WorldWideScience

Sample records for energy physics summer

  1. Theoretical-research summer: For a new generation of experts on high energy physics

    International Nuclear Information System (INIS)

    Ramos-Sánchez, Saúl

    2016-01-01

    Motivated by the need to strengthen the comprehensive training of young Mexican physicists interested in theoretical high energy physics, the Theoretical-research summer on high energy physics program was conceived. This program, that celebrates its sixth anniversary, consists in a yearly, nationwide challenging contest in which a board of experts identify the best undergraduate contestants to support them during short research stays in high-energy- theory groups of prestigious international institutions. Out of 80 contestants, the eight awarded students have demonstrated their skills, producing highly advanced (and publicly available) reviews on particle physics, field theory, cosmology and string theory, and a published paper. (paper)

  2. Technical Training: ELEC-2005 - Electronics in High Energy Physics: Summer Term (May 2005)

    CERN Multimedia

    Monique Duval

    2005-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms. The Winter (Introduction to electronics in HEP) and Spring (Integrated circuits and VLSI technology for physics) Terms already took place; the next two Terms will run with the following schedule: Summer Term: System electronics for physics: Issues (May, 7 lectures) - now open for registration Autumn Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesday...

  3. Technical Training: ELEC-2005 - Electronics in High Energy Physics: Summer Term (May 2005)

    CERN Multimedia

    Davide Vitè

    2005-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme. It is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. The next ELEC-2005 Summer Term, System electronics for physics: Issues, is now open for online registration, and will start on May 10th. Lectures will take place on Tuesdays and Thursdays, from 10h00 to 12h30. The course will be in English, with questions and answers also possible in French. Separate registration to each Term is required: attendance costs will be of 10.- CHF per lecture (Summer Term: 70.- CHF). If you are interested in attending, please discuss with your supervisor and/or your DTO, and apply electronically via EDH. Participation to all sessions in a...

  4. Technical Training: ELEC-2005 - Electronics in High Energy Physics: Summer Term (May 2005)

    CERN Multimedia

    Davide Vitè

    2005-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series.This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms. The last two Terms will run with the following schedule: Summer Term: System electronics for physics: Issues (May, 7 lectures) - now open for registration Autumn Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays and Thursdays, from 10h00 to 12h30. The course will be in English, with questions and answers also possible in French. Separate registrati...

  5. National Nuclear Physics Summer School

    CERN Document Server

    2016-01-01

    The 2016 National Nuclear Physics Summer School (NNPSS) will be held from Monday July 18 through Friday July 29, 2016, at the Massachusetts Institute of Technology (MIT). The summer school is open to graduate students and postdocs within a few years of their PhD (on either side) with a strong interest in experimental and theoretical nuclear physics. The program will include the following speakers: Accelerators and Detectors - Elke-Caroline Aschenauer, Brookhaven National Laboratory Data Analysis - Michael Williams, MIT Double Beta Decay - Lindley Winslow, MIT Electron-Ion Collider - Abhay Deshpande, Stony Brook University Fundamental Symmetries - Vincenzo Cirigliano, Los Alamos National Laboratory Hadronic Spectroscopy - Matthew Shepherd, Indiana University Hadronic Structure - Jianwei Qiu, Brookhaven National Laboratory Hot Dense Nuclear Matter 1 - Jamie Nagle, Colorado University Hot Dense Nuclear Matter 2 - Wilke van der Schee, MIT Lattice QCD - Sinead Ryan, Trinity College Dublin Neutrino Theory - Cecil...

  6. Summer School on Particle Physics

    CERN Document Server

    2015-01-01

    The goal of the school is to give a detailed overview of particle physics and cover the most important areas where significant progress has been achieved recently. This year the school will cover both the energy and the intensity frontiers, with lectures covering the physics relevant for the next LHC run, future hadron colliders, direct and indirect probes of dark sectors and early universe physics.

  7. Publication of the proceedings of the 1996 DPB/DPF summer study on new directions for high-energy physics

    International Nuclear Information System (INIS)

    Gennari, L.T.

    1997-10-01

    Production of the Proceedings of the 1996 DPB/DPF Summer Study in High-Energy Physics built on the methods, lessons, and technology of the production process used for the Proceedings of the 1995 Particle Accelerator Conference (PAC95). The Snowmass proceedings project started with a much smaller budget and a shorter production schedule, resulting in a much more ambitious plan. The goal was, as for PAC95, to produce both a paper and a CD version of the proceedings. This time, the goal was to complete the project in only 6 months, using half of a staff person from the SLAC Technical Publications Department (responsible for technical design and implementation as well as project management), along with 6 months of a full-time temporary employee to answer the phone and coordinate author support. The conference editors and the author decided on a strategy using the World Wide Web for submission and quality assurance testing. The resulting procedure allowed authors to check the quality of their own PDF files, prevented random browsing of papers before publication of the proceedings, and required minimal human intervention (though they easily could have used a few more bodies manning the help lines). To this end, they set up a Power Macintosh running FileMaker Pro 3.0 (a relational database application), WebSTAR (Macintosh Web server software), WEB/FM (CGI package for FileMaker Pro/WebSTAR interface), and NetPresenz (Macintosh ftp server) and created a gatewayed mailing list and newsgroup for authors needing technical support

  8. Summer School on Particle Physics

    CERN Document Server

    2017-01-01

    The goal of the school is to give a detailed overview of particle physics from the basics of Standard Model phenomenology to the most important areas where significant progress has been achieved recently. This year the school will cover both the energy and the intensity frontiers, including lectures on experimental techniques for small scale experiments and on formal developments in quantum field theory.

  9. Proceedings of the 1996 DPF/DPB Summer Study on New Directions in High-energy Physics (Snowmass 96)

    International Nuclear Information System (INIS)

    Weyhrauch, Y.

    2004-01-01

    Production of the Proceedings of the 1996 DPB/DPF Summer Study in High-Energy Physics built on the methods, lessons, and technology of the production process used for the Proceedings of the 1995 Particle Accelerator Conference (PAC95). For PAC95, authors were asked to submit PostScript, source files, and hard copy. Producing the proceedings took 16 months of official FTE in addition to countless hours of volunteer work by two additional people--the entire production process was accomplished in just under 9 months. In that time, the PAC95 production team quality checked every file (1099 submissions, totaling 3429 pages) and rebuilt about two thirds of them to fix problems with fonts and figures, and various other problems. Needless to say, this was an expensive process. The Snowmass proceedings project started with a much smaller budget and a shorter production schedule, resulting in a much more ambitious plan. The goal was, as for PAC95, to produce both a paper and a CD version of the proceedings. This time, the goal was to complete the project in only 6 months, using half of a staff person from the SLAC Technical Publications Department (responsible for technical design and implementation as well as project management), along with 6 months of a full-time temporary employee to answer the phone and coordinate author support. The conference editors and I decided on a strategy using the World Wide Web for submission and quality assurance testing. The resulting procedure allowed authors to check the quality of their own PDF files, prevented random browsing of papers before publication of the proceedings, and required minimal human intervention (though we easily could have used a few more bodies manning the help lines). To this end, we set up a Power Macintosh running FileMaker Pro 3.0 (a relational database application), WebSTAR (Macintosh Web server software), WEB/FM (CGI package for FileMaker Pro/ WebSTAR interface), and NetPresenz (Macintosh ftp server) and created

  10. Summer School on Particle Physics

    CERN Document Server

    2013-01-01

    The goal of the school is to give a detailed overview of particle physics and cover the most important and perspective areas where significant progress has been achieved recently. In 2013, the main focus will be on the LHC results, their interpretation and implications for Physics Beyond the Standard model. Lectures will also cover progress in neutrino physics, dark matter searches and the study of cosmic radiation.

  11. Energy Savers: Cool Summer Tips

    International Nuclear Information System (INIS)

    Miller, M.

    2001-01-01

    A tri-fold brochure addressing energy-saving tips for homeowners ranging from low- or no-cost suggestions to higher cost suggestions for longer-term savings. Cooling, windows, weatherizing, and landscaping are addressed

  12. XIII Modave Summer School in Mathematical Physics

    Science.gov (United States)

    2017-09-01

    The Modave Summer School on Mathematical Physics is a yearly summer school in topics of theoretical physics. Various topics ranging from quantum gravity and cosmology to theoretical particle physics and string theory. The school takes place in Modave, a charming village in the Belgian Ardennes close to Huy. Modave School is organised by PhD students for PhD students, and this makes it rather unique. The courses are taught by Post-Docs or late PhD students, and they are all made of pedagogical, basic blackboard lectures about recent topics in theoretical physics. Participants and lecturers eat and sleep in the same place where the lectures are given. The absence of senior members, and the fact of spending day and night together in an isolated, peaceful place contribute to creating an informal atmosphere and facilitating interactions. Lectures of the thirteenth edition are centered around the following subjects: bulk reconstruction in AdS/CFT, twistor theory, AdS_2/CFT_1 and SYK, geometry and topology, and asymptotic charges.

  13. 12th CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2017-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the twelfth edition, from 28th August to 6th September 2017. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Other schools, such as the CERN European School of High Energy Physics, may provide more appropriate training for students in experimental HEP who are still working towards their PhDs. Mark your calendar for 28 August - 6 September 2017, when CERN will welcome students to the twelfth CERN-Fermilab Hadron Collider Physics Summer School. The School will include nine days of lectures and discussions, and one free day in the middle of the period. Limited scholarship ...

  14. CERN: Important summer for LEAR physics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    An integral part of CERN's comprehensive antiproton facilities is the LEAR low energy antiproton ring which came into action for physics in 1983 and has gone on to host many experiments looking at a wide range of physics topics. With CERN's big SPS proton-antiproton collider now in what could be its final production physics run after an illustrious career which began in 1981, the face of antiproton physics at CERN will change over the next few years. However LEAR runs independently of high energy antiproton operations, and any phasing out of collider operations has no direct impact on LEAR

  15. CERN: Important summer for LEAR physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-12-15

    An integral part of CERN's comprehensive antiproton facilities is the LEAR low energy antiproton ring which came into action for physics in 1983 and has gone on to host many experiments looking at a wide range of physics topics. With CERN's big SPS proton-antiproton collider now in what could be its final production physics run after an illustrious career which began in 1981, the face of antiproton physics at CERN will change over the next few years. However LEAR runs independently of high energy antiproton operations, and any phasing out of collider operations has no direct impact on LEAR.

  16. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  17. 10th joint CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2015-01-01

    The CERN-Fermilab Hadron Collider Physics Summer Schools are targeted particularly at young postdocs and senior PhD students working towards the completion of ther thesis project, in both experimental High Energy Physics (HEP) and phenomenology.

  18. Summer Institute for Physical Science Teachers

    Science.gov (United States)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  19. Summer institute of sustainability and energy

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George W. [Univ. of Illinois, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-08-01

    The vision for the Summer Institute on Sustainability and Energy (SISE) is to integrate advancements in basic energy sciences with innovative energy technologies to train the next generation of interdisciplinary scientists and policy makers for both government and industry. Through BES related research, these future leaders will be equipped to make educated decisions about energy at the personal, civic, and global levels in energy related fields including science, technology, entrepreneurship, economics, policy, planning, and behavior. This vision explicitly supports the 2008 report by the Department of Energy’s Basic Energy Science Advisory Committee (2), which outlines scientific opportunities and challenges to achieve energy security, lower CO2 emissions, reduce reliance on foreign oil and create enduring economic growth through discovery, development and the marketing of new technologies for sustainable energy production, delivery, and use (3).

  20. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    Gian Giudice; Ellis, Nick; Jakobs, Karl; Mage, Patricia; Seymour, Michael H; Spiropulu, Maria; Wilkinson, Guy; CERN-FNAL Summer School; Hadron Collider Physics Summer School

    2007-01-01

    For the past few years, experiments at the Fermilab Tevatron Collider have once again been exploring uncharted territory at the current energy frontier of particle physics. With CERN's LHC operations to start in 2007, a new era in the exploration of the fundamental laws of nature will begin. In anticipation of this era of discovery, Fermilab and CERN are jointly organizing a series of "Hadron Collider Physics Summer Schools", whose main goal is to offer a complete picture of both the theoretical and experimental aspects of hadron collider physics. Preparing young researchers to tackle the current and anticipated challenges at hadron colliders, and spreading the global knowledge required for a timely and competent exploitation of the LHC physics potential, are concerns equally shared by CERN, the LHC host laboratory, and by Fermilab, the home of the Tevatron and host of CMS's LHC Physics Center in the U.S. The CERN-Fermilab Hadron Collider Physics Summer School is targeted particularly at young postdocs in exp...

