics of an aggregate list of research ideas are discussed. The characteristics were collected from the research opportunities studies, which are included in Appendix A. Appendix A contains a compilation of energy conservation R and D opportunities arranged by energy end-use applications. Appendix B contains an outline of the format followed in writing the critical reviews of the studies, the individual study reviews, and the extended bibliography of 88 studies that describe energy conservation research opportunities.

  13. Annual report of the Japan Atomic Energy Research Institute for fiscal 2002

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) is comprehensively promoting the research and development (R and D) activities to make the best use of variety of potentials of atomic energy. In the field of nuclear energy, researches on advanced nuclear engineering systems, high-temperature engineering experimentation and nuclear fusion are forwarded to realize long-range stable supply of energy. Researches on safety of nuclear facilities, health physics and science and technology for society have been conducted in the safety category mainly according to 'Annual Plan for Safety Research' to play and important part in long-range utilization of power generation by LWRs and to meet the expectations of people by maintaining reliability and openness associated with 'safety and confidence'. As a diversification of nuclear science and technology, various radiation application activities such as neutron science, advanced photon science and synchrotron radiation science and application research of charged particles and radioisotopes have been promoted, which contribute to drastic advance in the fields of materials and life science etc. and to establishment of new industries. Along with these activities, basic and fundamental researches including advanced basic research, materials science research, nuclear environmental science research and advanced computational science and engineering are in progress. In addition, JAERI is devoted to the technology development in radioactive waste management and nuclear facility dismantling and also to international cooperation and training activities etc. in the peaceful use of nuclear energy. The research activities for FY 2002 are reviewed in this issue. (J.P.N.)

  14. Strategy of Energy Development Until 2015

    International Nuclear Information System (INIS)

    Vilemas, J.; Miskinis, V.; Galinis, V.; Zukauskas, V.; Valentukevicius, V.

    2002-01-01

    lowest expenses for the development of the electric energy system and higher reliability of energy supply the Electric Power Plant of Lithuania and thermal electric power plants of Vilnius and Kaunas should be modernised. After 2010, it is expedient to solve the problem of satisfying the increased needs of energy primarily by constructing new thermal electric power plants. Strategic provisions are presented in the strategy also concerning the trends of development of other energy sectors (heat supply, natural gas, oil and its products, local, renewable and waste energy resources). In the final part of the strategy the main provisions concerning the increase of the efficiency of energy consumption, reduction of a negative effect on the environment, improvement of energy management and market liberalisation are formulated. The implementation of these provisions will have a great impact on the further development of energy. The strategy recommends the Government to prepare the programme for preparation of energy specialists in compliance with modern requirements and to support priority trends in scientific research. (author)

  15. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  16. Progress of fusion fuel processing system development at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; O'Hira, Shigeru; Hayashi, Takumi; Nakamura, Hirofumi; Kobayashi, Kazuhiro; Suzuki, Takumi; Yamada, Masayuki; Konishi, Satoshi

    2000-01-01

    The Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute has been working on the development of fuel processing technology for fusion reactors as a major activity. A fusion fuel processing loop was installed and is being tested with tritium under reactor relevant conditions. The loop at the TPL consists of ZrCo based tritium storage beds, a plasma exhaust processing system using a palladium diffuser and an electrolytic reactor, cryogenic distillation columns for isotope separation, and analytical systems based on newly developed micro gas chromatographs and Raman Spectroscopy. Several extended demonstration campaigns were performed under realistic reactor conditions to test tritiated impurity processing. A sophisticated control technique of distillation column was performed at the same time, and integrated fuel circulation was successfully demonstrated. Major recent design work on the International Thermonuclear Experimental Reactor (ITER) tritium plant at the TPL is devoted to water detritiation based on liquid phase catalytic exchange for improved tritium removal from waste water

  17. Cuban energy development perspectives

    International Nuclear Information System (INIS)

    Berdellans Escobar, Ilse; Perez Martin, David; Lopez Lopez, Ileana; Ricardo Mora, Henry; Gomez De la Torre, Yoandys

    2005-01-01

    In this paper from energy demand scenario calculated for the country until 2025, energy supply options were assessed. Three energy development scenarios considering economic and social development projections and different energy options were evaluated: a reference scenario which includes the nowadays energy development projections; a second scenario basing the development on intensive use of domestic fossil fuels; and a third scenario, where the development is based on the maximum use of domestic renewable energy potential. The results are analyzed and recommendations are formulated

  18. Present status of HTGR research and development

    International Nuclear Information System (INIS)

    1992-08-01

    This report briefly describes the progress of the construction of the High Temperature Engineering Test Reactor (HTTR), Research and Development (R and D) on the advanced technologies for the High Temperature Gas-cooled Reactors (HTGRs) and international cooperation in the Japan Atomic Energy Research Institute (JAERI) in 1991. (J.P.N.)

