WorldWideScience

Sample records for energy production state

  1. ENERGY USE ANALYSIS FOR RICE PRODUCTION IN NASARAWA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Hussaini Yusuf Ibrahim

    2012-12-01

    Full Text Available The study was conducted to analyze energy use for in rice production in Nasarawa state Nigeria using a sample of 120 randomly selected rice farmers. Energy productivity, energy efficiency and specific energy were computed and simple descriptive statistics was used for data analysis. The energy use pattern shows that, rice production consumed an average total energy of 12906.8 MJha-1, with herbicide energy input contributing the largest share (53.55 %. Human labour had the least share (0.74 % of the total energy input used. The energy productivity, Specific energy and energy efficiency were 0.3 MJ-1, 3.6 MJ-1 and 4.1 respectively. A total of 10925.0 MJ of energy was used in the form of indirect energy and 1981.8MJ was in the direct form of energy. Non-renewable energy forms contributed the largest share (80.63 % of the total energy input used for rice production in the study area. Rice production in the study area was observed to be mainly dependent on non-renewable and indirect energy input especially herbicide. Thus, the study recommends the introduction of integrated weed management system in order to reduce cost and dependence on a non-renewable input for weed control.

  2. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  3. Factors that promote renewable energy production in U.S. states: A fixed effect estimation

    Science.gov (United States)

    Nwokeji, Ekwuniru Chika

    2011-12-01

    The unsustainability of conventional energy sources and its environmental destructions are well-known; the sustainability of renewable energy and its environmental benefits are also well-documented. The United States in common with many other countries is increasingly focused on developing renewable energy. At first, the pursuit of this strategy in U.S. was seen more as a way to reduce dependence on oil importation. With increased awareness of environmental challenges resulting from the consumption and production of conventional energy, an additional strategy for the continued interest in renewable energy development in the United States was as a result of its potential to ameliorate environmental problems. The U.S. government are utilizing policy measures and dedicating funding to encourage the development of renewable energy technologies. Beside government policies, there are contextual factors that also affect renewable energy production. These include, but not limited to population growth, energy demand, economic growth, and public acceptance. Given the pressing need to develop a sustainable energy, this study embarks on an outcome assessment of the nature of relationship of renewable energy policy incentives, and selected contextual factors on renewable energy production in the United States. The policy incentive evaluated in this study is the Renewable Energy Production Incentive program. The contextual factors evaluated in this study are energy consumption, population growth, employment, and poverty. Understanding the contextual factors within which policies are placed is essential to defining the most appropriate policy features. The methodological approach to the study is quantitative, using panel data from 1976 to 2007. The study tested two hypotheses using fixed effect estimation with robust standard error as a statistical model. Statistical analyses reveal several interesting results which lend support that besides policy incentives, contextual factors

  4. Characterization of the southwest United States for the production of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; Folger, A.G.

    1987-03-01

    The southwest United States, an area of diverse climate, topography, terrain, soils, and vegetation, is characterized to determine the feasibility of growing terrestrial energy crops there. The emphasis in the study is on delineating general zones of relative resource and environmental suitability, which are then evaluated to estimate the potential of the region for energy crop production. 100 refs., 25 figs., 24 tabs.

  5. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  6. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  7. Transverse energy production in high energy nuclear collisions and the equation of state of nuclear matter

    International Nuclear Information System (INIS)

    Doss, K.G.R.; Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.; Ludewigt, B.; Poskanzer, A.M.; Ritter, H.G.; Schmidt, H.R.; Lawrence Berkeley Lab., CA; Kampert, K.H.; Loehner, H.

    1987-08-01

    In nuclear collisions of AU+Au, Nb+Nb and Ca+Ca at bombarding energies between 150 and 800 MeV per nucleon transverse energy and transverse momenta of light particles are studied event by event at θ = 90 0 in the center of mass system. At all energies a rise of the mean transverse energy per nucleon is observed with increasing charged particle multiplicity. Particularly large values of E perpendicular to have been found for 3 He-fragments. The hydrodynamical picture is discussed for a possible separation of the collective flow and the thermal parts of the E perpendicular to -spectrum. From this, evidence for a rather stiff equation of state is found. (orig.)

  8. Assessment of municipal solid waste for energy production in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  9. Search for diboson production in final states with missing transverse energy and jets at CDF

    International Nuclear Information System (INIS)

    James, E.

    2009-01-01

    We present a search for diboson production in final states with missing transverse energy and jets using the latest amount of data collected by the CDF detector at the Fermilab Tevatron. We select events containing two jets with transverse energies above 25 GeV and significant missing transverse energy (MET). Observing a signal in this event topology is challenging due to the large backgrounds from W + jet and QCD multi - jet production. We present new methods for significantly reducing the QCD multi-jet background in which mis-measured jets lead to large, fake MET within the events. An event by event calculation of MET significance, taking into account the energy resolution of the jets within each event, allows for the removal of events in which the determined significance is below that expected for signal. (author)

  10. Energy need, energy production, waste heat quantities - the present state and a look into the future

    International Nuclear Information System (INIS)

    Schikarski, W.

    1975-01-01

    The possibilities and methods to keep the waste heat low in our society so dependent on energy, are manifold and they affect many aspects of our economic and social life. A society which shows concern for its environment will not hesitate to explore all possible avenues and to realize them. Nevertheless, one has to start from the assumption that the energy consumption, which is closely connected with the standard of living, will increase in the near future. Thus, we have to reckon with more waste heat. Therefore, on a medium-term basis, the amount of waste heat we will be confronted with and its distribution in the environment is to be investigated carefully in order that on the one hand hydrosphere and atmosphere, the limit load of which is given, are not burdened in excess, and that on the other hand the media taking up waste heat are utilized in an optimal way (cooling management). On a long-term basis, the limits of waste heat discharge into water and atmosphere have to be determined carefully, something which can probably be done on the basis of climatological consequences. (orig.) [de

  11. Energy productivity improvements and the rebound effect: An overview of the state of knowledge

    International Nuclear Information System (INIS)

    Dimitropoulos, John

    2007-01-01

    The 'rebound effect' from more efficient use of energy has been well investigated, with plenty of evidence suggesting that the 'direct' rebound effect is relatively small for most energy services-typically less than 30%. However, the same conclusion may not apply to 'indirect' and 'economy-wide' rebound effects. Here, several authors suggest that improved energy efficiency may increase energy consumption in the medium to long term, a view that undermines the rationale for energy efficiency as an instrument of climate-related energy policy and has been ardently debated. One of the main reasons behind the debate is the lack of a rigorous theoretical framework that can describe the mechanisms and consequences of the rebound effect at the macro-economic level. Proponents of the rebound effect point to 'suggestive' evidence from a variety of areas including economic history, econometric measurements of productivity and macro-economic modelling. This evidence base is relatively small, highly technical, lacks transparency, rests upon contested theoretical assumptions and is inconclusive. This paper provides an accessible summary of the state of knowledge on this issue and shows how separate areas of research can provide relevant insights: namely neoclassical models of economic growth, computable general equilibrium (CGE) modelling and alternative models for policy evaluation. The paper provides a synopsis of how each approach may be used to explain, model and estimate the macro-economic rebound effect, criticisms that have been suggested against each, and explanations for diversity in quantitative estimates. Conclusions suggest that the importance of the macro-economic rebound effect should not be underestimated

  12. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  13. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  14. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  15. On the production of hidden-flavored hadronic states at high energy

    Science.gov (United States)

    Wang, Wei

    2018-04-01

    I discuss the production mechanism of hidden-flavored hadrons at high energy. Using e+e‑ collisions and light-meson pair production in high energy exclusive processes, I demonstrate that hidden quark pairs do not necessarily participate in short-distance hard scattering. Implications are then explored in a few examples. Finally, I discuss the production mechanism of X(3872) in hadron collisions, where some misunderstandings have arisen in the literature. Supported by the Thousand Talents Plan for Young Professionals, National Natural Science Foundation of China (11575110, 11655002, 11735010, 11747611), Natural Science Foundation of Shanghai (15DZ2272100) and Scientific Research Foundation for Re- turned Overseas Chinese Scholars, Ministry of Education

  16. United States of America [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The USA uses more energy than any other country in the world. Energy consumption exceeds domestic supply, which continuously declines. Currently, 27% of the energy needs are imported, a share which will rise to 31% by 2020. In 2007, the USA consumed in total 2337 Mtoe of primary energy. An estimate of the energy use in 2008 is given. The country's largest source representing 39% of the energy demand is crude oil, of which 60% must be imported. About 66% of the oil is consumed in the transportation sector and 24% in the industrial sector, while the remainder is used for residential and commercial heating. The USA is also the largest consumer of natural gas, with 27% of the world's annual production. Natural gas is increasingly used for electricity production (almost doubled to 21% in 2007 compared to 1990) and will remain in the nearer term the fuel of choice for new electric power plants. About 16% of the natural gas consumed is imported, partly in the form of LNG. Regasification of LNG is a growing industry. Coal is the most abundantly available energy resource in the USA. About 50% of the electricity production is from coal, which is responsible for a relatively high level of pollutant emissions. The USA will need approximately 400 GW of new power generation capacity by 2020. In 2007, nuclear energy accounted for 837 TW-h or 19% of the total electricity production from the operation of 104 nuclear reactors with a capacity of 101.2 GW(e). To maintain this nuclear share, the equivalent of 30 1000 MW nuclear reactors will have to be built. Renewables are basically used for electricity production with a share of 9% (with 6% from hydro and 3% from other renewables).

  17. EPA Participates in Energy Roundtable with States, Tribes, Businesses and Environmental Groups to Enhance Coordination and Promote Responsible Domestic Production of Oil and Gas Resources

    Science.gov (United States)

    EPA News Release: EPA Participates in Energy Roundtable with States, Tribes, Businesses and Environmental Groups to Enhance Coordination and Promote Responsible Domestic Production of Oil and Gas Resources

  18. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  19. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    Wilen, C.; Kurkela, E.

    1997-01-01

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW th ) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW th ) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  20. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power

  1. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment

    Science.gov (United States)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J. A.; Setser, Donald W.; Hase, William L.

    2017-10-01

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN⋯HF post-reaction potential energy well of ˜10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH2CN rotation, and CH2CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH3CN → HF + CH2CN

  2. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment.

    Science.gov (United States)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J A; Setser, Donald W; Hase, William L

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH 3 CN → HF + CH 2 CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH 2 CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH 2 CN and then trapping in the CH 2 CN⋯HF post-reaction potential energy well of ∼10 kcal/mol with respect to the HF + CH 2 CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH 2 CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH 2 CN rotation, and CH 2 CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH 3 CN

  3. Assessment of Energy Production Potential from Tidal Streams in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Savannah, GA (United States); Fritz, Hermann M. [Georgia Inst. of Technology, Savannah, GA (United States); French, Steven P. [Georgia Inst. of Technology, Atlanta, GA (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Neary, Vincent [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  4. State Energy Resilience Framework

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Finster, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Pillon, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Petit, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Trail, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The energy sector infrastructure’s high degree of interconnectedness with other critical infrastructure systems can lead to cascading and escalating failures that can strongly affect both economic and social activities.The operational goal is to maintain energy availability for customers and consumers. For this body of work, a State Energy Resilience Framework in five steps is proposed.

  5. Steady-state and transient hydrocarbon production in graphite by low energy impact of atomic and molecular deuterium projectiles

    International Nuclear Information System (INIS)

    Zhang, H.; Meyer, F.W.

    2009-01-01

    We report measurements of steady-state yields of methyl, methane and heavier hydrocarbons for deuterium atomic and molecular ions incident on ATJ graphite, HOPG, and a-C:D thin films in the energy range 10-200 eV/D. The yields were determined using a QMS technique in conjunction with calibrated hydrocarbon leaks. We have also studied transient hydrocarbon production and hydrogen (deuterium) re-emission for 80 and 150 eV/D D + , D 2 + , and D 3 + projectiles incident on ATJ graphite surfaces pre-loaded to steady state by 20 eV/D beams of the corresponding species. Immediately after starting the higher-energy beams, transient hydrocarbon and D 2 re-emission yields significantly larger than steady-state values were observed, which exponentially decayed as a function of beam fluence. The initial yield values were related to the starting hydrocarbon and deuterium densities in the prepared sample, while the exponential decay constants provided information on the hydrocarbon kinetic release and hydrogen (deuterium) detrapping cross-sections.

  6. Post-transition state dynamics and product energy partitioning following thermal excitation of the F∙∙∙HCH2 CN transition state: Disagreement with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ma, Xinyou [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Xie, Jing [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA; Scott, Rebecca [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Gao, Eric [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ruscic, Branko [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA and Computation Institute, University of Chicago, Chicago, Illinois 60637, USA; Aquino, Adelia J. A. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People’s Republic of China; Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Setser, Donald W. [Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Hase, William L. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. In accord with experiment and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F-HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST for the simulation. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN-HF post-reaction potential energy well of ~10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed, with the majority involving direct dissociation and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. From the simulations and with an anharmonic zero-point energy constraint, the percentage partitioning of the product energy to relative translation, HF rotation, HF vibration, CH2CN rotation and CH2CN vibration is 5, 11, 60, 7, and 16%, respectively. In contrast the experimental energy partitioning percentages to HF rotation and vibration are 6 and 41%. Comparisons are made between the current simulation and those for other F + H

  7. Wavestar Energy Production Outlook

    DEFF Research Database (Denmark)

    Frigaard, Peter Bak; Andersen, Thomas Lykke; Kofoed, Jens Peter

    It is of paramount importance to decrease the Cost of Energy (CoE) from Wavestar wave energy con-verters (WECs) in order to make the WECs competitive to other sources of renewable energy. The CoE can be decreased by reducing the cost of the machines (CAPEX and OPEX) and by increasing the in......-come. The income can most obviously be enlarged by increasing the energy production. The focus of the present note is solely on expectations to the yearly energy production from future Wavestar WECs....

  8. Determining Mean Annual Energy Production

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Folley, Matt

    2016-01-01

    This robust book presents all the information required for numerical modelling of a wave energy converter, together with a comparative review of the different available techniques. The calculation of the mean annual energy production (MAEP) is critical to the assessment of the levelized cost...... of energy for a wave energy converter or wave farm. Fundamentally, the MAEP is equal to the sum of the product of the power capture of a set of sea-states and their average annual occurrence. In general, it is necessary in the calculation of the MAEP to achieve a balance between computational demand...

  9. Equations of state for detonation products of high energy PBX explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. L.; Helm, F. H.; Finger, M.; Walton, J. R.

    1977-08-01

    It has become apparent that the accumulated changes in the analysis of cylinder test data, in the material specifications, and in the hydrodynamic code simulation of the cylinder test necessitated an update of the detonation product EOS description for explosives in common use at LLL. The explosives reviewed are PBX-9404-3, LX-04-1, LX-10-1, LX-14-0 and LX-09-1. In order to maintain the proper relation of predicted performance of these standard explosives, they have been revised as a single set.

  10. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  11. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  12. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  13. State Support of Domestic Production

    Energy Technology Data Exchange (ETDEWEB)

    Amy Wright

    2007-12-30

    This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

  14. Risk of energy production

    International Nuclear Information System (INIS)

    Inhaber, Herbert.

    1978-03-01

    Every human activity involves risk of accident or disease. Generation of energy is no exception. Although such risk has been considered for conventional systems (coal, oil and nuclear), a similar analysis for the so-called alternative or non-conventional systems (solar, wind, ocean thermal and methanol) has been lacking. This paper presents an evaluation of the risk, both occupational and to the public, of non-conventional energy systems. They are considered both in absolute terms and in relation to conventional systems. The risk of most non-conventional systems, per unit of energy output, is comparable to, and in some cases much higher than, the risk from coal and oil. This conclusion holds whether we consider deaths or injuries. Nuclear power and natural gas had the lowest overall risk of the ten technologies considered. Ocean thermal energy ranked third. The surprising result is that the other seven technologies considered were found to be up to 100 times less safe. The total risk is calculated by considering six components: material acquisition and construction, emissions caused by material production, operation and maintenance, energy back-up, energy storage, and transportation. In this way the risk of widely different systems can be fairly assessed. This methodology of 'risk accounting' will not tell us which energy technology to use. However, it can be employed to inform society of the risk inherent in competing energy systems. (author)

  15. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  16. State Energy Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-01

    The U.S. Department of Energy’s State Energy Program (SEP) provides funding and technical assistance to states, territories, and the District of Columbia to enhance energy security, advance state-led energy initiatives, and maximize the benefits of decreasing energy waste.

  17. From Product Models to Product State Models

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1999-01-01

    A well-known technology designed to handle product data is Product Models. Product Models are in their current form not able to handle all types of product state information. Hence, the concept of a Product State Model (PSM) is proposed. The PSM and in particular how to model a PSM is the Research...

  18. State Energy Program Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  19. United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

  20. State energy severance taxes, 1985-1993

    International Nuclear Information System (INIS)

    1995-09-01

    This report analyzes changes in aggregate and State-level energy severance taxes for 1985 through 1993. Data are presented for crude oil, natural gas, and coal. The report highlights trends in severance tax receipts relative to energy prices and production, using severance tax data published by the Bureau of the Census of the US Department of Commerce and production data published by the Energy Information Administration

  1. Energy rating and productive of wood from reforestation of Eucalyptus and Pinus genetically improved in the state of Sao Paulo

    International Nuclear Information System (INIS)

    Jammal Filho, Fawaz Ali; Bruder, Edson Marcelo; Rezende, Marcos Antonio de

    2010-01-01

    Full text: In recent years, wood consumption is increasing, and the need to increase the availability of commercial wood reforestation becomes essentially important. In the state of Sao Paulo a few species of Eucalyptus and Pinus have stood out for having high productivity and with updated technical genetic improvements to productivity can be increased to 60 %. The work has to evaluate the productivity and quality of wood provided with commercial reforestation species of Eucalyptus and Pinus genetically improved in the midwestern region of Sao Paulo. In this study we used six treatments: a seminal Eucalyptus grandis; two clones of Eucalyptus grandis, three hybrid clones of Eucalyptus urophylla x Eucalyptus grandis. Pinus were analyzed for five hybrid progenies of Pinus caribaea var. hondurensis and Pinus tecunumanii. We evaluated the productivity rates of each treatment and the quality of wood produced, by studying their average density and specific variations possible by the methods: TARG (Technique attenuation of gamma radiation from 241 Am) and immersion. Productivity mass IMAM treatments for Eucalyptus S1, C1, C2, H1, H2 and H3 were 18.7, 17.0, 21.2, 28.1, 30.1 and 27.2 ton/ha.years respectively, and the density point to 12 % treatments S1, C1, C2, H1, H2 and H3 were 451.3, 439.0, 411.9, 518.8, 526.4 and 526.3 kg/m 3 . Productivity for Pinus mass IMAM treatments H1, H2, H3, H4, H5 and S1 were 14.7, 13.5, 13.7, 14.8, 12.4 and 13.0 ton/ha.years respectively, and the density point to 12 % treatments H1, H2, H3, H4, H5 and S1 were 475, 522, 459, 478, 430 and 514 kg/m 3 . These results are extremely important and come to contradict some literature results that correlate productivity gains with losses in density. It was concluded that the values of density and productivity of each treatment and sperm Pinus hybrids there was significant improvement in the indices assessed. While in the Eucalyptus the results were remarkable, reflecting the improvement in productivity

  2. Solar energy in the United States

    International Nuclear Information System (INIS)

    Ochoa, D.; Slaoui, A.; Soler, R.; Bermudez, V.

    2009-01-01

    Written by a group of five French experts who visited several research centres, innovating companies and solar power stations in the United States, this report first proposes an overview of solar energy in the United States, indicating and commenting the respective shares of different renewable energies in the production, focusing on the photovoltaic energy production and its RD sector. The second part presents industrial and research activities in the solar sector, and more specifically photovoltaic technologies (silicon and thin layer technology) and solar concentrators (thermal solar concentrators, photovoltaic concentrators). The last chapter presents the academic research activities in different universities (California Tech Beckman Institute, Stanford, National Renewable Energy Laboratory, Colorado School of Mines)

  3. Comparison of the incentives used to stimulate energy production in Japan, France, West Germany, and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.J.; Sommers, P.; Eschbach, C.; Sheppard, W.J.; Lenerz, D.E.; Huelshoff, M.; Marcus, A.A.

    1981-09-01

    This volume represents the culmination of a five-year research effort examining the incentives used to stimulate energy production in four countries, and the incentives used to stimulate energy consumption in one country. Following the theoretical approach developed for studying US energy incentives, the researchers in each country classified incentives into the following six categories: (1) Taxation, including exemption from or reduction of existing taxes; (2) Disbursements, in which the national government distributes money without requiring anything in return; (3) Requirements, including demands made by the government, backed by civil or criminal sanctions; (4) Traditional Services, including those almost always provided exclusively by a governmental entity; (5) Nontraditional Services, including those sometimes performed by non-governmental entities, as well as governmental entities (e.g., research and development); and (6) Market Activities, including government involvement in the market under conditions similar to those faced by non-governmental producers or consumers. A complete list of research reports prepared in the Federal Incentives series is provided in the Appendix.

  4. Geothermal Energy as source or energy production

    International Nuclear Information System (INIS)

    Lozano, E.

    1998-01-01

    This article shows the use and utilization of geothermal energy. This calorific energy can be used, through the wells perforation, in generation of electricity and many other tasks. In Colombia is possible the utilization of this energy in the electrical production due to the volcanic presence in the Western and Central mountain chains

  5. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  6. Gasification-based energy production systems for different size classes - Potential and state of R and D

    International Nuclear Information System (INIS)

    Kurkela, E.

    1997-01-01

    (Conference paper). Different energy production systems based on biomass and waste gasification are being developed in Finland. In 1986-1995 the Finnish gasification research and development activities were almost fully devoted to the development of simplified IGCC power systems suitable to large-scale power production based on pressurized fluid-bed gasification, hot gas cleaning and a combined-cycle process. In the 1990's the atmospheric-pressure gasification activities aiming for small and medium size plants were restarted in Finland. Atmospheric-pressure fixed-bed gasification of wood and peat was commercialized for small-scale district heating applications already in the 1980's. Today research and development in this field aims at developing a combined heat and power plant based on the use of cleaned product gas in internal combustion engines. Another objective is to enlarge the feedstock basis of fixed-bed gasifiers, which at present are limited to the use of piece-shaped fuels such as sod peat and wood chips. Intensive research and development is at present in progress in atmospheric-pressure circulating fluidized-bed gasification of biomass residues and wastes. This gasification technology, earlier commercialized for lime-kiln applications, will lead to co-utilization of local residues and wastes in existing pulverized coal fired boilers. The first demonstration plant is under construction in Finland and there are several projects under planning or design phase in different parts of Europe. 48 refs., 1 fig., 1 tab

  7. State energy price and expenditure report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.

  8. State energy price and expenditure report 1994

    International Nuclear Information System (INIS)

    1997-06-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs

  9. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  10. Particle production at collider energies

    International Nuclear Information System (INIS)

    Geich-Gimbel, C.

    1987-11-01

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  11. State energy price and expenditure report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.

  12. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  13. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  14. Sustainable energy in Baltic States

    International Nuclear Information System (INIS)

    Klevas, Valentinas; Streimikiene, Dalia; Grikstaite, Ramute

    2007-01-01

    Integration of New Member States to the European Union has created a new situation in the frame of implementation of the Lisbon strategy and EU Sustainable Development. The closure of Ignalina NPP is the biggest challenge to the energy sector development of the Baltic States. The Baltic States have quite limited own energy resources and in the Accession agreement with the EU Lithuania, Latvia and Estonia have verified their targets to increase the share of electricity produced from renewable energy sources (RES-E) by the year 2010. A wider use of renewable energy and increase of energy efficiency can make a valuable contribution to meeting the targets of sustainable development. The article presents a detailed overview of the present policies and measures implemented in the Baltic States, aiming to support the use of RES and the increase of energy efficiency. The review of possibilities to use the EU Structural Funds (SF) for the implementation of sustainable energy projects in the Baltic States was performed.The use of regional social-economic-environmental indicators is the main key to integrate sustainable energy development at the program deployment level. The indicators to be used should describe the contribution of energy programs to the sustainable development, medium- and long-term trends and inter-relationship between them and the typical energy indicators (saved toe, improved energy efficiency, percentage of RES). Municipalities may play a considerable role by promoting sustainable energy since local authorities are fulfilling their functions in the energy sector via a number of roles. The Netherlands' example shows that municipalities may act as facilitators by implementing national environmental policy and increasing energy efficiency in an integral part of these activities. The guidelines for Lithuanian local sustainable energy development using the SF co-financing have been presented

  15. Four-jet final state production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The four-jet final state is analyzed to search for hadronic decays of pair-produced heavy particles. The analysis uses the ALEPH data collected at LEP in November 1995 at centre-of-mass energies of 130 and 136~GeV, corresponding to a total integrated luminosity of 5.7~\\inpb. An excess of four-jet events is observed with respect to the standard model predictions. In addition, these events exhibit an enhancement in the sum of the two di-jet masses around 105~\\Gcs. The properties of these events are studied and compared to the expectations from standard processes and to pair production hypotheses.

  16. A Study of The Standard Model Higgs, WW and ZZ Production in Dilepton Plus Missing Transverse Energy Final State at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Chieh [Univ. of California, San Diego, CA (United States)

    2008-01-01

    We report on a search for Standard Model (SM) production of Higgs to WW* in the two charged lepton (e, μ) and two neutrino final state in p$\\bar{p}$ collisions at a center of mass energy √s = 1.96 TeV. The data were collected with the CDF II detector at the Fermilab Tevatron and correspond to an integrated luminosity of 1.9fb-1. The Matrix Element method is developed to calculate the event probability and to construct a likelihood ratio discriminator. There are 522 candidates observed with an expectation of 513 ± 41 background events and 7.8 ± 0.6 signal events for Higgs mass 160GeV/c2 at next-to-next-to-leading logarithmic level calculation. The observed 95% C.L. upper limit is 0.8 pb which is 2.0 times the SM prediction while the median expected limit is 3.1$+1.3\\atop{-0.9}$ with systematics included. Results for 9 other Higgs mass hypotheses ranging from 110GeV/c2 to 200GeV/c2 are also presented. The same dilepton plus large transverse energy imbalance (ET) final state is used in the SM ZZ production search and the WW production study. The observed significance of ZZ → llvv channel is 1.2σ. It adds extra significance to the ZZ → 4l channel and leads to a strong evidence of ZZ production with 4.4 σ significance. The potential improvement of the anomalous triple gauge coupling measurement by using the Matrix Element method in WW production is also studied.

  17. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  18. Low-energy heavy-atom impact as a tool for production and classification of doubly excited states

    International Nuclear Information System (INIS)

    Andersen, N.

    1985-01-01

    Low-energy heavy-atom impact may be an efficient way of preferentially populating doubly excited levels. Using neon as an example, this paper discusses why this is so. The similarity of the structure of the energy level diagrams for doubly excited neon and the level scheme for neutral magnesium is pointed out, suggesting that collective quantum numbers may describe the electron pair. (orig.)