  1. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  2. Report 2 Energy Market Barometer - Summer 2014

    International Nuclear Information System (INIS)

    Schleich, Joachim; Cateura, Olivier; Faure, Corinne; Jacob, Jojo; Javaudin, Laurent; Molecke, Greg; Olsthoorn, Mark; Pinkse, Jonatan; Vernay, Anne-Lorene

    2014-09-01

    This Summer's edition of the Grenoble Ecole de Management (GEM) Energy Market Barometer documents the French energy experts' expectations of the impact of the Ukraine crisis on energy supply, the focus of energy policy in France, the economic implications of the energy transition, and the development of energy prices. The findings on the Ukraine crisis are also compared to a parallel survey in Germany, which was carried out by the Center for European Economic Research (ZEW). Key findings: - Half the French experts believe that the Ukraine crisis has worsened the security of natural gas supply in France; - Appropriate responses to the Ukraine crisis include strengthening the EU energy market integration, and investing in pipelines and in liquefied natural gas infrastructure; - The high perceived emphasis on energy efficiency in the current French energy policy is justified, but the focus on affordability for households and security of supply appears somewhat overrated; - The French energy transition is expected to hurt utilities, but to benefit technology providers and the economy as a whole; - Most experts believe the prices for electricity, gas, oil, and coal will remain relatively stable over the next 6 months, but they will increase over the next 5 years (except coal); - Expected prices of CO_2 certificates have slightly increased since the previous barometer report, in particular for the medium term

  3. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  4. Energy market barometer report - Summer 2015

    International Nuclear Information System (INIS)

    Schleich, Joachim; Cartel, Melodie; Cateura, Olivier; Faure, Corinne; Grover, David; Jacob, Jojo; Javaudin, Laurent; Molecke, Greg; Olsthoorn, Mark; Shomali, Azadeh; Vernay, Anne-Lorene

    2015-01-01

    This Summer 2015 edition of the Grenoble Ecole de Management (GEM) Energy Market Barometer explored the expectations of French Energy experts regarding the Climate Summit (COP21) in Paris next December, and the future evolution of CO_2 certificate prices. The experts were also asked about the development of energy prices. Key findings: - 62 % of the French energy experts do not expect a legally binding agreement to emerge from the Paris Climate Summit - this share was 77 % among the German experts; - A majority of the French energy experts think that failing to reach a legally binding agreement at the Paris Climate Summit would not change the French climate policy targets; - A legally binding agreement would have positive effects on investment in the energy sector and, in particular, the electrical industry; - Two-thirds of the French energy experts believe that an agreement in Paris would generate a momentum for climate innovation in OECD countries, but less so in non-OECD countries; - CO_2 certificate prices rise only in the medium to long term but levels remain rather low. The announced intention of the G7 to phase out all fossil fuels by the end of this century did not affect the experts' expectations about CO_2 certificate prices or medium-term fuel prices; - Electricity and coal prices are expected to remain stable over the next six months. The majority of the experts consider the current low oil and gas prices to be a rather temporary phenomenon

  5. 2001 Summer school on particle physics

    International Nuclear Information System (INIS)

    Masiero, A.; Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.

    2002-01-01

    The aim of this school was to give a panoramic view on the field of particle physics with its achievements and problems, successes and failures. The standard model of the electroweak and strong interactions is in perfect shape. Physics of the standard model and its precision tests have been extensively discussed during the school. What is next? Do we have a 'standard model' of physics beyond the standard model? In this connection the status of low scale supersymmetry, supersymmetric Grand Unification and various flavor symmetries has been presented. Discovery of neutrino masses and mixing is probably the first experimental manifestation of new physics. Do we have a viable alternative of the (TeV scale) SUSY and GUT? Models with large, or infinite, or wrapped extra dimensions, the bulk-brane scenarios (widely discussed in series of lectures) may give some answers to this question. Is non-commutative field theory relevant for particle physics? Are the tools we have at hand enough to solve problems of particle physics? Is something fundamentally important missed in our approaches? These, and many other questions, were among the hot topics of the school. In this volume we publish four courses of lectures given by leading experts in the fields which represent two main areas of the research mentioned above: Physics of the standard model and Physics beyond the standard model. Both basic and advanced topics are presented in the lectures on nonperturbative QCD and quark-gluon plasma. First results from heavy ion collider RHIC are discussed. Important recent progress in particle physics is related to operation of the B-factories. This subject is covered in lectures on B-physics and CP-violation. Physics beyond the standard model is represented by lectures on Grand Unification with emphasis on explanation of fermion masses, in particular neutrino masses and mixing, and on predictions for proton decay. Another course is devoted to the fascinating subject: physics of non

  6. 2001 Summer school on particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA, International School for Advanced Studies, Trieste (Italy); Senjanovic, G; Smirnov, A Yu; Thompson, G [Abdus Salam ICTP, Trieste (Italy)

    2002-09-15

    The aim of this school was to give a panoramic view on the field of particle physics with its achievements and problems, successes and failures. The standard model of the electroweak and strong interactions is in perfect shape. Physics of the standard model and its precision tests have been extensively discussed during the school. What is next? Do we have a 'standard model' of physics beyond the standard model? In this connection the status of low scale supersymmetry, supersymmetric Grand Unification and various flavor symmetries has been presented. Discovery of neutrino masses and mixing is probably the first experimental manifestation of new physics. Do we have a viable alternative of the (TeV scale) SUSY and GUT? Models with large, or infinite, or wrapped extra dimensions, the bulk-brane scenarios (widely discussed in series of lectures) may give some answers to this question. Is non-commutative field theory relevant for particle physics? Are the tools we have at hand enough to solve problems of particle physics? Is something fundamentally important missed in our approaches? These, and many other questions, were among the hot topics of the school. In this volume we publish four courses of lectures given by leading experts in the fields which represent two main areas of the research mentioned above: Physics of the standard model and Physics beyond the standard model. Both basic and advanced topics are presented in the lectures on nonperturbative QCD and quark-gluon plasma. First results from heavy ion collider RHIC are discussed. Important recent progress in particle physics is related to operation of the B-factories. This subject is covered in lectures on B-physics and CP-violation. Physics beyond the standard model is represented by lectures on Grand Unification with emphasis on explanation of fermion masses, in particular neutrino masses and mixing, and on predictions for proton decay. Another course is devoted to the fascinating subject: physics of non

  7. Energy market barometer report - Summer 2016

    International Nuclear Information System (INIS)

    Schleich, Joachim; Cartel, Melodie; Javaudin, Laurent; Molecke, Greg; Olsthoorn, Mark; Vernay, Anne-Lorene

    2016-01-01

    This Summer 2016 edition of the Grenoble Ecole de Management (GEM) Energy Market Barometer explored the assessment of French Energy experts regarding the digital transformation of the electricity sector in France. These findings are compared to the responses of German experts for Germany. Key findings: - 58% of the experts consider that the degree of digital transformation achieved in France's electricity sector is average for western countries, and more than half of them judge that the speed of this transition is too slow. - In France and Germany, an unfavourable cost-benefit ratio is seen as the most important barrier to digitalization in the electricity sector. The second most important barrier identified for France was an onerous regulatory framework, and for Germany it was cyber-security issues. - A large majority of experts in both countries thought that the technology itself was not an obstacle to the digitalization of the electricity sector. - While weighing the balance of priorities between digitalization and cyber-security in France, the panel of experts was split: 19% believed that digitalization was treated as the priority, while 24% thought cyber-security had been given precedence. 38% thought that a balanced approach was followed. - The top 3 domains where digitalization of the electricity sector is likely to create efficiency gains in France were improved predictions for load management in the grid (selected by 61% of respondents), enhanced flexibility in demand from the industry sector (53%), and better dispatching of electricity production (47%). - Our expert's assessment regarding the impact of the Energy transition on the competitiveness of French energy sector businesses has remained stable between 2014 and 2016: competitiveness of utilities will deteriorate the most. More generally, the experts believed that the energy transition will have a positive (46%) or very positive (11%) impact on the French economy. - Despite plans to reform the EU

  8. Summer Workshop on Physics, Mathematics, and All That Quantum Jazz

    CERN Document Server

    Bando, Masamitsu; Güngördü, Utkan; Physics, Mathematics, and All That Quantum Jazz

    2014-01-01

    This book is a collection of contributions from a Summer Workshop on Physics, Mathematics, and All That Quantum Jazz . Subjects of the symposium include quantum information theory, quantum annealing, Bose gases, and thermodynamics from a viewpoint of quantum physics. Contributions to this book are prepared in a self-contained manner so that readers with a modest background may understand the subjects.

  9. Proceedings of summer school of particle physics

    International Nuclear Information System (INIS)

    Henke, H.; Leleux, G.; Lutz, A.M.; Musset, P.; De Rafael, E.; De Rujula, A.; Sorba, P.

    1983-01-01

    This lecture comprises six papers dealing with the following subjects: quark flavor mixing in the Standard Model; CP violation: K neutral and electric dipole moment of the neutron; nucleon decay; magnetic monopoles; present and new high-energy accelerators and accelerating techniques. Each paper has been separately analyzed and put into the base [fr

  10. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  11. The Physics of Quidditch Summer Camp: An Interdisciplinary Approach

    Science.gov (United States)

    Hammer, Donna; Uher, Tim

    The University of Maryland Physics Department has developed an innovative summer camp program that takes an interdisciplinary approach to engaging and teaching physics. The Physics of Quidditch Camp uniquely sits at the intersection of physics, sports, and literature, utilizing the real-life sport of quidditch adapted from the Harry Potter novels to stimulate critical thinking about real laws of physics and leaps of imagination, while actively engaging students in learning the sport and discussing the literature. Throughout the camp, middle school participants become immersed in fun physics experiments and exciting physical activities, which aim to build and enhance skills in problem-solving, analytical thinking, and teamwork. This camp has pioneered new ways of teaching physics to pre-college students, successfully engaged middle school students in learning physics, and grown a large demand for such activities.

  12. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  13. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  14. Evaluation of drinks contribution to energy intake in summer and winter.

    Science.gov (United States)

    Malisova, Olga; Bountziouka, Vassiliki; Zampelas, Antonis; Kapsokefalou, Maria

    2015-05-15

    All drinks hydrate and most also provide nutrients and energy. Our objective was to evaluate the contribution of drinks to total energy intake in summer and winter. Data were obtained using the Water Balance Questionnaire (WBQ) from a sample of the general population in Athens, Greece (n = 984), 473 individuals (42 ± 18 years) in summer and 511 individuals (38 ± 20 years) in winter stratified by sex and age. The WBQ embeds a semi-quantitative food frequency questionnaire of 58 foods and the Short International Physical Activity Questionnaire. Data were analyzed for the contribution of drinks to total energy intake. In winter, total energy intake was 2082 ± 892 kcal/day; energy intake from drinks was 479 ± 286 kcal/day and energy expenditure 1860 ± 390 kcal/day. In summer, total energy intake was 1890 ± 894 kcal/day, energy intake from drinks 492 ± 499 kcal/day and energy expenditure 1830 ± 491 kcal/day. Energy intake from drinks in summer was higher than in winter (p drinks, milk, chocolate milk and alcoholic drinks contributed approximately 75% of energy from drinks. Fruit juice and sugar-sweetened drinks, including soft drinks and fruit juice based drinks, were consumed less frequently contributing up to 25% of drink energy intake. Drinks contribute approximately 1/4 of total energy intake depending on the energy content of the drink and frequency of consumption. Coffee, dairy and alcoholic drinks were the main energy contributors.

  15. International summer school on hyperfine interactions and physics with oriented nuclei - 1985. Pt.1,2

    International Nuclear Information System (INIS)

    Rotter, M.

    1985-01-01

    Part I and part II are presented of the contributions submitted to the International study meeting on physics with oriented nuclei and of papers from the International summer school on hyperfine interactions. The contributions and papers are devoted to the present status and further development of low temperature nuclear orientation of short-lived nuclei with emphasis on online techniques. The following topics are covered: nuclear orientation, NMR/ON, level mixing and level crossing resonances, laser spectroscopy, Moessbauer spectroscopy, polarization phenomena in low, medium and high energy physics, applications of hyperfine interaction techniques in nuclear physics, atomic physics, solid state physics, biology and materials research. (Z.J.)

  16. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  17. The Physics of Energy

    Science.gov (United States)

    Jaffe, Robert L.; Taylor, Washington

    2018-01-01

    Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.

  18. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    International Nuclear Information System (INIS)

    Intrator, Thomas P.; Bauer, Bruno; Fernandez, Juan C.; Daughton, William S.; Flippo, Kirk A.; Weber, Thomas; Awe, Thomas J.; Kim, Yong Ho

    2012-01-01

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  19. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  20. A Summer Research Experience in Particle Physics Using Skype

    Science.gov (United States)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  1. 2016 TSRC Summer School on Fundamental Science for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Victor S. [Yale Univ., New Haven, CT (United States)

    2017-08-25

    The 2016 TSRC Summer School on Fundamental Science for Alternative Energy introduced principles, methods, and approaches relevant to the design of molecular transformations, energy transduction, and current applications for alternative energy. Energy and environment are likely to be key themes that will dominate the way science and engineering develop over the next few decades. Only an interdisciplinary approach with a team-taught structure as presented at the 2016 TSRC Summer School can be expected to succeed in the face of problems of such difficulty. The course inspired a new generation of 24 graduate students and 2 post-docs to continue work in the field, or at least to have something of an insider's point of view as the field develops in the next few decades.

  2. Proceedings of Summer Institute on Particle Physics: the weak interaction

    International Nuclear Information System (INIS)

    Mosher, A.

    1981-01-01

    The SLAC Summer Institute on Particle Physics held its eighth session on July 28-August 8, 1980, and the focus of the meeting was The Weak Interaction. Following the now traditional format, the first seven days of the Institute were spent with the mornings given to pedagogic lectures on the experimental and theoretical foundations of the topic. This year included a very stimulating and successful series on the physics of particle detectors. In the afternoons were seminars on the various experimental tools being designed or constructed to further probe the Weak Interaction, followed by lively discussion of the morning's lectures. Again, following the usual format, the school led into a three-day topical conference at which the most recent theoretical and experimental results were presented and discussed. Abstracts of twenty-seven items from the Institute were prepared separately for the data base

  3. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  4. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  5. 69th Scottish Universities Summer School in Physics: LHC phenomenology

    CERN Document Server

    Glover, Nigel; Robson, Aidan; SUSSP69

    2015-01-01

    This book covers a very broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model, to detailed studies of Quantum Chromodynamics, the B-physics sectors and the properties of hadronic matter at high energy density as realised in heavy-ion collisions. Starting with a basic introduction to the Standard Model and its most likely extensions, the opening section of the book presents an overview of the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics. In part II, discussion of the theory is supplemented by chapters on the detector capabilities and search strategies, as well as an overview of the main detector components, the initial calibration procedures and physics samples, and early LHC results. Part III completes the volume with a description of the physics behind Monte Carlo event generators, and a broad introduction to the main statistical methods use...

  6. Proceedings of the summer school on physics with neutrinos

    International Nuclear Information System (INIS)

    Locher, M.P.