  19. Report to the Congress: liquid metal fast breeder reactor program--past, present, and future, Energy Research and Development Administration

    International Nuclear Information System (INIS)

    1975-01-01

    The past, present, and future of the liquid metal fast breeder reactor (LMFBR) program, the Nation's highest priority energy program, are studied. ERDA anticipates that the operation of the first large commercial breeder will start in 1987, and that 186 commercial-size breeders will be in operation by the year 2000. The breeder program is made up of six major areas, each dealing with an important element of technology: reactor physics; fuels and materials; fuel recycle; safety; component development; plant experience; and facilities used in the LMFBR program. ERDA is implementing a new system for administering, managing, and controlling the breeder program that will provide increased program visibility and control. Federal funding for breeder development was $168 million in FY 1971, accounting for 40% of the total Federal R and D energy budget; in FY 1976 Federal funding for this program will be $474 million, only 26% of total Federal funding for energy research. Besides Federal funds, over half a billion dollars have been or will be invested by industry over the next 5 to 10 years to develop the breeder and to build a demonstration plant. Five other nations--the United Kingdom, France, Japan, West Germany, and the Soviet Union--have a high priority national energy program for developing the LMFBR. These foreign breeder programs could contribute important data and information to the U.S. program

  20. Conceptual Study for development of a low power research reactor

    International Nuclear Information System (INIS)

    Park, C.; Kim, H. S.; Park, J. H.; Chae, H. T.; Lee, B. C.

    2013-01-01

    Even though the nuclear society is again facing with difficult situations after Fukusima accident, some countries still continues to consider nuclear power as one option of national energy sources and to introduce nuclear energy. As a research reactor has been regarded as a step-stone to establish infrastructures for the nuclear power development program, some countries that have plan to introduce the nuclear power energy are considering to construct a research reactor. Particularly, a low power research reactor whose main purpose is basic researches on the nuclear technology and education/training would be of interest to developing countries when taking the economy and level of science and technology into consideration. And many low power research reactors at operation are obsolescent and their numbers are decreasing. Hence, some concepts on a low power research reactor are being studied for the future needs. This paper presents the conceptual study on the basic requirements and the preliminary design features of a low power research reactor

  1. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  2. The contribution of Risoe National Laboratory to the research development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.

    1986-05-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current abd finished projects. All current projects are described briefly, stating status and results obtained, whole the results of finished projects are described in more detail. Risoe's contribution of the organization and the administration of the programs is mentioned. Finally, a list of references is given. (Author)

  3. The contribution of Risoe National Laboratory to the research development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    1985-07-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution of the organization and the administration of the programs is mentioned. Finally a list of references is given. (author)

  4. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES's share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  5. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES`s share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  6. A proposed programme for energy risk research

    International Nuclear Information System (INIS)

    1979-01-01

    The report consists of two parts. Part I presents an overview of technological risk management, noting major contributions and current research needs. Part II details a proposed program of energy research, including discussions of some seven recommended projects. The proposed energy risk research program addresses two basic problem areas: improving the management of energy risks and energy risk communication and public response. Specific recommended projects are given for each. (Auth.)