  19. The United States and world energy markets

    International Nuclear Information System (INIS)

    Ramsay, W.C.

    1992-01-01

    The United States, dominating the world's energy markets as a producer and consumer, is sensitive to changes in this market and intends to influence the development of global energy policy. Supply will be increased by nations such as Venezuela, Indonesia and perhaps in the future a United Yemen and the Commonwealth of Independent States, moving to freer market economies which will allow investment opportunities previously inaccessible to foreign companies. Although world energy demand will grow, little of this will be in the US where, under the National Energy Strategy, comprehensive measures are being introduced to improve energy efficiency. The US energy security will be further improved by such measures as diversification of supply, larger domestic production and increasing interdependence between suppliers, traders and consumers. (author)

  20. ENERGY STAR Certified Products - Lighting

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains a simplified list of all currently certified ENERGY STAR Lighting models with basic model information collected across all product categories...

  1. State of the energy in Lebanon

    International Nuclear Information System (INIS)

    Chehab, Said; Matar Toni

    1998-01-01

    The article describes the state of the energy in Lebanon. In 1996, Lebanon consumed 4647 Ktoe as a primary energy. 97% of this energy is imported mainly polluting oil products: 1623 Ktons fuel-oil, 1379 Ktons gasoline, 930 Ktons diesel, 200 Ktons coal, 124 Ktons LPG, 107 Ktons jet-fuel/Kerosene, 109 Ktons Asphaltic products. The remaining 3% of the energy consumption is renewable energy. As for production, the state owns two refineries which are not used anymore. The year 2000 plan includes an expansion project for the Tripoli refinery and an alternative plan for the Zahrani refinery. These refineries require a total investment in order to reach a production capacity of 50000 barrels a day. The article is a description of the pollution type sources and location in Lebanon. The combustion of the total energy produces yearly more than 15 Ktons of dust, 85 Ktons of SO 2 , 40 Ktons of NOX and 3500 Ktons of CO 2 . Another risk of pollution is due to spilling oil along the Lebanese coast which represents a potential oil spill hazard, with a serious impact on marine and coastal ecosystem. The paper presents also a proposed management schemes of energy policy , control and monitoring options. In addition to the energy balance in 93/94; the consumption of oil products in 93/94/96; oil products importations in 93/96; electricity consumption in 96; ventilation of thermal and hydraulic electricity production in 95/96; estimated inventory of emissions of selected pollutants to air in Lebanon in 93 and 2010; maximum permissible air pollutants in Lebanon; storage capacity of major petroleum importers

  2. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  3. State energy price and expenditure report 1989

    International Nuclear Information System (INIS)

    1991-01-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates for the 50 States, the District of Columbia, and the United States. The estimates are provided by energy source (e.g., petroleum, natural gas, coal, and electricity) and by major consuming or economic sector. This report is an update of the State Energy Price and Expenditure Report 1988 published in September 1990. Changes from the last report are summarized in a section of the documentation. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1989. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. Consumption estimates used to calculate expenditures, and the documentation for those estimates, are from the State Energy Data Report, Consumption Estimates, 1960--1989 (SEDR), published in May 1991. Expenditures are calculated by multiplying the price estimates by the consumption estimates, adjusted to remove process fuel and intermediate product consumption. All expenditures are consumer expenditures, that is, they represent estimates of money directly spent by consumers to purchase energy, generally including taxes. 11 figs., 43 tabs

  4. State energy price and expenditure report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-30

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates for the 50 States, the District of Columbia, and the United States. The estimates are provided by energy source (e.g., petroleum, natural gas, coal, and electricity) and by major consuming or economic sector. This report is an update of the State Energy Price and Expenditure Report 1988 published in September 1990. Changes from the last report are summarized in a section of the documentation. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1989. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. Consumption estimates used to calculate expenditures, and the documentation for those estimates, are from the State Energy Data Report, Consumption Estimates, 1960--1989 (SEDR), published in May 1991. Expenditures are calculated by multiplying the price estimates by the consumption estimates, adjusted to remove process fuel and intermediate product consumption. All expenditures are consumer expenditures, that is, they represent estimates of money directly spent by consumers to purchase energy, generally including taxes. 11 figs., 43 tabs.

  5. Sectoral Energy, and Labour, Productivity Convergence

    International Nuclear Information System (INIS)

    Mulder, P.; De Groot, H.L.F.

    2007-01-01

    This paper empirically investigates the development of cross-country differences in energy- and labour productivity. The analysis is performed at a detailed sectoral level for 14 OECD countries, covering the period 1970-1997. A ρ-convergence analysis reveals that the development over time of the cross-country variation in productivity performance differs across sectors as well as across different levels of aggregation. Both patterns of convergence as well as divergence are found. Cross-country variation of productivity levels is typically larger for energy than for labour. A β-convergence analysis provides support for the hypothesis that in most sectors lagging countries tend to catch up with technological leaders, in particular in terms of energy productivity. Moreover, the results show that convergence is conditional, meaning that productivity levels converge to country-specific steady states. Energy prices and wages are shown to positively affect energy- and labour-productivity growth, respectively. We also find evidence for the importance of economies of scale, whereas the investment share, openness and specialization play only a modest role in explaining cross-country variation in energy- and labour-productivity growth

  6. The baltic states' energy system

    OpenAIRE

    Nikitaravičius, Martynas

    2006-01-01

    THE BALTIC STATES’ ENERGY SYSTEM SUMMARY The goal of paper – the comparative analysis of Baltic states‘ (i.e. of Lithuania, Latvia, Estonia) energy systems in 1990-2004. The main causes that affected the development of Baltic states’ energetics are indicated in this work. By the method of statistical analysis, the comparative advantages of Baltic states‘ energetics are detected. Moreover, the main trends of further development of integration of Baltic states ‘ energetics into the energetics o...

  7. Loss energy states of nonstationary quantum systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1978-01-01

    The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed

  8. Four-jet final state production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J. P.; Lucotte, A.; Minard, M. N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J. F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J. C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J. M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H. G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H. G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J. F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A. M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M. H.; Simion, S.; Veillet, J. J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignain, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J. F.; Roussarie, A.; Schuller, J. P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1996-03-01

    The four-jet final state is analyzed to search for hadronic decays of pair-produced heavy particles. The analysis uses the ALEPH data collected at LEP in November 1995 at centre-of-mass energies of 130 and 136 GeV, corresponding to a total integrated luminosity of 5.7 pb-1. An excess of four-jet events is observed with respect to the standard model predictions. In addition, these events exhibit an enhancement in the sum of the two di-jet masses around 105 GeV/ c 2. The properties of these events are studied and compared to the expectations from standard processes and to pair production hypotheses.

  9. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  10. Energetic development program in States and municipality-PRODEEM:Energy of locality in development with microsystems for production and energetic local use

    International Nuclear Information System (INIS)

    Loureiro Filho, I.

    1994-01-01

    This Initiative has as purpose to get the attention and to propose a form of work practices so that the area energy became to contribute indeed for the reduction of global underdevelopment, pursuing the reduction of the energy developing in particular. Such a work is denominated Program of energy development of the states and municipalities PRODEEM intends that the energy of local use are taken advantage of through micro systems, to satisfy the basic necessities of developing towns of the country

  11. Environmental consequences of energy production: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  12. Matrix product state description of Halperin states

    Science.gov (United States)

    Crépel, V.; Estienne, B.; Bernevig, B. A.; Lecheminant, P.; Regnault, N.

    2018-04-01

    Many fractional quantum Hall states can be expressed as a correlator of a given conformal field theory used to describe their edge physics. As a consequence, these states admit an economical representation as an exact matrix product state (MPS) that was extensively studied for the systems without any spin or any other internal degrees of freedom. In that case, the correlators are built from a single electronic operator, which is primary with respect to the underlying conformal field theory. We generalize this construction to the archetype of Abelian multicomponent fractional quantum Hall wave functions, the Halperin states. These can be written as conformal blocks involving multiple electronic operators and we explicitly derive their exact MPS representation. In particular, we deal with the caveat of the full wave-function symmetry and show that any additional SU(2) symmetry is preserved by the natural MPS truncation scheme provided by the conformal dimension. We use our method to characterize the topological order of the Halperin states by extracting the topological entanglement entropy. We also evaluate their bulk correlation lengths, which are compared to plasma analogy arguments.

  13. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  14. Two- and quasi-two-body strange particle final state production in π+p interactions at low to intermediate energies

    International Nuclear Information System (INIS)

    Hanson, P.

    1982-10-01

    The two and quasi-two body final states Σ + K + , Σ + K* (892) + , Σ*(1385) + K + , Σ(1385) + K*(892) + produced by neutral strangeness exchange in π + p interactions are studied using our own 1-3 GeV/c data, comprising the 14 incident momenta of a two million picture bubble chamber experiment, in combination with the world data on the same and related channels. Because low energy resonance formation is not strongly coupled to the Σ,Σ* production channels, at very modest incident momenta their dominant features are seen to be understandable in terms of high energy hypercharge exchange phenomenology. We find that Regge models fitted to data in the 10 to 20 GeV/c range adequately describe the Σ and Σ* channels down to within a few hundred MeV/c of threshold and out to large center of mass scattering angles, and that over the range of the available world data weak exchange degeneracy expectations for these reactions are at least qualitatively successful. We observe that the SU(2), SU(3) flavor symmetries successfully describe these hypercharge exchange processes and relate them to charge exchange via sum rules and equalities expressing flavor independence of the strong interaction; in particular, we derive and test on the available world data a mass broken SU(3) sum rule for π + p → K + Σ + , π - p → K 0 Λ, K - p → anti K 0 n and test over a wider range of momenta than before an earlier expression relating Σ* and Δ production. We also find at least qualitative agreement between quark model predictions for forward hypercharge exchange and the data, and we find that 90 0 hypercharge exchange cross sections also conform to the expectations of the quark constituent picture for hadrons

  15. Energy balance from Parana State - 1980-1992

    International Nuclear Information System (INIS)

    1993-01-01

    The energy flows of primary and secondary energy sources since the production to the end consumption in the main sectors of Parana State economy during 1980 to 1992, are presented. The supply and demand, consumption and production of energy sources are shown. Some information about resources and reserves are also cited. (C.G.C.)

  16. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  17. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  18. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  19. State energy data report 1993: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  20. Matrix product states for lattice field theories

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tsukuba Univ., Ibaraki (Japan). Graduate School of Pure and Applied Sciences

    2013-10-15

    The term Tensor Network States (TNS) refers to a number of families of states that represent different ansaetze for the efficient description of the state of a quantum many-body system. Matrix Product States (MPS) are one particular case of TNS, and have become the most precise tool for the numerical study of one dimensional quantum many-body systems, as the basis of the Density Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian version, offer a challenging scenario for these techniques. While the dimensions and sizes of the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT tools, Tensor Networks can be readily used for problems which more standard techniques, such as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the performance of Matrix Product States in the case of the Schwinger model, as a widely used testbench for lattice techniques. Using finite-size, open boundary MPS, we are able to determine the low energy states of the model in a fully non-perturbativemanner. The precision achieved by the method allows for accurate finite size and continuum limit extrapolations of the ground state energy, but also of the chiral condensate and the mass gaps, thus showing the feasibility of these techniques for gauge theory problems.

  1. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  2. State energy data report 1994: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  3. State energy data report 1994: Consumption estimates

    International Nuclear Information System (INIS)

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA's energy models. Division is made for each energy type and end use sector. Nuclear electric power is included

  4. State Energy Data Report, 1991: Consumption estimates

    International Nuclear Information System (INIS)

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA's energy models

  5. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  6. Energy balance from Bahia state 2011 - series: 1994-2010

    International Nuclear Information System (INIS)

    2011-01-01

    The present Energy Balance is constituted of six chapters, as follows: the chapter 1 approaches the profile of the energy system, showing the structure of the Bahia state energy matrix i n the year of 2010, and the modifications occurred during the period of 1994-2010; the chapter 2 analyses the evolution during the period of 1994-2010 of the energy offer with aspects of production, exports, imports and consumption; the chapter 3 comprised the evolution of energy consumption by sources and social-economic sectors; chapter 4 focus the evolution of state energy self-sufficiency, confronting the primary energy production with the energy total demand; the chapter 5 contains the balance of the energy transformation centers of the Bahia state; and the chapter 6 contains the consolidated matrixes expressed in the period of 1980, 1985 and 1990-2010

  7. Steady-State Growth under Inorganic Carbon Limitation Conditions Increases Energy Consumption for Maintenance and Enhances Nitrous Oxide Production in Nitrosomonas europaea.

    Science.gov (United States)

    Mellbye, Brett L; Giguere, Andrew; Chaplen, Frank; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2016-06-01

    Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2 mM sodium carbonate (Na2CO3) supplemented with atmospheric CO2 IC-limited cultures oxidized 25 to 58% of available NH3 to nitrite, depending on the dilution rate and Na2CO3 concentration. IC limitation resulted in a 2.3-fold increase in cellular maintenance energy requirements compared to those for NH3-limited cultures. Rates of N2O production increased 2.5- and 6.3-fold under the two IC-limited conditions, increasing the percentage of oxidized NH3-N that was transformed to N2O-N from 0.5% (replete) up to 4.4% (0.2 mM Na2CO3). Transcriptome analysis showed differential expression (P ≤ 0.05) of 488 genes (20% of inventory) between replete and IC-limited conditions, but few differences were detected between the two IC-limiting treatments. IC-limited conditions resulted in a decreased expression of ammonium/ammonia transporter and ammonia monooxygenase subunits and increased the expression of genes involved in C1 metabolism, including the genes for RuBisCO (cbb gene cluster), carbonic anhydrase, folate-linked metabolism of C1 moieties, and putative C salvage due to oxygenase activity of RuBisCO. Increased expression of nitrite reductase (gene cluster NE0924 to NE0927) correlated with increased production of N2O. Together, these data suggest that N. europaea adapts physiologically during IC-limited steady-state growth, which leads to the uncoupling of NH3 oxidation from growth and increased N2O production. Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is an important process in the global nitrogen cycle. This process is generally dependent on ammonia

  8. Emerging Energy Alternatives for the Southeastern States

    Science.gov (United States)

    Stefanakos, E. K. (Editor)

    1978-01-01

    The proceedings of the first symposium on emerging energy alternatives for the Southeastern States are presented. Some topics discussed are: (1) solar energy, (2) wood energy, (3) novel energy sources, (4) agricultural and industrial process heat, (5) waste utilization, (6) energy conservation and (7) ocean thermal energy conversion.

  9. State energy data report 1995 - consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  10. Environmental impact of energy production

    International Nuclear Information System (INIS)

    Lidgate, David

    1992-01-01

    Care of the environment is set to be one of the growth industries of the 1990s. Unfortunately, information as to the effect current life styles are having on the environment and, therefore, what remedial action is necessary, varies from the full to the non-existent and, worst of all, from the misleading to the incorrect. For various reasons, some aspects of technology have received greater attention from the media and environmental pressure groups than others. Energy production and conversion technologies, of course, are very much in this category. Indeed, the problem in these areas is not lack of information but a positive surfeit. (author)

  11. State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-12-23

    Energy flow and sequestration at the state-to-state level are investigated for a prototypical four-atom reaction, H2 + OH → H + H2O, using a transition-state wave packet (TSWP) method. The product state distribution is found to depend strongly on the reactant vibrational excitation, indicating mode specificity at the state-to-state level. From a local-mode perspective, it is shown that the vibrational excitation of the H2O product derives from two different sources, one attributable to the energy flow along the reaction coordinate into the newly formed OH bond and the other due to the sequestration of the vibrational energy in the OH spectator moiety during the reaction. The analysis provided a unified interpretation of some seemingly contradicting experimental observations. It is further shown that the transfer of vibrational energy from the OH reactant to H2O product is gated by the transition state, accomplished coherently by multiple TSWPs with the corresponding OH vibrational excitation.

  12. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  13. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  14. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  15. The State and atomic energy

    International Nuclear Information System (INIS)

    Jungk, R.

    1991-01-01

    Illustrous, eloquent, and yet easy to read for the interested layman, the book begins with alleged deplorable conditions at the reprocessing centra La Hague, portrays, amongst other things, the spying on and supervision of persons in the nuclear field and in research, the misuse of fissile material, and threats and blackmail as a consequence thereof, human error as a cause of accidents, and it concludes with a nonviolent new International against the state and atomic energy, against technological tyranny. Titles of chapters: The hard road; radiation feed; the gamblers; homo atomicus; the intimidated; the ''proliferators''; nuclear terrorists; those supervised; the smooth road. It remains an open question whether the book contributes to defusing the nuclear controversy - in the book almost an ideology - and to bringing the two sides closer together. (HP) [de

  16. State energy data report 1996: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  17. State energy data report 1996: Consumption estimates

    International Nuclear Information System (INIS)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA's energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs

  18. Energy balance of the Parana State - 1980-1994

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents the energetic balance of Parana State - 1980/1994, including the energy fluxes from primary and secondary energy sources in the main sectors of Parana economy. It informs consumption, production and energy external dependence. 26 figs., 88 tabs

  19. Energy balance of the Sao Paulo State - 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The energy production and consumption for the several categories of the economy in the Brazilian State of Sao Paulo are presented. The data are given according to the energy source and to consumer sectors and information about the import, export, losses in the transformation and distribution of the several forms of energy is supplied. 18 figs., 120 tabs

  20. 10. State energy balance - 1978-1991

    International Nuclear Information System (INIS)

    1993-12-01

    The energetic matrix of Minas Gerais State (Brazil) for the year 1991 and historic review of 1978 to 1990 are shown in this 10. State Energy Balance. The global balance and the state structure of energy demand, by energy source and socio-economic sector are presented, and the relations between energy system and the Minas Gerais economic performance are analysed. The consumption evolution by sector is also cited. (C.G.C.)

  1. Plywood production wastes to energy

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.

    2017-11-01

    Wood and by-products of its processing are a renewable energy source with carbon neutral and may be used in solving energy problems. ZAO «Arkhangelsk plywood factory» installed and put into operation the boiler with capacity of 22 MW (saturated steam of 1.2 MPa) to reduce the cost of thermal energy, the impact of environmental factors on stability of the company’s development and for reduction of harmful emissions into the environment. Fuel for boiler is the mixture consists of chip plywood, birch bark, wood sanding dust (WSD) and sawdust of the plywood processing. The components of the fuel mixture significantly differ in thermotechnical characteristics and technological parameters but especially in size composition. Particle dimensions in the fuel mixture differ by more than a thousand times which makes it «unique» and very difficult to ensure the effective and non-explosive use. WSD and sawdust from line of cutting of plywood are small fraction material and relate to IV group of explosion. Criterion of explosive for them has great values (КfWSD=10.85 Кfsaw=9.66). Boiler’s furnace equipped with reciprocating grate where implemented a three-stage scheme of combustion. For a comprehensive survey of the effectiveness of installed equipment was analyzed the design features of the boiler, defined the components of thermal balance, studied nitrogen oxide emissions, carbon and particulate matter with the determination of soot emissions. Amount of solid particles depending on their shape and size was analyzed.

  2. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  3. State energy price and expenditure report 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The estimates are provided by energy source and economic sector. This report is an update of the State Energy Price and Expenditure Report 1989 published in September 1991. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1990. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied

  4. Energy ratios in Finnish agricultural production

    Directory of Open Access Journals (Sweden)

    H. J. MIKKOLA

    2008-12-01

    Full Text Available The objective of this study was to assess energy ratios and net energy in plant production and energy ratios in animal production in Finland. Energy ratios and net energy were determined on the basis of plant- and animal-specific energy analyses. In plant production, energy ratios and net energy were assessed as a function of nitrogen fertilization, because indirect energy input in the form of agrochemicals was 54—73% from the total energy input and nitrogen was responsible for the major part of this. The highest energy ratio was 18.6 for reed canary grass. As a whole reed canary grass was superior to the other crops, which were barley, spring wheat, spring turnip rape, ley for silage, potato and sugar beet. Reed canary grass and sugar beet gained the highest net energy yields of 111–115 GJ ha-1. The optimum energy ratio was gained in general with less nitrogen fertilization intensity than farmers use. The energy ratios in pork production varied between 0.14–1.28 depending on what was included or excluded in the analysis and for milk production between 0.15–1.85. Ratios of 1.28 in pork production and 1.85 in milk production are unrealistic as they do not give any shelter to the animals, although they can be approached in very low-input production systems. If the ratio is calculated with feed energy content then the ratio is low, 0.14–0.22 for pork and 0.15 for milk. This shows that animals can convert 14–22 percent of the input energy to usable products. In pork production, the largest portion of the energy input was the ventilation of the building. In milk production milking and cooling consumes a lot of energy and for this reason the electricity consumption is high.;

  5. Energy balance from Bahia state 2013 - series 1996-2012

    International Nuclear Information System (INIS)

    2013-01-01

    This Energy Balance from Bahia, Brazil, presents six chapters, as follows: the chapter 1 approaches the profile of the energy system, showing the structure of the Bahia state energy matrix in the year of 2012, and the modifications occurred during the period of 1996-2012. Then the consolidated information are presented, from production to final consumption, for the set of primary and secondary sources, as well as comparative tables of states x national production of major energy production; the chapter 2 analyses the development, during the period of 1996-2012, in energy supply according to the Primary and Secondary sources; the chapter 3 comprised the evolution of energy consumption by sources and according the social-economic sectors; chapter 4 focus, within a broader view, the evolution of self-sufficiency energy state, confronting the production of primary energy to the total energy demand; in chapter 5 is given the status of the Energy Transformation Centers of the state, highlighting the balances of the Refinery Landulpho Alves (RLAM) and the Power Plants of Public Service and Self-Producer and the chapter 6 contains the consolidated matrixes expressed in the years of 1980, 1985 and 1990-2012

  6. The 2004 production of renewable energy in France

    International Nuclear Information System (INIS)

    2005-06-01

    This presentation offers a state of the art of the production of all types of renewable energies, taking into account the primary electric power connected or not the the network. The first chart concerns the primary production, the second the available electric and thermal productions. (A.L.B.)

  7. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  8. Production of Energy Efficient Preform Structures (PEEPS)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  9. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  10. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  11. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  12. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  13. Insight on the energy in the United States

    International Nuclear Information System (INIS)

    Jamet, Ph.

    2006-11-01

    This document recapitulates the main characteristics and the key data of the energy in the United States (fossil energies, renewable energies, electric power production). The main american strategies are then described as the actions at the international scale during the last five years. The main data of the research programs in the energy domain are presented and the possible consequences of the government change at the Congress are analyzed. (A.L.B.)

  14. State energy data report 1992: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  15. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  16. Energy Metrics for State Government Buildings

    Science.gov (United States)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  17. Energy balance of the lavender oil production

    Directory of Open Access Journals (Sweden)

    Osman GÖKDOĞAN

    2016-06-01

    Full Text Available This research was carried out to determine the energy input-output analysis of lavender oil production. Data from agricultural farms in Isparta province was used. Energy input was calculated as 1993.89 MJ and energy output was calculated as 2925.51 MJ. Wood energy, fresh stalked lavender flower energy, equipment energy, human labour energy, electricity energy, and water energy inputs were 54.22 %, 41.86 %, 3.40 %, 0.23 %, 0.18 %, and 0.10 % of energy inputs, respectively. In this production, it is noteworthy that wood was used as fuel in the lavender oil production distillation process as the highest input. In the energy outputs, an average of 3.10 kg lavender oil and 130 kg lavender water were extracted by processing 234 kg fresh stalked lavender flower. Energy use efficiency, specific energy, energy productivity, and net energy for lavender oil production were calculated as 1.47, 643.19 MJ kg-1, 0.002 kg MJ-1 and 931.62 MJ, respectively.

  18. State of the art on bioethanol production

    International Nuclear Information System (INIS)

    Barisano, D.; De Bari, I.; Viola, E.; Zimbardi, F.; Braccio, G.; Cantarella, M.; Gallifuoco, A.

    2001-01-01

    The state of the art, deals with the ethanol production from current processes based on the use of sugar and starch as feedstock and those under development based on lignocellulosic biomass. In the first section are reported the commercially available processes together with hints to the newest technologies. As regard the ethanol production from lignocellulosics, it has been collected data on the biomass availability in Europe as energy crops, industrial crops, agricultural residues and domestic waste. It is provided a bibliographic study on the technologies and processes under development worldwide for the conversion of lignocellulosics into ethanol. Finally, a brief discussion on the economics highlights the near term viability of producing ethanol by this way [it

  19. Mississippi State Biodiesel Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  20. Energy intensities of food products. Energie-intensiteiten van voedingsmiddelen

    Energy Technology Data Exchange (ETDEWEB)

    Kok, R.; Biesiot, W.; Wilting, H.C.

    1993-08-01

    The energy intensity of a product is the amount of primary energy used per Dutch guilder spent on consumer goods. The energy intensity can differ for each spending and varies from household to household. The aim of this study is to calculate the energy intensities and to provide an overview of the total package of consumer goods, including sociological categories and lifestyles, and the related use of primary energy to produce these goods. Use is made of the Energy Analysis Program (EAP) to calculate the energy intensities. EAP is based on the hybrid method: both the process analysis and the input-output analysis are applied in the model. The data input of the model consists of data from the Budget Survey 1990 of the Dutch Central Bureau of Statistics, which holds data of consumptions from 2767 households. In the chapters 4 to 10 energy intensities are given of the categories bread, pastry and groceries (chapter four), potatoes, vegetables and fruits (chapter five), sugary products and beverages (chapter six), oils and fats (chapter seven), meat, meat products and fish (chapter eight), dairy products (chapter nine), and other food products (chapter ten). The highest energy intensity is found for oils and fats (13.5 MJ per Dutch guilder). The energy intensities for the other products vary from 4.0 to 6.6 MJ/gld. It appears that most of the energy intensive products are products which do not use a large part of the primary energy, mainly because the consumption of these products is low. On the other hand many of the products that consume much of the primary energy (i.e. are consumed much themselves) are relatively energy extensive. The products that show a high consumption rate have relatively low energy intensities. Some of the options to shift towards a more energy extensive food package are the use of fresh products and outside grown products instead of treated products or greenhouse products and a more balanced diet. 5 figs., 18 tabs., 2 appendices, 52 refs.

  1. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  2. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  3. States of high energy density

    International Nuclear Information System (INIS)

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  4. Energy and minerals industries in national, regional, and state economies

    Science.gov (United States)

    D. J. Shields; S. A. Winter; G. S. Alward; K. L. Hartung

    1996-01-01

    This report presents information on the contribution of the extractive industries to the domestic economy at different geopolitical scales. Areas where resource production is important to gross state or regional product, employment, or income are highlighted. Output, employment, value added, and personal and total income multipliers are reported for the energy and...