    1996-01-01

    The Summer School on physics with neutrinos concentrated on a particularly rewarding topic on the intersection between particle and astrophysics. Although the neutrino has been postulated as early as 1930 in the famous letter by Pauli the intriguing particle poses challenging problems to the present day. The speakers did not spare any effort in creating an atmosphere of stimulating scientific exchange. The participating young and old enjoyed the presence of Jack Steinberger who presented a talk on the history of the neutrino and contributed in many other ways to the meeting. Apart from the lectures and seminars that are mostly reflected in these proceedings there were also a number of extra seminars on topics ranging from special nuclear reactions to the extinction of life in the universe, adding to the breadth of the presentations. (author) figs., tabs., refs

  7. Proceedings of the summer school on physics with neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Locher, M P [ed.

    1996-11-01

    The Summer School on physics with neutrinos concentrated on a particularly rewarding topic on the intersection between particle and astrophysics. Although the neutrino has been postulated as early as 1930 in the famous letter by Pauli the intriguing particle poses challenging problems to the present day. The speakers did not spare any effort in creating an atmosphere of stimulating scientific exchange. The participating young and old enjoyed the presence of Jack Steinberger who presented a talk on the history of the neutrino and contributed in many other ways to the meeting. Apart from the lectures and seminars that are mostly reflected in these proceedings there were also a number of extra seminars on topics ranging from special nuclear reactions to the extinction of life in the universe, adding to the breadth of the presentations. (author) figs., tabs., refs.

  8. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  9. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  10. How physically active are children attending summer day camps?

    Science.gov (United States)

    Beets, Michael W; Weaver, Robert G; Beighle, Aaron; Webster, Collin; Pate, Russell R

    2013-08-01

    Summer day camps (SDC) represent one of the largest settings, outside the academic school year, where children can engage in safe, enjoyable physical activity (PA). Yet, little is known about this setting and how active children are while attending. System for Observing Play and Leisure Activity in Youth was used to categorize PA of boys/girls as Sedentary/Walking/Vigorous across multiple days (8 AM to 6 PM) in 4 large-scale community-based SDCs. Contextual characteristics of type of activity, activity management, equipment, and in/outdoors were collected simultaneously. Mixed-model regression analyses examined associations between PA categories and contextual characteristics. A total of 4649 scans of 2462 children were made across 27 days in the SDCs. Physical activity opportunities represented 38% of the daily schedule. Overall, 74%-79%, 13%-16%, and 7%-9% of children were observed Sedentary, Walking, or Vigorous during the SDC, and this changed to 62%-67%, 18%-19%, and 15%-18% observed Sedentary, Walking, or Vigorous during PA opportunities. Water-based PA, equipment, and free-play were related to increased PA. Children waiting-in-line for turns, staff instructing, and organized PA were related to increased sedentary. These findings provide evidence of modifiable characteristics of SDCs associated with PA. Improving staff skills related to facilitating active environments is a viable avenue to increase PA accumulated within SDCs.

  11. Energy and physics

    Energy Technology Data Exchange (ETDEWEB)

    Kapitsa, P L

    1976-01-01

    The development of large power energy sources is reviewed in the light of fundamental limitations imposed by nature on the energy flux density. The energy sources based on electrostatic generators, gas units (direct conversion of hydrogen oxidation chemical energy to electric one), solar batteries, geothermal energy, wind power and hydroelectric power appear to be unpromising. The solution of the world energy crisis is connected with nuclear energy, and, first of all, with thermonuclear reaction of deuterium and tritium nuclei. In contrast to uranium employment the thermonuclear process produces no significant quantity of radioactive wastes, runs far less risk during accidents and cannot be used as an explosive. The realisation of a controlled thermonuclear reaction is pointed out to face a number of physical and technical problems still to be solved.

  12. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  13. Sixth International Workshop and Summer School on Plasma Physics 2014

    International Nuclear Information System (INIS)

    2016-01-01

    Evgenia Benova et al 2016 J. Phys.: Conf. Ser. VV The Sixth International Workshop and Summer School on Plasma Physics (IWSSPP'14) was organized by St. Kliment Ohridsky University of Sofia, with co-organizer PLASMER Foundation. It was held in Kiten, Bulgaria, at the Black Sea Coast, from June 30 to July 6, 2014. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. The Workshop Plasma for Sustainable Environment was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As with the previous issues of this scientific meeting, its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 19 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants

  14. Fifth International Workshop and Summer School on Plasma Physics 2012

    International Nuclear Information System (INIS)

    Benova, Evgenia

    2016-01-01

    The Fifth International Workshop and Summer School on Plasma Physics (IWSSPP'12) was organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, on the Black Sea coast, from June 25-30, 2012. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology . The 4 th edition of the Workshop Plasmas for Environmental Issues was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As in the previous issues of this scientific meeting its aim was to stimulate the development of and support a new generation of young scientists to further advance plasma physics fundamentals and applications, as well as ensuring an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 12 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed

  15. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  16. 3rd CERN-Fermilab HadronCollider Physics Summer School

    CERN Multimedia

    EP Department

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at Fermilab. Further enquiries should ...

  17. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  18. Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Summer 2012. The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes - five in Alaska and six in the contiguous United States - to receive on-the-ground technical support for community-based energy efficiency and renewable energy projects as part of DOE-IE's Strategic Technical Assistance Response Team (START) Program. START finalists were selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with their projects or community. Technical experts from DOE and its National Renewable Energy Laboratory (NREL) will work directly with community-based project teams to analyze local energy issues and assist the Tribes in moving their projects forward. In Alaska, the effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide additional assistance and expertise, as well as funding to fuel the Alaska START initiative.

  19. Howard University Energy Expert Systems Institute Summer Program (EESI)

    Science.gov (United States)

    Momoh, James A.; Chuku, Arunsi; Abban, Joseph

    1996-01-01

    Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.

  20. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  1. Snowmass 2002: The Fusion Energy Sciences Summer Study

    International Nuclear Information System (INIS)

    Sauthoff, N.; Navratil, G.; Bangerter, R.

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report

  2. Snowmass 2002: The Fusion Energy Sciences Summer Study; TOPICAL

    International Nuclear Information System (INIS)

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE[Department of Energy] and the FESAC[Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will

  3. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  4. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  5. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    Science.gov (United States)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form

  6. ACEEE 1990 summer study on energy efficiency in buildings: Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This panel of the 1990 Summer Study examines the potential contribution of energy efficiency in buildings to environmental protection. The Panel also covers other aspects of the relationship between building efficiency and the environment, including indoor air quality, radon exposure, and urban heat island effects. Global environmental risks, growing interest in market-based environmental regulation, and the integration of environmental and energy planning have focused attention on energy efficiency as a low-cost pollution prevention strategy. This combination of factors is making public concern over the environment a driving force for improvements in energy efficiency. The environmental issues that are related to air pollution include the group of problems that have been in the public consciousness for two decades: acid rain, urban smog, ozone depletion, and general outdoor air pollution. Indoor air quality is also an air pollution problem. Whereas indoor air pollution causes direct health impacts on occupants of the space in question, outdoor air pollution affects others, often at remote locations, in ways that are more difficult to quantify. There is an immediacy to the indoor pollution issue that has important policy implications. The papers in the indoor air quality and radon sessions focus on several of the important issues in this area. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  7. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  8. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  9. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  10. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  11. Physical properties of the arctic summer aerosol particles in relation ...

    Indian Academy of Sciences (India)

    The sea-salt particles of marine origin generated within the Arctic circle are identified as the main source of the Arctic summer aerosols. ... concentration starts decreasing within a few minutes from the start of these events but requires a few hours to restore to the normal background aerosol level after the end of event.

  12. Center for Theoretical Underground Physics and Related Areas – CETUP*2016 Summer Program

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbinska, Barbara [Texas A& M University Corpus Christi, Madison, SD (United States)

    2017-02-15

    For last six years Center for Theoretical Underground Physics and Related Areas (CETUP*) successfully provided a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. CETUP*2016 was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle and nuclear physics, astrophysics and cosmology from around the world. Scientists invited to participate in the program not only provided theoretical support to the underground science, but they also examined core questions including: What is the nature of dark matter?, What is the origin of the neutrino masses?, How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, , What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? and many others. The 2016 CETUP* summer program consisted of three sessions (June 6 – July 16, 2016) covering various aspects of theoretical and experimental neutrino physics, unification and dark matter. The two week long session on Physics and Instrumentation of the Near Detector for the Long-Baseline Neutrino Experiments (June 6 – June 16) was followed by the two week long Neutrino Physics/Unification session: “From Grand Unification to String Theory and Back” (June 20 – July 2). The program ended with two week long session on Dark Matter Physics (July 4 – July 16). This six-week long program allowed for thorough discussions and an effective and comprehensive analysis of topics related to Dark Matter, Dark Energy, Neutrino Physics including astrophysical neutrinos, near and far detector physics, neutrino interactions, Higgs Boson, Inflation, Leptogenesis and many others that will advance

  13. Proceedings of the 3. Summer School Jorge Andre Swieca in Nuclear Physics

    International Nuclear Information System (INIS)

    Lima, C.L.; Nemes, M.C.; Wolynec, E.

    1987-01-01

    This book contents the lectures and seminars presented during the Jorge Andre Swieca III Summer School-Nuclear Physics 1987 which happened in February 1987 in Itaipava - Rio de Janeiro - Brazil. (A.C.A.S.) [pt

  14. Low energy physics from superstrings

    International Nuclear Information System (INIS)

    Segre, G.C.

    1987-01-01

    The developments of the past year have resulted in growing interest in the theory of superstrings, a subject which is on the one hand extraordinarily exciting in the promise it holds for solutions of many of the outstanding problems of particle physics and on the other hand rather forbidding in the amount of new knowledge which needs to be acquired by the average theorist to understand the papers that are now being published on the recent developments. In a sense the term low energy superstrings is misleading: the work of the past fifteen years in string theory, culminating in last summer's stunning developments by Green and Schwartz have led theorists to believe a finite, consistent superstring theory can be formulated. An enormous amount of work is going on in this subject, the premise that an effective field theory in ten space-time dimensions can be obtained from the superstring theory is the start of the lectures. The lectures will cover this later stage, namely how does one proceed from the effective ten dimensional theory to an effective four dimensional theory, describing the world as we see it. 87 references, 2 tables

  15. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  16. PARTICIPATION IN HIGH ENERGY PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    White, Christopher

    2012-12-20

    This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

  17. Health physics training at V.C. Summer Nuclear Station

    International Nuclear Information System (INIS)

    Blue, L.A.; Bellmore, J.R.; Shultz, P.A.

    1981-01-01

    Health Physics training for radiation workers and Health Physics Specialists continues to receive full attention by regulatory agencies such as the NRC and ANI. Guidance for such training continues to develop in a direction which forces utilities to continuously increase the quality and quantity of their Health Physics Training Program. This occurs at a time when our rapidly growing industry is placing greatly increased demands on the available work force of highly trained nuclear workers

  18. Proceedings of the Summer institute on particle physics: The top quark and the electroweak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.; Dixon, L.; Leith, D.W.G.S.

    1997-01-01

    The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings.

  19. Proceedings of the Summer institute on particle physics: The top quark and the electroweak interaction

    International Nuclear Information System (INIS)

    Burke, D.; Dixon, L.; Leith, D.W.G.S.

    1997-01-01

    The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings

  20. Sixth Summer School on Exotic Beam Physics. Technical Report

    International Nuclear Information System (INIS)

    Thoennessen, Michael

    2009-01-01

    The aim of the summer school is to nurture the next generation of scientists so that the community will have sufficient manpower to realize the next generation facility for rare-isotope beams (FRIB) and effectively use it when FRIB comes online. A special emphasis will be made to train Ph.D. students from US universities and young post-docs starting to work in one of the fields related to rare-isotope beams. The format of the school is morning lectures, given by prominent researchers in the field, followed by hands-on training sessions in the afternoon. The students will be instructed in how to produce a radioactive ion beam using the National Superconducting Cyclotron Laboratory Coupled Cyclotron Facility. On the last day of the school they will have the opportunity to produce a beam. The School is an annual event and is jointly organized by the 88-Inch Cyclotron, ATLAS, HRIBF, N-Division/LLNL and NSCL, and with the exception of LLNL is rotating among these laboratories. This proposal is for subsistence support for graduate students and post-docs attending the school.

  1. Experimental medium energy physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses the following topics: search for the ξ(2230) at LEAR; hyperon-antihyperon production studies at LEAR; relativistic proton-nucleus and heavy ion-nucleus collisions at the SPS; search for the H dibaryon at the AGS; hypernuclear physics research; CEBAF activities; pion physics at PSI; and H particle experiment design and development

  2. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  3. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  4. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  5. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  6. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  7. [Medium energy particle physics

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of 3 H, 3 He, 4 He; Detailed Balance in pd right reversible γ 3 H; Interaction Dynamics); and Search for the Rare Decay Μ + → e + + γ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects

  8. Physics at collider energy

    International Nuclear Information System (INIS)

    Horgan, R.; Jacob, M.

    1981-01-01

    Present expectations for hadron interactions at energies of the order of 500 GeV or greater in the centre of mass are reviewed. In particular, prospects for producing the weak vector bosons, information about large cross-sections as available from cosmic-ray results, and finally anticipated jet phenomena are discussed. (orig.)