  7. Fire-protection research for energy technology: FY 80 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

    1981-01-01

    This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes

  8. Some policy aspects of energy development in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mwandosya, M J [Ministry of Water, Energy and Minerals and Univ. of Dar es Salaam (TZ)

    1991-01-01

    Tanzania's energy policy goals must reconcile the need to ensure continuity and security of oil supplies on one hand and the need to reduce the burden on the economy of imports of petroleum on the other. Petroleum imports account for 40% of the value of the country's export earnings, having risen from 5% in 1964. Therefore, the national energy policy goals, must have the immediate task of overcoming problems caused by this total dependence on imported petroleum. Another immediate goal of the national energy policy should be the minimisation of biomass energy use in order to reduce deforestation and its ecological and social consequences. Although not articulated in a concise form, the development of the energy sector in Tanzania over the last two decades has followed a consistent pattern based on the following principles: the need to exploit the abundant hydroelectric energy sources; the need to develop and utilise other indigenous energy sources such as coal and natural gas; the need to step up petroleum exploration activities; the need to arrest the depletion of wood through the evolution of more appropriate land management practices, wood plantation and woodlot development and use of more efficient woodfuel technologies; the need to minimise energy price fluctuations through strengthening and rationalisation of energy supply sources and infrastructure and a rational energy pricing structure; the need to develop the human resource potential; and the need to develop an indigenous capacity for research and development in energy systems technologies.

  9. A study on research and development planning of the nuclear energy

    International Nuclear Information System (INIS)

    Won, Byung Chul; Kim, Y. J.; Hong, J. J.

    2002-01-01

    In this research planning, planning object is taken as 4 projects in nuclear safety field, 2 projects in reactor and nuclear fuel field, 2 projects in basic and fundamental field among 'Mid and Long-term Nuclear R and D Program'. These projects were all carried out by KAERI and their intermediate R and D phase is closed in 2001. Major planning contents in each project contains 1) R and D's necessity and aim, 2) Technological level and depth, 3) R and D's plan, 4) R and D's results application. The planning results are summarized as follows: - Development of risk management technology - Development of optimal severe accident management strategy and engineering safety features - Development of verification and assessment technology for thermal hydraulic safety - Technology development for enhancing component and structure integrity - Proliferation-resistant fuel technology development - Liquid metal reactor design technology development - Nuclear material technology development: characterization and improvement of nuclear materials - Development of a large proton accelerator for innovative researches

  10. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out b...... by 11 university and industry partners has improved the basis for decision-making within energy planning and energy scenario making by providing new and improved tools and methods for energy systems analyses.......This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...

  11. NGNP Research and Development Status

    Energy Technology Data Exchange (ETDEWEB)

    David A. Petti

    2010-08-01

    At the inception of the Next Generation Nuclear Plant (NGNP) project, experts from the Department of Energy (DOE) national laboratories, gas reactor vendors, and universities collaborated to establish technology research and development (R&D) roadmaps. These roadmaps outlined the testing and computational development activities needed to qualify the materials and validate the modeling and simulation tools to be used in the design and safe operation of the NGNP, a helium-cooled, high temperature gas reactor (HTGR).

  12. Establishing an agenda for social studies research in marine renewable energy

    DEFF Research Database (Denmark)

    Watts, Laura; Kerr, Sandy

    2014-01-01

    To date, academic research relating to Marine Renewable Energy (MRE) has largely focused on resource assessment, technical viability and environmental impact. Experiences from onshore renewable energy tell us that social acceptability is equally critical to project success. However, the specific...... nature of the marine environment, patterns of resource distribution and governance means experiences from onshore may not be directly applicable to MRE and the marine environment. This paper sets out an agenda for social studies research linked to MRE, identifying key topics for future research: (i...... research network of social scientists with interests in marine renewable energy. Importantly, this research agenda has been informed by the experiences of developers, regulators and community groups in Orkney. The Orkney archipelago, off the north coast of Scotland, is home to the most intense cluster...

  13. Research and development of radiation utilization in 1986 at JAERI

    International Nuclear Information System (INIS)

    1986-01-01

    In the peaceful utilization of atomic energy, in addition to the method of utilizing the energy obtained by nuclear fission and nuclear fusion as electric power or heat source, there is the field of utilizing radiation, in which the effect that radiation exerts on substances and the properties of radiation are used for measurement, analysis and others. The fields of utilizing radiation are diverse such as medicine, technology and agriculture, and those directly related to the health and daily life of people are many. Japan Atomic Energy Research Institute has positively advanced the research and development on radiation utilization, which are related to the utilization of irradiation and the production and use of radioisotopes. The former is carried out in Takasaki Radiation Chemistry Research Establishment, and the latter in the Isotope Division, Tokai Research Establishment. Also, the research and development on the radiation-withstanding properties of organic materials and the production techniques for tritium are advanced, and it is expected to begin the highly advanced scientific and technological research using ion beam. The research and development of polymer materials, the techniques of using irradiation, the production and utilization of radioisotopes and others are reported. (Kako, I.)