  5. Transverse energy production at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2006-01-01

    The quest for understanding of the possible formation and existence of the quark-gluon plasma (Qp), the deconfined phase of quarks and gluons, has been a major area of research in high energy nuclear physics. High energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) has opened a new domain for the exploration of strongly interacting matter at very high energy density and temperature

  6. Promoting greater Federal energy productivity [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  7. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  8. The role of energy policy in agricultural biogas energy production in Visegrad countries

    Directory of Open Access Journals (Sweden)

    Chodkowska-Miszczuk Justyna

    2017-03-01

    Full Text Available Energy production by agricultural biogas plants has recently recorded considerable growth in Visegrad countries. The development was enhanced by European Union’s efforts to increase the proportion of energy produced from renewable sources. The paper aims to assess the role of energy policy in the development of agricultural biogas energy production in Visegrad region. Conducted studies have shown that among various forms of support for energy production from renewable energy sources, the price system prevails, including the support by feed in tariffs and bonuses. Feed in tariffs were adopted in Czech Republic, Hungary and Slovakia. Another kind of support system – a quota system – was adopted in Poland, what includes tendering and certificate systems. The results confirm the adoption of legal framework was necessary step to enable agricultural biogas energy production in Visegrad countries, but itself it was not enough to stimulate development of agricultural biogas energy production significantly. Rapid development in each country was recorded only after the certain financial support systems took effect, what made production of agricultural biogas energy economically efficient for investors. The production of energy from agricultural biogas grew the most in the Czech Republic and Slovakia, where the financial support was the highest. Nevertheless, the protracted process of changes in legal framework and transformation of energy policy, certain measures including state-controlled price-making systems, risk regarding with auction system might hamper agricultural biogas energy production further development.

  9. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    International Nuclear Information System (INIS)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H.

    2002-01-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H 2 O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction

  10. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H. [The University of Illinois, Urbana (United States)

    2002-05-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H{sub 2}O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction.

  11. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  12. Renewable energy atlas of the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J.A.; Hlava, K.Greenwood, H.; Carr, A. (Environmental Science Division)

    2012-05-01

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. It is designed for the U.S. Department of Agriculture Forest Service (USFS) and other federal land management agencies to evaluate existing and proposed renewable energy projects. Much of the content of the Atlas was compiled at Argonne National Laboratory (Argonne) to support recent and current energy-related Environmental Impact Statements and studies, including the following projects: (1) West-wide Energy Corridor Programmatic Environmental Impact Statement (PEIS) (BLM 2008); (2) Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2010); (3) Supplement to the Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2011); (4) Upper Great Plains Wind Energy PEIS (WAPA/USFWS 2012, in progress); and (5) Energy Transport Corridors: The Potential Role of Federal Lands in States Identified by the Energy Policy Act of 2005, Section 368(b) (in progress). This report explains how to add the Atlas to your computer and install the associated software; describes each of the components of the Atlas; lists the Geographic Information System (GIS) database content and sources; and provides a brief introduction to the major renewable energy technologies.

  13. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  14. Pulpwood Production in the Lake States

    Science.gov (United States)

    James E. Blyth; Jerold T. Hahn

    1977-01-01

    This 31st annual report shows 1976 pulpwood production by county and species group in Michigan, Minnesota, and Wisconsin. Production in these three Lake States climbed to 4.7 million cords from 4.1 million cords in 1975

  15. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  16. Search for gluino and squark production in multi-jets plus missing transverse energy final states at the Tevatron using the CDF detector

    Energy Technology Data Exchange (ETDEWEB)

    Portell i Bueso, Xavier [Autonomous Univ. of Barcelona, Bellaterra (Spain). Inst. for High Energy Physics

    2007-01-01

    In this thesis, the results of the search for squarks and gluinos in multiple jets plus missing transverse energy final states have been presented. No evidence of these new particles have been found in 371 pb-1 of CDF Run II data. New limits have been set which exclude gluino masses below 220 GeV and, in the region where M$\\tilde{g}$ ~ M$\\tilde{q}$, masses below 380 GeV/c2 are excluded. These limits are valid in a mSUGRA scenario with tan β = 5, A = 0 and μ < 0 assuming the lightest four squark flavours degenerate in mass. To obtain these results a careful study of the beam conditions and their contribution to events with ET final states has been performed. Special attention has been taken in studying the different SM backgrounds and their normalizations at NLO. Dedicated cuts have been introduced to remove the background processes and main discriminating variables have been optimized for different signal regions. The different systematic uncertainties have also been considered. This is the first time that this search is performed at CDF Run II and the results presented here show significant improvements with respect to the constraints from previous experiments. Thus, this analysis has established the procedure to continue searching for squarks and gluinos with the new data samples that CDF is collecting from Tevatron. Some improvements may also be implemented by considering other hadron final states with different jet multiplicities. This could help extending the sensitivity of the analysis to regions where gluino and squark masses are not similar. At the forthcoming LHC, the search for squarks and gluinos in this inclusive channel constitutes one of the first analyses to be performed. The ET and multiple jets final states are present in multiple decay modes of many models beyond the SM. The experience from Tevatron in working on an hadron collider environment will be useful for these kind of

  17. Extremum uncertainty product and sum states

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, C L; Kumar, S [Indian Inst. of Tech., New Delhi. Dept. of Physics

    1978-01-01

    The extremum product states and sum states of the uncertainties in non-commuting observables have been examined. These are illustrated by two specific examples of harmonic oscillator and the angular momentum states. It shows that the coherent states of the harmonic oscillator are characterized by the minimum uncertainty sum <(..delta..q)/sup 2/>+<(..delta..p)/sup 2/>. The extremum values of the sums and products of the uncertainties of the components of the angular momentum are also obtained.

  18. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  19. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  20. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  1. State energy-price system: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Imhoff, K.L.; Hood, L.J.

    1983-08-01

    This report updates the State Energy Price Data System (STEPS) to include state-level energy prices by fuel and by end-use sectors for 1981. Both physical unit prices and Btu prices are presented. Basic documentation of the data base remains generally the same as in the original report: State Energy Price System; Volume 1: Overview and Technical Documentation (DOE/NBB-0029 Volume 1 of 2, November 1982). The present report documents only the changes in procedures necessitated by the update to 1981 and the corrections to the basic documentation.

  2. Estimated United States Transportation Energy Use 2005

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  3. Abnormal myocardial energy-production state in mitochondrial cardiomyopathy and acute response to L-arginine infusion. C-11 acetate kinetics revealed by positron emission tomography

    International Nuclear Information System (INIS)

    Arakawa, Kenichiro; Kudo, Takashi; Ikawa, Masamichi

    2010-01-01

    Cardiomyopathy is a life-threatening condition in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (known as MELAS). However, no effective therapy has been available until now. In the present study cardiac energetics and acute effects of L-arginine (Arg) were evaluated in MELAS patients. The 6 patients with MELAS (M-group) and 6 volunteers (C-group) underwent dynamic C-11 acetate positron emission tomography (PET) imaging. Tricarboxylic acid (TCA)-cycle metabolic rate (k mono ), myocardial efficiency (double product (DP)/k mono ), and myocardial blood flow (MBF) were determined before and after L-Arg administration. Baseline k mono showed a lower value in the M-group than in the C-group (0.051±0.013 vs 0.070±0.019 min -1 , P=0.055). On the other hand, baseline DP/k mono was significantly greater in the M-group (1.69±5.9 vs 0.95±1.2 x 10 5 , P=0.004). After L-Arg administration, 4 patients showed significant elevation of k mono . No relationship was observed between the distribution of k mono elevation and the increase in MBF. The TCA cycle metabolic rate is markedly suppressed in MELAS patients, indicating a shift in energy production to the anaerobic pathway, leading to a paradoxical increase in myocardial efficiency. L-Arg can enhance TCA-cycle metabolism, regardless of its vasodilatation effect, and can be used as a treatment for patients with mitochondrial cardiomyopathy. (author)

  4. Between research and energy production

    International Nuclear Information System (INIS)

    Kirbus, F.B.

    1977-01-01

    When on March 20th, 1974, the nuclear power plant in Atucha, 100 km to the north-west of Argentine's capital Buenos Aires, built by Siemens, was taken into operation, it seemed as if South America had resolutely stepped into the atomic age. In the meantime, Brazil makes preparations for fortified construction of nuclear power plants and its own nuclear industry, and Mexico is accelerating its investigations in order to replace its dwindlung hydroelectric reserves as soon as possible with nuclear energy. The effect of the oil crisis was that Latin American countries, too, take a different look at the peaceful uses of atomic energy. (orig.) [de

  5. Energy production and human health

    International Nuclear Information System (INIS)

    Benson, J.R.; Brown, C.D.; Dixon-Davis, D.K.; Grahn, D.; Ludy, R.T.

    1977-01-01

    Progress is reported on the following research projects: development and evaluation of socioeconomic and demographic factors; and quantitative aspects of the impacts of energy-related effluents on human health. Environmental effects of electric power generation by gas, oil, coal, nuclear energy, and water were studied at 15 sites. A system of general demographic models was developed for projecting number of deaths and population size by sex, age, and cause of death through time for any defined initial population and set of vital rates

  6. Energy efficiency and cleaner production

    International Nuclear Information System (INIS)

    Konstantinoff, M.; Grozeva, Iv.

    1999-01-01

    Energy is the fundamental driver of the economic growth in the todays society. It is an absolute prerequisite for the industrial development in the developed countries as well as for improving the quality of life and reducing the poverty in the developing world. It is expected that the energy demand in the developing countries will increase rapidly in the next decades, and will even exceed the level of consumption in the rich countries due to rising population and incomes. The burning of fossil fuel, however, inevitably leads to negative environmental impact, which no longer can be neglected

  7. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  8. Biochemical and photosynthetic aspects of energy production

    Energy Technology Data Exchange (ETDEWEB)

    San Pietro, A [ed.

    1980-01-01

    Photosynthesis is the only method of solar energy conversion presently practiced on a large scale, supplying all food energy as well as fiber and wood. This book is an attempt to describe and evaluate biological processes that may serve in the future to provide alternative energy resources. Areas covered include marine biomass production, algal-bacterial systems, agricultural residues, energy farming and biological nitrogen fixation with an emphasis on the legumes.

  9. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  10. Toxicological aspects of energy production

    International Nuclear Information System (INIS)

    Sanders, C.L.

    1986-01-01

    Part I reviews the principles of toxicology, describes the biological fate of chemicals in the body, discusses basic pathobiology, and reviews short-term toxicity tests. Part II describes the toxicology and pathology of pollutants in several important organ systems. The greatest emphasis is placed on the respiratory tract because of its high probability as a route of exposure to pollutants from energy technologies and its high sensitivity to pollutant related tissue damage. Part III describes the toxicological aspects of specific chemical classes associated with fossil fuels; these include polycyclic hydrocarbons, gases and metals. Part IV describes the biomedical effects associated with each energy technology, including coal and oil, fossil fuel and biomass conversions, solar and geothermal and radiological health aspects associated with uranium mining, nuclear fission and fusion, and with nonionising radiations and electromagnetic fields

  11. State energy conservation plan for New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The energy-savings and energy-management programs set up by state agencies in New Mexico are presented. Also the energy-savings and energy-management programs for public schools are presented. Plans and summaries are also given for the following program: solar water heaters for secondary schools; solar portable classroom demonstration; energy-savings and energy-management programs for county and municipal governments; energy-savings programs for commercial and residential sectors; weatherization; solar sustenance; energy-savings programs for hospitals and industrial buildings; carpools and vanpools; a program encouraging compliance with the national 55-mph speed limit; waste-oil recycling; utilitites; agriculture; procurement; modification; public information; and an administrative packet containing information on how to facilitate internal accounting procedures.

  12. Energy policy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, M

    1978-06-01

    Energy policy in the United States is examined with particular regard to the nuclear power industry. The advantages of nuclear power over conventional and other sources are presented and the vigorous expansion of research and development is advocated. Future energy supplies are discussed and the author stresses the necessity for continued research into breeder technology.

  13. Estimating state-contingent production functions

    DEFF Research Database (Denmark)

    Rasmussen, Svend; Karantininis, Kostas

    The paper reviews the empirical problem of estimating state-contingent production functions. The major problem is that states of nature may not be registered and/or that the number of observation per state is low. Monte Carlo simulation is used to generate an artificial, uncertain production...... environment based on Cobb Douglas production functions with state-contingent parameters. The pa-rameters are subsequently estimated based on different sizes of samples using Generalized Least Squares and Generalized Maximum Entropy and the results are compared. It is concluded that Maximum Entropy may...

  14. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  15. Automatic control algorithm effects on energy production

    Science.gov (United States)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  16. Particle production at AGS energies

    International Nuclear Information System (INIS)

    Steadman, S.G.; Rothschild, P.J.; Sung, T.W.; Zachary, D.

    1995-01-01

    The authors discuss particle production from 14.6 A·GeV/c Si and 11.6 A·GeV/c Au projectiles on Al and Au targets. The second-level trigger utilized by E859 allows high precision measurements of K - , bar p, Λ and bar Λ. The bar Λ yield is larger than expected, and a surprisingly large fraction of the bar p's are observed to arise from the decay of bar Λ

  17. Local cloning of two product states

    International Nuclear Information System (INIS)

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    2005-01-01

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states

  18. Estimating GSP and labor productivity by state

    OpenAIRE

    Paul W. Bauer; Yoonsoo Lee

    2006-01-01

    In gauging the health of state economies, arguably the two most important series to track are employment and output. While employment by state is available about three weeks after the end of a month, data on output, as measured by Gross State Product (GSP), are only available annually and with a significant lag. This Policy Discussion Paper details how more current estimates of GSP can be generated using U.S. Gross Domestic Product and personal income along with individual states’ personal in...

  19. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  20. Dossier: renewable energies for heat production; Dossier: energies renouvelables pour la production de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-09-01

    This dossier makes a state-of-the-art of today's applications of renewable energy sources in the residential, collective and tertiary sectors for the space heating and the hot water production. In France, three energy sources profit by a particularly favorable evolution: the solar thermal, the wood fuel and the geothermal energies. In these sectors, the offer of reliable and technically achieved appliances has been considerably widen thanks to the impulse of some French and German manufacturers. Part 1 - solar thermal: individual solar water heaters (monobloc, thermosyphon with separate tank, forced circulation systems, auxiliary heating systems); combined solar systems (direct heating floor, system with storage); collective solar systems for hot water production (receivers, efficiency, heat storage and transfer, auxiliary heating, decentralized systems); heating of open-air swimming pools; some attempts in air-conditioning; the warranty of results. Part 2 - wood fuels: domestic space heating (log boilers, installation rules, hydro-accumulation, automatic boilers); collective and tertiary wood-fueled heating plants (design of boiler plants, fuel supply, combustion chamber, smoke purification systems, ash removal, regulation system), fuels for automatic collective plants, design and installation rules. Part 3 - geothermal energy: different types (water-source and ground-source heat pumps, financial incentive). (J.S.)

  1. Entanglement in Gaussian matrix-product states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Ericsson, Marie

    2006-01-01

    Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states

  2. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...

  3. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  4. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  5. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  6. Inclusive production at LHC energies

    International Nuclear Information System (INIS)

    Merino, C.; Pajares, C.; Shabelski, Yu.M.

    2011-01-01

    We consider the first LHC data for pp collisions in the framework of Regge theory. The integral cross sections and inclusive densities of secondaries are determined by the Pomeron exchange, and we present the corresponding predictions for them. The first measurements of inclusive densities in the midrapidity region are in agreement with these predictions. The contribution of the baryon-number transfer due to String Junction diffusion in the rapidity space is at the origin of the differences in the inclusive spectra of particle and antiparticle in the central region, and this effect could be significant at LHC energies. We discuss the first data of ALICE and LHCb collaborations on the baryon/antibaryon asymmetry at LHC. (orig.)

  7. Energy in a state of shock

    International Nuclear Information System (INIS)

    Chevalier, Jean-Marie; Pastre, Olivier; Mestrallet, Gerard; Jouzel, Jean; Geoffron, Patrice; Boniface, Pascal; Lorenzi, Jean-Herve; Bornard, Pierre; Levitte, Jean-David; Jacquillat, Bertrand; Gallois, Louis; Gaymard, Clara; Perthuis, Christian de; Schwarz, Virginie; Lechevin, Bruno; Baud, Olivier; Moulin, Julien

    2015-01-01

    The news concerning energy are in a continuous state of shock: falling oil prices, shale gas revolution in the US, energy transition policies, gas crisis between Russia and Ukraine, etc. The energy world is also facing major challenges, notably the climatic change. In its first part, this book presents in a highly pedagogical way, the key world energy data and their main economic, environmental and political related issues. Issues and perspectives are described for each energy system, with a particular interest in the European energy system and the future 'Energy Union' that is intended to secure the european energy supply. In the second part, the authors give the floor to twelve experts who raise alarm about the specific energy issue before the forthcoming COP 21 conference on climatic change in Paris: overview of the climatic change issue (by Jean Jouzel), energy transition policies in Europe (by Patrice Geoffron), the negotiations inside a hypothetical 'international community' (by Pascal Boniface), energy transition and financing, the green growth, giving a price to carbon, energy policy and democracy, etc

  8. Global energy outlooks. State of the art

    International Nuclear Information System (INIS)

    Bobin, J.L.; Nifenecker, H.; Stephan, C.

    1999-01-01

    Since two year, the SFP (French Society of Physics) began a debate on the Energy of the 21 century, by the way of regional conferences. This debate allowed the publication of synthesis documents about elements discussed during these conference. This document presents the foreseeable evolution of the energy demand, taking into account the reserves; the selected production forms consequences in terms of nuisances; the part of the nuclear energy and the renewable energies. The costs are also discussed and many statistical data are provided. (A.L.B.)

  9. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  10. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  11. ENERGY USE IN CITRUS PRODUCTION OF MAZANDARAN ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The aim of this study was to evaluate energy use in citrus production in the Mazandaran Province in Iran. Data used in this study were obtained from 155 farmers using a face-to-face interview method. The total energy .... control mainly were mechanised and a few of them ... fertilisers was manual; while manure application.

  12. All energy production involves danger

    International Nuclear Information System (INIS)

    Pleym, H.

    1976-01-01

    s pointed out that while the protective ozone layer in the upper atmosphere is threatened by supersonic air traffic and releases of freon, there is an increase in the concentration of ozone in the biosphere. The biological effect of ozone in forming free radicals is similar to the biological effect of ionising rad radiation, and the normal atmospheric concentration of ozone produces 3600 times the number of free radicals per person per year as does a background radiation of 100 mrem per year. It is also pointed out that the limits for sulphur oxides and nitrogen oxides in the atmosphere are 100 and 5 times the background levels respectively, while the limit for radioactive release is 1/100 th of the background level. The transmission of solar energy from space stations by microwave is also thought to be dubious due to possible biological effects of such radiation. In conclusion a balanced view on the biological and environmental hazards of power generation from all sources, and not only nuclear, is called for. (JIW)

  13. Comparative requirements for electric energy for production of hydrogen fuel and/or recharging of battery electric automobile fleets in New Zealand and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul [Stanford University, Stanford, CA 94305 (United States); Leaver, Jonathan D. [Department of Civil Engineering, Unitec NZ, Auckland 1142 (New Zealand)

    2010-10-15

    Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis. (author)

  14. Trends in Energy Management Technology - Part 3: State of Practiceof Energy Management, Control, and Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2004-02-01

    In this report, the third in a series, we provide an evaluation of several products that exemplify the current state of practice of Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the federal sector. The first report [1] covered enabling technologies for emerging energy management systems. The second report [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. Part 4 of this series will discuss applications software from a user's perspective. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of reports provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  15. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  16. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  17. STATE TAXATION OF MINERAL DEPOSITS AND PRODUCTION

    Science.gov (United States)

    Development of energy resources in the more rural western states is likely to create severe financial problems for some state and local governments. This new economic activity, with population in-migration and greater demand for public services, will generate a need for more gove...

  18. The validation of State subsidies to the production of carbonated and nuclear energies, or the varying winds of the EU environmental policy

    International Nuclear Information System (INIS)

    Rambour, Muriel

    2015-01-01

    As the Court of the European Union has validated subsidies awarded by the Spanish government to some coal power plants, as the European Commission has agreed with the financial support mechanism the British government wants to implement for the renewal of its electronuclear fleet, these decisions can be perceived as an incentive support to conventional energies whereas the EU is committed in a policy of struggle against climate change and of development of renewable energies. Thus, this article first discusses the compatibility of public subsidy with the European rules for concurrence and the operation of the European inner market. The author comments the Court and Commission decisions which imply an exemption of the taking of environmental concerns into account. She also comments the apparent contradiction with the environmental policy by referring to the market reality, and explains the support to nuclear energy by a required energy supply guarantee for the British Islands

  19. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  20. Bulgarian geothermal energy resources - state and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gramatikov, P S [Faculty of Natural Sciences and Mathematics, Dept. of Physical Engineering, South West Univ. ` Neofit Rilsky` , Blagoevgrad (Bulgaria)

    1997-12-01

    As special attention is paid to geothermal energy because the geothermal sources are distributed all over the territory of Bulgaria. Governmental incentives for initiating national action programs for energy efficiency, new renewable sources and the environment as well as educational activities are particularly important. The energy sector, as any other sector of the national economy, is currently undergoing considerable changes on its way to market relations, primarily connected to determining the role of the state as well as the form of ownership. The state energy policy is based on a long - term energy strategy complying with the natural conditions of the country, the expected macro - economic development, the geopolitical situation and regional development of energy cooperation with neighboring and closely situated countries. Limited reserves of fossil fuels, increased local and global environmental risks and recent technological achievements have straightened the global importance of renewable sources of thermal and electric energy. This is even more relevant for Bulgaria with small fossil fuel reserves (lignite) to be nearly exhausted and the environment notably polluted. Concerning local renewable sources of thermal energy and electricity, it is necessary to re-estimate their strategic role, to complete the input data for the resources, also to establish national programs supported by research and educational activities and international cooperation. (orig./AKF)

  1. Meson production in two-photon interactions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, D. T.; Goncalves, V. P.; Sauter, W. K. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Campus Universitario UFPel, CP 354, 96010-900, Capao do Leao-RS (Brazil)

    2013-03-25

    The LHC opens a new kinematical regime at high energy, where several questions related to the description of the high-energy regime of the Quantum Chromodynamics (QCD) remain without satisfactory answers. Some open questions are the search for non-q-bar q resonances, the determination of the spectrum of q-bar q states and the identification of states with anomalous {gamma}{gamma} couplings. A possible way to study these problems is the study of meson production in two-photon interactions. In this contribution we calculate the meson production in two-photon interactions at LHC energies considering proton - proton collisions and estimate the total cross section for the production of the mesons {pi}, a, f, {eta} and {chi}.

  2. Properties of Eucalyptus benthamii wood for energy production

    Directory of Open Access Journals (Sweden)

    Dimas Agostinho Silva

    2015-12-01

    Full Text Available The objective of this study was to evaluate the energy potential of Eucalyptus benthamii Maiden et Cambage wood. The samples were collected in the municipality of Cerro Negro, Santa Catarina State, Brazil. Samples were collected from 5 trees at 0%, 25%, 50%, 75% and 100% of commercial height. It was determined basic density, high calorific value, elemental composition, immediate chemical analysis, lower calorific value, energy density, carbon storage and energy production. The physical and chemical variables studied and energy potential of wood did not present differences along the stem.

  3. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.

    1984-10-01

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  4. Productivity growth in food crop production in Imo State, Nigeria ...

    African Journals Online (AJOL)

    Agriculture plays pivotal roles in Nigeria including food security, employment, foreign exchange earnings and poverty reduction. This study examined the growth in food crop productivity in Imo State in Nigeria with emphasis on the decomposition of total factor productivity (TFP) into technical progress, changes in technical ...

  5. Studies of meson production at SIS energies

    International Nuclear Information System (INIS)

    Hartnack, Ch.; David, Ch.; Aichelin, J.

    1996-01-01

    IQMD results on kaon and pion data are presented. The influence of the equation of state and of the elementary kaon cross sections on the excitation function and on the system size dependence is analyzed. Effects of density dependent threshold reductions for the production of positive and negative kaons are studied. The influence of the Delta lifetime on the pion production is discussed. (author)

  6. Four-jet final state production in e+e- collisions at centre-of-mass energies ranging from 130 to 184 GeV

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Boix, G.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Morawitz, P.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bright-Thomas, P.; Casper, D.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Vreeswijk, M.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Boccali, T.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Marinelli, N.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Whelan, E. P.; Williams, M. I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Kado, M. M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Serin, L.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Coles, J.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Faïf, G.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1998-02-01

    The four jet topology is analysed in the ALEPH data taken between November 1995 and October 1997, at centre-of-mass energies ranging from 130 to 184 GeV. While an unexpected accumulation of events with a dijet mass sum around 105 GeV/c2 had been observed during the first run in 1995 at 130/136 GeV, corresponding to an integrated luminosity of 5.7 pb-1, no significant differences between data and standard model prediction is seen, either in the high energy runs (81.1 pb-1 taken at centre-of-mass energies from 161 to 184 GeV) or in the 7.1 pb-1 recorded during a new short run at 130/136 GeV in 1997. We have found no other explanation for the earlier reported ``four jet anomaly'' than a statistical fluctuation.

  7. Four-jet final state production in $e^+ e^-$ collisions at centre-of-mass energies ranging from 130 to 184 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Vreeswijk, M; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Ward, J; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Whelan, E P; Williams, M I; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Mannert, C; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacholkowska, A; Kado, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Serin, L; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Coles, J; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Przysiezniak, H; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    The four jet topology is analysed in the ALEPH data taken between November 1995 and November 1997, at centre-of-mass energies ranging from 130 to 184 GeV. While an unexpected accumulation of events with a dijet mas sum around 105 GeV/c**2 had been observed during the first run in 1995 at 130/136 GeV, corresponding to an integrated luminosity of 5.7 pb-1, no significant differences between data and standard model prediction is noticed, either in the high energy runs (81.1 pb-1 taken at centre-of-mass energies from 161 to 184 GeV) or in the 7.1 pb-1 recorded during a new short run at 130/136 GeV in 1997. We have found no other explanation for the earlier reported ``four jet anomaly'' than a statistical fluctuation.

  8. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most

  9. Energy taxes and wages in a general equilibrium model of production

    International Nuclear Information System (INIS)

    Thompson, H.

    2000-01-01

    Energy taxes are responsible for a good deal of observed differences in energy prices across states and countries. They alter patterns of production and income distribution. The present paper examines the potential of energy taxes to lower wages in a general equilibrium model of production with capital, labour and energy inputs. (Author)

  10. Characterizing locally distinguishable orthogonal product states

    OpenAIRE

    Feng, Yuan; Shi, Yaoyun

    2007-01-01

    Bennett et al. \\cite{BDF+99} identified a set of orthogonal {\\em product} states in the $3\\otimes 3$ Hilbert space such that reliably distinguishing those states requires non-local quantum operations. While more examples have been found for this counter-intuitive ``nonlocality without entanglement'' phenomenon, a complete and computationally verifiable characterization for all such sets of states remains unknown. In this Letter, we give such a characterization for the $3\\otimes 3$ space.