  9. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  10. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  11. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  12. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  13. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  14. Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan; Ceylan, R. Figen; Kizilay, Hatice [Faculty of Agriculture, Department of Agricultural Economics, Akdeniz University, Antalya 07070 (Turkey)

    2011-05-15

    The study examines energy use patterns and the relationship between energy inputs and yield for double crop (fall and summer) glasshouse tomato production in Antalya province, where is one of the most important greenhouse centres in Turkey. The data of the study was retrieved from 37 fall and 25 summer glasshouse tomato producers via face to face survey in 2007. The research findings revealed energy use values for inputs such as manure, electricity, chemical fertilizer and fuel. While the average yield per hectare is 25025.4 kg for enterprises involved in tomato production in fall, it is 22392.9 kg for summer production. The overall energy consumption is higher in fall production with 81362.2 MJ ha{sup -1} in comparison to summer production 63023.2 MJ ha{sup -1}. In addition, the specific energy requirement is 3521.2 MJ t{sup -1} and 2814.4 MJ t{sup -1} for fall and summer production in order and the energy efficiency was found out to be 0.31 kg MJ{sup -1} and 0.36 kg MJ{sup -1} respectively. Finally, the energy relationship was tested using the production relationship. The findings indicated that direct energy sources are effective in tomato yield for both of the two seasons. More clearly, the most significant energy input was electrical energy for summer production and a combination of electrical energy, human power and machinery for fall production. Yet, excess and unconscious use of chemical ingredients in glasshouse tomato production was confirmed as energy derived from chemical drugs leaded a declination in the yield for fall season. Therefore, the paper revealed energy relationship for double crop glasshouse tomato production in Antalya, being a reference for similar production methodologies. (author)

  15. Energy: Between Physics and Metaphysics.

    Science.gov (United States)

    Bunge, Mario

    2000-01-01

    The general concept of energy is somewhat unclear as long as it is confined to physics since every chapter of it defines its own particular concept of energy. The general concept can be elucidated in terms of the hypergeneral concepts of concrete things and changeability. Concludes that physicists and philosophers can learn from one another.…

  16. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  17. Comparison of summer and winter objectively measured physical activity and sedentary behavior in older adults

    DEFF Research Database (Denmark)

    Arnardottir, Nanna Yr; Oskarsdottir, Nina Dora; Brychta, Robert J.

    2017-01-01

    In Iceland, there is a large variation in daylight between summer and winter. The aim of the study was to identify how this large variation influences physical activity (PA) and sedentary behavior (SB). Free living PA was measured by a waist-worn accelerometer for one week during waking hours...... categories, except for the moderate-to-vigorous PA (MVPA), and SB was reduced. More lifestyle PA (LSPA) was accumulated in ≥5-min bouts during summer than winter, especially among highly active participants. This information could be important for policy makers and health professionals working with older...

  18. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    , Russia, the US, China, South Korea and India (as of March 2006). It will take several years to accomplish this important task. There is no doubt that the success depends not only on funding but also on enthusiastic people willing to contribute with their skills and knowledge. Young scientists and engineers must be enrolled to the programme and trained in various disciplines of fusion science and technology. There are various education schemes and work programmes. Organization of summer schools on fusion-related plasma physics is an important part of the training process. Several schools are organized annually or every second year in Europe. Fusion-related science is so vast that it is impossible to cover all topics during an event lasting for one or two weeks. Therefore, each school has its distinctive features and focuses on a selected group of issues to be addressed in depth. This also applies to the Workshop and Summer School on Plasma Physics in Kudowa Zdrój (Poland) that, has been organised annually since 2001. It was initiated by Dr Marek Scholz with the help of his colleagues from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The idea was to create a forum for students mainly from Eastern Europe to learn and discuss subjects in general plasma physics and dense magnetized media, predominantly in plasma focus devices. Over the years the school has matured and created a clear profile. A unique feature has always been to accommodate in the programme not only tutorials delivered by invited senior scientists but also presentations prepared by the students. In June 2005 the 5th Workshop and Summer School on Plasma Physics was held under the heading 'Towards Fusion Energy: Plasma Physics, Diagnostics, Applications'. There were 59 participants, including 44 students, coming from plasma physics and material research laboratories in 17 countries: Belgium, Czech Republic, France, Germany, Georgia, Iran, Italy, Lithuania, Poland, Romania, Russia

  19. [High energy physics

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1991-01-01

    An intense analysis effort on the data we obtained in a seven month run on E704 last year has produced a flood of new results on polarization effects in particle production at 200 GeV/c. We are fortunate to be able to report in detail on those results. Our other Fermilab experiment, E683 (photoproduction of jets) has been delayed an unbelievable amount of time by Fermilab schedule slippages. It was scheduled and ready for beam two years ago exclamation point As this report is being written, we have been running for two months and are expecting four months of production data taking. In this report we show some of our preliminary results. In addition we are near the end of a six month run on our CERN experiment, NA47 (SMC) which will measure the spin dependent structure functions for the proton and neutron. It is with a sense of relief, mixed with pride, that we report that all the equipment which we constructed for that experiment is currently working as designed. The random coincidence of accelerator schedules has left us slightly dazed, but all experiments are getting done and analyzed in a timely fashion. As members of the Solenoidal Detector Collaboration, we have been preparing for the only currently approved experiment at the SSC. Here we report on our scintillating fiber tracker design and simulation activities. In addition we report the results of our investigation of the detector response to heavy Z particles. Since our last report, we have joined the D0 collaboration with the primary aim of contributing to the D0 upgrade over the next few years. It is also important for us to gain experience in collider physics during the period leading up to the SDC turn-on

  20. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  1. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  2. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bachrach, Harrison Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Nils [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collier, Angela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dumas, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fankell, Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ferris, Natalie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Francisco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, Alec [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guston, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenyon, Connor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Benson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mookerjee, Adaleena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkinson, Christian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peck, Hailee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poondla, Yasvanth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shaffer, Nathaniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trettel, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valaitis, Sonata Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venzke, Joel Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Black, Mason [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demircan, Samet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holladay, Robert Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  3. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caldwell, Wendy [Arizona State Univ., Mesa, AZ (United States); Brown, Barton Jed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederson, Clark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Justin [Univ. of California, Santa Cruz, CA (United States); Burrill, Daniel [Univ. of Vermont, Burlington, VT (United States); Feinblum, David [Univ. of California, Irvine, CA (United States); Hyde, David [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Levick, Nathan [Univ. of New Mexico, Albuquerque, NM (United States); Lyngaas, Isaac [Florida State Univ., Tallahassee, FL (United States); Maeng, Brad [Univ. of Michigan, Ann Arbor, MI (United States); Reed, Richard LeRoy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarno-Smith, Lois [Univ. of Michigan, Ann Arbor, MI (United States); Shohet, Gil [Univ. of Illinois, Urbana-Champaign, IL (United States); Skarda, Jinhie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Josey [Missouri Univ. of Science and Technology, Rolla, MO (United States); Zeppetello, Lucas [Columbia Univ., New York, NY (United States); Grossman-Ponemon, Benjamin [Stanford Univ., CA (United States); Bottini, Joseph Larkin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loudon, Tyson Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); VanGessel, Francis Gilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagaraj, Sriram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Price, Jacob [Univ. of Washington, Seattle, WA (United States)

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  4. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  5. Summer declines in activity and body temperature offer polar bears limited energy savings

    Science.gov (United States)

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  6. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. Copyright © 2015, American Association for the Advancement of Science.

  7. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  8. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  9. Analysis on energy-saving path of rural buildings in hot summer and cold winter zone

    Science.gov (United States)

    Huang, Mingqiang; Li, Jinheng

    2018-02-01

    Since the reform and opening policy, the construction of rural area in China has become more and more important. The idea of establishing green villages needs to be accepted and recognized by the public. The hot summer and cold winter zone combines two contradictory weather conditions that is cold winter and hot summer. So the living conditions are limited. In response to this climate, residents extensively use electric heaters or air conditioning to adjust the indoor temperature, resulting in energy waste and environmental pollution. In order to improve the living conditions of residents, rural area energy conservation has been put on the agenda. Based on the present situation and energy consumption analysis of the rural buildings in the hot summer and cold winter zone, this article puts forward several energy saving paths from government, construction technology and so on

  10. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  11. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  12. 1998 ACEEE summer study on energy efficiency in buildings: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    These proceedings are contained in the following 10 volumes: (1) Residential buildings--Technologies, design and performance analysis; (2) Residential buildings--Program design, implementation and evaluation; (3) Commercial buildings--Technologies, design and performance analysis; (4) Commercial buildings--Program design, implementation and evaluation; (5) International collaborations and global market issues; (6) Deregulation of the utility industry and role of energy services companies; (7) Market transformation; (8) Information technologies, consumer behavior, and non-energy benefits; (9) Sustainable development, climate change, energy planning, and policy; and (10) Building industry trends. Papers have been processed separately for inclusion on the data base.

  13. supplementation of energy and/or protein to steers grazing summer ...

    African Journals Online (AJOL)

    Some aspects of the effect of supplementary energy and/or protein, strategically ptovided to steers on summer veld, were investi gated. 40 Friesland steers in the age ... was posed whether the strategic provision of energy and or protein to steers grazing .... Definitions and abbreviotions was determined after cooling for 24 h ...

  14. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  15. 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Kenneth M.

    2007-10-31

    The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

  16. Low-energy nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    The 1985 annual report of the Schuster Laboratory, Manchester University, England, on low-energy nuclear physics, is presented. The report includes experiments involving: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects. Technical developments are also described. (U.K.)

  17. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  18. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  19. ACEEE 1990 summer study on energy efficiency in buildings: Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This panel on commercial data, design, and technologies offers both an archival set of data analyses that capture much of what is known today about commercial building energy use and a look into new technologies. The emphasis on data appears to be a trend likely to continue in the coming years. Utilities are sponsoring load research to produce, at a local level, building energy use intensities and load shapes. Data analysis techniques, many of which have been and continue to be reported in the Performance Measurement and Analysis panel, are stronger and are increasingly grounded in solid data. Ongoing programs that have produced rich data sets are now yielding useful results area such issues as the cost of energy conservation measures. Finally, data analysis should naturally lead to improved technologies and building designs, as architects and engineers profit from what is shaping up as a very fruitful period of building performance assessment. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  20. RSM Outlook Summer 2012 : Blueprints for Greener Energy

    NARCIS (Netherlands)

    J. Whittern (Justine)

    2012-01-01

    markdownabstract#### Taking a global view (Russell Gilbert) Ruth Cairnie, Executive Vice President of Strategy and Planning for Royal Dutch Shell, discusses the forces driving the increasingly urgent need for sustainable energy and the factors that may determine whether we find solutions sooner

  1. Changes in Weight, Sedentary Behaviour and Physical Activity during the School Year and Summer Vacation

    Directory of Open Access Journals (Sweden)

    Chiaki Tanaka

    2018-05-01

    Full Text Available Background: To examine bidirectional associations between body weight and objectively assessed sedentary behaviour (SB and physical activity (PA during the school year and summer vacation. Methods: Participants were 209 Japanese boys and girls (9.0 ± 1.8 years at baseline. SB and PA were measured using triaxial accelerometry that discriminated between ambulatory and non-ambulatory PA, screen time measured by questionnaire during the school-term was evaluated in May and the summer vacation, and relative body weight measured in May and just after the end of summer vacation. Results: There were no significant relationships between changes in SB or PA and changes in body weight. However, higher relative body weight at baseline was associated with decreased non-ambulatory moderate PA (p = 0.049, but this association was slightly diminished after adjusting for change in SB (p = 0.056. Longer screen time at baseline was also associated with increased relative body weight (p = 0.033. Conclusions: The present study revealed that body weight might be particularly influential on non-ambulatory moderate PA while SB, PA or changes in these variables did not predict changes in body weight. Moreover, screen time during the school year is a predictor of change in relative body weight during the subsequent summer vacation.

  2. Proceedings of Summer Institute of Particle Physics, July 27-August 7, 1981: the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, A. (ed.)

    1982-01-01

    The ninth SLAC Summer Institute on Particle Physics was held in the period July 27 to August 7, 1981. The central topic was the strong interactions with the first seven days spent in a pedagogic mode and the last three in a topical conference. In addition to the morning lectures on experimental and theoretical aspects of the strong interactions, three were lectures on machine physics; this year it was electron-positron colliding beam machines, both storage rings and linear colliders. Twenty-three individual items from the meeting were prepared separately for the data base. (GHT)

  3. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  4. Low energy bar pp physics

    International Nuclear Information System (INIS)

    Amsler, C.; Crowe, K.

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of bar pp annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and bar pp interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with bar p's at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs

  5. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  6. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  7. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  8. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  9. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  10. Physics program at SPEAR energies

    International Nuclear Information System (INIS)

    Seiden, A.

    1982-01-01

    The author presents below a partial review of the physics program remaining to be completed over the SPEAR energy range along with examples of the running time needed for selected topics. The topics discussed are: meson spectroscopy from the psi; details of production and decay for the n/sub c/; charmed hadron spectroscopy; weak decays of D and F; and mechanism of e/sup +/e/sup -/ → qq-bar → Hadron States

  11. High Energy Physics in Europe

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A thorough survey of the present and possible future activities and resources in high energy physics in the CERN Member States has been carried out by a Working Group of ECFA (European Committee for Future Accelerators) under the Chairmanship of John Mulvey. The aim has been to obtain a view of the present European scene and to see whether it looks well adapted to the effective exploitation of possible future machines in Europe (particular LEP) and the rest of the world

  12. Studies in medium energy physics

    International Nuclear Information System (INIS)

    Green, A.; Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.E.; Worn, S.D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the US Department of Energy through special Research Grant DE-FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  13. Topological Aspects of Condensed Matter Physics : Lecture Notes of the Les Houches Summer School : Session CIII

    CERN Document Server

    Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F

    2017-01-01

    Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...

  14. Prediction of early summer rainfall over South China by a physical-empirical model

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2014-10-01

    In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.