  14. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  15. Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1992-06-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  16. Research Toward Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hammon

    2010-12-31

    This final report was compiled from the detailed annual reports that were submitted for efforts in 2008 and 2009, and from individual task reports from 2010. Reports, case studies, and presentations derived from this work are available through the Building America website. The BIRA team is led by ConSol, a leading provider of energy solutions for builders since 1983. In partnership with over fifty builders, developers, architects, manufactures, researchers, utilities, and agencies, research work was performed in California, Colorado, Utah, New Mexico, Washington, Oregon, and Hawaii and five (5) climate regions (Hot-Dry, Marine, Hot-Humid, Cold, and Hot/Mixed Dry). In addition to research work, the team provided technical assistance to our partners whose interests span the entire building process. During the three year budget period, the BIRA team performed analyses of several emerging technologies, prototype homes, and high performance communities through detailed computer simulations and extensive field monitoring to meet the required climate joule milestone targets.

  17. Energy, employment and basic needs. The social implications of energy scarcity in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Baron, C

    1980-01-01

    This survey of published work on energy and economic development has three objectives. The first is to determine the extent to which the term 'crisis' can validly be used to describe the energy situation in the medium- and long-term from the point of view of the developing countries. The second objective is to define and discuss the policy choices facing developing countries in the field of energy supply and demand, taking into account their social objectives such as the generation of productive employment opportunities and the eradication of poverty. The modern (industry, energy and transport) and traditional sectors are treated separately. Finally a research agenda is presented, focusing on a few key issues which might usefully be made the subject of data collection and economic analysis.

  18. A Summary of Research on Energy Saving and Emission Reduction of Transportation

    Science.gov (United States)

    Cheng, Dongxiang; Wu, Lufen

    2017-12-01

    Road transport is an important part of transportation, and road in the field of energy-saving emission reduction is a very important industry. According to the existing problems of road energy saving and emission reduction, this paper elaborates the domestic and international research on energy saving and emission reduction from three aspects: road network optimization, pavement material and pavement maintenance. Road network optimization may be overlooked, and the research content is still relatively preliminary; pavement materials mainly from the asphalt pavement temperature mixed asphalt technology research; pavement maintenance technology development is relatively comprehensive.

  19. Research and development of radiation utilizations in 1981 at JAERI

    International Nuclear Information System (INIS)

    1981-01-01

    There is the field of radiation utilization such as the application of the effect of radiation on matters and the techniques of measurement and analysis utilizing the properties of radiation, in addition to the use of atomic energy as heat or electric power. The fields of application of radiation utilization are very wide, and are closely related to the health and daily life of people. The Japan Atomic Energy Research Institute has performed the research and development on radiation utilization regarding radiochemistry, the application of irradiation, and the production and industrial utilization of radioisotopes. Also, the research of the radiation resistance of organic materials used for nuclear facilities, the development of organic materials, and the production of tritium have become necessary. In this booklet, the recent results of radiation utilization in the JAERI are summarized. The research and development of ion exchange membranes, organic glasses, the fixation of living body activators and water paints, the techniques of utilizing irradiation, the techniques of radioisotope productions and utilization, and the techniques related to the development of atomic energy are reported. (Kako, I.)

  20. Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hively, LM

    2003-02-13

    paragraph, Dr. Feltus urged Oak Ridge National Laboratory (ORNL) to contact other researchers for additional data from other test equipment. Consequently, we have revised the work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks. The revised tasks are as follows: Task 2.1--ORNL will obtain test data from a subcontractor and other researchers for various test equipment. This task includes development of a test plan or a description of the historical testing, as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication. Task 2.2--ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison metrics for reliability of the predictions will include the true positives, true negatives, and the forewarning times. Task 2.3--ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal forewarning time is also highly desirable. Task 2.4--ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) pattern change recognition, based on the results of Task 2.3. This implementation will provide a capability for automated prognostication, as part of the maintenance decision-making. Appendix A provides a detailed description of the analysis methods, which include conventional statistics, traditional nonlinear measures, and ORNL's patented nonlinear PSDM. The body of this report focuses on results of this analysis.