  11. Visions on energy production technologies for Finland up to 2030

    International Nuclear Information System (INIS)

    Kara, Mikko

    2003-01-01

    The energy sector will face major challenges in the coming decades. Global demand for primary energy is continuously increasing, as are its related environmental effects. On the other hand, the limited resources of especially oil and gas will lead to increasing price instability. Deregulation of energy markets is a challenge for the infrastructure. This deregulation is leading to restructuring of the energy market. States and owners of energy companies and energy policy decision-makers will find it difficult to play this double role. At European level and in Finland the biggest challenge is the attainment of the Kyoto target and then further reduction of greenhouse gas emissions. Renewables, nuclear power and growing imports of natural gas from Russia will play a crucial role in Finland. This presentation focuses on the development of the energy production technologies that are most important for Finland's energy supply and energy technology exports. In order to analyse the possible role of various emerging and evolving technologies in the future energy system of Finland, three scenarios has been created for a comprehensive energy system model. The model is based on a bottom-up, technology oriented representation of the energy system, including both the supply and end-use sector. Mathematically, the model is a quasi-dynamic linear optimisation model that stimulates the behaviour of energy-economic decision-making by minimising the total present value of all costs and other expenditures in the energy system during the entire time horizon under consideration. (BA)

  12. Determination of Energy Use Efficiency of Sesame Production

    OpenAIRE

    BARAN, Mehmet Firat

    2018-01-01

    In this research it was aimed to determine an energy use efficiency of sesame production in Şanlıurfa province, during the production season of 2015. In order to determine the energy use efficiency of sesame production, trials and measurement were performed in sesame farm in the Bozova district of Şanlıurfa province. As energy inputs, human labour energy, machinery energy, chemical fertilizers energy, irrigation water energy, chemicals energy, diesel fuel energy and seed energy as were calcul...

  13. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  14. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  15. Energy problems of the United States

    International Nuclear Information System (INIS)

    Pertuzio, A.

    2006-01-01

    The united states are the third world producer of oil which accounts for 440% of world production and 20 million barrels/day of which 60% are imported. That dependence on imports is likely to increase in the next decades. Such supplies and their security are therefore a fundamental factor of the United States foreign policy in combination with their political, economic and strategic objectives in a world both unsure and dangerous

  16. Electrorheology for energy production and conservation

    Science.gov (United States)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  17. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  18. Energy production and social marginalisation in China

    Energy Technology Data Exchange (ETDEWEB)

    Philip Andrews-Speed; Xin Ma

    2008-05-15

    The exploitation and production of primary energy resources and the supply of this energy is critical for China's economic development. Despite the obvious economic benefit to the nation, this energy production has had significant negative socio-economic impacts on certain groups of people at local and national scales. This paper documents three cases of energy production in China and demonstrates that, in each case, marginalisation of social groups has either been created or has been enhanced. These cases are the Three Gorges Dam, the Yumen oilfield, and township and village coal mines. The causes of this marginalisation have their roots in the structures, processes and approaches taken in the making and implementation of national policy in China, and are compounded by poor regulation and monitoring, poor civil rights, and the tension between central and local governments. The government which came to power in 2003 recognised the extent and importance of these social challenges relating to energy production, and has started to take steps to address them.

  19. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  20. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  1. Kaon production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Russkikh, V.N.; Ivanov, Yu.B.

    1992-01-01

    Production of positive kaons in nuclear collisions at intermediate energies (∝ 1-2 GeV/nucleon) is studied within the 3-dimensional fluid dynamics combined with the hadrochemical kinetics for strangeness production. Sensitivity of the kaon probe to a form of the nuclear equation of state is analyzed. The model reproduces total and differential cross sections of Ne+NaF→K + +X and Ne+Pb→K + +X reactions at E lab =2.1 GeV/nucleon, provided a soft equation of state is used. The pion-production data are also well described employing the same equation of state. Predictions are made for the current experiment on kaon production at the SIS accelerator. The obtained results are compared with the predictions of other models. (orig.)

  2. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  3. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  4. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  5. Water for energy and fuel production

    CERN Document Server

    Shah, Yatish T

    2014-01-01

    Water, in all its forms, may be the key to an environmentally friendly energy economy. Water is free, there is plenty of it, plus it carries what is generally believed to be the best long-term source of green energy-hydrogen. Water for Energy and Fuel Production explores the many roles of water in the energy and fuel industry. The text not only discusses water's use as a direct source of energy and fuel-such as hydrogen from water dissociation, methane from water-based clathrate molecules, hydroelectric dams, and hydrokinetic energy from tidal waves, off-shore undercurrents, and inland waterways-but also: Describes water's benign application in the production of oil, gas, coal, uranium, biomass, and other raw fuels, and as an energy carrier in the form of hot water and steam Examines water's role as a reactant, reaction medium, and catalyst-as well as steam's role as a reactant-for the conversion of raw fuels to synthetic fuels Explains how supercritical water can be used to convert fossil- and bio-based feed...

  6. Energy partnership: China and the Gulf states

    International Nuclear Information System (INIS)

    Bahgat, G.

    2005-01-01

    One of the most significant developments in the global energy market in the last several years has been China's skyrocketing demand for energy. In 1993, China became a net oil importer for the first time in its history and in 2003 replaced Japan as the world's second-largest oil importer (after the United States). The country needs more energy to maintain its spectacular economic performance. This study examines China's attempts to satisfy its growing needs for oil and natural gas by increasing imports from Russia and Central Asia/Caspian Sea region. The analysis suggests that despite growing cooperation between the two sides, the Gulf region is likely to satisfy most of China's hydrocarbons needs. Energy partnership between China and the Gulf has already started and is likely to be consolidated over the next few decades. The study also argues that this growing partnership between China and the Gulf should not be seen as a threat to any third party. The global energy market is well-integrated. Energy policy should not be seen in zero-sum terms. A China-Gulf partnership will benefit both sides and contribute to the stability of global energy markets. (author)

  7. Energy use pattern analyses of greenhouse vegetable production

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Akinci, I. [Department of Agricultural Machinery, Faculty of Agriculture, Akdeniz University, 07070 Antalya (Turkey)

    2006-07-15

    Greenhouse farming is a growing industry in many states. It is a very expensive way to produce greenhouse crops and there are many variables to consider before the farmer decides to take this route. A good location is essential for crop planning and growing. However, current studies related to energy use patterns and resources present in vegetable production are very limited. This research attempts to investigate the energy use patterns in greenhouse vegetable production, to determine the energy output-input ratio and their relationships. Antalya province, which has greenhouse area of about 13,337ha (30.2%), is the center of greenhouse farming in Turkey. A questionnaire was distributed to 101 greenhouse farms from 11 villages in order to obtain the available data for vegetable production. Power requirement of the machines used in greenhouse operations were measured by using a computer based data acquisition system. Energy and economical variables (i.e. output-input ratio, specific energy, production cost, net return, etc.) were calculated by using the standard equations. As a result, the operational energy and energy source requirements of the greenhouse vegetable production were found between the ranges of 23,883.5-28,034.7 and 45,763.3-49,978.8MJ/1000m{sup 2}, respectively. The energy ratio of four major greenhouse vegetables-tomato, pepper, cucumber and eggplant-was 0.32, 0.19, 0.31, 0.23, respectively. The crop yields increased as a function of the total energy inputs with the best form being second-degree polynomial. The net return of the vegetable production was found in the 595.6-2775.3$/1000m{sup 2} ranges. Among the greenhouse vegetables, tomato cultivation resulted in being the most profitable. (author)

  8. Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b-jets with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Å kesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Å sman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Bø rge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jø rgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-10-06

    This letter reports the results of a search for top and bottom squarks from gluino pair production in 4.7 fb^-1 of pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC. The search is performed in events with large missing transverse momentum and at least three jets identified as originating from a b-quark. Exclusion limits are presented for a variety of gluino-mediated models with gluino masses up to 1 TeV excluded.

  9. Product quality of parenteral vancomycin products in the United States.

    Science.gov (United States)

    Nambiar, S; Madurawe, R D; Zuk, S M; Khan, S R; Ellison, C D; Faustino, P J; Mans, D J; Trehy, M L; Hadwiger, M E; Boyne, M T; Biswas, K; Cox, E M

    2012-06-01

    In response to concerns raised about the quality of parenteral vancomycin products, the U.S. Food and Drug Administration (FDA) is investigating the product quality of all FDA-approved parenteral vancomycin products available in the United States. Product quality was evaluated independently at two FDA Office of Testing and Research (FDA-OTR) sites. In the next phase of the investigation, being done in collaboration with the National Institute of Allergy and Infectious Diseases, the in vivo activity of these products will be evaluated in an appropriate animal model. This paper summarizes results of the FDA investigation completed thus far. One site used a validated ultrahigh-pressure liquid chromatography method (OTR-UPLC), and the second site used the high-performance liquid chromatography (HPLC) method for related substances provided in the British Pharmacopeia (BP) monograph for vancomycin intravenous infusion. Similar results were obtained by the two FDA-OTR laboratories using two different analytical methods. The products tested had 90 to 95% vancomycin B (active component of vancomycin) by the BP-HPLC method and 89 to 94% vancomycin by OTR-UPLC methods. Total impurities were 5 to 10% by BP-HPLC and 6 to 11% by OTR-UPLC methods. No single impurity was >2.0%, and the CDP-1 level was ≤ 2.0% across all products. Some variability in impurity profiles of the various products was observed. No adverse product quality issues were identified with the six U.S. vancomycin parenteral products. The quality parameters of all parenteral vancomycin products tested surpassed the United States Pharmacopeia acceptance criteria. Additional testing will characterize in vivo performance characteristics of these products.

  10. Solar energy; Product information. Zonne-energie; Produktinformatie

    Energy Technology Data Exchange (ETDEWEB)

    Kruisheer, N

    1992-03-20

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills.

  11. Measuring energy efficiency in the United States` economy: A beginning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Energy efficiency is a vital component of the Nation`s energy strategy. One of the Department of Energy`s missions are to promote energy efficiency to help the Nation manage its energy resources. The ability to define and measure energy efficiency is essential to this objective. In the absence of consistent defensible measures, energy efficiency is a vague, subjective concept that engenders directionless speculation and confusion rather than insightful analysis. The task of defining and measuring energy efficiency and creating statistical measures as descriptors is a daunting one. This publication is not a final product, but is EIA`s first attempt to define and measure energy efficiency in a systematic and robust manner for each of the sectors and the United States economy as a whole. In this process, EIA has relied on discussions, customer reviews, in-house reviews, and seminars that have focused on energy efficiency in each of the sectors. EIA solicits the continued participation of its customers in further refining this work.

  12. Factors of Renewable Energy Deployment and Empirical Studies of United States Wind Energy

    Science.gov (United States)

    Can Sener, Serife Elif

    increase in economic factors is related to a significant increase in the installed wind energy capacity, whereas, the increase in environmental factors is related to a significant decrease in the installed wind capacity. The final study explores the factors of diffusion of state- and local-level wind energy support policies which are considered fundamental factors of the continuum and development of wind power in the United States. To reveal the internal determinants of state's wind energy policy diffusion, we further narrow the scope and control for the geographical region in the final study. We limit our analysis to seven neighboring Midwestern states, which are located in the center of United States wind energy corridor. Using data from 2008 to 2015, the study investigates the significance of the following internal factors: wind power potential, per capita gross state product, unemployment rate, per capita value of the agriculture sector, number of establishments in agricultural sector, and state government control. Through the addition of interaction terms, the study also considers the behavioral differences in the explanatory variables under Republican and non-Republican state governance. Our findings suggest that the economic development potential and related environmental benefits were the common motivation for state- and local-level policy makers. Lastly, technical terms and agricultural sector presence provides additional motives for the state level diffusion of wind energy policies. The findings of this dissertation are expected to contribute to the understanding of how countries and states might best stimulate and support renewable energy, and in particular wind energy, deployment.

  13. Biotechnology for energy production. Biotechnologie zur Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J.; Hall, D.O.; Chartier, P.

    1985-01-01

    Starting from the mechanisms of photosynthesis in plants and the environmental parameters influencing growth generally the book deals with the various possibilities for improving productivity in growing biomass. In particular, the modern methods of biotechnology are considered. The investigation submitted was carried through with a view to future energy farms in Europe.

  14. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  15. State Clean Energy Policies Analysis (SCEPA). State Policy and the Pursuit of Renewable Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assets—like human capital and modern infrastructure–as well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  16. State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Oteri, F.; Tegen, S.; Doris, E.

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assets--like human capital and modern infrastructure--as well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  17. State Energy Program Results: More Projects That Work

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    A Summary of Success stories of the State Energy Programs. The goal of the State Energy Program is to strengthen the capabilities of States to promote energy efficiency and to adopt renewable energy technologies, thereby helping the nation save energy and realize a stronger economy, cleaner environment, and a more secure future.

  18. Nuclear energy and the constitutional state

    International Nuclear Information System (INIS)

    Saladin, P.

    1984-01-01

    This article puts the main emphasis on the problems of the constitutional principles of democracy, federalism, peaceful living together of peoples and constitutional state, i.e. problems caused by the development of nuclear energy. The fact that these problems are explained by way of the example of Switzerland, does not reduce the validity of the findings also for the German constitutional system, since the problems are identical and comparable. A long-term goal is a state theory which helps to define the aims and tasks of the state under technical, social, economic and cultural conditions of the end of the 20th and perhaps of the 21st century. Nuclear technology challenges the modern Western state and puts to the test the firmness of its legitimacy basis and the efficiency of its principles. It was conceived in a time which is separated from the present by technological revolutions. Safeguarding of humanity is aim and obligation of the modern constitutional state; the constitutional state stipulates the rules of conduct and, if the state remains true to its claim, it sets the procedures and the organization which give due priority order to the development of modern technology. (orig./HSCH) [de

  19. q-Gamow states for intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Plastino, A. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Rocca, M.C., E-mail: mariocarlosrocca@gmail.com [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Ferri, G.L. [Fac. de C. Exactas, National University La Pampa, Peru y Uruguay, Santa Rosa, La Pampa (Argentina); Zamora, D.J. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina)

    2016-11-15

    In a recent paper Plastino and Rocca (2016) [18] we have demonstrated the possible existence of Tsallis' q-Gamow states. Now, accelerators' experimental evidence for Tsallis' distributions has been ascertained only at very high energies. Here, instead, we develop a different set of q-Gamow states for which the associated q-Breit–Wigner distribution could easily be found at intermediate energies, for which accelerators are available at many locations. In this context, it should be strongly emphasized Vignat and Plastino (2009) [2] that, empirically, one never exactly and unambiguously “detects” pure Gaussians, but rather q-Gaussians. A prediction is made via Eq. (3.4).

  20. The United States toward Energy Independence?

    International Nuclear Information System (INIS)

    Nardon, Laurence

    2013-01-01

    The U.S.'s exploitation of 'unconventional' domestic oil reserves is reviving its economy. It will also have effects on the country's energy independence and thus its geopolitical position. While it is unlikely that the relationship between Washington and the Middle East region will be fundamentally altered, the U.S.'s relationships with China, Russia, and Europe could be affected. The United States will have to incorporate these changes into its global strategies

  1. 6. State energy balance - 1978/1987 - Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    1989-05-01

    The energetic plan of Minas Gerais state and the steps such as energy balance, state potential energy identification, social and economic analysis, energetic flux, energy consumption is presented. (L.J.C.)

  2. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  3. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  4. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  5. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  6. Renewable Energy Atlas of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J. [Environmental Science Division; Hlava, K. [Environmental Science Division; Greenwood, H. [Environmentall Science Division; Carr, A. [Environmental Science Division

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  7. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  8. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  9. 10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Preemption of State regulations for commercial HVAC & WH... regulations for commercial HVAC & WH products. Beginning on the effective date of such standard, an energy conservation standard set forth in this Part for a commercial HVAC & WH product supersedes any State or local...

  10. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  11. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  12. Energy Efficiency/Renewable Energy Programs in State Implementation Plans - Guidance Documents

    Science.gov (United States)

    final document that provides guidance to States and local areas on quantifying and including emission reductions from energy efficiency and renewable energy measures in State Implementation Plans (SIPS).

  13. Energy distribution of antineutrinos originating from the decay of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Rudstam, G.; Aleklett, K.

    1979-01-01

    The energy spectrum of antineutrinos around a nuclear reactor has been derived by summing contributions from individual fission products. The resulting spectrum is weaker at energies above approx. 8 MeV than earlier published antineutrino spectra. The reason may be connected to the strong feeding of high-lying daughter states in the beta decay of fission products with high disintegration energies

  14. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  15. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  16. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  17. The potential for energy conservation in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Carlsmith, R.S. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The period of high oil prices between 1973 and 1985 was traumatic in the United States, as it was also in the rest of the world. It was also instructive in showing the kinds of adaptation that could occur rapidly in a very large industrialized economy. During the period, energy use remained essentially constant while the economy continued to grow. The efficiency of energy use, as indicated by the ratio of energy consumption to gross domestic product, increased by 24 percent. Since 1985 there has been little further improvement in energy efficiency. Can this kind of improvement in efficiency be repeated, and if so, what can make it happen? A number of energy analysts have recently made projections for the next 20 years. The projections all indicate steady increases of about 1 percent per year in the level of energy use. Since these projections assumed that gross domestic product will increase by about 2.3 percent per year, the implication is that energy efficiency is expected to increase slowly during the next two decades.

  18. Short-rotation forestry for energy production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, V.C.; Liu, W. [Univ. of Hawaii, Honolulu, HI (United States); Merriam, R.A.

    1993-12-31

    In Hawaii, imports of fossil fuels continue to accelerate and now provide over 90% of the total energy supply at a cost exceeding $1 {times} 10{sup 9} annually exported from the local economy. Concurrently, sugarcane and pineapple crops, the traditional mainstays of the state`s economy, have declined such that as much as 80,000 hectares of agricultural land are now available for alternative land uses. The feasibility of short-rotation forestry for sustainable energy production on these former sugarcane and pineapple plantation lands is being evaluated using species- and site-specific empirical models to predict yields of Eucalyptus grandis, E. saligna, and Leucaena leucocephala, a system model to estimate delivered costs, and a geographic information system to extend the analysis to areas where no field trials exist and to present results in map form. The island of Hawaii is showcased as an application of the methodology. Modeling results of methanol, ethanol, and electricity production from tropical hardwoods are presented. Short-rotation forestry appears to hold promise for the greening of Hawaii`s energy system and agricultural lands for the benefit of the state`s citizens and visitors. The methodology is readily transferable to other regions of the United States and rest of the world.

  19. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  20. Water use alternatives for Navajo energy production

    International Nuclear Information System (INIS)

    Abbey, D.

    1979-01-01

    The Navajo have substantial resources of coal and uranium, and water use is certain to accompany development of these resources. A variety of supplies, however, are available--water in storage in Navajo Reservoir, water in existing uses which may be transferred, and groundwater. Furthermore, the quantity of water use varies over a wide range depending on the use of water conservation technologies such as dry coolers and wastewater treatment units. Joint management of energy and water resources requires a basic understanding of the water supply and demand alternatives available to the energy industry. Thus, the uses of water for key energy activities--coal and uranium mining, coal transportation (slurry pipelines), and coal conversion (electricity and synthetic gas production) are reviewed. For those activities for which water conservation is feasible, the technologies and estimate costs ($/af saved) are described. The range of water requirements are then compared to energy and water resource estimates. Finally, alternative (not necessarily exclusive) criteria for energy and water resource management are discussed: a) promote energy activities with the lowest minimum water requirements; b) require industry to use low-quality water resources and the most effective water conservation technology; and c) maximize the economic return on Navajo water resources

  1. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  2. Sustainable Energy Portfolios for Small Island States

    Directory of Open Access Journals (Sweden)

    Sándor Szabó

    2015-09-01

    Full Text Available The study presents a cost effective electricity generation portfolio for six island states for a 20-year period (2015–2035. The underlying concept investigates whether adding sizeable power capacities of renewable energy sources (RES options could decrease the overall costs and contribute to a more sustainable, indigenous electricity generation at the same time. Often, island states rely on fossil fuels which, apart from dependence on foreign resources, also includes an additional, significant transport cost. This is an extra motive to study the extent in which island states represent primary locations for RES technologies. For the aims of the present study an optimization model has been developed and following numerous runs the obtained results show that installing PV and battery capacities can delay-reduce the huge investments in fossil options in early periods. Thus, investment on RES can have a positive, long-term effect on the overall energy mix. This prompt development can happen without adding new subsidies but there is a need to address the existing socio-economic barriers with intelligent design of financing and economic instruments and capacity building as discussed in the conclusions.

  3. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  4. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  5. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  6. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The People’s Republic of China (the “Plan”) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the “Proposal”). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  7. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L; Daugbjerg Jensen, P; Svane Bech, K [Danish Technological Institute (DTI), Taastrup (Denmark); and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  8. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering.

    Science.gov (United States)

    Quintana, Naira; Van der Kooy, Frank; Van de Rhee, Miranda D; Voshol, Gerben P; Verpoorte, Robert

    2011-08-01

    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.

  9. Energy matrix of Sao Paulo state from 2006 to 2016; Matriz energetica do Estado de Sao Paulo 2006 a 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the economic and social energy scenarios in the state of Sao Paulo, Brazil; the analysis and projection of the energy consumption in the state concerning to industrial, residential, farming and cattle-raising, transportation, commercial, energy and public sectors. Analysis of the energy production in the state of Sao Paulo, Brazil, the production projection, the supply and consumption balance of energy is also presented.

  10. ENERGY USE IN APPLE PRODUCTION IN THE ESFAHAN ...

    African Journals Online (AJOL)

    journal

    Apple production needs to improve the efficiency of energy consumption and to employ renewable energy. ... derived from Neyman method (Ozkan et al.,. 2004). .... management might reduce the indirect energy .... Handbook of Energy.

  11. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  12. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  13. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  14. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  15. Energy resources, CO2 production and energy conservation

    International Nuclear Information System (INIS)

    O'Callaghan, P.W.

    1993-01-01

    World fossil fuel reserves, historical and current rates of consumption are reviewed and estimates of indigeneous lives in geographical regions are made. Rates of production and accumulations of carbon dioxide and other greenhouse gases in the atmosphere are calculated and correlations made with measured global mean temperatures and concomitant sea-level rises. It is concluded that, if present rates of global fossil-fuel consumptions continue unabated, the world's fossil-fuel store will be depleted by the year 2050. This would be accompanied by a substantial rise in global mean temperature. The effects of various protocols for the reductions of emissions are examined. It is concluded that there is no alternative than to cease the production and release into the atmosphere of the more damaging man-made greenhouse gases as soon as is practicably possible and to seek a sustained reduction in the rates of combustion of fossil fuels world-wide via energy management and conservation. (author)

  16. Optimal matrix product states for the Heisenberg spin chain

    International Nuclear Information System (INIS)

    Latorre, Jose I; Pico, Vicent

    2009-01-01

    We present some exact results for the optimal matrix product state (MPS) approximation to the ground state of the infinite isotropic Heisenberg spin-1/2 chain. Our approach is based on the systematic use of Schmidt decompositions to reduce the problem of approximating for the ground state of a spin chain to an analytical minimization. This allows one to show that results of standard simulations, e.g. density matrix renormalization group and infinite time evolving block decimation, do correspond to the result obtained by this minimization strategy and, thus, both methods deliver optimal MPS with the same energy but, otherwise, different properties. We also find that translational and rotational symmetries cannot be maintained simultaneously by the MPS ansatz of minimum energy and present explicit constructions for each case. Furthermore, we analyze symmetry restoration and quantify it to uncover new scaling relations. The method we propose can be extended to any translational invariant Hamiltonian

  17. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  18. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  19. Energy prices and substitution in United States manufacturing plants

    Science.gov (United States)

    Grim, Cheryl

    Persistent regional disparities in electricity prices, growth in wholesale power markets, and recent deregulation attempts have intensified interest in the performance of the U.S. electric power industry, while skyrocketing fuel prices have brought renewed interest in the effect of changes in prices of all energy types on the U.S. economy. This dissertation examines energy prices and substitution between energy types in U.S. manufacturing. I use a newly constructed database that includes information on purchased electricity and electricity expenditures for more than 48,000 plants per year and additional data on the utilities that supply electricity to study the distribution of electricity prices paid by U.S. manufacturing plants from 1963 to 2000. I find a large compression in the dispersion of electricity prices from 1963 to 1978 due primarily to a decrease in quantity discounts for large electricity purchasers. I also find that spatial dispersion in retail electricity prices among states, counties and utility service territories is large, rises over time for smaller purchasers, and does not diminish as wholesale power markets expand in the 1990s. In addition, I examine energy type consumption patterns, prices, and substitution in U.S. manufacturing plants. I develop a plant-level dataset for 1998 with data on consumption and expenditures on energy and non-energy production inputs, output, and other plant characteristics. I find energy type consumption patterns vary widely across manufacturing plants. Further, I find a large amount of dispersion across plants in the prices paid for electricity, oil, natural gas, and coal. These high levels of dispersion are accounted for by the plant's location, industry, and purchase quantity. Finally, I present estimates of own- and cross-price elasticities of demand for both the energy and non-energy production inputs.

  20. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  1. Renewable energies for the production of bricks

    International Nuclear Information System (INIS)

    Moedinger, F.

    2006-01-01

    The research for alternatives to the classical, mainly fossil, sources of energy sources within a high energy consumption sector as brick making can certainly be very rewarding. Within this framework the production of biogas by anaerobic digestion of locally available biomasses and the integration of such a facility in a brick yard where all fermentation wastes, both liquid and solid, can be used can be considered a strategic and profitable business goal: reduction of the dependence on fossil fuels. From an environmental point of view the substitution of fossil fuels with fuels from renewable sources is certainly desire able. Into account might also be taken the possible profitable trade of emission certificates of different type

  2. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  3. Insight on the energy in the United States; Apercus sur l'energie aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, Ph

    2006-11-15

    This document recapitulates the main characteristics and the key data of the energy in the United States (fossil energies, renewable energies, electric power production). The main american strategies are then described as the actions at the international scale during the last five years. The main data of the research programs in the energy domain are presented and the possible consequences of the government change at the Congress are analyzed. (A.L.B.)