  15. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the

  16. Duke University High Energy Physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1993-03-01

    The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab's Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from bar p p collisions at √ bar s = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector

  17. Spinoff from high energy physics

    International Nuclear Information System (INIS)

    Hoffmann, Hans

    1994-01-01

    This year the CERN Courier is featuring the spinoff and technological benefits arising from research in fundamental physics. After initial illustrations in applied data processing sectors, this article by Hans Hoffman of CERN examines the rationale and underlying objectives of the 'new awareness' of the market value of basic science. He is the Chairman of a new panel on the subject set up recently by the International Committee for Future Accelerators (ICFA). The other members are: Oscar Barbalat of CERN, Hans Christian Dehne of DESY, Sin-ichi Kurakawa of KEK, Gennady Kulipanov of the Budker Institute (Novosibirsk), Anthony Montgomery, formerly of the SSC, A. H. Walenta of Siegen, Germany, and Zhongqiang Yu of IHEP Beijing. High energy physics - the quest to find and understand the structure of matter - is mainly seen as an essential part of human culture. However this basic science increasingly has to jostle for funding attention with other branches of science. Applied sciences aim for a rapid transformation of investment cash into viable market products. In times of economic difficulties this is attractive to funding agencies and governments, and economic usefulness and technological relevance also become criteria for a basic science like high energy physics.

  18. Energy, environment, and policy choices: Summer institutes for science and social studies educators

    Energy Technology Data Exchange (ETDEWEB)

    Marek, E.A.; Chiodo, J.J.; Gerber, B.L.

    1997-06-01

    The Center for Energy Education (CEE) is a partnership linking the University of Oklahoma, Close Up Foundation and Department of Energy. Based upon the theme of energy, environment and public policy, the CEE`s main purposes are to: (1) educate teachers on energy sources, environmental issues and decisionmaking choices regarding public policy; (2) develop interdisciplinary curricula that are interactive in nature (see attachments); (3) disseminate energy education curricula; (4) serve as a resource center for a wide variety of energy education materials; (5) provide a national support system for teachers in energy education; and (6) conduct research in energy education. The CEE conducted its first two-week experimentially-based program for educators during the summer of 1993. Beginning at the University of Oklahoma, 57 teachers from across the country examined concepts and issues related to energy and environment, and how the interdependence of energy and environment significantly influences daily life. During the second week of the institute, participants went to Washington, D.C. to examine the processes used by government officials to make critical decisions involving interrelationships among energy, environment and public policy. Similar institutes were conducted during the summers of 1994 and 1995 resulting in nearly 160 science and social studies educators who had participated in the CEE programs. Collectively the participants represented 36 states, the Pacific Territories, Puerto Rico, and Japan.

  19. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010

    Directory of Open Access Journals (Sweden)

    Magnus Lund

    2014-07-01

    Full Text Available Global warming will bring about changes in surface energy balance of Arctic ecosystems, which will have implications for ecosystem structure and functioning, as well as for climate system feedback mechanisms. In this study, we present a unique, long-term (2000–2010 record of summer-time energy balance components (net radiation, R n; sensible heat flux, H; latent heat flux, LE; and soil heat flux, G from a high Arctic tundra heath in Zackenberg, Northeast Greenland. This area has been subjected to strong summer-time warming with increasing active layer depths (ALD during the last decades. We observe high energy partitioning into H, low partitioning into LE and high Bowen ratio (β=H/LE compared with other Arctic sites, associated with local climatic conditions dominated by onshore winds, slender vegetation with low transpiration activity and relatively dry soils. Surface saturation vapour pressure deficit (D s was found to be an important variable controlling within-year surface energy partitioning. Throughout the study period, we observe increasing H/R n and LE/R n and decreasing G/R n and β, related to increasing ALD and decreasing soil wetness. Thus, changes in summer-time surface energy balance partitioning in Arctic ecosystems may be of importance for the climate system.

  20. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  1. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  2. Proceedings of progress in high energy physics

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  3. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  4. Physical and biological characteristics of the winter-summer transition in the Central Red Sea

    KAUST Repository

    Zarokanellos, Nikolaos

    2017-07-25

    The Central Red Sea (CRS) lies between two distinct hydrographic and atmospheric regimes. In the southern Red Sea, seasonal monsoon reversal regulates the exchange of water between the Red Sea and the Indian Ocean. In the northern Red Sea, intermediate and occasionally deep water are formed during winter to sustain the basin\\'s overturning circulation. Highly variable mesoscale eddies and the northward flowing eastern boundary current (EBC) determine the physical and biogeochemical characteristics of the CRS. Ship-based and glider observations in the CRS between March and June 2013 capture key features of the transition from winter to summer and depict the impact of the eddy activity on the EBC flow. Less saline and relatively warmer water of Indian Ocean origin reaches the CRS via the EBC. Initially, an anticyclonic eddy with diameter of 140 km penetrating to 150m depth with maximum velocities up to 30–35 cm s prevails in the CRS. This anticyclonic eddy appears to block or at least redirect the northward flow of the EBC. Dissipation of the eddy permits the near-coastal, northward flow of the EBC and gives place to a smaller cyclonic eddy with a diameter of about 50 km penetrating to 200 m depth. By the end of May, as the northerly winds become stronger and persistent throughout the basin, characteristic of the summer southwest monsoon wind regime, the EBC, and its associated lower salinity water became less evident, replaced by the saltier surface water that characterizes the onset of the summer stratification in the CRS.

  5. A physical framework for evaluating net effects of wet meadow restoration on late summer streamflow

    Science.gov (United States)

    Grant, G.; Nash, C.; Selker, J. S.; Lewis, S.; Noël, P.

    2017-12-01

    Restoration of degraded wet meadows that develop on upland valley floors is intended to achieve a range of ecological benefits. A widely cited benefit is the potential for meadow restoration to augment late-season streamflow; however, there has been little field data demonstrating increased summer flows following restoration. Instead, the hydrologic consequences of restoration have typically been explored using coupled groundwater and surface water flow models at instrumented sites. The expected magnitude and direction of change provided by models has, however, been inconclusive. Here, we assess the streamflow benefit that can be obtained by wet meadow restoration using a parsimonious, physically-based approach. We use a one-dimensional linearized Boussinesq equation with a superimposed solution for changes in storage due to groundwater upwelling and and explicitly calculate evapotranspiration using the White Method. The model accurately predicts water table elevations from field data in the Middle Fork John Day watershed in Oregon, USA. The full solution shows that while raising channel beds can increase total water storage via increases in water table elevation in upland valley bottoms, the contributions of both lateral and longitudinal drainage from restored floodplains to late summer streamflow are undetectably small, while losses in streamflow due to greater transpiration, lower hydraulic gradients, and less drainable pore volume are substantial. Although late-summer streamflow increases should not be expected as a direct result of wet meadow restoration, these approaches offer benefits for improving the quality and health of riparian and meadow vegetation that would warrant considering such measures, even at the cost of increased water demand and reduced streamflow.

  6. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1989-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  7. [High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1988-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  8. At-Risk Boys' Social Self-Efficacy and Physical Activity Self-Efficacy in a Summer Sports Camp

    Science.gov (United States)

    Su, Xiaoxia; Xiang, Ping; McBride, Ron E.; Liu, Jiling; Thornton, Michael A.

    2016-01-01

    This study examined at-risk boys' social self-efficacy and physical activity self-efficacy within Bandura's self-efficacy framework. A total of 97 boys, aged between 10 and 13 years, attending a summer sports camp completed questionnaires assessing their social self-efficacy, physical activity self- efficacy, prosocial behaviors, and effort.…

  9. Characteristics of "Tween" Participants and Non-Participants in the VERB[TM] Summer Scorecard Physical Activity Promotion Program

    Science.gov (United States)

    Nickelson, Jen; Alfonso, Moya L.; McDermott, Robert J.; Bumpus, Elizabeth C.; Bryant, Carol A.; Baldwin, Julie A.

    2011-01-01

    Creating community-based opportunities for youth to be physically active is challenging for many municipalities. A Lexington, Kentucky community coalition designed and piloted a physical activity program, "VERB[TM] summer scorecard (VSS)", leveraging the brand equity of the national VERB[TM]--It's What You Do! campaign. Key elements of…

  10. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  11. High energy physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    The hadron collider group is studying proton-antiproton interactions at the world's highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t bar t decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-μ-τ universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices

  12. Experiments in intermediate energy physics

    International Nuclear Information System (INIS)

    Dehnhard, D.

    2003-01-01

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers

  13. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  14. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  15. Physical structure and algae community of summer upwelling off eastern Hainan

    Science.gov (United States)

    Xu, H.; Liu, S.; Xie, Q.; Hong, B.; Long, T.

    2017-12-01

    The upwelling system is the most productive ecosystem along the continental shelf of the northern South China Sea Shelf. It brings nutrient from bottom to surface and blooms biotic community driven by summer monsoon. In this study, we present observed results of physical and biotic community structures during August, 2015 in the upwelling system along Hainan eastern coast, which is one the strongest upwelling systems in the northern South China Sea. By using hydrological data collected by CTD, we found a significant cold water tongue with high salinity which extended from offshore to 100 m isobaths. However, dissolved oxygen (DO) showed a sandwich structure in which high core of DO concentration appeared at the layer from 5 m to 30 m. It possibly was caused by the advection transport of high DO from adjacent area. Basically, this upwelling system was constrained at northern area of 18.8ºN in horizontal due to the weakening summer monsoon in August. In addition, we collected water sample at the upwelling area and measured algae categories and concentration by high performance liquid chromatography (HPLC). Results show the biotic community was dominated by five types of algae mainly, they were diatoms, dinoflagellates, green algae, prokaryotes and prochlorococcus. And different patterns of different algae were demonstrated. In the upwelling area, diatoms and prokaryotes show opposite structures, and more complex pattern for the rest three algae indicating an active biotic community in the upwelling system.

  16. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  17. 22nd DAE High Energy Physics Symposium

    CERN Document Server

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  18. The Development and Assessment of Particle Physics Summer Program for High School Students

    Science.gov (United States)

    Prefontaine, Brean; Kurahashi Neilson, Naoko, , Dr.; Love, Christina, , Dr.

    2017-01-01

    A four week immersive summer program for high school students was developed and implemented to promote awareness of university level research. The program was completely directed by an undergraduate physics major and included a hands-on and student-led capstone project for the high school students. The goal was to create an adaptive and shareable curriculum in order to influence high school students' views of university level research and what it means to be a scientist. The program was assessed through various methods including a survey developed for this program, a scientific attitudes survey, weekly blog posts, and an oral exit interview. The curriculum included visits to local laboratories, an introduction to particle physics and the IceCube collaboration, an introduction to electronics and computer programming, and their capstone project: planning and building a scale model of the IceCube detector. At the conclusion of the program, the students participated an informal outreach event for the general public and gave an oral presentation to the Department of Physics at Drexel University. Assessment results and details concerning the curriculum and its development will be discussed.

  19. Directions in high energy physics

    International Nuclear Information System (INIS)

    DiLella, L.; Altarelli, G.

    1988-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. Contents: The CERN Proton-Antiproton Collider; Elastic Scattering and Total Cross-Section; Properties of Soft Proton-Antiproton Collisions; Physics of Hadronic Jets; Physics of the Intermediate Vector Bosons; Heavy Flavour Production; Searches for New Physics; Physics with ACOL; Physics at Supercolliders

  20. PREFACE 25th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2010

    Science.gov (United States)

    Popović, Luka Č.; Kuraica, Milorad M.

    2010-11-01

    This volume of the Journal of Physics: Conference Series contains the Invited lectures, Topical invited lectures and Progress reports presented at the 25th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2010. The conference was held in Donji Milanovac, Serbia, from 29 August to 3 September 2010. Since SPIG has a long tradition and this is a jubilee anniversary, the 25th one, we had the opportunity to recall the history of the Conference (see the first paper in this proceedings). The structure of papers in this Proceedings covers the following sections: Atomic Collision Processes, Particle and Laser Beam Interactions with Solids, Low Temperature Plasmas and General Plasmas. As the four above mentioned topics often overlap and merge in numerous fundamental studies and more importantly applications, SPIG in general serves as a venue for exchanging ideas in the related fields. We hope that this Proceedings will be an important source of information about progress in plasma physics and will be useful, first of all, for students, and also for plasma physics scientists. The Editors would like to thank the invited speakers for their participation at SPIG 2010 and for their efforts writing contributions for this Proceedings. We also express our gratitude to the members of Scientific and Organizing committees for their efforts in organizing this SPIG. Especially we would like to thank the Ministry of Science and Technological Development of Republic of Serbia for financial support as well as the European Physical Society (EPS) for supporting the participation of three younger scientists. Luka Č Popović Milorad Kuraica October 2010

  1. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q 2 ; Measurement of the 5th Structure Function in Deuterium and 12 C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of 117 Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from 13 C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of 3 He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e'p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N → Δ Excitation; Experiment E-140: Measurement of the x-, Q 2 and A-Dependence of R = σ L /σ T ; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2γ Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions

  2. XXII SLAC summer institute on particle physics: Proceedings. Particle physics, astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; DePorcel, L [eds.

    1996-02-01

    The seven-day school portion of the Institute revolved around the question of dark matter: where is it and what is it? Reviews were given of microlensing searches for baryonic dark matter, of dark matter candidates in the form of neutrinos and exotic particles, and of low-noise detection techniques used to search for the latter. The history of the universe, from the Big Bang to the role of dark matter in the formation of large-scale structure, was also covered. Other lecture series described the astrophysics that might be done with x-ray timing experiments and through the detection of gravitational radiation. As in past years, the lectures each morning were followed by stimulating afternoon discussion sessions, in which students could pursue with the lecturers the topics that most interested them. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment. Highlights from the astrophysical and cosmological arenas included observations of anisotropy in the cosmic microwave background, and of the mysterious gamma-ray bursters. From terrestrial accelerators came tantalizing hints of the top quark and marked improvements in precision electroweak measurements, among many other results. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. XXII SLAC summer institute on particle physics: Proceedings. Particle physics, astrophysics and cosmology

    International Nuclear Information System (INIS)

    Chan, J.; DePorcel, L.