  4. Drell-Yan production at collider energies

    International Nuclear Information System (INIS)

    Neerven, W.L. Van

    1995-01-01

    We present some results of the Drell-Yan cross sections dσ/dm and σ tot which includes the O (α s 2 ) contribution to the coefficient function. In particular we study the total cross section σ tot for vector boson production and dσ/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme (bar MS versus DIS) and the factorization scale

  5. Solid-state lighting: an energy-economics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, J Y; Creighton, J R; Coltrin, M E; Simmons, J A [Physical, Chemical and Nano Sciences Center, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-0601 (United States); Saunders, H D, E-mail: jytsao@sandia.go, E-mail: jrcreig@sandia.go, E-mail: mecoltr@sandia.go, E-mail: jsimmon@sandia.go, E-mail: hsaunders@decisionprocessesinc.co [Decision Processes Incorporated, 2308 Saddleback Drive, Danville, CA 94506 (United States)

    2010-09-08

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  6. Solid-state lighting: an energy-economics perspective

    International Nuclear Information System (INIS)

    Tsao, J Y; Creighton, J R; Coltrin, M E; Simmons, J A; Saunders, H D

    2010-01-01

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  7. United States energy policy, 1980--1988

    International Nuclear Information System (INIS)

    1988-10-01

    This report reviews the nation's energy policy over the past several years. It looks at how domestic oil, energy efficiency, natural gas, nuclear energy, and renewable energy resources can help maintain and enhance our energy security. It surveys advances in energy technologies from enhanced oil recovery to new clean coal processes. It also describes the federal research programs in the basic energy sciences and it outlines the environmental issues that may profoundly affect our future energy choices

  8. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  9. Utilization of the secondary energy of Itaipu, Parana State, Brazil, for electrolytical ammonia production for nitrogenous fertilizers synthesis; Utilizacao da energia secundaria da usina hidreletrica de Itaipu, PR, Brasil para producao de amonia eletrolitica para sintese de fertilizantes nitrogenados

    Energy Technology Data Exchange (ETDEWEB)

    Souza, S.N.M. de; Siqueira, J.A.C.

    2000-07-01

    Secondary energy can be described as a surplus of electrical energy in hydraulic power plant due to the lower demand of energy during some periods of time, and the excess of water in the reservoir, during rainy periods. The largest hydroelectric power plant both in Brazil and South America is Itaipu, jointly operated by Brazil and Paraguay. This power plant has a large amount of secondary energy available, and this energy is lost as no turbine spilled water out of the reservoir. This study proposes the using of this energy for electrolytic hydrogen production and ammonia for nitrogenous fertilizers. The hydrogen is produced as a gas by mean of electrolyses and with the atmospheric nitrogen for the electrolytic ammonia synthesis, used as the most important raw material for the nitrogen fertilizers synthesis. This study performs the determination of the minimal cost of hydrogen production and the correspondent hydrogen production capacity in accordance with the ammonia market for nitrogenated fertilizers in the Center/South region, estimating the better production capacity for an ammonia plant to be installed close to Itaipu.

  10. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  11. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-01-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the 3 He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ( 3 He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the 3 He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment

  12. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  13. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  14. Symmetry energy II: Isobaric analog states

    Science.gov (United States)

    Danielewicz, Pawel; Lee, Jenny

    2014-02-01

    Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, representing a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from aa˜10 MeV at mass A˜10 to aa˜22 MeV at A˜240. Variation with mass can be understood in terms of dependence of nuclear symmetry energy on density and the rise in importance of low densities within nuclear surface in smaller systems. At A≳30, the dependence of coefficients on mass can be well described in terms of a macroscopic volume-surface competition formula with aaV≃33.2 MeV and aaS≃10.7 MeV. Our further investigation shows, though, that the fitted surface symmetry coefficient likely significantly underestimates that for the limit of half-infinite matter. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In our further analysis, we retain only those parametrizations which yield systems that are adequately stable both in the long- and short-wavelength limits. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (±2.4 MeV) constraints on the symmetry-energy values S(ρ) at 0.04≲ρ≲0.13 fm. Towards normal density the constraints significantly widen, but the normal value of energy aaV and the slope parameter L are found to be strongly correlated. To narrow the constraints, we reach for the

  15. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  16. The state of energy resources and role of nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.; )

    1999-01-01

    The present and future global energy demand has been assessed. The nuclear energy contribution in world energy balance has been discussed taking into account economical, social and environmental circumstances

  17. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  18. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  19. Structural Materials for Efficient Energy Production Systems

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    2009-01-01

    Increasing the efficiency of electric power production systems implies increasing the operating temperature above those of systems currently in operation. The viability of new systems depends completely on the availability of structural materials that withstand the operating conditions specified in the design: adequate features under mechanical stress at high temperatures and compatibility with the medium. In the case of nuclear systems (fission, fusion), an important requirement is their response to irradiation induced damage. In spite of the significant differences that exist in the design of nuclear power plants, fusion reactors, innovative fission systems, supercritical fossil plants, biomass plants, solar concentration thermal plants, etc., all of them have as a common characteristic the use of resistant materials at high temperatures. The qualification of existing materials for the new and more demanding operating conditions and the development of new materials is one of the challenges faced by the electric power production industry. The science of materials and the understanding of the basic processes that take place in structural materials on exposure to the operating conditions of energy production systems are the tools that are available to obtain safe and economically viable solutions. (Authors) 4 refs.

  20. State of Oregon 4th biennial energy plan

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    State law directs the Oregon Department of Energy (ODOE) to prepare an energy plan every two years. This is the Fourth Biennial Energy Plan. The Plan is a policy blueprint for how to best meet Oregon's future energy needs. It identifies the key energy issues facing the state and sets forth policies and actions to achieve our energy goals of reliable, least-cost, and environmentally safe supply. This book presents: Oregon's demand and supply picture today. The progress Oregon has made toward energy efficiency. Oregon's energy demand and supply outlook for the next 20 years. Estimates of cost-effective conservation and other resources that could contribute to the state's energy supply. The major energy-related health, safety, and environmental issues facing the state. A strategy to reduce greenhouse gas emissions 20 percent from 1988 levels by 2005. A two-year Action Plant that spells out ODOE's recommended actions for achieving Oregon's energy goals

  1. The humanity at the frontiers with new technologies for sustained energy production

    International Nuclear Information System (INIS)

    Florescu, Gheorghe; Agapi, Constantin; Mircea, Ioan; Gyongyosi, Tiberiu; Panaitescu, Valeriu; Florescu, Ioan-Bogdan

    2009-01-01

    The international scientific community is engaged in dealing with the actual nuclear research issues and in finding new ways for continuous and raising energy production. The big energy consumption and occurrence of new large consumers, especially in Asian countries, impose finding new solutions for clean, large scale and sustained energy production. The new technologies and scientific discoveries, also the international cooperation, offer opportunities to eliminate the actual barriers in order to cumulate and use advanced energy production processes, to find new energy sources and to build improved power plants. The paper presents the actual state of the art in the field of new technologies for nuclear power sources, the steps to be undertaken in order to penetrate the actual barriers for large scale energy production. In the paper are also presented: the actual energy production issues; the key arguments that could be used to sustain R and D for finding new energy sources; the actual limitations in industrial processes knowledge and use. (authors)

  2. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  3. Energy use and gross margin analysis for sesame production in ...

    African Journals Online (AJOL)

    As the negative impacts of energy by-products affect the climate, the knowledge and efficient use of energy in crop production will minimise environmental problems and promote sustainable agriculture as an economic production system in Nigeria and else where. The aim of the study was to evaluate energy use and gross ...

  4. Improving energy productivity in paddy production through benchmarking-An application of data envelopment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Narvendra Singh [Department of Agronomy, Uttar Banga Krishi Viswavidyalaya, P.O. Pundibari, District Cooch Behar (West Bengal) 736 165 (India)]. E-mail: nsc_01@rediffmail.com; Mohapatra, Pratap K.J. [Department of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur (West Bengal) 721 302 (India); Pandey, Keshaw Prasad [Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur (West Bengal) 721 302 (India)

    2006-06-15

    In this study, a data envelopment analysis approach has been used to determine the efficiencies of farmers with regard to energy use in rice production activities in the alluvial zone in the state of West Bengal in India. The study has helped to segregate efficient farmers from inefficient ones, identify wasteful uses of energy from different sources by inefficient farmers and to suggest reasonable savings in energy uses from different sources. The methods of cross efficiency matrix and distribution of virtual inputs are used to get insights into the performance of individual farmers, rank efficient farmers and identify the improved operating practices followed by a group of truly efficient farmers. The results reveal that, on an average, about 11.6% of the total input energy could be saved if the farmers follow the input package recommended by the study. The study also suggests that better use of power tillers and introduction of improved machinery would improve the efficiency of energy use and thereby improve the energy productivity of the rice production system in the zone.

  5. Improving energy productivity in paddy production through benchmarking-An application of data envelopment analysis

    International Nuclear Information System (INIS)

    Chauhan, Narvendra Singh; Mohapatra, Pratap K.J.; Pandey, Keshaw Prasad

    2006-01-01

    In this study, a data envelopment analysis approach has been used to determine the efficiencies of farmers with regard to energy use in rice production activities in the alluvial zone in the state of West Bengal in India. The study has helped to segregate efficient farmers from inefficient ones, identify wasteful uses of energy from different sources by inefficient farmers and to suggest reasonable savings in energy uses from different sources. The methods of cross efficiency matrix and distribution of virtual inputs are used to get insights into the performance of individual farmers, rank efficient farmers and identify the improved operating practices followed by a group of truly efficient farmers. The results reveal that, on an average, about 11.6% of the total input energy could be saved if the farmers follow the input package recommended by the study. The study also suggests that better use of power tillers and introduction of improved machinery would improve the efficiency of energy use and thereby improve the energy productivity of the rice production system in the zone

  6. Nonperturbative production of multiboson states and quantum bubbles

    International Nuclear Information System (INIS)

    Gorsky, A.S.; Voloshin, M.B.

    1993-01-01

    The amplitude of production of n on-mass-shell scalar bosons by a highly virtual field φ is considered in a λφ 4 theory with weak coupling λ and spontaneously broken symmetry. The amplitude of this process is known to have an n exclamation point growth when the produced bosons are exactly at rest. Here it is shown that for n much-gt 1/λ the process goes through ''quantum bubbles,'' i.e., quantized droplets of a different vacuum phase, which are nonperturbative resonant states of the field φ. The bubbles provide a form factor for the production amplitude, which rapidly decreases above the threshold. As a result the probability of the process may be heavily suppressed and may decrease with energy E as exp(-constxE a ), where the power a depends on the number of space dimensions. Also discussed are the quantized states of bubbles and the amplitudes of their formation and decay

  7. Africa's technology options for renewable energy production and distribution

    CSIR Research Space (South Africa)

    Amigun, B

    2011-12-01

    Full Text Available This chapter presents a critical appraisal of Africa's modern energy technologies for renewable energy. It highlights issues of scale and location-specific attributes. A critical review of different renewable energies is presented, the state...

  8. Energy productivity growth in the Dutch Greenhouse Industry

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Ondersteijn, C.J.M.

    2006-01-01

    Profitability of Dutch greenhouse firms is largely dependent on energy costs, and policy makers focus on reducing the use of energy by these firms. This article uses Russell measures of TE to develop indicators of energy productivity growth. Results show that energy productivity grew by 2.8%

  9. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  10. States of low energy on Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Olbermann, Heiner

    2007-01-01

    We construct a new class of physical states of the free Klein-Gordon field in Robertson-Walker spacetimes. This is done by minimizing the expectation value of smeared stress-energy. We get an explicit expression for the state depending on the smearing function. We call it a state of low energy. States of low energy are an improvement of the concept of adiabatic vacua on Robertson-Walker spacetimes. The latter are approximations of the former. It is shown that states of low energy are Hadamard states

  11. The impact of predicted demand on energy production

    Science.gov (United States)

    El kafazi, I.; Bannari, R.; Aboutafail, My. O.

    2018-05-01

    Energy is crucial for human life, a secure and accessible supply of power is essential for the sustainability of societies. Economic development and demographic progression increase energy demand, prompting countries to conduct research and studies on energy demand and production. Although, increasing in energy demand in the future requires a correct determination of the amount of energy supplied. Our article studies the impact of demand on energy production to find the relationship between the two latter and managing properly the production between the different energy sources. Historical data of demand and energy production since 2000 are used. The data are processed by the regression model to study the impact of demand on production. The obtained results indicate that demand has a positive and significant impact on production (high impact). Production is also increasing but at a slower pace. In this work, Morocco is considered as a case study.

  12. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  13. Renewable energy for productive uses in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  14. Energy Sprawl Is the Largest Driver of Land Use Change in United States.

    Directory of Open Access Journals (Sweden)

    Anne M Trainor

    Full Text Available Energy production in the United States for domestic use and export is predicted to rise 27% by 2040. We quantify projected energy sprawl (new land required for energy production in the United States through 2040. Over 200,000 km2 of additional land area will be directly impacted by energy development. When spacing requirements are included, over 800,000 km2 of additional land area will be affected by energy development, an area greater than the size of Texas. This pace of development in the United States is more than double the historic rate of urban and residential development, which has been the greatest driver of conversion in the United States since 1970, and is higher than projections for future land use change from residential development or agriculture. New technology now places 1.3 million km2 that had not previously experienced oil and gas development at risk of development for unconventional oil and gas. Renewable energy production can be sustained indefinitely on the same land base, while extractive energy must continually drill and mine new areas to sustain production. We calculated the number of years required for fossil energy production to expand to cover the same area as renewables, if both were to produce the same amount of energy each year. The land required for coal production would grow to equal or exceed that of wind, solar and geothermal energy within 2-31 years. In contrast, it would take hundreds of years for oil production to have the same energy sprawl as biofuels. Meeting energy demands while conserving nature will require increased energy conservation, in addition to distributed renewable energy and appropriate siting and mitigation.

  15. United States Department of Energy: a history

    Energy Technology Data Exchange (ETDEWEB)

    Holl, J.M.

    1982-11-01

    This pamphlet traces the origins of the Department of Energy and outlines the history of the Department as reflected in the energy policies of Presidents Nixon, Ford, Carter, and Reagan. It attempts to place recent energy policy into historical perspective by describing the evolution of the federal Government's role in energy research, development, and regulation.

  16. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  17. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J...

  18. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  19. Forecast of the energy final consumption for Minas Gerais State

    International Nuclear Information System (INIS)

    Almeida, P.E.F. de; Bechtlufft, P.C.T.; Araujo, M.E.A.; Vasconcelos, E.C.; Las Casas, H.B. de; Monteiro, M.A.G.

    1990-01-01

    This paper is included among the activities of the Energy Planning of Minas Gerais State and presents a forecast of the energy final consumption for the State up to year 2010. Two Scenarios are presented involving brazilian economy's evolution, the State's demography and its sectors: residential, services, transportation, agriculture and cattle-breeding and industry. Finally, it shows two forecast on energy final consumption for Minas Gerais State. (author)

  20. Baseline brain energy supports the state of consciousness.

    Science.gov (United States)

    Shulman, Robert G; Hyder, Fahmeed; Rothman, Douglas L

    2009-07-07

    An individual, human or animal, is defined to be in a conscious state empirically by the behavioral ability to respond meaningfully to stimuli, whereas the loss of consciousness is defined by unresponsiveness. PET measurements of glucose or oxygen consumption show a widespread approximately 45% reduction in cerebral energy consumption with anesthesia-induced loss of consciousness. Because baseline brain energy consumption has been shown by (13)C magnetic resonance spectroscopy to be almost exclusively dedicated to neuronal signaling, we propose that the high level of brain energy is a necessary property of the conscious state. Two additional neuronal properties of the conscious state change with anesthesia. The delocalized fMRI activity patterns in rat brain during sensory stimulation at a higher energy state (close to the awake) collapse to a contralateral somatosensory response at lower energy state (deep anesthesia). Firing rates of an ensemble of neurons in the rat somatosensory cortex shift from the gamma-band range (20-40 Hz) at higher energy state to energy state. With the conscious state defined by the individual's behavior and maintained by high cerebral energy, measurable properties of that state are the widespread fMRI patterns and high frequency neuronal activity, both of which support the extensive interregional communication characteristic of consciousness. This usage of high brain energies when the person is in the "state" of consciousness differs from most studies, which attend the smaller energy increments observed during the stimulations that form the "contents" of that state.

  1. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition. As...

  2. The Current State of Additive Manufacturing in Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palmer, Sierra [Worcester Polytechnic Institute (WPI), , Worcester, MA (United States); Lee, Dominic [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, Dale Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% of the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).

  3. New energy storage systems for photovoltaic supplied consumer products

    International Nuclear Information System (INIS)

    Burges, K.; Blok, K.

    1993-12-01

    In a previous study attention was paid to the possibility of reducing battery wastes in the Netherlands by means of integration of photovoltaic (PV) cells in small, electric consumer products. The result of that study was that only two environment-friendly applications could be used: capacitors in calculators or watches. However, new types of energy storage systems have been developed and commercialized, so that the above-mentioned study is updated. First, the technical, economic and environmental parameters of several energy storage systems are compared. Next, a number of products, in which PV-cells can be integrated, has been selected and the economic and environmental effects are calculated and analyzed. The energy storage systems discussed are primary alkaline batteries, NiCd batteries, Ni-Metal-Hydride (NiMH) batteries, Li-Solid-State (LiSS) batteries, and capacitors. It is estimated that by means of the proposed integration of PV-cells in specific consumer products the amount of battery wastes can be reduced by 50%. 33 tabs., 1 appendix, 50 refs

  4. Assistance to States on Policies Related to Wind Energy Issues

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew, H; Decesaro, Jennifer; DOE Project Officer - Keith Bennett

    2005-07-15

    This final report summarizes work carried out under agreement with the US Department of Energy, related to wind energy policy issues. This project has involved a combination of outreach and publications on wind energy, with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of wind energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of meetings designed specifically for state legislators and legislative staff, responses to information requests on wind energy, and publications. The publications addressed: renewable energy portfolio standards, wind energy transmission, wind energy siting, case studies of wind energy policy, avian issues, economic development, and other related issues. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about wind information for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to wind energy in the states.

  5. Accuracy of Stated Energy Contents of Restaurant Foods

    Science.gov (United States)

    Urban, Lorien E.; McCrory, Megan A.; Dallal, Gerard E.; Das, Sai Krupa; Saltzman, Edward; Weber, Judith L.; Roberts, Susan B.

    2015-01-01

    Context National recommendations for the prevention and treatment of obesity emphasize reducing energy intake. Foods purchased in restaurants provide approximately 35% of the daily energy intake in US individuals but the accuracy of the energy contents listed for these foods is unknown. Objective To examine the accuracy of stated energy contents of foods purchased in restaurants. Design and Setting A validated bomb calorimetry technique was used to measure dietary energy in food from 42 restaurants, comprising 269 total food items and 242 unique foods. The restaurants and foods were randomly selected from quick-serve and sit-down restaurants in Massachusetts, Arkansas, and Indiana between January and June 2010. Main Outcome Measure The difference between restaurant-stated and laboratory-measured energy contents, which were corrected for standard metabolizable energy conversion factors. Results The absolute stated energy contents were not significantly different from the absolute measured energy contents overall (difference of 10 kcal/portion; 95% confidence interval [CI], −15 to 34 kcal/portion; P=.52); however, the stated energy contents of individual foods were variable relative to the measured energy contents. Of the 269 food items, 50 (19%) contained measured energy contents of at least 100 kcal/portion more than the stated energy contents. Of the 10% of foods with the highest excess energy in the initial sampling, 13 of 17 were available for a second sampling. In the first analysis, these foods contained average measured energy contents of 289 kcal/portion (95% CI, 186 to 392 kcal/portion) more than the stated energy contents; in the second analysis, these foods contained average measured energy contents of 258 kcal/portion (95% CI, 154 to 361 kcal/portion) more than the stated energy contents (Prestaurant foods were accurate overall. However, there was substantial inaccuracy for some individual foods, with understated energy contents for those with lower

  6. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Science.gov (United States)

    2012-03-12

    ... DEPARTMENT OF ENERGY [Docket No. EESEP0216] State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and... (SEP) and Energy Efficiency and Conservation Block Grant (EECBG) program, in support of energy...

  7. Binding energies of two deltas bound states

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Saito, Koichi.

    1982-06-01

    Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)

  8. Energy and materials flows in the production of olefins and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  9. Subjective State, Blood Pressure, and Behavioral Control Changes Produced by an "Energy Shot"

    Science.gov (United States)

    Marczinski, Cecile A; Stamates, Amy L; Ossege, Julianne; Maloney, Sarah F; Bardgett, Mark E; Brown, Clifford J

    2014-06-01

    Background: Energy drinks and energy shots are popular consumer beverages that are advertised to increase feelings of alertness. Typically, these products include high levels of caffeine, a mild psychostimulant drug. The scientific evidence demonstrating the specific benefits of energy products to users in terms of subjective state and objective performance is surprisingly lacking. Moreover, there are rising health concerns associated with the use of these products. Therefore, the purpose of this study was to investigate the acute effects of a popular energy shot (5-Hour Energy ® ) on subjective and objective measures that were assessed hourly for 6 hours following consumption. Methods: Participants ( n =14) completed a three-session study where they received the energy shot, a placebo control, and no drink. Following dose administration, participants completed subjective Profile of Mood States ratings hourly for 6 hours. Participants also repeatedly completed a behavioral control task (the cued go/no-go task) and provided blood pressure and pulse rate readings at each hour. Results: Consumption of the energy shot did improve subjective state, as measured by increased ratings of vigor and decreased ratings of fatigue. However, the energy shot did not alter objective performance, which worsened over time. Importantly, the energy shot elevated both systolic and diastolic blood pressure. Conclusions: Consumption of one energy shot may only result in modest benefits to subjective state. Individuals with preexisting hypertension or other medical conditions should be cautious about using these new consumer products.

  10. Geothermal Energy Development in the Eastern United States. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    This document represents the final report from the Applied Physics Laboratory (APL) of The Johns Hopkins University on its efforts on behalf of the Division of Geothermal Energy (DGE) of the Department of Energy (DOE). For the past four years, the Laboratory has been fostering development of geothermal energy in the Eastern United States. While the definition of ''Eastern'' has changed somewhat from time to time, basically it means the area of the continental United States east of the Rocky Mountains, plus Puerto Rico but excluding the geopressured regions of Texas and Louisiana. During these years, the Laboratory developed a background in geology, hydrology, and reservoir analysis to aid it in establishing the marketability of geothermal energy in the east. Contrary to the situation in the western states, the geothermal resource in the east was clearly understood to be inferior in accessible temperature. On the other hand, there were known to be copious quantities of water in various aquifers to carry the heat energy to the surface. More important still, the east possesses a relatively dense population and numerous commercial and industrial enterprises, so that thermal energy, almost wherever found, would have a market. Thus, very early on it was clear that the primary use for geothermal energy in the east would be for process heat and space conditioning--heating and cool electrical production was out of the question. The task then shifted to finding users colocated with resources. This task met with modest success on the Atlantic Coastal Plain. A great deal of economic and demographic analysis pinpointed the prospective beneficiaries, and an intensive ''outreach'' campaign was mounted to persuade the potential users to invest in geothermal energy. The major handicaps were: (1) The lack of demonstrated hydrothermal resources with known temperatures and expected longevity; and (2) The lack of a &apos

  11. Transfer matrices and excitations with matrix product states

    International Nuclear Information System (INIS)

    Zauner, V; Rams, M M; Verstraete, F; Draxler, D; Vanderstraeten, L; Degroote, M; Haegeman, J; Stojevic, V; Schuch, N

    2015-01-01

    We use the formalism of tensor network states to investigate the relation between static correlation functions in the ground state of local quantum many-body Hamiltonians and the dispersion relations of the corresponding low-energy excitations. In particular, we show that the matrix product state transfer matrix (MPS-TM)—a central object in the computation of static correlation functions—provides important information about the location and magnitude of the minima of the low-energy dispersion relation(s), and we present supporting numerical data for one-dimensional lattice and continuum models as well as two-dimensional lattice models on a cylinder. We elaborate on the peculiar structure of the MPS-TM’s eigenspectrum and give several arguments for the close relation between the structure of the low-energy spectrum of the system and the form of the static correlation functions. Finally, we discuss how the MPS-TM connects to the exact quantum transfer matrix of the model at zero temperature. We present a renormalization group argument for obtaining finite bond dimension approximations of the MPS, which allows one to reinterpret variational MPS techniques (such as the density matrix renormalization group) as an application of Wilson’s numerical renormalization group along the virtual (imaginary time) dimension of the system. (paper)

  12. Energy conservation opportunities: audit vis-a-vis mine productivity

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, G.H.

    2009-07-01

    Mining operation, whether opencast or underground, with modern equipment is highly energy intensive, needing energy conservation and management to ensure efficiency, cost effectiveness, and overall productivity. Exhaustible primary energy resources such as coal, lignite, oil, and nuclear fuels are being mined out to meet our energy needs. An attempt has been made in this paper to highlight the energy conservation opportunities, energy audit, the relevant Energy Conservation Act 2001 and certain energy saving measures leading to higher productivity followed by a few case study examples. 3 refs.

  13. First ALICE results on quarkonium production at Run 2 energies

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Quarkonium production in hadronic collisions (either proton-proton or heavy ions) has been extensively studied in both fixed target and collider experiments. It is understood as the production of a heavy quark pair (ccbar or bbar depending on the quarkonium state) in a hard scattering process which occurs early in the collision, followed by the evolution of this quark pair into a colorless bound state. While the production of the quark pair is reasonably well described by perturbative QCD calculations, its evolution into the bound state is inherently non-perturbative and is studied experimentally in pp collisions. In heavy ion collisions on the other hand, quarkonia are used to probe the properties of the medium formed in the collision and in particular that of the quark-gluon plasma, via competing mechanisms such as color screening, thermal dissociation or recombination, as well as so-called cold nuclear matter effects such as shadowing, gluon saturation or energy loss. The first ALICE results on quarkonium...

  14. Energy drinks in the Gulf Cooperation Council states: A review

    OpenAIRE

    Alhyas, Layla; El Kashef, Ahmed; AlGhaferi, Hamad

    2015-01-01

    Energy drinks have become a popular beverage worldwide. This review was carried out to have an overview among adolescents and emerging adults in the Gulf Co-operation Council states about energy drinks consumption rates and other related issues such as starting age and patterns of energy drink consumption. The Medline and Embase databases were searched separately using different terms such as energy drinks, energy beverages, and caffeinated drinks. Data related to the rates of energy drinks u...

  15. Energy production and use in Dutch agriculture

    NARCIS (Netherlands)

    Dekkers, W.A.; Lange, J.M.; Wit, de C.T.

    1974-01-01

    Energy relationschips in the agriculture of one of the most densely populated areas of the world, the Nether lands, are described. The Netherlands appear selfsupporting in food energy. However, if one takes account of energy consumption in horticulture, the direct and indirect fossil energy cost

  16. Quasi-degenerate perturbation theory using matrix product states

    International Nuclear Information System (INIS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost

  17. Quasi-degenerate perturbation theory using matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sandeep, E-mail: sanshar@gmail.com; Jeanmairet, Guillaume [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Alavi, Ali, E-mail: a.alavi@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2016-01-21

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  18. Quasi-degenerate perturbation theory using matrix product states

    Science.gov (United States)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  19. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  20. Assessment of environmental external effects in the production of energy

    DEFF Research Database (Denmark)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E.

    1995-01-01

    A project in Denmark has been carried out with the purpose to assess the environmental damages and the external costs in the production of energy. The energy production technologies that will be reported in this paper are wind power and a conventional coal fired plant. In the project the environm......A project in Denmark has been carried out with the purpose to assess the environmental damages and the external costs in the production of energy. The energy production technologies that will be reported in this paper are wind power and a conventional coal fired plant. In the project...... the environmental damages for the energy production technologies are compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized....