    1996-02-01

    The seven-day school portion of the Institute revolved around the question of dark matter: where is it and what is it? Reviews were given of microlensing searches for baryonic dark matter, of dark matter candidates in the form of neutrinos and exotic particles, and of low-noise detection techniques used to search for the latter. The history of the universe, from the Big Bang to the role of dark matter in the formation of large-scale structure, was also covered. Other lecture series described the astrophysics that might be done with x-ray timing experiments and through the detection of gravitational radiation. As in past years, the lectures each morning were followed by stimulating afternoon discussion sessions, in which students could pursue with the lecturers the topics that most interested them. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment. Highlights from the astrophysical and cosmological arenas included observations of anisotropy in the cosmic microwave background, and of the mysterious gamma-ray bursters. From terrestrial accelerators came tantalizing hints of the top quark and marked improvements in precision electroweak measurements, among many other results. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1994-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  5. 1997 ACEEE summer study on energy efficiency in industry: Proceedings, refereed papers, and summary monographs

    International Nuclear Information System (INIS)

    1997-01-01

    The theme of this conference is: How industry will procure energy efficiency services in the 21st century. This theme was chose in response to the changing nature of energy service companies. These changes will bring about enhanced opportunities for alliance and partnerships in the procurement of energy efficiency services as well as energy supply services. This Summer Study provides an opportunity to explore the opportunities provided by these changes in a marketplace and examines ways in which they can be used to enhance, in a cost-effective manner, energy efficiency and productivity in industry. The refereed papers in this conference are divided into the following topics: Food Products; Chemicals and Related Products; Iron and Steel; International Energy Issues; Electric Motor Systems; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Development of Partnerships; Case Studies; Steam Systems; Industrial Decision Making; and Industrial Energy Efficiency. The summary monographs cover: Electric Motor Systems; Energy Trends and Analysis; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Steam Systems; Industrial Decision Making; and Display-Summary Monograph. Separate abstracts were prepared for all 55 papers

  6. Fundamental physics with low-energy neutrons

    International Nuclear Information System (INIS)

    Barrón-Palos, Libertad

    2016-01-01

    Low-energy neutrons are playing a prominent role in a growing number of fundamental physics studies. This paper provides a brief description of the physics that some of the experiments in the area are addressing. (paper)

  7. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  8. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  9. Free Energy in Introductory Physics

    Science.gov (United States)

    Prentis, Jeffrey J.; Obsniuk, Michael J.

    2016-01-01

    Energy and entropy are two of the most important concepts in science. For all natural processes where a system exchanges energy with its environment, the energy of the system tends to decrease and the entropy of the system tends to increase. Free energy is the special concept that specifies how to balance the opposing tendencies to minimize energy…

  10. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  11. 2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

    2008-11-01

    For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participant’s experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

  12. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  13. Sustainable energy in cities: methodology and results of a summer course providing smart solutions for a new district in Shanghai

    OpenAIRE

    Wang, Yu; Lobaccaro, Gabriele; Carlucci, Salvatore; Wang, Ruzhu; Li, Yong; Finocchiaro, Luca; Dai, Yanjun; Eikevik, Trygve Magne; Wyckmans, Annemie

    2017-01-01

    A systemic approach for integrated urban energy planning and design can increase energy efficiency, the use of renewable energy sources and bioclimatic strategies to lower the energy footprint at building, district and city scale. Such approach requires experts that are not just proficient in their distinct energy-related disciplines, but, above all, that are trained in interdisciplinary project cooperation. This approach was adopted in the summer course entitled Sustainable energy in cities....

  14. Proceedings of Summer Institute on particle physics: Lepton-Hadron scattering

    International Nuclear Information System (INIS)

    Hawthorne, J.

    1992-09-01

    The nineteenth annual SLAC Summer Institute on Particle Physics took place from August 5 to 16, 1991, attracting 236 participants from 10 different countries. The theme was lepton-hadron scattering, the subjects ranging from the pioneering SLAC-MIT experiments, through the new era of e-p collisions to be ushered in by HERA. Richard Taylor led off the Institute with a historical review of lepton-proton scattering experiments, from Rutherford to the 1960s, while Sid Drell laid out the theoretical framework, in terms of parton distributions and sum rules. Frank Sciulli picked up where Richard Taylor left off, at the discovery of scaling violation, and brought us up to the present. Joel Feltesse and Roberto Peccei described the physics opportunities at HERA, most notably the investigation of the low x behavior of structure functions. Traudl Hansl-Kozanecka reviewed the current experimental status of QCD, at e + e - and hadron colliders as well as in deep-inelastic lepton-hadron scattering. Bob Hollebeek lectured on techniques for electromagnetic and hadronic calorimetry. Finally, Bob Siemann gave a series of lectures on the many uses of superconductivity in particle accelerators, from bending magnets at FNAL HERA and the SSC to RF cavities at CEBAF and LEP. Following the school, the topical conference provided us with a spectrum of current experimental and theoretical developments. Lepton-hadron scattering experiments at CERN and Fermilab were well represented. The existence of the 17 0 , keV neutrino was debated in two separate talks. We heard the latest results from the CDF and UA2 hadron collider experiments; from the four LEP experiments; and from ARGUS and CLEO. Also presented were overviews of the rare K decay program at BNL, the CP violation experiments at CERN and Fermilab, B physics, neutrino masses and mixings, and precision electroweak theory

  15. Technical Training: ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    CERN Technical Training 2005: Learning for the LHC! ELEC-2005: Electronics in High Energy Physics - Spring Term ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms: the Winter Term, Introduction to electronics in HEP, already took place; the next three Terms will run throughout the year: Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) - now open for registration Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Ele...

  16. SLC summer 2011 university - What energy model for Europe in 2030? Proceedings

    International Nuclear Information System (INIS)

    2011-09-01

    This document brings together the available presentations given at the summer 2011 university of the SLC (save the climate) organization on the topics of the energy model for Europe in 2030. Ten presentations (slides) are compiled in this document and deal with: 1 - The Negatep (France) scenario - extrapolation to Europe (Pierre Bacher, Claude Acket, Gerard Pierre); 2 - Renewable energies, potentialities and constraints (Jean-Louis BAL); 3 - Biomass availability for energy valorizations at the 2050 sights (Henry-Herve Bichat); 4 - Nuclear risk and nuclear safety control (Marie-Pierre Comets, ASN); 5 - The new horizons of nuclear energy (S. David, CNRS/IN2P3, IPN Orsay); 6 - A sustainable low carbon economy? EU Energy Policy in making... 2020... 2050... (Marc Deffrennes, DG ENERGY D2 Euratom Nuclear Energy); 7 - CO 2 capture and sequestration techniques (B. Durand); 8 - Climate change and its timelines (Sylvie Joussaume, CNRS, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE); 9 - The Europe of electricity and the strategic role of grids (Andre Merlin, CIGRE); 10 - How to reduce to 50% the electricity share of nuclear origin? (Herve Nifenecker)

  17. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  18. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  19. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  20. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.F. (ed.)

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results from CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.

  1. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    International Nuclear Information System (INIS)

    Hawthorne, J.F.

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K 0 decays at CERN; recent K 0 decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results from CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction? New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN ρ bar ρ collider; B physics at CDF; and review of particle astrophysics

  2. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1991-01-01

    This report discusses the following topics: annihilations in the galactic halo; cosmic microwave background; stars as particle physics laboratories; large scale structure; galaxy formation; and non-topological solutions

  3. Medium energy elementary particle physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: muon beam development at LAMPF; muon physics; a new precision measurement of the muon g-2 value; measurement of the spin-dependent structure functions of the neutron and proton; and meson factories

  4. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO 2 problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  5. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  6. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  7. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 25 July 09:15 - 11:00 A. PICH The Standard Model (2-3/8) 11:15 - 12:00 J. STACHEL Quark Gluon Plasma Physics (1/3) 12:00 Discussion Session Tuesday 26 July 09:15 - 10:00 A. PICH The Standard Model (4/8) 10:15 - 12:00 J. STACHEL Quark Gluon Plasma Physics (2-3/3) 12:00 Discussion Session Wednesday 27 July 09:15 - 11:00 A. PICH The Standard Model (5-6/8) 11:15 - 12:00 J-P. DELAHAYE The CLIC Concept and Technology for an e+e-Collider at the Energy Frontier 11:15 - 12:00 Discussion Session Thursday 28 July 09:15 - 10:00 A. PICH The Standard Model (7/8) 10:15 - 11:00 P. SPHICAS Data Acquisition Systems (1/2) 11:15 - 12:00 R. JACOBSEN From Raw data to Physics Results (1/2) 12:00 Discussion Session Friday 29 July 09:15 - 10:00 A. PICH The Standard Model (8/8) 10:15 - 11:00 P. SPHICAS Data Acquisition Systems (2/2) 11:15 - 12:00 R. JACOBSEN Fr...

  8. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  9. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  10. Differences in energy expenditures and growth dilution explain higher PCB concentrations in male summer flounder

    Science.gov (United States)

    Madenjian, Charles P.; Jensen, Olaf P.; Rediske, Richard R.; O'Keefe, James P.; Vastano, Anthony R.; Pothoven, Steven A.

    2016-01-01

    Comparison of polychlorinated biphenyl (PCB) concentrations between the sexes of mature fish may reveal important behavioral and physiological differences between the sexes. We determined whole-fish PCB concentrations in 23 female summer flounder Paralichthys dentatus and 27 male summer flounder from New Jersey coastal waters. To investigate the potential for differences in diet or habitat utilization between the sexes, carbon and nitrogen stable isotope ratios were also determined. In 5 of the 23 female summer flounder, PCB concentrations in the somatic tissue and ovaries were determined. In addition, we used bioenergetics modeling to assess the contribution of the growth dilution effect to the observed difference in PCB concentrations between the sexes. Whole-fish PCB concentrations for females and males averaged 87 and 124 ng/g, respectively; thus males were 43% higher in PCB concentration compared with females. Carbon and nitrogen stable isotope ratios did not significantly differ between the sexes, suggesting that diet composition and habitat utilization did not vary between the sexes. Based on PCB determinations in the somatic tissue and ovaries, we predicted that PCB concentration of females would increase by 0.6%, on average, immediately after spawning due to release of eggs. Thus, the change in PCB concentration due to release of eggs did not explain the higher PCB concentrations observed in males. Bioenergetics modeling results indicated that the growth dilution effect could account for males being 19% higher in PCB concentration compared with females. Thus, the bulk of the observed difference in PCB concentrations between the sexes was not explained by growth dilution. We concluded that a higher rate of energy expenditure in males, stemming from greater activity and a greater resting metabolic rate, was most likely the primary driver for the observed difference in PCB concentrations between the sexes.

  11. Differences in Energy Expenditures and Growth Dilution Explain Higher PCB Concentrations in Male Summer Flounder.

    Directory of Open Access Journals (Sweden)

    Charles P Madenjian

    Full Text Available Comparison of polychlorinated biphenyl (PCB concentrations between the sexes of mature fish may reveal important behavioral and physiological differences between the sexes. We determined whole-fish PCB concentrations in 23 female summer flounder Paralichthys dentatus and 27 male summer flounder from New Jersey coastal waters. To investigate the potential for differences in diet or habitat utilization between the sexes, carbon and nitrogen stable isotope ratios were also determined. In 5 of the 23 female summer flounder, PCB concentrations in the somatic tissue and ovaries were determined. In addition, we used bioenergetics modeling to assess the contribution of the growth dilution effect to the observed difference in PCB concentrations between the sexes. Whole-fish PCB concentrations for females and males averaged 87 and 124 ng/g, respectively; thus males were 43% higher in PCB concentration compared with females. Carbon and nitrogen stable isotope ratios did not significantly differ between the sexes, suggesting that diet composition and habitat utilization did not vary between the sexes. Based on PCB determinations in the somatic tissue and ovaries, we predicted that PCB concentration of females would increase by 0.6%, on average, immediately after spawning due to release of eggs. Thus, the change in PCB concentration due to release of eggs did not explain the higher PCB concentrations observed in males. Bioenergetics modeling results indicated that the growth dilution effect could account for males being 19% higher in PCB concentration compared with females. Thus, the bulk of the observed difference in PCB concentrations between the sexes was not explained by growth dilution. We concluded that a higher rate of energy expenditure in males, stemming from greater activity and a greater resting metabolic rate, was most likely the primary driver for the observed difference in PCB concentrations between the sexes.

  12. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  13. Introduction to the 1975 Berkeley Summer Study. [On efficient use of energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dean, E

    1977-05-01

    The 1975 Berkeley Summer Study on the Efficient Use of Energy in Buildings was held to bring together designers and researchers from the building profession, universities, and government agencies for an intensive examination of the problems of improved efficiencies of energy use for the heating and cooling of buildings. The focus of the Study was the development of an understanding of the maximum potential for the use of natural heat and light in what has become known as the ''passive mode'', as well as of the practical difficulties involved. Consequently much of the work is centered on window systems, daylighting, and ventilation. The motivation for the organization of the Study was the fact that buildings in general are not designed, constructed, or operated well from the point of view of energy use, and that the appropriate strategies for maximum energy efficiency are not well understood. There was, in addition, a certain reluctance to refer to the content of the work of the Study as ''energy conservation'' because of the suggestion that seems to occur to the public and the policymakers that conservation means some form of deprivation of a ''lower standard of living''.

  14. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Brock, R.; et al.

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. This area includes experiments on the Higgs boson, the electroweak and strong interactions, and the top quark. It also encompasses direct searches for new particles and interactions at high energy.

  15. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  16. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  17. PREFACE: 27th Summer School and International Symposium on the Physics of Ionized Gases (SPIG 2014)

    Science.gov (United States)

    Marić, Dragana; Milosavljević, Aleksandar R.; Mijatović, Zoran

    2014-12-01

    This volume of Journal of Physics: Conference Series contains a selection of papers presented at the 27th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2014, as General Invited Lectures, Topical Invited Lectures, Progress Reports and associated Workshop Lectures. The conference was held in Belgrade, Serbia, from 26-29 August 2014 at the Serbian Academy of Sciences and Arts. It was organized by the Institute of Physics Belgrade, University of Belgrade and Serbian Academy of Sciences and Arts, under the auspices of the Ministry of Education, Science and Technological Development, Republic of Serbia. A rare virtue of a SPIG conference is that it covers a wide range of topics, bringing together leading scientists worldwide to present and discuss state-of-the art research and the most recent applications, thus stimulating a modern approach of interdisciplinary science. The Invited lectures and Contributed papers are related to the following research fields: 1. Atomic Collision Processes (Electron and Photon Interactions with Atomic Particles, Heavy Particle Collisions, Swarms and Transport Phenomena) 2. Particle and Laser Beam Interactions with Solids (Atomic Collisions in Solids, Sputtering and Deposition, Laser and Plasma Interaction with Surfaces) 3. Low Temperature Plasmas (Plasma Spectroscopy and other Diagnostic Methods, Gas Discharges, Plasma Applications and Devices) 4. General Plasmas (Fusion Plasmas, Astrophysical Plasmas and Collective Phenomena) Additionally, the 27th SPIG encompassed three workshops that are closely related to the scope of the conference: • The Workshop on Dissociative Electron Attachment (DEA) - Chaired by Prof. Nigel J Mason, OBE, The Open University, United Kingdom • The Workshop on X-ray Interaction with Biomolecules in Gas Phase (XiBiGP), Chaired by Dr. Christophe Nicolas, Synchrotron SOLEIL, France • The 3rd International Workshop on Non-Equilibrium Processes (NonEqProc) - Chaired by Prof

  18. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  19. Effects of a Competency-Based Professional Development Training on Children's Physical Activity and Staff Physical Activity Promotion in Summer Day Camps

    Science.gov (United States)

    Weaver, R. Glenn; Beets, Michael W.; Turner-McGrievy, Gabrielle; Webster, Collin A.; Moore, Justin

    2014-01-01

    The YMCA of the USA serves more than nine million youth in its summer day camping programs nationwide. In spring 2011, the YMCA of Columbia, SC, with support from the University of South Carolina, adopted a competency-based staff-level training approach in an attempt to align staff behaviors with the YMCA of the USA new physical activity standards…

  20. The European Physical Society Conference on High Energy Physics

    Science.gov (United States)

    2017-07-01

    The European Physical Society Conference on High Energy Physics (EPS- HEP) is one of the major international conferences that review the field. It takes place every other year since 1971. It is organized by the High Energy and Particle Physics Division of the European Physical Society in cooperation with an appointed European Local Institute of Research or an internationally recognized University or Academy Body. EPS-HEP 2017 was held on 5-12 July in Venice, Italy at Palazzo del Cinema and Palazzo del Casinò, located in the Lido island. The conference has been organized by the Istituto Nazionale di Fisica Nucleare (INFN) and by the Department of Physics and Astronomy of the University of Padova. Editorial Board: Paolo Checchia, Mauro Mezzetto, Giuseppina Salente, Michele Doro, Livia Conti, Caterina Braggio, Chiara Sirignano, Andrea Dainese, Martino Margoni, Roberto Rossin, Pierpaolo Mastrolia, Patrizia Azzi, Enrico Conti, Marco Zanetti, Luca Martucci, Sofia Talas Lucano Canton.

  1. History of Physical Terms: "Energy"

    Science.gov (United States)

    Frontali, Clara

    2014-01-01

    Difficulties encountered by teachers in giving a definition of the term "energy", and by students in grasping its actual meaning, reflect the lengthy process through which the concept eventually came to maturity around 1850. Tracing the history of this process illuminates the different aspects covered by the term and shows the important…

  2. Center for Theoretical Underground Physics and Related Areas - CETUP*2013 Summer Program

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbinska, Barbara [Dakota State Univ., Madison, SD (United States)

    2014-06-01

    theoretical end experimental aspects. PPC was initiated at Texas A&M University in 2007 and travelled to many places which include Geneva, Turin, Seoul (S. Korea) etc. during the last 5 years before coming back to USA. The objectives of CETUP* and PPC were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments, develop a theoretical understanding of the three-neutrino oscillation parameters, provide a stimulating venue for exchange of scientific ideas among experts in neutrino physics and unification, connect with venues for public education outreach to communicate the importance of dark matter, neutrino research, and support of investment in science education, support mission of the Snowmass meeting and allow for extensive discussions of the ideas crucial for the future of high energy physics. The selected subjects represented the forefront of research topics in particle and nuclear physics, for example: recent precise measurements of all the neutrino mixing angles (that necessitate a theoretical roadmap for future experiments) or understanding of the nature of dark matter (that allows us to comprehend the composition of the cosmos better). All the covered topics are considered as a base for new physics beyond the Standard Model of particle physics.

  3. Providing a computing environment for a high energy physics workshop

    International Nuclear Information System (INIS)

    Nicholls, J.

    1991-03-01

    Although computing facilities have been provided at conferences and workshops remote from the hose institution for some years, the equipment provided has rarely been capable of providing for much more than simple editing and electronic mail over leased lines. This presentation describes the pioneering effort involved by the Computing Department/Division at Fermilab in providing a local computing facility with world-wide networking capability for the Physics at Fermilab in the 1990's workshop held in Breckenridge, Colorado, in August 1989, as well as the enhanced facilities provided for the 1990 Summer Study on High Energy Physics at Snowmass, Colorado, in June/July 1990. Issues discussed include type and sizing of the facilities, advance preparations, shipping, on-site support, as well as an evaluation of the value of the facility to the workshop participants

  4. PREFACE: 10th Summer School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter'

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2010-03-01

    This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and

  5. ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2004-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers in the format of the successful ELEC-2002 course series, and within the framework of the 2005 Technical Training Programme. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 will composed of four Terms throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Winter Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays and Thursdays, from 10:00 to 12:30. The...

  6. European School of High-Energy Physics

    CERN Document Server

    2006-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures notes on field theory and the Standard Model, quantum chromodynamics, flavour physics and CP violation, experimental aspects of CP violation in K and B decays, relativistic heavy-ion physics, and the scientific programme of the Joint Institute for Nuclear Research. These core scientific topics are complemented by a lecture about the physics of ski jumping.

  7. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  8. [Experimental and theoretical high energy physics program

    International Nuclear Information System (INIS)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac endash Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e + e - collisions at CERN; bar p endash p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab

  9. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  10. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  11. New informative techniques in high energy physics

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Ukhov, V.I.

    1992-01-01

    A number of new informative techniques applied to high energy physics are considered. These are the object-oriented programming, systems integration, UIMS, visualisation, expert systems, neural networks. 100 refs

  12. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  13. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  14. A high energy physics perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  15. Teaching ``The Physics of Energy'' at MIT

    Science.gov (United States)

    Jaffe, Robert

    2009-05-01

    New physics courses on energy are popping up at colleges and universities across the country. Many require little or no previous physics background, aiming to introduce a broad audience to this complex and critical problem, often augmenting the scientific message with economic and policy discussions. Others are advanced courses, focussing on highly specialized subjects like solar voltaics, nuclear physics, or thermal fluids, for example. About two years ago Washington Taylor and I undertook to develop a course on the ``Physics of Energy'' open to all MIT students who had taken MIT's common core of university level calculus, physics, and chemistry. By avoiding higher level prerequisites, we aimed to attract and make the subject relevant to students in the life sciences, economics, etc. --- as well as physical scientists and engineers --- who want to approach energy issues in a sophisticated and analytical fashion, exploiting their background in calculus, mechanics, and E & M, but without having to take advanced courses in thermodynamics, quantum mechanics, or nuclear physics beforehand. Our object was to interweave teaching the fundamental physics principles at the foundations of energy science with the applications of those principles to energy systems. We envisioned a course that would present the basics of statistical, quantum, and fluid mechanics at a fairly sophisticated level and apply those concepts to the study of energy sources, conversion, transport, losses, storage, conservation, and end use. In the end we developed almost all of the material for the course from scratch. The course debuted this past fall. I will describe what we learned and what general lessons our experience might have for others who contemplate teaching energy physics broadly to a technically sophisticated audience.

  16. Summer energy balance and ablation of high elevation glaciers in the central Chilean Andes

    Science.gov (United States)

    Brock, Benjamin; Rivera, Andres; Burger, Flavia; Bravo, Claudio

    2014-05-01

    Glaciers of the semi-arid central Chilean Andes are an important freshwater source for the populous Central Valley region of Chile, but have been shrinking in recent decades. The surface energy balance of these glaciers is of high scientific interest as summer ablation occurs through both sublimation and melt. During the 2012-13 Austral Summer a glacio-meteorological monitoring programme was established on Olivares Alfa (3.9 km2, 4130-4800 m elevation) and Beta (8.3 km2, 3620-4850 m elevation) Glaciers and their forelands in the Upper Olivares Valley, 33°00'-33°11' S, 70°05'-70°15' W, approximately 50 km north-east of Santiago. This included complete automatic weather stations (AWSs) with sonic rangers to record surface ablation on the ablation zones of the two glaciers, and one AWS in the proglacial area of Olivares Alfa Glacier including precipitation gauge. To complement these point data, daily images of the glaciers were captured with fixed cameras in order to calculate snow cover and albedo distributions. To calculate the surface energy balance and rates of melt and sublimation, a model was developed which uses direct AWS measurements of the radiative fluxes and calculates the turbulent fluxes of sensible and latent heat using the bulk aerodynamic approach. The model also calculates the subsurface heat flux and includes a simple scheme to estimate refreezing of melt water within surface snow or ice. Meteorological data and model results for the December to May period will be presented in this paper. Model calculations match closely the cumulative ablation curve of the sonic ranger at Olivares Alfa, with a slight overestimation, and overestimate cumulative ablation recorded by the sonic ranger at Olivares Beta, possibly due, at least in part, to uncertain snow density values. Modelled cumulative ablation in the December-April period is 2.2 m water equivalent (w.e.) at Olivares Alfa (0.10 m sublimation, 2.10 m melt) and 2.34 m w.e. at Olivares Beta (0.18 m

  17. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  18. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  19. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1991-04-01

    The report summarizes the research and development activities of the Section for nuclear physics and energy physics at the University of Oslo in 1990. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. The experimental activities in nuclear physics have, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Using the CACTUS multidetector system, several experiments in collaboration with the nuclear physics group at the University of Bergen have been completed. Some results have been published and were also presented at the international conference in Oak Ridge, USA, while more data remains to be analyzed

  20. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  1. Trends in experimental high-energy physics

    International Nuclear Information System (INIS)

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry

  2. Prizes reward high-energy physics

    CERN Multimedia

    2005-01-01

    The European Physical Society (EPS) has recognized four individuals and a collaboration for their work on charge-parity (CP) violation, gamma-ray astronomy, cosmology and outreach activities. Heinrich Wahl, formerly of CERN, and the NA31 collaboration share the 2005 High Energy and Particle Physics Prize for their work on CP violation at CERN (½ page)

  3. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    Rees, M.J.

    1983-01-01

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  4. Studies in theorectical high energy particles physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  5. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  6. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  7. Statistics for High Energy Physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The lectures emphasize the frequentist approach used for Dark Matter search and the Higgs search, discovery and measurements of its properties. An emphasis is put on hypothesis test using the asymptotic formulae formalism and its derivation, and on the derivation of the trial factor formulae in one and two dimensions. Various test statistics and their applications are discussed.  Some keywords: Profile Likelihood, Neyman Pearson, Feldman Cousins, Coverage, CLs. Nuisance Parameters Impact, Look Elsewhere Effect... Selected Bibliography: G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys.\\ Rev.\\ D {\\bf 57}, 3873 (1998). A. L. Read, Presentation of search results: The CL(s) technique,'' J.\\ Phys.\\ G {\\bf 28}, 2693 (2002). G. Cowan, K. Cranmer, E. Gross and O. Vitells,  Asymptotic formulae for likelihood-based tests of new physics,' Eur.\\ Phys.\\ J.\\ C {\\bf 71}, 1554 (2011) Erratum: [Eur.\\ Phys.\\ J.\\ C {\\bf 73}...

  8. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  9. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    Science.gov (United States)

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  10. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  11. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  12. The Nuclear Science Facility at San Jose State University and the U.S. Department of Energy sponsored Summer School in Nuclear Chemistry

    International Nuclear Information System (INIS)

    Ling, A.C.

    1990-01-01

    The Nuclear Science Facility at SJSU was first opened for classes in 1975. It is designed primarily for undergraduate teaching of nuclear chemistry, radiochemistry, tracer techniques, and radiation safety. Utilizing nearly $1.5 million in counting equipment alone, but excluding a reactor or accelerator, it allows simultaneous use of multiple counting assemblages for up to 20 individual students, even for advanced experiments with Ge/MCA units. Current academic programs include a B.S. Degree in Radiochemistry, an M.S. in Radiological Health Physics, and community outreach to grade schools (nearly 2,000 student-experiments for grades 7-12 were performed in AY88/89). To encourage nuclear chemistry as a potential area of study in graduate school, the US Department of Energy funded a special national Summer School in Nuclear Chemistry. This was first held at SJSU in 1984; summer 1990 will see the seventh such program taught

  13. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  14. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  15. KEK (National Laboratory for High Energy Physics) annual report, 1988

    International Nuclear Information System (INIS)

    1989-01-01

    Throughout this year, TRISTAN has maintained the highest energy among the electron-positron colliders in the world. After operating at 57 GeV in the center of mass with full operation of the APS-type room temperature RF accelerating system, 16 units of 5-cell superconducting RF cavities 24 m in total length were installed in the Nikko straight section during the summer shutdown. As a result, 30.4 GeV/beam or 60.8 GeV in the center of mass was achieved beyond the original design energy goal of TRISTAN. All experimental collaborations at the four intersections have collected much interesting data in the new energy region of electron-positron collisions. The experiment SHIP, a search for highly ionizing particles, has completed data taking in the Nikko experimental hall and is going to give new limits on Dirac monopoles. At the 24th International Conference on High Energy Physics held at Munich in August, 1988, as CERN Courier's report, for instance, the results from TRISTAN were really the highlight in e + e - collision physics. Although we could not find any definite evidence for the existence of toponium under 60 GeV or other new particles under 56 GeV, we obtained much new physics concerning interfering effects between electromagnetic and weak interactions, new information about QCD and so on. Active experiments on hadron physics with the 12 GeV main ring also have been carried out. For instance, an internal gas target experiment with a polarized proton beam was performed by a group from Texas A and M University in cooperation with a Japanese group. The KEK PS is now a very unique proton machine in the 10 GeV energy region as well as Brookhaven's AGS. (J.P.N.)