  1. Energy Balance of the Santa Catarina State - Series 1980 -1996

    International Nuclear Information System (INIS)

    1997-01-01

    This energy balance of the Santa Catarina State presents the following main topics that can be outstanding: economic aspects; supply and demand of energy by source 1980-1996; energy consumption by sector 1980/1996; energy interchange; and balance of the transformation centers 1980/1996

  2. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Battery Chargers and External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW...

  3. Energy balance of Sao Paulo state, Brazil 2008. Calendar year 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This document presents the consolidated annual energy balances and also tables and graphics which detailed the evolution and the present status of offer and demand of each energy resources used by Sao Paulo, Brazil, economy and regionalized and environmental information. It covers the period of 1994 to 2007 and includes energy fluxes of the energy primary and secondary resources, from the production to the final consumption of the main sectors of the state economy

  4. Energy balance of Sao Paulo state, Brazil 2009. Calendar year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the consolidated annual energy balances and also tables and graphics which detailed the evolution and the present status of offer and demand of each energy resources used by Sao Paulo, Brazil, economy and regional and environmental information. It covers the period of 1995 to 2008 and includes energy fluxes of the energy primary and secondary resources, from the production to the final consumption of the main sectors of the state economy

  5. Barriers to retail marketing of renewable energy products in an energy-rich province

    International Nuclear Information System (INIS)

    Haner, S.A.

    1999-01-01

    Personal experiences in attempting to market photovoltaics and other renewable energy products in Alberta, a province rich in energy sources, are recounted as part of an exploration of ways to help industry to develop strategies that will advance the acceptance of renewable energy products, particularly in areas of the world that are not concerned about energy supply. Social acceptability, emphasis on a healthy and convenient lifestyle associated with renewable energy products, practical, user-friendly products, and competitive prices, are some of the key elements in successfully marketing renewable energy products

  6. Energy matrix in the Parana State. Year 2000

    International Nuclear Information System (INIS)

    1994-01-01

    The energy sector in the Parana State, Brazil, is analyzed. The supply, demand, investment, environmental, social and economic aspects are described, and the necessary action for satisfying the energy demand in the year 2000 are presented. 69 tabs., 11 figs

  7. Eastern States Harness Clean Energy to Promote Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    2007-10-01

    States on the East Coast are including renewable energy and energy efficiency projects into their air quality plans that they submit to the EPA to address nonattainment for nitrogen oxides and other pollutants.

  8. Energy balance of the Sao Paulo State - 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This document informs the energetic balance for Sao Paulo State - 1990, with information referring to the year 1989, containing the energy fluxes from primary and secondary energy sources in the main sectors of Sao Paulo economy. 32 figs., 99 tabs

  9. On risk assessment of energy production

    International Nuclear Information System (INIS)

    Kunii, Katsuhiko

    2005-07-01

    Today we cannot ignore the risk of health and/or environment by energy production such as power generation since the risk has been made large enough. In this report an information survey has been done in order to know the outline and points of risk assessment. Based on the information of reports and literature about risk assessment, have been surveyed mainly the external cost assessment of power generation (in which quantification of health and/or environment risk has been done), in addition, risks of disasters, accidents, investments, finance etc. and impacts of those risks on social activities. The remarks obtained by the survey are as follows: 1) Some of external cost assessment of power generation show different results even if the assessment conditions of technology, site, etc. are mostly the same. It is necessary to remark on the information such as basic data, model, background, application limit of assessment considering the reliability. 2) Especially it is considered that the reliability of risk assessment is not enough at present because of the lack of basic data. (author)

  10. Process and device for thermal energy production

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1977-01-01

    The main aim of the invention is to create a heating cycle arrangement, for the energy production facilities as from liquid metal cooled nuclear reactors, that will stand up to the temperature changes of the heated steam at least as from the high pressure turbine. This arrangement includes a first system in which flows a liquid metal coolant between a heat source, a steam generator and a utilisation system on which flows a vaporisable fluid from this generator, passing through a first turbine, a heater, at least a second turbine and a condenser. The steam heated in the heater is heated by the liquid metal coolant. A preheater is located in the heated steam system upstream of the heater. This preheater is connected so as to heat the steam to a preset, practically constant value, before this steam to be heated enters the heater heated by the liquid metal. This arrangement reduces the thermal transitions in the superheater and the heater during load changes. In a preferential design mode, the steam from the steam generator is sent to a moisture extraction drum and the heater is exposed to the steam in this drum [fr

  11. State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface.

    Science.gov (United States)

    Li, Anyang; Guo, Hua; Sun, Zhigang; Kłos, Jacek; Alexander, Millard H

    2013-10-07

    The state-to-state reaction dynamics of the title reaction is investigated on the ground electronic state potential energy surface using two quantum dynamical methods. The results obtained using the Chebyshev real wave packet method are in excellent agreement with those obtained using the time-independent method, except at low translational energies. It is shown that this exothermic hydrogen abstraction reaction is direct, resulting in a strong back-scattered bias in the product angular distribution. The HF product is highly excited internally. Agreement with available experimental data is only qualitative. We discuss several possible causes of disagreement with experiment.

  12. Energy dependence of strangeness production and event-byevent fluctuations

    Directory of Open Access Journals (Sweden)

    Rustamov Anar

    2018-01-01

    Full Text Available We review the energy dependence of strangeness production in nucleus-nucleus collisions and contrast it with the experimental observations in pp and p-A collisions at LHC energies as a function of the charged particle multiplicities. For the high multiplicity final states the results from pp and p-Pb reactions systematically approach the values obtained from Pb-Pb collisions. In statistical models this implies an approach to the thermodynamic limit, where differences of mean multiplicities between various formalisms, such as Canonical and Grand Canonical Ensembles, vanish. Furthermore, we report on event-by-event net-proton fluctuations as measured by STAR at RHIC/BNL and by ALICE at LHC/CERN and discuss various non-dynamical contributions to these measurements, which should be properly subtracted before comparison to theoretical calculations on dynamical net-baryon fluctuations.

  13. The transition between energy efficient and energy inefficient states in Cameroon

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2016-01-01

    I use a two-state (energy efficient/inefficient) Markov-switching dynamic model to study energy efficiency in Cameroon in a novel manner, employing yearly data covering 1971 to 2012. I find that the duration of an energy inefficient state is about twice as long as an energy efficient state, mainly due to fuel subsidies, low income, high corruption, regulatory inefficiencies, poorly developed infrastructure and undeveloped markets. To escape from an energy inefficient state a broad policy overhaul is needed. Trade liberalization and related growth policies together with the removal of fuel subsidies are useful, but insufficient policy measures; the results suggest that they should be combined with structural policies, aiming at institutional structure and investment in infrastructure. - Highlights: • I investigate the transition between energy efficient/inefficient states. • On the average, energy inefficient state persists more than energy efficient state. • The duration of energy inefficient state is about twice as long as energy efficient state. • Price, income and trade openness have distinct energy saving effect irrespective of state. • A broad policy overhaul is needed to escape the energy inefficient state.

  14. The Energy Puzzle Between the United States and China

    Science.gov (United States)

    2013-03-01

    securing China’s status as a great power.2 As of 2011, China is the second largest consumer of natural resources (oil, liquefied petroleum gas ( LPG ...pursuit of natural resources, (oil, natural gas , coal or renewable energy sources) is reshaping the world’s energy security. The United States is...pursuit of natural resources, (oil, natural gas , coal or renewable energy sources) is reshaping the world’s energy security. The United States is

  15. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  16. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  17. Workplace Energy Conservation at Michigan State University

    Science.gov (United States)

    Allen, Summer; Marquart-Pyatt, Sandra T.

    2018-01-01

    Purpose: This research contributes to the literature on workplace energy conservation by examining the predictors of individual employee behaviors and policy support in a university. The purpose of this research is to better understand what factors influence energy conservation behaviors in this setting to inform programs and interventions.…

  18. Green Mines green energy : establishing productive land on mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, B.; Zinck, J.; Vigneault, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-02-15

    The Green Mines green energy research project was initiated by the CANMET Mining and Mineral Sciences Laboratories of Natural Resources Canada. The objective of the initiative was to demonstrate that organic residuals could be used to remediate mine tailings and establish agriculturally productive land where energy crops such as corn, canola, soy, switchgrass and other species could be grown and harvested specifically as feedstock for the production of green fuels. This paper discussed the scope and progress to date of the Green Mines green energy project. This included discussion about a column leaching study and about effluent treatability and toxicity. Neutralization test results and the results of field trials were presented. The paper concluded with a discussion of next steps. An advisory committee has been established to review annual progress and establish research directions. Overall, preliminary results from the column study suggest that sulphate reduction at the tailings-biosolids interface is occurring, although steady state has not yet been reached after more than one year of testing. 1 tab., 3 figs.

  19. Green Mines green energy : establishing productive land on mine tailings

    International Nuclear Information System (INIS)

    Tisch, B.; Zinck, J.; Vigneault, B.

    2009-01-01

    The Green Mines green energy research project was initiated by the CANMET Mining and Mineral Sciences Laboratories of Natural Resources Canada. The objective of the initiative was to demonstrate that organic residuals could be used to remediate mine tailings and establish agriculturally productive land where energy crops such as corn, canola, soy, switchgrass and other species could be grown and harvested specifically as feedstock for the production of green fuels. This paper discussed the scope and progress to date of the Green Mines green energy project. This included discussion about a column leaching study and about effluent treatability and toxicity. Neutralization test results and the results of field trials were presented. The paper concluded with a discussion of next steps. An advisory committee has been established to review annual progress and establish research directions. Overall, preliminary results from the column study suggest that sulphate reduction at the tailings-biosolids interface is occurring, although steady state has not yet been reached after more than one year of testing. 1 tab., 3 figs

  20. Attributing Crop Production in the United States Using Artificial Neural Network

    Science.gov (United States)

    Ma, Y.; Zhang, Z.; Pan, B.

    2017-12-01

    Crop production plays key role in supporting life, economy and shaping environment. It is on one hand influenced by natural factors including precipitation, temperature, energy, and on the other hand shaped by the investment of fertilizers, pesticides and human power. Successful attributing of crop production to different factors can help optimize resources and improve productivity. Based on the meteorological records from National Center for Environmental Prediction and state-wise crop production related data provided by the United States Department of Agriculture Economic Research Service, an artificial neural network was constructed to connect crop production with precipitation and temperature anormlies, capital input, labor input, energy input, pesticide consumption and fertilizer consumption. Sensitivity analysis were carried out to attribute their specific influence on crop production for each grid. Results confirmed that the listed factors can generally determine the crop production. Different state response differently to the pertubation of predictands. Their spatial distribution is visulized and discussed.

  1. Energy. From natural sources to production challenges

    International Nuclear Information System (INIS)

    2002-09-01

    Human beings have always needed energy to feed themselves and move about. Energy can be found in various forms. Today's technologies are capable of tapping all possible resources (e.g. fossil fuels, water, wind, sun) to produce large quantities of energy. Now, at the start of the 21. century, energy remains essential for mankind. It represents a major political, economic, scientific and environmental challenge. Of the many properties found in material objects, energy is not only one of the most important but also one of the most abstract, since it is not actually tangible. (authors)

  2. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  3. Nitrous oxide emissions of energy production

    International Nuclear Information System (INIS)

    Kinnunen, L.

    1998-01-01

    The share of energy production of the world-wide total N 2 O emissions is about 10 %. In 1991 the N 2 O emissions estimated to be up to 30 %. The previous estimates based on incorrect measurements. The measurement methods have been improved during the past few years. The present measurements have shown that the share of the combustion of fossil fuels is about 2.0 % and the share biomass combustion about 5.0 % of the total. The uncertainty of the values can be few percentage units. According to the present measurements the share of natural emissions and the fertilizers of the total N 2 O emissions is up to 60 %. The formation of nitrous oxide has been studied widely in various countries in the world. In Finland nitrous oxide has been studied in the national LIEKKI research programme. As a result of the research carried out in the programme it has been possible to reduce the formation of N 2 O by using appropriate catalysts and combustion technologies. Nitrous oxide is formed e.g. in fluidized-bed combustion of nitrogen containing fuels. The combustion temperature of other combustion methods is so high that the gas disintegrates in the furnace. By the new methods the nitrous oxide emissions of the fluidized-bed combustion has been possible to reduce from 100-200 ppm to the level less than 50 ppm of the flue gas volume. The Japanese research has shown that the nitrous oxide emissions of bubbling beds vary in between 58 - 103 ppm, but when combusting paper the emissions are 6 - 29 ppm. The corresponding value of circulating fluidized beds is 40 - 153 ppm

  4. Environmental assessment of energy production from waste and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tonini, D.

    2013-02-15

    To evaluate the environmental and energy performance of bioenergy and waste-to-energy systems life cycle assessment was used in this thesis. This was supported by other tools such as material, substance, energy flow analysis and energy system analysis. The primary objective of this research was to provide a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was done by integrating the results of energy system analysis into life cycle assessment scenarios. - Identification of the criticalities of bioenergy systems, particularly in relation to land use changes. - Identification of potentials and criticalities associated with innovative waste refinery technologies. This was done by assessing a specific pilot-plant operated in Copenhagen, Denmark. The waste refining treatment was compared with a number of different state-of-the-art technologies such as incineration, mechanical-biological treatment and landfilling in bioreactor. The results highlighted that production of liquid and solid biofuels from energy crops should be limited when inducing indirect land use changes (iLUC). Solid biofuels for use in combined heat and power plants may perform better than liquid biofuels due to higher energy conversion efficiencies. The iLUC impacts stood out as the most important contributor to the induced GHG emissions within bioenergy systems. Although quantification of these impacts is associated with high uncertainty, an increasing number of studies are documenting the significance of the iLUC impacts in the bioenergy life cycle. With respect to municipal solid waste, state of the art incineration, MBT and waste refining (with associated energy and material recovery processes) may all provide important and comparable GHG emission savings. The waste

  5. Renewable power production in a Pan-Caribbean energy grid

    Science.gov (United States)

    Miller, David

    The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.

  6. The Policy Trade-off Between Energy Security and Climate Change in the GCC States

    Science.gov (United States)

    Shahbek, Shaikha Ali

    Developing policies for energy security and climate change simultaneously can be very challenging as there is a trade-off. This research project strives to analyze the policies regarding the same that should be developed in the Gulf Co-operation Council (GCC) States which are; Saudi Arabia, Kuwait, Qatar, United Arab Emirates, Bahrain and Oman. Energy security is important in these countries because it is the prominent sector of their economies. Yet, the environment is being negatively impacted because of the energy production. There has been lot of international pressure on the GCC to divert its production and move towards clean energy production. It needs more research and development, as well as better economic diversification to maintain and improve the economic growth. Along with the literature review that has been used to study the cases and impacts of the GCC states, six in-depth interviews were conducted with professors, scholars and specialists in the environment and natural science fields to discuss about the GCC's situation. It has been alluded that the GCC states cannot be held solely responsible about the climate change because they are not the only energy producing nations in the world. Based on OPEC, there are 14 countries including the United States and China that also have prominent energy sectors. They should also be held accountable for the causes of environmental and climate change. This research provides recommendations for the GCC states to follow and apply in order to move forward with clean energy production, economic diversification and develop better policies.

  7. From Policy to Compliance: Federal Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    DeMates, Laurèn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scodel, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-09-06

    Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resources available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater

  8. Neutrino mixing, flavor states and dark energy

    International Nuclear Information System (INIS)

    Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.

    2008-01-01

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe

  9. Mississippi Renewable Energy and Energy Efficiency Report. A snap shot of related activities in the state of Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Sumesh M. [Mississippi Technology Alliance, Jackson, MS (United States); Linton, Joseph A. [Mississippi Technology Alliance, Jackson, MS (United States)

    2011-05-11

    In recent years, due to concerns over national security from both economic and military standpoints, increased attention has been given to the production of renewable energy in order to reduce American dependence on foreign supplies of energy. These concerns, along with those related to the effect of fossil fuels on the environment, have served to heighten the enthusiasm for finding replacements for traditional energy sources, along with helping to highlight the need for energy efficiency in American homes and businesses. Throughout the nation, this has been exemplified in an increased entrepreneurial activity to produce liquid fuels, thermal energy and electricity from a vast range of sources such as plants, trees, bacteria, the sun, wind, waves and the Earth itself. Coupled with tax subsidies, loan guarantees, renewable fuel standards, and various other government incentives and legislative encouragements we have seen a big jump in the production of renewable energy in the United States in the last ten years. But we are just getting started!

  10. Market distortions and aggregate productivity: Evidence from Chinese energy enterprises

    International Nuclear Information System (INIS)

    Dai, Xiaoyong; Cheng, Liwei

    2016-01-01

    Market distortions can generate resource misallocations across heterogeneous firms and reduce aggregate productivity. This paper measures market distortions and aggregate productivity growth in China's energy sector. We use the wedge between output elasticities and factor shares in revenues to recover a measure of firm-level market distortions. Using data on a large sample of Chinese energy enterprises from 1999 to 2007, our estimations provide strong evidence of the existence of both factor and product market distortions within and across China's various energy industries. The productivity aggregation and decomposition results demonstrate that the estimated aggregate productivity growth (APG) is, on average, 2.595% points per year, of which technological change, resource reallocation, and firm entries and exits account for 1.981, 0.068, and 0.546% points, respectively. The weak contributions of resource reallocation and firm turnover to APG are also found in energy sub-industries, except in the coal industry. Our research suggests that China's energy sector has major potential for productivity gains from resource reallocation through the reduction of market distortions. - Highlights: •We estimate market distortions and productivity growth of China's energy sector. •We use a large sample of Chinese energy enterprises. •There are evidences of the existence of factor and product market distortions. •Aggregate productivity growth is largely driven by firm-level technological change. •China's energy sector can realize productivity gains from resource reallocations.

  11. Directory of cyclotrons used for radionuclide production in Member States

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that {sup 15}O-oxygen PET studies in Japan, and {sup 18}F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies.

  12. Directory of cyclotrons used for radionuclide production in Member States

    International Nuclear Information System (INIS)

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that 15 O-oxygen PET studies in Japan, and 18 F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies

  13. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  14. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  15. Sovereign funds: energy products and investors in energy

    International Nuclear Information System (INIS)

    Bertin Delacour, Caroline

    2009-01-01

    Energy, especially oil, is the source of wealth of two-thirds of SWFs, located in the Middle East, Africa, America, Russia and Norway. The countries exporting natural resources use these investment vehicles to fight against the drawbacks of their rent economy: price volatility, non-renewal of resources, resource curse and 'dutch disease'. SWFs can indeed stabilize export earnings, preserve wealth for future generations and diversify the economy. Energy is also a prime area for investment of sovereign wealth funds, which have different objectives depending on their origin. The funds of the Persian Gulf, already rich in fossil resources, form partnerships with leading groups in the field of energy to acquire the technology they lack. The funds from countries lacking natural resources, such as China, seek to take control of foreign companies operating or processing raw materials with a view to secure energy independence of their country

  16. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  17. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  18. Energy production and financial analysis of photovoltaic energy plants in Ivory Coast

    OpenAIRE

    Guaita Pradas, Inmaculada; Marí Soucase, Bernabé; BOKO, AKA

    2015-01-01

    One key factor for boosting economic growth in developing countries is the energetic independence of the countries. Renewable energies are well suited for such purpose even if effective dissemination of renewable energies is their production price. The energy production of solar plants is highly dependent of both sun radiation and climate data and therefore dependent of their location. This paper reports on the economic and financial calculations related to the energy production of a standard...

  19. Assessment of energy return on energy investment (EROEI) of oil bearing crops for renewable fuel production

    OpenAIRE

    A. Restuccia; S. Failla; D. Longo; L. Caruso; I. Mallia; G. Schillaci

    2013-01-01

    As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested) has been used. At this aim, an...

  20. Economic analysis of honey production in Edo State, Nigeria ...

    African Journals Online (AJOL)

    This research work was carried out to analyze the economics of honey production in Edo State. The objectives of the study were to examine the demographic characteristics of honey production, assess the profitability of honey bee and the problems facing honey production .The list of honey farmers in the state was ...

  1. Alignment of Product Models and Product State Models - Integration of the Product Lifecycle Phases

    DEFF Research Database (Denmark)

    Larsen, Michael Holm; Kirkby, Lars Phillip; Vesterager, Johan

    1999-01-01

    The purpose of this paper is to discuss the integration of the Product Model (PM) and the Product State Model (PCM). Focus is on information exchange from the PSM to the PM within the manufacturing of a single ship. The paper distinguishes between information and knowledge integration. The paper ...... provides some overall strategies for integrating PM and PSM. The context of this discussion is a development project at Odense Steel Shipyard....

  2. Solar energy in the state of Amazon rural areas: social aspects and influence on the production system; Energia solar no meio rural amazonense: aspectos sociais e influencia no sistema de producao

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, Elizabeth F.; Nogueira, Carlos A. S. [Amazonas Univ., Manaus AM (Brazil). Dept. de Eletricidade]. E-mail: eliza@fua.br

    2000-07-01

    The work shows the results obtained with the implant of the photovoltaic systems indicated for energy project in the communities of Novo Paraiso, Nova Alianca, Guanabara II and Vera Cruz, located in the Municipal district of Benjamin Constant, area of high Rio Solimoes, in the State of Amazonas. The implant of the systems allowed to know the partner-cultural mechanisms of acceptance and use of the photovoltaic technology on the part of the community ones. The work demonstrated as it is possible supply energy to these places, in way economically viable and responsible methodology. It was made a rising of the energy ones used in the communities as well as the characterization of the process of implant of the energy photovoltaic and its technological appropriation by the community ones. The work also shows that the introduction of the new technology did not alter the traditional processes of work used in the daily life of the involved human population. It also observed that the implanted illumination systems had been handled and integrated the local families routines, such as the religious practices, formal education and the social organization. It was observed, the great importance that the implant of the radio-communication will have in the overcoming of the natural barriers involving the area comprehended by the communities, highlighting its use for the commercialization processes, health and community exchange. (author)

  3. Agrification: Agriculture for the industry and energy production

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new aspect of agrification is the production of alternative products, which can replace fossil sources. This substitution is necessary in order to replace hazardous materials and to find a solution for the problem of depletion of conventional energy sources and basic materials. Attention is paid to some developments in Germany: agricultural products for the production of energy, and new industrial applications for vegetable filaments. With regard to energy production from agricultrual products one should distinguish between (a) solid energy sources (biomass), f.e. straw, fast-growing wood, elephant's grass, hay and rapeseed, and (b) fluid and gaseous energy sources, f.e. purified and partly refined rapeseed oil, rapeseed oil methyl-ester (RME), ethanol from sugar beet, methanol from straw and hydrogen from straw and/or elephant's grass. 4 figs., 7 refs

  4. Go offshore -Combining food and energy production

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Stuiver, Marian; Guanche, Raul

    European oceans will be subject to massive development of marine infrastructure in the near future. The development includes energy facilities, e.g. offshore wind farms, exploitation of wave energy, and also development and implementation of marine aquaculture This change of infrastructure makes ...

  5. The state of development of wave energy

    International Nuclear Information System (INIS)

    Duckers, L.J.

    1991-01-01

    Wave energy converters are being developed and tested in as many as ten countries. The author believes that the shore mounted converters will be economically attractive in many locations around the world. These devices are simple and easily maintained. In order to harvest the greater offshore resource floating devices such as the Clam, Duck and Whale will be needed. Urgent research and development is needed to bring these to the prototype stage. Future deployment of large arrays of these floating systems could be quickly and easily achieved in many parts of the world and they would provide considerable quantities of environmentally benign, reasonably cheap energy. (author) 6 figs., 5 refs

  6. 2016 Offshore Wind Energy Resource Assessment for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  7. Energy production for environmental issues in Turkey

    Science.gov (United States)

    Yuksel, Ibrahim; Arman, Hasan; Halil Demirel, Ibrahim

    2017-11-01

    Due to the diversification efforts of energy sources, use of natural gas that was newly introduced into Turkish economy, has been growing rapidly. Turkey has large reserves of coal, particularly of lignite. The proven lignite reserves are 8.0 billion tons. The estimated total possible reserves are 30 billion tons. Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. It is expected that the demand for electric energy in Turkey will be 580 billion kWh by the year 2020. Turkey's electric energy demand is growing about 6-8% yearly due to fast economic growing. This paper deals with energy demand and consumption for environmental issues in Turkey.

  8. Energy efficiency and econometric analysis of broiler production farms

    International Nuclear Information System (INIS)

    Heidari, M.D.; Omid, M.; Akram, A.

    2011-01-01

    The objective of this study was to determine the energy consumption per 1000 bird for the broiler production in Yazd province, Iran. The data were collected from 44 farms by using a face-to-face questionnaire method during January–February 2010. The collected information was analyzed using descriptive statistics, economic analysis and stochastic frontier production function. The production technology of the farmer was assumed to be specified by the Cobb–Douglas (CD) production function. Total input energy was found to be 186,885.87 MJ (1000 bird) −1 while the output energy was 27,461.21 MJ (1000 bird) −1 . The values of specific energy and energy ratio were calculated at 71.95 MJ kg −1 and 0.15, respectively. The sensitivity of energy inputs was estimated using the marginal physical productivity (MPP) method. The MPP value showed the high impact of human labor and machinery energy inputs on output energy. Returns to scale (RTS) values for broiler were found to be 0.96; thus, there prevailed a decreasing RTS for the estimated model. The net return was found positive, as 1386.53 $ (1000 bird) −1 and the benefit to cost ratio from broiler production was calculated to be 1.38. The study revealed that production of meat was profitable in the studied area. -- Highlights: ► We determined the energy use efficiency (EUE) for the broiler production as 0.15, indicating inefficiency use of energy in these farms. ► Total input and output energies were found to be 186,885.87 MJ (1000 bird) −1 and 27,461.21 MJ (1000 bird) −1 , respectively. ► Cobb–Douglas (CD) frontier production function was found useful in developing econometric model for broiler production. ► The results of budgetary analysis indicate production of meat in broiler farms is profitable in the studied area.

  9. Search for Higgs boson production in dilepton and missing energy final states with 5.4 fb(-1) of pp collisions at square root(s) = 1.96 TeV.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2010-02-12

    A search for the standard model Higgs boson is presented using events with two charged leptons and large missing transverse energy selected from 5.4 fb(-1) of integrated luminosity in pp collisions at square root(s) = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron collider. No significant excess of events above background predictions is found, and observed (expected) upper limits at 95% confidence level on the rate of Higgs boson production are derived that are a factor of 1.55 (1.36) above the predicted standard model cross section at m(H) = 165 GeV.

  10. On the Effective Equation of State of Dark Energy

    DEFF Research Database (Denmark)

    Sloth, Martin Snoager

    2010-01-01

    In an effective field theory model with an ultraviolet momentum cutoff, there is a relation between the effective equation of state of dark energy and the ultraviolet cutoff scale. It implies that a measure of the equation of state of dark energy different from minus one, does not rule out vacuum...... energy as dark energy. It also indicates an interesting possibility that precise measurements of the infrared properties of dark energy can be used to probe the ultraviolet cutoff scale of effective quantum field theory coupled to gravity. In a toy model with a vacuum energy dominated universe...... with a Planck scale cutoff, the dark energy effective equation of state is -0.96....

  11. The ground state energy of a classical gas

    International Nuclear Information System (INIS)

    Conlon, J.G.

    1983-01-01

    The ground state energy of a classical gas is treated using a probability function for the position of the particles and a potential function. The lower boundary for the energy when the particle number is large is defined as ground state energy. The coulomb gas consisting of positive and negative particles is also treated (fixed and variable density case) the stability of the relativistic system is investigated as well. (H.B.)

  12. The impact of future energy demand on renewable energy production – Case of Norway

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Lind, Arne; Espegren, Kari Aamodt

    2013-01-01

    Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export. - Highlights: • Projections to 2050 of Norwegian energy demand services, carriers and technologies. • Energy demand services calculated based on intensities and activities. • Energy carriers and technologies analysed by TIMES-Norway. • High renewable target results in more wind power production and electricity export. • Increased energy efficiency is important for a high renewable fraction

  13. Energy use in citrus production of Mazandaran province in Iran ...

    African Journals Online (AJOL)

    The total energy requirement under citrus farming was 17,112.2 MJ ha-1, whereas 36.3 and 33.62% was consumed due to fertilisers and pesticides, respectively. Renewable energy was about 12% of total energy input. The energy ratio, productivities, specific and net energy gain were 1.71, 0.905, 1.104 and 12,251.4 MJ ...

  14. Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2000-12-14

    During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

  15. State and Local Initiatives: Your Bridge to Renewable Energy and Energy Efficiency Resources (Brochure)

    International Nuclear Information System (INIS)

    Epstein, K.

    2001-01-01

    A brochure for local and state policymakers, informing them about the State and Local Initiatives team at the National Renewable Energy Laboratory. The brochure outlines the benefits of using renewables and energy efficiency, the benefits of using the State and Local Initiatives team as a liaison to the wealth of information at NREL, and some of the services and resources available

  16. 24 Energy production and financial analysis of photovoltaic energy ...

    African Journals Online (AJOL)

    Bernabé Marí Soucase

    ISSN 1813-548X, http://www.afriquescience.info. Inmaculada ... returns of the electricity production is calculated by using capital budgeting techniques. It is demonstrated ... into account in order to assess the profitability of the investment.

  17. 76 FR 54747 - State Energy Advisory Board

    Science.gov (United States)

    2011-09-02

    ... Committee Act (Pub. L. 92- 463; 86 Stat. 770) requires that public notice of these meetings be announced in... Energy Efficiency Programs Improvement Act of 1990 (Pub. L. 101-440). Tentative Agenda: Receive updates... National Laboratory (ORNL) to discuss new initiatives and technologies and explore possible technology...

  18. State of the States 2009. Renewable Energy Development and the Role of Policy

    Energy Technology Data Exchange (ETDEWEB)

    Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Healey, Victoria [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hockett, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-10-01

    This report tracks the progress of U.S. renewable energy development at the state level, with metrics on development status and reviews of relevant policies. The analysis offers state-by-state policy suggestions and develops performance-based evaluation metrics to accelerate and improve renewable energy development.

  19. Ground state energy fluctuations in the nuclear shell model

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  20. On calculations of the ground state energy in quantum mechanics

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1991-02-01

    In nonrelativistic quantum mechanics the Wick-ordering method called the oscillator representation suggested to calculate the ground-state energy for a wide class of potentials allowing the existence of a bound state. The following examples are considered: the orbital excitations of the ground-state in the Coulomb plus linear potential, the Schroedinger equation with a ''relativistic'' kinetic energy √p 2 +m 2 , the Coulomb three-body problem. (author). 22 refs, 2 tabs

  1. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  2. Evaluation of electrical energy production patterns

    International Nuclear Information System (INIS)

    Conti, F.; Graziani, G.; Zanantoni, C.

    1975-06-01

    The main features and typical applications of the code TOTEM, developed by the CCR under request of DG XVII are described. The code is used to evaluate the physical and economical consequences of electrical power station installation policies. The input data are: the time-dependent electrical energy demand and its load duration curve, the physical and economical characteristics of the power stations, and the splitting of the energy between the various types of stations, apart from the energy produced by a plutonium burner and plutonium producer, which is calculated by the code. The output includes; costs, fuel consumption, separative work requirements

  3. Nanoenergy Nanotechnology Applied for Energy Production

    CERN Document Server

    Leite, Edson

    2013-01-01

    Low dimensional systems have revolutionized the science and technology in several areas. However, their understanding is still a great challenge for the scientific community. Solar energy conversion devices based on nanostructured materials have shown exceptional gains in efficiency and stability. In this context, nanostructures allow an improvement of surface properties, transport and charge transfer, as well as direct application as sensors and storage devices and energy conversion. This book discuss the recent advances and future trends of the nanoscience in solar energy conversion and storage. It explores and discusses recent developments both in theory as well as in experimental studies and is of interest to materials scientists, chemists, physicists and engineers.

  4. Uranium production, the United States perspective

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1984-06-01

    U.S. uranium production appears to be headed for a level of approximately one quarter of the peak production of the early 1980's. In a free world market the majority of the U.S. production capability is noncompetitive and unnecessary to supply the free world's demand. Those world producers which can produce into the competitive uranium market of the present and the foreseeable future will be sufficient to supply the uranium needs of the world for the next ten to fifteen years. Thus, the U.S. production industry once the leading producer in the world will not regain nor approach that status in the foreseeable future

  5. Energy production on farms. Sustainability of energy crops

    International Nuclear Information System (INIS)

    Van Zeijts, H.

    1995-01-01

    In this article the results of a study on sustainability of energy crops are discussed. Contribution to the reduction of the greenhouse effect and other environmental effects were investigated for the Netherlands. The study assumed that energy crops are grown on set-aside land or grain land. Generating electricity and/or heat from hemp, reed, miscanthus, poplar and willow show the best prospects. These crops are sustainable and may in the future be economically feasible. Ethanol from winter wheat shows the most favourable environmental effects, but is not economically efficient. Liquid fuels from oil seed rape and sugar beet are not very sustainable. 2 tabs., 4 refs

  6. Productivity and Energy Expenditure by Sawyers When Using ...

    African Journals Online (AJOL)

    Therefore, based on overall results it is concluded that, the PLSP is technically more appropriate technology or method for reducing energy expenditure and for increasing productivity during timber harvesting in agroforestry farms. Keywords: Productivity, Energy expenditure, Pitsawing and Portable log sawing. Rwanda ...

  7. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  8. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  9. Problems of environment pollution in energy production

    International Nuclear Information System (INIS)

    Soyberk, Oe.

    2000-01-01

    This publication relates to nuclear fuel cycle and environment, nuclear accidents, risk analysis, test of nuclear weapon, security problems of nuclear power plants, advantages and disadvantages of energy sources, climate variation due to environment pollution

  10. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  11. Energies in Ile de France - state of the art

    International Nuclear Information System (INIS)

    2003-01-01

    Because of the area of Ile de France, depends for 94% of outside for its energy needs, a local energy policy is a priority for the region. This document provides recommendations for the next SDRIF (Directory Scheme for the Ile De France Region) publication. After a recall of some definitions, it presents the main characteristics of the regional energy production and of the consumption. In the next chapters it analyses the final regional energy consumption per energy types and per economic activities sector and presents the organization of the energy supply of the region. Five domains of thought complete this analysis by an evaluation of the next energy policy approach: the tomorrow energy needs, the energy supply security, the place of the renewable energies in Ile de France, the transports problem, the minimization of the natural, industrial and social risks. (A.L.B.)

  12. Factors affecting oil palm production in Ondo state of Nigeria

    African Journals Online (AJOL)

    sola

    ... affecting oil palm production in predominantly oil palm producing areas of Ondo state of Nigeria. ... This was because the mangrove swamp zone does not .... Research stations e.g. NIFOR. Radio .... palm production management practices.

  13. 24 Energy production and financial analysis of photovoltaic energy ...

    African Journals Online (AJOL)

    Bernabé Marí Soucase

    A techno-economic analysis has been used for project cost control, ... First of all, we defined Cash Flow as movements of money in and out of any ... cost of electric energy in Côte d'Ivoire for the common use of families and small companies [9].

  14. Photovoltaic solar energy: State of the art

    International Nuclear Information System (INIS)

    Van Sark, W.G.J.H.M.; Sinke, W.C.

    1993-03-01

    Attention is paid to developments in the Netherlands of all aspects of photovoltaic (PV) energy: solar cells, components, PV-systems and all kinds of applications. Efficiencies of the present solar cell types still increase, varying from more than 10% for organic/TiO 2 solar cells to 33% for GaAs/GaSb concentrator tandem solar cells. 3 figs., 2 ills., 1 tab

  15. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  16. Architecture of the Product State Model Environment

    DEFF Research Database (Denmark)

    Holm Larsen, Michael; Lynggaard, Hans Jørgen B.

    2003-01-01

    on thedevelopment activities of the PSM architecture. An example discusses how to handle product relatedinformation on the shop floor in a manufacturing company and focuses on how dynamically updatedproduct data can improve control of production activities. This prototype example of welding a jointbetween two steel...... plates serves as proof of concept for the PSM architecture....

  17. Information Sharing In Shipbuilding based on the Product State Model

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1999-01-01

    The paper provides a review of product modelling technologies and the overall architecture for the Product State Model (PSM) environment as a basis for how dynamically updated product data can improve control of production activities. Especially, the paper focuses on the circumstances prevailing...

  18. Energy constraints and organizational change in US production

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    There is still considerable uncertainty about the way in which energy-supply constraints affect industrial thinking and activity. Yet, this is an important issue in determining the effectiveness of conservation programs and in formulating energy policy. The authors expand on a survey of US business attitudes and responses to energy constraints first published in the September 1979 Energy Policy with the results of further analysis of their survey. In particular, they examine correlations between perceived causes and preferred solutions of energy problems, organizational adjustments to energy constraints in energy-intensive industries, and the ways in which production operations have changed in response to supply problems. 5 references, 5 tables.

  19. Factors Affecting Productivity in the United States Naval Construction Force

    National Research Council Canada - National Science Library

    Morton, Darren

    1997-01-01

    By using a craftsman questionnaire, this thesis identifies and ranks the most important factors impairing Petty Officer productivity and morale in the United States Naval Construction Force (Seabees...

  20. 75 FR 13345 - Pricing for Certain United States Mint Products

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for Certain United States Mint Products AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price of First Spouse Bronze Medals and 2010 First Spouse Bronze Medal Series: Four...

  1. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  2. An Evaluation of State Energy Program Accomplishments: 2002 Program Year

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.

    2005-07-13

    The U.S. Department of Energy's (DOE's) State Energy Program (SEP) was established in 1996 by merging the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP), both of which had been in existence since 1976 (U.S. DOE 2001a). The SEP provides financial and technical assistance for a wide variety of energy efficiency and renewable energy activities undertaken by the states and territories. SEP provides money to each state and territory according to a formula that accounts for population and energy use. In addition to these ''Formula Grants'', SEP ''Special Project'' funds are made available on a competitive basis to carry out specific types of energy efficiency and renewable energy activities (U.S. DOE 2003c). The resources provided by DOE typically are augmented by money and in-kind assistance from a number of sources, including other federal agencies, state and local governments, and the private sector. The states SEP efforts include several mandatory activities, such as establishing lighting efficiency standards for public buildings, promoting car and vanpools and public transportation, and establishing policies for energy-efficient government procurement practices. The states and territories also engage in a broad range of optional activities, including holding workshops and training sessions on a variety of topics related to energy efficiency and renewable energy, providing energy audits and building retrofit services, offering technical assistance, supporting loan and grant programs, and encouraging the adoption of alternative energy technologies. The scope and variety of activities undertaken by the various states and territories is extremely broad, and this reflects the diversity of conditions and needs found across the country and the efforts of participating states and territories to respond to them. The purpose of this report is to present estimates of the energy and

  3. productivity growth in food crop production in imo state, nigeria

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Agriculture plays pivotal roles in Nigeria including food security, employment, foreign exchange earnings and ... Key Words: Productivity decomposition, scale effect, allocative efficiency ... and subsidies in the form of cheap credit was.

  4. Energy accounting of materials, products, processes and services. [Ten papers

    Energy Technology Data Exchange (ETDEWEB)

    Verbraeck, A [ed.

    1976-01-01

    Ten papers were presented, namely: Units in Energy Accounting--How Are They Defined, How Are They Measured, by Dr. Malcolm Slesser; Economics of Energy Analysis, by Dr. Thomas Veach Long II; Energy Considerations in Synthetic and Natural Fibers, by Mr. A. H. Woodhead; Energy Accounting in Food Products, by Mr. Gerald Leach; Energy Analysis of Transportation Systems, by Dr. E. J. Tuininga; Energy Accounting of Packaging Materials for Liquids and Their Transport viz Bottles and Pipes, by Mr. A. Bolzinger; Energy Accounting of Steel, by Dr. A. Decker; Energy Accounting of Aluminium, by Dr. D. Altenpohl, T. S. Daugherty, and W. Blum; Energy Requirement of Some Energy Sources, by Dr. P. F. Chapman and Dr. D. F. Hemming; Energy Analysis of Materials and Structures in the Building Industry, by Professor Dr. P. C. Kreijger. A panel discussion in response to a large number of questions was chaired by Professor Dr. W. van Gool. (MCW)

  5. Net energy yield from production of conventional oil

    International Nuclear Information System (INIS)

    Dale, Michael; Krumdieck, Susan; Bodger, Pat

    2011-01-01

    Historic profitability of bringing oil to market was profound, but most easy oil has been developed. Higher cost resources, such as tar sands and deep off-shore, are considered the best prospects for the future. Economic modelling is currently used to explore future price scenarios commensurate with delivering fuel to market. Energy policy requires modelling scenarios capturing the complexity of resource and extraction aspects as well as the economic profitability of different resources. Energy-return-on-investment (EROI) expresses the profitability of bringing energy products to the market. Net energy yield (NEY) is related to the EROI. NEY is the amount of energy less expenditures necessary to deliver a fuel to the market. This paper proposes a pattern for EROI of oil production, based on historic oil development trends. Methodology and data for EROI is not agreed upon. The proposed EROI function is explored in relation to the available data and used to attenuate the International Energy Agency (IEA) world oil production scenarios to understand the implications of future declining EROI on net energy yield. The results suggest that strategies for management and mitigation of deleterious effects of a peak in oil production are more urgent than might be suggested by analyses focussing only on gross production. - Highlights: → Brief introduction to methodological issues concerning net energy analysis. → Description of EROI function over the whole production cycle of an energy resource. → Calibration of this function to EROI data from historic oil production. → Application to determine the net energy yield from current global oil production. → Calculation of net energy yield from IEA projections of future oil production.

  6. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  7. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  8. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  9. State-of-art of modern technologies for metals production

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  10. State-of-art of modern technologies for metals production

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1995-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  11. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  12. Application of controlled thermonuclear reactor fusion energy for food production

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1975-06-01

    Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

  13. Energy analysis of solar photovoltaic module production in India

    International Nuclear Information System (INIS)

    Prakash, R.; Bansal, N.K.

    1995-01-01

    The objective of this article is to evaluate the energy consumption in solar photovoltaic (SPV) module production in India and examine its implications for large-scale introduction of SPV plants in the country. Data on energy used in SPV production were collected from existing manufacturing facilities in the country. The energy payback period turns out to be approximately 4 years. This is comparable to energy payback periods of similar modules produced internationally. However, if an ambitious program of introducing SPV power production is undertaken to contribute substantially to the power scenario in the country, an annual growth rate beyond 21% will render the program an energy sink rather than an energy source, as borne out by dynamic energy analysis. Policy implications are also discussed in light of this analysis

  14. Associated strangeness production at intermediate energies

    International Nuclear Information System (INIS)

    Saghai, B.

    1996-04-01

    Elementary strangeness production reactions with hadronic and electromagnetic probes are briefly reviewed. Some recent theoretical and experimental findings are underlined and a few open questions are singled out. (author)

  15. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  16. The Energy Budget of Steady State Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Kramer

    2012-11-27

    Progress is reported in addressing these questions: Why do hcef mutants have increased CEF1? Is increased CEF1 caused by elevated expression or altered regulation of CEF1 components? Which metabolic pools can be regulators of CEF1? Do metabolites influence CEF1 directly or indirectly? Which CEF1 pathways are activated in high CEF1 mutants? Is PQR a proton pump? Is elevated CEF1 activated by state transitions?

  17. K- nuclear states: Binding energies and widths

    Czech Academy of Sciences Publication Activity Database

    Hrtánková, Jaroslava; Mareš, Jiří

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 015205. ISSN 2469-9985 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : K- nuclear * kaonic * states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016

  18. United States Energy Policy: Security Not Independence

    Science.gov (United States)

    2013-03-01

    on leased land, ensuring fracking is done responsibly, and getting more natural gas and hybrid systems into U.S. mass transit. Internationally, the...fewer environ disturbances -Can store underground -Environ impacts of fracking unknown -uses large amount of water -potential for saline...from shale continues to rise as the United States determines how to drill safely. However, the impact of fracking on the environment is still

  19. Building Stronger State Energy Partnerships with the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Kate

    2011-09-30

    This final technical report details the results of total work efforts and progress made from October 2007 – September 2011 under the National Association of State Energy Officials (NASEO) cooperative agreement DE-FC26-07NT43264, Building Stronger State Energy Partnerships with the U.S. Department of Energy. Major topical project areas in this final report include work efforts in the following areas: Energy Assurance and Critical Infrastructure, State and Regional Technical Assistance, Regional Initiative, Regional Coordination and Technical Assistance, and International Activities in China. All required deliverables have been provided to the National Energy Technology Laboratory and DOE program officials.

  20. Production of chemical energy carriers by non-expendable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, J

    1976-01-01

    The different forms of energy (radiation, high-temperature heat and electricity) arising from non-expendable energy sources like solar energy can be used for the production of chemical energy-carriers. Possible methods are the splitting of water by means of photolysis, thermochemical cycles and electrolysis, as well as the storage of energy in closed loop chemical systems. These methods are described and efficiencies and costs of the production of these energy carriers are specified. Special problems of the long-distance transportation of hydrogen produced by solar energy are described and the resulting costs are estimated.

  1. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  2. Strategic environmental assessment for energy production

    International Nuclear Information System (INIS)

    Jay, Stephen

    2010-01-01

    Amongst the approaches that have developed to improve environmental protection within the energy sector, strategic environmental assessment (SEA) has received relatively little attention. This is despite its potential to overcome some of the shortcomings associated with project-level assessment by intervening at higher levels of energy system planning. In this article, a review is presented of the extent to which SEA has been adopted and otherwise promoted in strategic energy planning processes in a wide range of countries throughout the world (with an emphasis on European Union nations). In this regard, the growing importance of regulatory compliance is underlined, especially within the EU, with a particular focus upon the application of SEA to grid systems. The case of the Belgian transmission system is described, illustrating a proactive approach to SEA. But the difficulties inherent in introducing SEA to an increasingly fragmented and liberalised sector are also drawn out, leading to suggestions by which these difficulties may be addressed.

  3. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as well as appliances and other electrical components used in the modeled homes....

  4. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  5. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  6. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    Directory of Open Access Journals (Sweden)

    Bal-Prilipko L. V.

    2014-10-01

    Full Text Available The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of special strains of microorganisms in production of functional meat products offers some opportunities. Thus, such action is associated with formation of the following specific dietary components: organic acids, bactericins, enzymes, vitamins and others. They promote to improve the sanitary microbiological, organoleptic, functional and technological parameters of meat products. Using of denitrifying microbial strains could reduce the residual content of sodium nitrite in the finished product, minimizing the possible carcinogenic and mutagenic impact of this compound on a human body, producing functional safe products while maintaining its high organoleptic characteristics.

  7. Energy use in the food-products (not elsewhere classified) industry

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, A.C.; Earle, M.D.

    1980-06-01

    Energy consumption data in the food products industry were collected by a postal survey and by factory energy surveys. Average levels of energy consumption were evaluated for various product types, sugar refining was found to require 4.0 MJ/kg, fat and oil processing 8.5 MJ/kg, pasta product manufacture 4.3 MJ/kg, instant coffee production 48 MJ/kg, roasting of coffee beans 2.2 MJ/kg, vinegar production 3.3 MJ/litre, compressed yeast production 5.4 MJ/kg, sandwich spread preparation 5.3 MJ/kg, drying of products with initial moisture contents below 30% 8.2 MJ/kg, drying of products with initial moisture contents of 70 to 90% 39 MJ/kg and dry mixing of powders 0.46 MJ/kg. Data were also obtained for a variety of other minor products. For any particular product, differences in energy use that occurred between factories could largely be explained by differences in types of factory services and processes. Some data were available for equivalent US industries and in general, the New Zealand industy uses either a similar amount of or less energy than these United States industries. Possible areas for energy conservation in the industry are discussed.

  8. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jie [University of Texas at Dallas; Weng, Yang [Arizona State University

    2017-12-01

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to power system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.

  9. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  10. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  11. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  12. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  13. Energy-Performance as a driver for optimal production planning

    International Nuclear Information System (INIS)

    Salahi, Niloofar; Jafari, Mohsen A.

    2016-01-01

    Highlights: • A 2-dimensional Energy-Performance measure is proposed for energy aware production. • This is a novel approach integrates energy efficiency with production requirements. • This approach simultaneously incorporates machine and process related specifications. • The problem is solved as stochastic MILP with constraints addressing risk averseness. • The optimization is illustrated for 2 cases of single and serial machining operation. • Impact of various electricity pricing schemes on proposed production plan is analyzed. - Abstract: In this paper, we present energy-aware production planning using a two-dimensional “Energy-Performance” measure. With this measure, the production plan explicitly takes into account machine-level requirements, process control strategies, product types and demand patterns. The “Energy-Performance” measure is developed based on an existing concept, namely, “Specific Energy” at machine level. It is further expanded to an “Energy-Performance” profile for a production line. A production planning problem is formulated as a stochastic MILP with risk-averse constraints to account for manufacturer’s risk averseness. The objective is to attain an optimal production plan that minimizes the total loss distribution subject to system throughput targets, probabilistic risk constraints and constraints imposed by the underlying “Energy-Performance” pattern. Electricity price and demand per unit time are assumed to be stochastic. Conditional Value at Risk (CVaR) of loss distributions is used as the manufacturer’s risk measure. Both single-machine and production lines are studied for different profiles and electricity pricing schemes. It is shown that the shape of “Energy-Performance” profile can change optimal plans.

  14. Energy and Production Planning for Process Industry Supply Chains

    OpenAIRE

    Waldemarsson, Martin

    2012-01-01

    This thesis addresses industrial energy issues from a production economic perspective. During the past decade, the energy issue has become more important, partly due to rising energy prices in general, but also from a political pressure on environmental awareness concerning the problems with climate change. As a large user of energy the industry sector is most likely responsible for a lot of these problems. Things need to change and are most likely to do so considering current and assumed fut...

  15. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  16. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    OpenAIRE

    Regnier, S.; Priest, E. R.

    2008-01-01

    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  17. Water Use of Fossil Energy Production and Supply in China

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-07-01

    Full Text Available Fossil energy and water resources are both important for economic and social development in China, and they are tightly interlinked. Fossil energy production consumes large amounts of water, and it is essential to investigate the water footprint of fossil energy production (WFEP in China. In addition, fossil energy is supplied to consumers in China by both domestic and foreign producers, and understanding the water footprint of fossil energy supply (WFES is also highly significant for water and energy development programs in the long-term. The objectives of this paper were to provide an estimation of the blue component of WFEP and WFES in China for the period from 2001 to 2014, and to evaluate the impact on water resources from energy production, the contribution of internal and external WFES, and water-energy related issues of the international energy trade by applying water footprint analysis based on the bottom-up approach. The results indicate that generally, the WFEP and WFES in China both maintained steady growth before 2013, with the WFEP increasing from approximately 3900 million m3/year to 10,400 million m3/year, while the WFES grew from 3900 million m3/year to 11,600 million m3/year. The fossil energy production caps of the 13th Five Year Plan can bring the water consumed for fossil energy production back to a sustainable level. Over the long-term, China’s energy trade plan should also consider the water and energy resources of the countries from which fossil energy is imported.

  18. Energy requirement and economic analysis of citrus production in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan E-mail: bozkan@akdeniz.edu.tr; Akcaoz, Handan; Karadeniz, Feyza

    2004-07-01

    The aim of this research was to examine the energy requirements of the inputs and output in citrus production in the Antalya province of Turkey. Data for the production of citrus fruits (orange, lemon and mandarin) were collected from 105 citrus farms by using a face to face questionnaire method. The research results revealed that lemon production was the most energy intensive among the three fruits investigated. The energy input of chemical fertilizer (49.68%), mainly nitrogen, has the biggest share in the total energy inputs followed by Diesel (30.79%). The lemon production consumed a total of 62 977.87 MJ/ha followed by orange and mandarin with 60 949.69 and 48 838.17 MJ/ha, respectively. The energy ratios for orange, mandarin and lemon were estimated to be 1.25, 1.17 and 1.06, respectively. On average, the non-renewable form of energy input was 95.90% of the total energy input used in citrus production compared to only 3.74% for the renewable form. The benefit-cost ratio was the highest in orange production (2.37) followed by lemon. The results indicate that orange production in the research area is most remunerative to growers compared to lemon and mandarin.

  19. The United States Department of Energy's Environmental Restoration Program

    International Nuclear Information System (INIS)

    Whitfield, P.; Lehr, J.C.

    1993-01-01

    The Department of Energy (DOE) operates a large industrial complex which includes various production, processing, testing, and research and development installations across the country. This complex has generated, and continues to generate, significant quantities of radioactive, hazardous, and mixtures of radioactive and hazardous (mixed) waste. Over the past 40 + years of operation, the waste generated by this complex has been managed to then-current standards of technology and regulation. However, some of these waste management practices have subsequently been proven to be inadequate for long-term environmental protection. To improve these practices, DOE must first manage the tasks of characterizing and remediating waste sites and facilities at more than 120 locations in 34 states and one location in Puerto Rico. To accomplish this mission, DOE's Environmental Restoration (ER) Program within the Office of Environmental Restoration and Waste Management (EM) was established in 1989, when DOE's top priority changed from nuclear weapons production to environmental cleanup. The ER Program was created to ensure that risks to human health and the environment posed by DOE's past operations are eliminated or reduced to prescribed, safe levels. This paper gives details on the philosophy of the Environmental Restoration Program. It includes information on how the Department is managing this Program to assure cost efficiency and good stewardship of the taxpayer's dollars

  20. Estimating climatological variability of solar energy production

    Czech Academy of Sciences Publication Activity Database

    Juruš, Pavel; Eben, Kryštof; Resler, Jaroslav; Krč, Pavel; Kasanický, Ivan; Pelikán, Emil; Brabec, Marek; Hošek, Jiří

    98 Part C, December (2013), s. 255-264 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Institutional support: RVO:67985807 ; RVO:68378289 Keywords : MERRA * reanalysis * numerical weather prediction * photovoltaic power production Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.541, year: 2013

  1. Affordability for sustainable energy development products

    International Nuclear Information System (INIS)

    Riley, Paul H.

    2014-01-01

    Highlights: • Clean cookstoves that also generate electricity improve affordability. • Excel spreadsheet model to assist stakeholders to choose optimum technology. • Presents views for each stakeholder villager, village and country. • By adding certain capital costs, affordability and sustainability are improved. • Affordability is highly dependent on carbon credits and social understandings. - Abstract: Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions. Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target. Thermo-electric is currently the only

  2. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  3. Ground State Energy of the Modified Nambu-Goto String

    Science.gov (United States)

    Hadasz, Leszek

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  4. Ground state energy of the modified Nambu-Goto string

    OpenAIRE

    Hadasz, Leszek

    1997-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  5. Role of State Policy in Renewable Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Busche, S.; Hockett, S.; McLaren, J.

    2009-07-01

    State policies can support renewable energy development by driving markets, providing certainty in the investment market, and incorporating the external benefits of the technologies into cost/benefit calculations. Using statistical analyses and policy design best practices, this paper quantifies the impact of state-level policies on renewable energy development in order to better understand the role of policy on development and inform policy makers on the policy mechanisms that provide maximum benefit. The results include the identification of connections between state policies and renewable energy development, as well as a discussion placing state policy efforts in context with other factors that influence the development of renewable energy (e.g. federal policy, resource availability, technology cost, public acceptance).

  6. State aid for the adequacy of production in EU competition law

    OpenAIRE

    Domazet, Siniša

    2017-01-01

    State aid is essentially inadmissible in EU competition law. The paper deals with state aid for the adequacy of production. Research has shown that if the conditions contained in the guidelines on state aid for environmental protection and energy for the period 2014-2020 are fulfilled, this form of state aid will be permitted. It has been established that there is no practice of the European Commission in connection with this form of state aid. Recommendation to the Member States is to carry ...

  7. Continental integration and energy demand in the United States

    International Nuclear Information System (INIS)

    Manning, D.J.

    2004-01-01

    This presentation highlighted some of the major issues regarding energy demand in the United States and continental integration. The energy markets in Canada and the United States are economically integrated with large cross-border investment. Therefore, the energy infrastructure can be significantly affected by inconsistencies between the two countries in policy, regulatory processes and fiscal regimes. The author discussed the inelasticity in the natural gas demand in the United States in the near-term, and how natural gas consumption, particularly for power generation, is greater than North America's supply capacity. New supplies such as liquefied natural gas and arctic gas are needed to meet growing demands. The role of renewable energy technologies and energy efficiency was also discussed. It was emphasized that imbalances in supply and demand inevitably lead to price volatility and that high prices are a major obstacle to economic growth. tabs., figs

  8. Energy productivity and efficiency of wheat farming in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Hasan, M. Kamrul

    2014-01-01

    Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information. - Highlights: • Bangladesh wheat farming is energy efficient at 20,596 MJha −1 ; energy ratio 2.34. • Environmental factors significantly influence productivity and energy efficiency. • Environmental factors must be taken into account when estimating wheat productivity. • Government policies must focus on ways of alleviating environmental factors. • Farmers' education, training and information sources increase technical efficiency

  9. United States Data Center Energy Usage Report

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Herrlin, Magnus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koomey, Jonathan [Stanford Univ., CA (United States); Masanet, Eric [Northwestern Univ., Evanston, IL (United States); Horner, Nathaniel [Carnegie Mellon Univ., Pittsburgh, PA (United States); Azevedo, Inês [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lintner, William [Dept. of Energy (DOE), Washington DC (United States)

    2016-06-01

    This report estimates historical data center electricity consumption back to 2000, relying on previous studies and historical shipment data, and forecasts consumption out to 2020 based on new trends and the most recent data available. Figure ES-1 provides an estimate of total U.S. data center electricity use (servers, storage, network equipment, and infrastructure) from 2000-2020. In 2014, data centers in the U.S. consumed an estimated 70 billion kWh, representing about 1.8% of total U.S. electricity consumption. Current study results show data center electricity consumption increased by about 4% from 2010-2014, a large shift from the 24% percent increase estimated from 2005-2010 and the nearly 90% increase estimated from 2000-2005. Energy use is expected to continue slightly increasing in the near future, increasing 4% from 2014-2020, the same rate as the past five years. Based on current trend estimates, U.S. data centers are projected to consume approximately 73 billion kWh in 2020.

  10. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  11. Estimating caffeine intake from energy drinks and dietary supplements in the United States.

    Science.gov (United States)

    Bailey, Regan L; Saldanha, Leila G; Gahche, Jaime J; Dwyer, Johanna T

    2014-10-01

    No consistent definition exists for energy products in the United States. These products have been marketed and sold as beverages (conventional foods), energy shots (dietary supplements), and in pill or tablet form. Recently, the number of available products has surged, and formulations have changed to include caffeine. To help characterize the use of caffeine-containing energy products in the United States, three sources of data were analyzed: sales data, data from federal sources, and reports from the Drug Abuse Warning Network. These data indicate that sales of caffeine-containing energy products and emergency room visits involving their consumption appear to be increasing over time. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 indicate that 2.7% [standard error (SE) 0.2%] of the US population ≥1 year of age used a caffeine-containing energy product, providing approximately 150-200 mg/day of caffeine per day in addition to caffeine from traditional sources like coffee, tea, and colas. The highest usage of these products was among males between the ages of 19 and 30 years (7.6%, SE 1.0). Although the prevalence of caffeine-containing energy product use remains low overall in the US population, certain subgroups appear to be using these products in larger amounts. Several challenges remain in determining the level of caffeine exposure from and accurate usage patterns of caffeine-containing energy products. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  12. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    Science.gov (United States)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  13. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  14. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  15. Atomic energy in the United States in 1992

    International Nuclear Information System (INIS)

    Larson, C.

    1972-01-01

    The use of energy may be constrained by a growing national consensus that we must choose; future courses that minimize adverse effect on public health, public safety, and the environment. It is believed nuclear power will be able to meet this challenge - more adequately than most fossil fuels. Thus it follows that the growth of nuclear power will be fostered by this trend. The United States today has contractual commitments of about 150 power plants with total capacity of about 130 million kilowatts electrical. When all of these plants are on line, by about 1980, that capacity will be equal to about 35% of our present electrical generating capacity. Of these commitments, 95% are for light water reactors - 62% for pressurized water and 33% for boiling water. The remaining 5% are high- temperature gas-cooled reactors. In this period of rapid expansion we are placing heavy emphasis on programmes to achieve higher levels of standardization, with the objective of improvements in safety, reliability and economics. Standardization will also shorten licensing reviews, provide for efficiency of labour and reduce maintenance problems. Meanwhile, improved technology in heat rejection techniques such as dry cooling will help to minimize the environmental problems, in addition, methods may be introduced to use rejected heat for beneficial purposes, such as food production in agriculture and aquaculture, as well as urban and industrial applications. Also during this period, biological research can be expected to result in continued progress toward identifying and understanding the effects of energy generation on man and his environment. With this increased knowledge, we will be better able to make wise decisions regarding the most effective use of all energy sources. The next major development step is the breeder reactor, which will achieve maximum utilization of fission fuels

  16. 78 FR 11167 - Meetings: State Energy Advisory Board

    Science.gov (United States)

    2013-02-15

    ... Advisory Committee Act (Pub. L. 92- 463; 86 Stat. 770) requires that public notice of these meetings be... carry out the Board's responsibilities as designated in the State Energy Efficiency Programs Improvement... and Renewable Energy (EERE), discuss new initiatives and technologies generated by the EERE program...

  17. Energy balance of the Sao Paulo State - 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This work informs the energetic balance of Sao Paulo State - 1995, with information referring to the year 1994, containing the energy fluxes from primary and secondary energy sources in the main sectors of Sao Paulo economy. An electronic version for windows environment is also available. 81 figs., 179 tabs

  18. High energy chemistry. Modern state and trends in development

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1990-01-01

    In the review modern state of studies in the field of high energy chemistry is considered. The most important achievements and problems of further development of radiation chemistry, plasmochemistry, photochemistry, laser chemistry and some other branches of high energy chemistry are discussed

  19. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  20. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  1. Present state and future of new energy technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, N

    1976-08-01

    The Sunshine Project was begun in 1973 by the Japanese Ministry of Industry to investigate all alternative energy sources other than nuclear. The project is subdivided into four separate areas, those being solar energy, geothermal energy, liquefaction and gasification of coal, and hydrogen fuel. This article describes the present state of these technologies and their probable future development. Although hydrogen fuel and coal liquefaction/gasification are still in the basic research stage solar and geothermal technologies are already well developed.

  2. Energy and environmental policy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hibbard, P.J.; Tierney, S.F

    2003-08-15

    The energy and environmental policies of the United States are, like those of any nation, greatly shaped by a particular economic, institutional and political context. Understanding that context is useful for providing insights into the substance of US energy and environmental policy, the challenges and opportunities associated with it, and future potential for change. This article examines this policy context, focusing on the interaction of energy and environmental policies related to the electric industry. (author)

  3. Energy and environmental policy in the United States

    International Nuclear Information System (INIS)

    Hibbard, P.J.; Tierney, S.F.

    2003-08-01

    The energy and environmental policies of the United States are, like those of any nation, greatly shaped by a particular economic, institutional and political context. Understanding that context is useful for providing insights into the substance of US energy and environmental policy, the challenges and opportunities associated with it, and future potential for change. This article examines this policy context, focusing on the interaction of energy and environmental policies related to the electric industry. (author)

  4. State and possibilities for development of renewable energy in Bulgaria

    International Nuclear Information System (INIS)

    Varbanov, Marian; Temelkova, Maria

    2011-01-01

    After EU accession, Bulgaria adopted the following indicative goal: 16% of gross domestic energy consumption in 2020 to be produced from renewables. This has created favorable conditions and strong interest of Bulgarian and foreign business to invest in renewables. This interest is materialized in a boom in design and construction of the renewable energy installations. The paper examines the current state and opportunities for development of this sector in Bulgaria. Keywords: renewable energy, hydro power, wind power, solar power

  5. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    OpenAIRE

    Bal-Prilipko L. V.; Leonova B. I.

    2014-01-01

    The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of spe...

  6. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  7. Report revision master: an energy analysis of consumer products packaging

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This report serves as a foundation for quantifying the potential for energy conservation in the Canadian consumer products packaging sector. Investigation was made of energy consumption, waste management, and energy conservation potential in the various stages of the packaging and consumption process: raw material acquisition, material and packaging manufacture, package filling and distribution, consumer use, post-consumption options (energy recovery, disposal, recycling), and cleaning and transportation (if applicable) between each stage. The food and beverage industry was singled out as the most important sector because of its large consumption of packaging. Significant opportunities for energy conservation were found, although any savings accomplished through packaging changes appear to be difficult to implement. Packaging energy savings seem to be able to be achieved only through a product-by-product, industry-by-industry initiative by means of product and package standardization. An efficient example of this is the milk distribution system, where refillable plastic jugs require only 1.4 MBtu per 3000 quarts delivered (as compared with, for example, 68.9 MBtu for disposable aluminium soft drink cans). Other conclusions are made concerning the optimization of packaging energy, with respect to types of packaging, energy requirements related to use of packaged products, impact of government policies and of retailing techiques, consumer lifestyles, and the like. 95 refs., 3 figs., 54 tabs.

  8. Factors Affecting Oil Palm Production in Ondo State of Nigeria ...

    African Journals Online (AJOL)

    The discovery of crude oil and the civil war adversely affected oil palm production in Nigeria. This has resulted in scarcity and high cost of palm products and palm oil. The study therefore investigated the factors influencing oil palm production in Ondo State, Nigeria. One hundred and fifty respondents were selected from ...

  9. 78 FR 79638 - Energy Conservation Program for Consumer Products: Proposed Determination of Hearth Products as a...

    Science.gov (United States)

    2013-12-31

    ... Conservation Program for Consumer Products: Proposed Determination of Hearth Products as a Covered Consumer... determined that hearth products qualify as a covered product under Part A of Title III of the Energy Policy and Conservation Act (EPCA), as amended. More specifically, DOE has tentatively determined that hearth...

  10. Toxic organic compounds from energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  11. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  12. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    International Nuclear Information System (INIS)

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o'clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course

  13. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...... and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...

  14. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  15. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  16. Exceptional Drought and Unconventional Energy Production

    Directory of Open Access Journals (Sweden)

    Reid B. Stevens

    2018-04-01

    Full Text Available The hydraulic fracturing boom in Texas required massive water flows. Beginning in the summer of 2011, water became scarce as a prolonged heat wave and subsequent severe drought spread across the state. Oil and gas producers working in drought areas needed to purchase expensive local water or transport water from a non-drought county far from the drill site. In response to decreased water availability in drought areas, these producers completed fewer wells and completed wells that used less water. This decrease in well-level water use had a measurable effect on the amount of oil and gas produced by wells completed during exceptional conditions.

  17. High Energy Neutron Induced Gamma Production

    International Nuclear Information System (INIS)

    Brown, D.A.; Johnson, M.; Navratil, P.

    2007-01-01

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved

  18. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  19. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-09-01

    Over the last several years, many U.S. states have established clean energy funds to help support the growth of renewable energy markets. Most often funded by system-benefits charges (SBC), the 15 states that have established such funds are slated to collect nearly $3.5 billion from 1998 to 2012 for renewable energy investments. These clean energy funds are expected to have a sizable impact on the energy future of the states in which the funds are being collected and used. For many of the organizations tapped to administer these funds, however, this is a relatively new role that presents the challenge of using public funds in the most effective and innovative fashion possible. Fortunately, each state is not alone in its efforts; many other U.S. states and a number of countries are undertaking similar efforts. Early lessons are beginning to be learned by clean energy funds about how to effectively target public funds towards creating and building renewable energy markets. A number of innovative programs have already been developed that show significant leadership by U.S. states in supporting renewable energy. It is important that clean energy fund administrators learn from this emerging experience.

  20. THE RENEWABLE ENERGY PRODUCTION-ECONOMIC DEVELOPMENT NEXUS

    Directory of Open Access Journals (Sweden)

    Gorkemli Kazar

    2014-04-01

    Full Text Available As renewable energy requirements increases, its relation with development is controversial. In this study, by taking human development index for development level, the relationship between renewable electricity net generation values and development has been searched with panel analysis. Study covers two different time periods: 1980-2010 with 5 year data to analyze long term effects and 2005-2010 yearly data for short term effects. Unlike previous studies, energy generation has been taken into consideration for it is thought to be more related with economic development. It is found that in the long run economic development will be leading to renewable energy production, while in the short run there exists a bidirectional causal relationship between renewable energy production and economic development. In addition, the causal relationship between economic development and renewable energy production varies both in the long run and in the short run due to human development level of the countries.

  1. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  2. Green mines green energy : establishing productive land on mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, B.; Zinck, J.; Vigneault, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2008-07-01

    Municipal governments and provincial regulators are under increasing pressure to divert clean organic waste materials from landfill sites and establish productive uses for them. This article described the Natural Resources Canada (NRCan) CANMET Green Mines Green Energy consortium. Composed of mining, forestry, government, and academic representatives, the consortium's aim is to expand the use of organic waste residuals in the rehabilitation of mine sites for use as a feedstock in biofuel production. The program's themes include: (1) determining the conditions required to maximize growth; (2) investigating the interaction of various organic covers on tailings pore water, effluent and mineralogy; (3) investigating the potential economic and environmental impacts on all relevant sectors; and (4) disseminating findings to all relevant stakeholders. Tests are currently being conducted to determine the potential impact of municipal waste materials on tailings oxidation and effluent chemistry. The effect of biosolids and compost-derived dissolved organic carbon on effluent treatability and toxicity is also being investigated. Results from the investigations to date suggest that sulfate reduction at the tailings-biosolids interface is taking place. It was concluded that steady state has not yet been reached after a 1 year period. 10 refs., 1 tab., 7 figs.

  3. Department of Energy programs and objectives: energy conservation in agricultural production

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This document describes the current Department of Energy agriculture research program as it relates to the research recommendations submitted by a 1976 workshop on energy conservation in agricultural production. In-depth discussions on fertilizers, irrigation, crop drying, fuel substitution, crop and animal production systems, greenhouses, materials handling, and transport systems are included. (MCW)

  4. Dark energy cosmology with generalized linear equation of state

    International Nuclear Information System (INIS)

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  5. Hypernucleus Production at RHIC and HIRFL-CSR Energy

    International Nuclear Information System (INIS)

    Zhang, S.; Xu, Z.; Chen, J.H.; Ma, Y.G.; Tang, Z.B.

    2010-01-01

    We calculated the hypertriton production at RHIC-STAR and HIRFL-CSR acceptance, with a multi-phase transport model (AMPT) and a relativistic transport model (ART), respectively. In specific, we calculated the Strangeness Population Factor S 3 = Λ 3 H/( 3 H e x Λ/p) at different beam energy. Our results from AGS to RHIC energy indicated that the collision system may change from hadronic phase at AGS energies to partonic phase at RHIC energies. Our calculation at HIRFL-CSR energy supports the proposal to measure hypertriton at HIRFL-CSR.

  6. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  7. Power from Perspective: Potential future United States energy portfolios

    International Nuclear Information System (INIS)

    Tonn, Bruce; Healy, K.C.; Gibson, Amy; Ashish, Ashutosh; Cody, Preston; Beres, Drew; Lulla, Sam; Mazur, Jim; Ritter, A.J.

    2009-01-01

    This paper presents United States energy portfolios for the year 2030, developed from seven different Perspectives. The Perspectives are characterized by different weights placed on fourteen defining values (e.g., cost, social acceptance). The portfolios were constructed to achieve three primary goals, energy independence, energy security, and greenhouse gas reductions. The portfolios are also evaluated over a comprehensive set of secondary criteria (e.g., economic growth, technical feasibility). It is found that very different portfolios based on very different defining values can achieve the three primary goals. Commonalities among the portfolios include reliance upon cellulosic ethanol, nuclear power, and energy efficiency to meet year 2030 energy demands. It is concluded that the US energy portfolio must be diverse and to achieve national energy goals will require an explicit statement of goals, a strong role for government, and coordinated action across society

  8. Green energy laws and Republican legislators in the United States

    International Nuclear Information System (INIS)

    Coley, Jonathan S.; Hess, David J.

    2012-01-01

    The policy context for green energy laws in the United States has changed over the past few years, because the Republican Party has increasingly opposed renewable electricity and other green energy policies. In this study, we draw on a database of 6071 votes on RPS (renewable portfolio standards) and PACE (Property-Assessed Clean Energy) laws by individual state legislators in the United States to examine the circumstances shaping Republican votes for green energy laws from 2007–2011. We find that votes on these laws are indeed increasingly partisan, with Republicans supporting RPS laws especially less than Democrats. However, Republicans' support for these laws is higher in states with weaker fossil fuel industries. Furthermore, Republicans tend to support the laws where median household income is lower, environmental organizations are weaker, labor-environmental coalitions are absent, and the proportion of Democrats in the legislature is lower, suggesting a reactive effect against green energy policies in more progressive settings. - Highlights: ► We analyze Republican votes for state RPS and PACE laws from 2007–2011. ► Support for RPS laws declined, while support for PACE laws remained steady. ► Support for both laws is lower in states with strong fossil fuel industries. ► Support for both laws is lower in more Democratic legislatures.

  9. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  10. High resolution production water footprints of the United States

    Science.gov (United States)

    Marston, L.; Yufei, A.; Konar, M.; Mekonnen, M.; Hoekstra, A. Y.

    2017-12-01

    The United States is the largest producer and consumer of goods and services in the world. Rainfall, surface water supplies, and groundwater aquifers represent a fundamental input to this economic production. Despite the importance of water resources to economic activity, we do not have consistent information on water use for specific locations and economic sectors. A national, high-resolution database of water use by sector would provide insight into US utilization and dependence on water resources for economic production. To this end, we calculate the water footprint of over 500 food, energy, mining, services, and manufacturing industries and goods produced in the US. To do this, we employ a data intensive approach that integrates water footprint and input-output techniques into a novel methodological framework. This approach enables us to present the most detailed and comprehensive water footprint analysis of any country to date. This study broadly contributes to our understanding of water in the US economy, enables supply chain managers to assess direct and indirect water dependencies, and provides opportunities to reduce water use through benchmarking.

  11. Energy use pattern and optimization of energy required for broiler production using data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Sama Amid

    2016-06-01

    Full Text Available A literature review shows that energy consumption in agricultural production in Iran is not efficient and a high degree of inefficiency in broiler production exists in Iran. Energy consumption of broiler production in Ardabil province of Iran was studied and the non-parametric method of data envelopment analysis (DEA was used to analyze energy efficiency, separate efficient from inefficient broiler producers, and calculate wasteful use of energy to optimize energy. Data was collected using face-to-face questionnaires from 70 broiler farmers in the study area. Constant returns to scale (CCR and variable returns to scale (BCC models of DEA were applied to assess the technical efficiency of broiler production. The results indicated that total energy use was 154,283 MJ (1000 bird−1 and the share of fuel at 61.4% was the highest of all inputs. The indices of energy efficiency, energy productivity, specific energy, and net energy were found to be 0.18, 0.02 kg MJ−1, 59.56 MJ kg−1, and −126,836 MJ (1000 bird−1, respectively. The DEA results revealed that 40% and 22.86% of total units were efficient based on the CCR and BCC models, respectively. The average technical, pure technical, and scale efficiency of broiler farmers was 0.88, 0.93, and 0.95, respectively. The results showed that 14.53% of total energy use could be saved by converting the present units to optimal conditions. The contribution of fuel input to total energy savings was 72% and was the largest share, followed by feed and electricity energy inputs. The results of this study indicate that there is good potential for increasing energy efficiency of broiler production in Iran by following the recommendations for efficient energy use.

  12. The energy content of restaurant foods without stated calorie information.

    Science.gov (United States)

    Urban, Lorien E; Lichtenstein, Alice H; Gary, Christine E; Fierstein, Jamie L; Equi, Ashley; Kussmaul, Carolyn; Dallal, Gerard E; Roberts, Susan B

    2013-07-22

    National recommendations for the prevention and treatment of obesity emphasize reducing energy intake through self-monitoring food consumption. However, little information is available on the energy content of foods offered by nonchain restaurants, which account for approximately 50% of restaurant locations in the United States. To measure the energy content of foods from independent and small-chain restaurants that do not provide stated information on energy content. We used bomb calorimetry to determine the dietary energy content of the 42 most frequently purchased meals from the 9 most common restaurant categories. Independent and small-chain restaurants were randomly selected, and 157 individual meals were analyzed. Area within 15 miles of downtown Boston. A random sample of independent and small-chain restaurants. Dietary energy. All meal categories provided excessive dietary energy. The mean energy content of individual meals was 1327 (95% CI, 1248-1406) kcal, equivalent to 66% of typical daily energy requirements. We found a significant effect of food category on meal energy (P ≤ .05), and 7.6% of meals provided more than 100% of typical daily energy requirements. Within-meal variability was large (average SD, 271 kcal), and we found no significant effect of restaurant establishment or size. In addition, meal energy content averaged 49% greater than those of popular meals from the largest national chain restaurants (P restaurants have been criticized for offering meals with excess dietary energy. This study finds that independent and small-chain restaurants, which provide no nutrition information, also provide excessive dietary energy in amounts apparently greater than popular meals from chain restaurants or information in national food databases. A national requirement for accurate calorie labeling in all restaurants may discourage menus offering unhealthy portions and would allow consumers to make informed choices about ordering meals that promote weight

  13. The state of energy efficiency in Canada 2006 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This report reviewed energy efficiency strategies in Canada's economic sector, and provided information on the contributions made by various energy efficiency initiatives administered by Natural Resources Canada through its Office of Energy Efficiency. Energy use in Canada increased by 22 per cent between 1990 and 2003, in contrast to the 32 per cent anticipated without energy efficiency increases. Energy-related greenhouse gas (GHG) emissions were 52 megatonnes lower than they would have been without energy efficiency programs, indicating that strong and measurable progress has been made. In the residential sector, the combined effects of a 26 per cent increase in activity, an increase in energy demand due to weather, and an increase in the average number of appliances per household were partly offset by a 19 per cent improvement in energy efficiency. A 45 per cent increase in industrial activity along with a 13 per cent improvement in energy efficiency between 1990-2003 was noted. A 15 per cent increase in passenger transportation and a 40 per cent increase in freight transportation were offset by a 16 per cent improvement in energy efficiency. Basic policy instruments were reviewed, as well as information and voluntary programs, direct financial incentives, and various regulations to eliminate less efficient products from the market. It was noted that the Green Municipal Fund has recently provided over $248 million to support 419 feasibility studies and energy efficiency projects. The federal budget has provided an additional $300 million towards the fund. 22 figs.

  14. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    Science.gov (United States)

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  15. Low energy production processes in manufacturing of silicon solar cells

    Science.gov (United States)

    Kirkpatrick, A. R.

    1976-01-01

    Ion implantation and pulsed energy techniques are being combined for fabrication of silicon solar cells totally under vacuum and at room temperature. Simplified sequences allow very short processing times with small process energy consumption. Economic projections for fully automated production are excellent.

  16. Implications of energy efficiency measures in wheat production

    DEFF Research Database (Denmark)

    Meyer-Aurich, Andreas; Ziegler, T.; Scholz, L.

    The economic and environmental effect of energy saving measures were analyzed for a typical wheat production system in Germany. The introduction of precision farming, reduced nitrogen fertilization and improved crop drying technologies proved to be efficient measures for enhancing energy efficiency...

  17. ENERGY PRODUCTION AND RESIDENTIAL HEATING: TAXATION, SUBSIDIES, AND COMPARATIVE COSTS

    Science.gov (United States)

    This analysis is in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. It examines the effect of economic incentives on public and private decisions affecting energy production and us...

  18. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Cleijne, H.

    2000-10-01

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  19. Energy consumption, income, and carbon emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Soytas, Ugur [Department of Business Administration, Middle East Technical University Ankara, Turkey 06531 (Turkey); Sari, Ramazan [Department of Economics, Abant Izzet Baysal University Bolu, Turkey 14280 (Turkey); Ewing, Bradley T. [Rawls College of Business Texas Tech University Lubbock, TX 79409-2101 (United States)

    2007-05-15

    This paper investigates the effect of energy consumption and output on carbon emissions in the United States. Earlier research focused on testing the existence and/or shape of an environmental Kuznets curve without taking energy consumption into account. We investigate the Granger causality relationship between income, energy consumption, and carbon emissions, including labor and gross fixed capital formation in the model. We find that income does not Granger cause carbon emissions in the US in the long run, but energy use does. Hence, income growth by itself may not become a solution to environmental problems. (author)

  20. Design Considerations of a Solid State Thermal Energy Storage

    Science.gov (United States)

    Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz

    2016-11-01

    With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).