  16. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  17. Proceedings of the summer institute on particle physics: The strong interaction, from hadrons to partons

    International Nuclear Information System (INIS)

    Chan, J.; DePorcel, L.; Dixon, L.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q 2 . Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  18. Physical and biological characteristics of the winter-summer transition in the Central Red Sea

    KAUST Repository

    Zarokanellos, Nikolaos; Papadopoulos, Vassilis P.; Sofianos, Sarantis. S.; Jones, Burton

    2017-01-01

    of the CRS. Ship-based and glider observations in the CRS between March and June 2013 capture key features of the transition from winter to summer and depict the impact of the eddy activity on the EBC flow. Less saline and relatively warmer water of Indian

  19. Recognition of Values-Based Constructs in a Summer Physical Activity Program.

    Science.gov (United States)

    Watson, Doris L.; Newton, Maria; Kim, Mi-Sook

    2003-01-01

    Examined the extent to which participants in a summer sports camp embraced values-based constructs, noting the relationship between perceptions of values-based constructs and affect and attitude. Data on ethnically diverse 10-13-year-olds indicated that care for others/goal setting, self-responsibility, and self-control/respect positively related…

  20. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  1. Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.O.G. [University of Colorado, Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO (United States); National Oceanic and Atmospheric Administration/Earth Systems Research Laboratory, Physical Sciences Division (NOAA/ESRL/PSD), Boulder, CO (United States)

    2012-09-15

    Various measurements from the Surface Heat Flux of the Arctic Ocean (SHEBA) experiment have been combined to study structures and processes producing the onset and end of summer melt over Arctic sea ice. The analysis links the surface energy budget to free-troposphere synoptic variables, clouds, precipitation, and in-ice temperatures. The key results are (1) SHEBA melt-season transitions are associated with atmospheric synoptic events (2) onset of melt clearly occurs on May 28, while the end of melt is produced by a sequence of three atmospheric storm events over a 28-day period producing step-like reductions in the net surface energy flux. The last one occurs on August 22.; (3) melt onset is primarily due to large increases in the downwelling longwave radiation and modest decreases in the surface albedo; (4) decreases in the downwelling longwave radiation occur for all end-of-melt transition steps, while increases in surface albedo occur for the first two; (5) decreases in downwelling shortwave radiation contribute only to the first end-of-melt transition step; (6) springtime free-tropospheric warming preconditions the atmosphere-ice system for the subsequent melt onset; and (7) melt-season transitions also mark transitions in system responses to radiative energy flux changes because of invariant melt-season surface temperatures. The extensive SHEBA observations enable an understanding of the complex processes not available from other field program data. The analysis provides a basis for future testing of the generality of the results, and contributes to better physical understanding of multi-year analyses of melt-season trends from less extensive data sets. (orig.)

  2. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  3. Proceedings of the Jorge Andre Swieca Summer School; 4. Experimental Nuclear Physics Session

    International Nuclear Information System (INIS)

    1990-01-01

    These proceedings present works on experimental nuclear physics, activation analysis, nuclear interactions, neutron physics, nuclear moments, inelastic scattering, lattices and chemical analysis. (L.C.J.A.)

  4. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  5. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  6. Integrated Circuit Design in US High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Geronimo, G. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bebek, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Garcia-Sciveres, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lippe, H. V. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Grillo, AA [Univ. of California, Santa Cruz, CA (United States); Newcomer, M [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2013-07-10

    This whitepaper summarizes the status, plans, and challenges in the area of integrated circuit design in the United States for future High Energy Physics (HEP) experiments. It has been submitted to CPAD (Coordinating Panel for Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the whitepaper was distributed to the attendees before the workshop, the content was discussed at the meeting, and this document is the resulting final product. The scope of the whitepaper includes the following topics: Needs for IC technologies to enable future experiments in the three HEP frontiers Energy, Cosmic and Intensity Frontiers; Challenges in the different technology and circuit design areas and the related R&D needs; Motivation for using different fabrication technologies; Outlook of future technologies including 2.5D and 3D; Survey of ICs used in current experiments and ICs targeted for approved or proposed experiments; IC design at US institutes and recommendations for collaboration in the future.

  7. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  8. An Exploratory Study of 4th, 5th, and 6th Grade Summer Camp Participants’ Attitudes and Intentions Towards Physical Activity

    Directory of Open Access Journals (Sweden)

    Melissa Cater

    2015-10-01

    Full Text Available Physical inactivity is a growing problem among children, particularly school-aged youth. Research suggests children are especially prone to inactivity in the summer months when access to structured school-time and extra-curricular activities is reduced. Community programs like residential summer camps offer an excellent environment for engaging children in enjoyable physical activities while also helping them learn to be more physically active when they return home. Pre-existing attitudes often influence how much change a program inspires in an individual. The purpose of this study was to explore 4th, 5th, and 6th grade summer camp participants’ attitudes towards physical activity. Results of this study indicate that youth have a fairly neutral, though positive, attitude towards physical activity and that parental support of physical activity is still extremely important, even at this age. Campers also indicated relatively high intentions to remain physically active in the two weeks after the camp ended

  9. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  10. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  11. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  12. Environmental and social-motivational contextual factors related to youth physical activity: systematic observations of summer day camps.

    Science.gov (United States)

    Zarrett, Nicole; Sorensen, Carl; Skiles, Brittany

    2013-05-20

    Youth risk of obesity is high during the summer months. Summer day camps can be ideal settings for preventing obesity through reducing youth summer sedentary behaviors. However, with limited research on camp settings, the mechanisms by which these programs promote children's physical activity (PA) remains largely unknown. The current study was designed to take a first step in addressing this gap in research through systematic observations of 4 summer day camps. Systematic observations of 4 summer day camps was conducted using the System for Observing Play and Leisure Activity in Youth (SOPLAY) and a social-motivational climate supplemental observation tool founded on Self-Determination Theory and previous research developed by the authors. Teams of two coders observed daily activities for four days across two-week periods at each camp. On 15 minute intervals throughout each day, camps were assessed on level of youth PA (e.g., sedentary, moderate, vigorous), five physical features (e.g., equipment), eight staff interactions (e.g., encourage PA), and six social climate components (e.g., inclusive game). Across the sample, highly engaging games [F(1,329) = 17.68, p < .001], positive peer interactions [F(1,329) = 8.43, p < .01], and bullying [F(1,329) = 9.39, p < .01] were significantly related to higher PA participation rates, and clarity of rules [F(1,329) = 11.12, p < .001] was related to fewer youth participating in PA. Separate analyses for males and females indicated some sex differences with highly engaging games [F(1,329) = 23.10, p < .001] and bullying [F(1,329) = 10.00, p < .01] related to males' but not females' PA, and positive peer interactions related to only females' PA [F(1,329) = 9.58, p < .01]. Small, yet significant physical-environmental effects of temperature [F(1,328) = 1.54, p < .05] and equipment [F(1,328) = 4.34, p = .05] for girls also suggests that activities offered

  13. A Summer Math and Physics Program for High School Students: Student Performance and Lessons Learned in the Second Year

    Science.gov (United States)

    Timme, Nicholas; Baird, Michael; Bennett, Jake; Fry, Jason; Garrison, Lance; Maltese, Adam

    2013-05-01

    For the past two years, the Foundations in Physics and Mathematics (FPM) summer program has been held at Indiana University in order to fulfill two goals: provide additional physics and mathematics instruction at the high school level, and provide physics graduate students with experience and autonomy in designing curricula and teaching courses. In this paper we will detail changes made to the program for its second year and the motivation for these changes, as well as implications for future iterations of the program. We gauge the impact of the changes on student performance using pre-/post-test scores, student evaluations, and anecdotal evidence. These data show that the program has a positive impact on student knowledge and this impact was greater in magnitude in the second year of the program. We attribute this improvement primarily to the inclusion of more inquiry-driven activities. All activities, worksheets, and lesson plans used in the program are available online.

  14. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  15. Physics landscape-fixed target energies

    International Nuclear Information System (INIS)

    Berger, E.L.

    1989-10-01

    An introductory review is presented of physics issues and opportunities at Fermilab fixed-target energies. Included are discussions of precision electroweak studies; deep inelastic lepton scattering; heavy quark production, spectroscopy, and decays; perturbative QCD; prompt photon production; massive lepton production; and spin dependence. 79 refs., 7 figs

  16. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  17. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Walsh, T.; Ruddick, K.

    1990-01-01

    This report discusses the following topics: The Soudan enterprise; study of strange quarks at Fermilab; direct photons at Fermilab; the Brookhaven programs; AMY and CLEO: studies of e + e - annihilations; cosmic ray studies with the DO muon chamber; progress report on HEP computer upgrade; muon triggering and reconstruction at SSC; and, theoretical high energy physics

  18. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  19. Physics with low energy pions and muons

    International Nuclear Information System (INIS)

    Konijn, J.

    1981-01-01

    This document is a collection of texts used for a course of lectures given by the author at the Technical University of Delft (NL) in 1981. It is therefore a comprehensive, Dutch language, review article starting with the discovery of pions and muons, describing their properties and finally discussing their applications in low energy physics. (C.F.)

  20. Indiana University High Energy Physics, Task A

    Energy Technology Data Exchange (ETDEWEB)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  1. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  2. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Ruddick, K.

    1988-01-01

    This report discusses experimental and theoretical work in High Energy Physics. Some topics discussed are: quantum field theory; supersymmetry; cosmology; superstring model; relic photinos; inflationary universe; dark matter; standard model; supernovae; semileptonic decay; quantum Langevin equation; underground neutrino detection at Soudan; strange quark systems; cosmic ray detection; superconducting super collider detectors; and studies of direct photon production

  3. Status of (US) High Energy Physics Networking

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1987-02-01

    The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality

  4. UNIX at high energy physics Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Alan

    1994-03-15

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

  5. Resume: networking in high energy physics

    International Nuclear Information System (INIS)

    Hutton, J.S.

    1985-11-01

    Networking in High Energy Physics covers communications inside the experiment and internationally. Inside the experiment the need for agreed 'codes of practice' is now accepted. Within Europe it is accepted that a common infrastructure based on the use of the ISO OSI protocols should be used. In the USA a community initiative has been proposed. The background to these approaches is discussed. (author)

  6. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  7. Summer nitrogenous nutrient transport and its fate in the Taiwan Strait: A coupled physical-biological modeling approach

    Science.gov (United States)

    Wang, Jia; Hong, Huasheng; Jiang, Yuwu; Chai, Fei; Yan, Xiao-Hai

    2013-09-01

    In order to understand the fate of nutrients in the Taiwan Strait during summer, we built a coupled physical-biological numerical ocean model, which can capture the basic hydrographic and biological features within the strait. The nutrient that we chose to model is dissolved inorganic nitrogen (DIN). The model includes individual reservoirs for nitrate (NO3) and ammonium (NH4). Both the observational evidence and model results show that NO3 in the strait originates primarily from the upwelling subsurface water in the northern South China Sea (SCS) that enters the strait via the eastern and western routes separated by the Taiwan Bank. The coupled physical and biological effects on the NO3 transport at these two routes are highlighted in the study. For the western route, the shallow topography and the coastal upwelling intensify the biological uptake of NO3 in the whole water column. Consequently, the nitrogenous contribution by this route is mainly in form of the particulate organic nitrogen (PON). In contrast, NO3 is transported conservatively below the nitricline at the deep eastern route, contributing the whole NO3 supply in the TWS. The model estimates the fluxes of DIN and PON into the TWS, from the northern SCS, are 1.8 and 4 kmol s-1, respectively. Over half (˜1 kmol s-1) of the DIN is synthesized into PON by the phytoplankton in the strait. Overall, this study estimates the physical and biological effects on the nutrient transport in the TWS during summer.

  8. Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452332

    The present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer u...

  9. Proceedings of the Summer School Jorge Andre Swieca. 4. Session of Experimental Physics

    International Nuclear Information System (INIS)

    1990-01-01

    The works present in this course include experiences realized with the use of nuclear reactor as neutron source. The topies consist in works about nuclear physic, neutron physic, nuclear techniques on materials analysis and solid state physic using nuclear techniques. (C.G.C.)

  10. 2nd Machine Learning School for High Energy Physics

    CERN Document Server

    2016-01-01

    The Second Machine Learning summer school organized by Yandex School of Data Analysis and Laboratory of Methods for Big Data Analysis of National Research University Higher School of Economics will be held in Lund, Sweden from 20 to 26 June 2016. It is hosted by Lund University. The school is intended to cover the relatively young area of data analysis and computational research that has started to emerge in High Energy Physics (HEP). It is known by several names including “Multivariate Analysis”, “Neural Networks”, “Classification/Clusterization techniques”. In more generic terms, these techniques belong to the field of “Machine Learning”, which is an area that is based on research performed in Statistics and has received a lot of attention from the Data Science community. There are plenty of essential problems in High energy Physics that can be solved using Machine Learning methods. These vary from online data filtering and reconstruction to offline data analysis. Students of the school w...

  11. High Energy Physics Program at Texas A and M University

    International Nuclear Information System (INIS)

    1992-11-01

    The high energy physics program has continued its experimental activities over. In CDF, the Texas A ampersand M group has led an effort to design an upgrade for the silicon vertex detector, and is currently working with the rest of the collaboration on the next major data taking run. In MACRO, work was done on the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. This work is nearing completion, and the system is expected to be up and running on the detector by summer 1993. Work was done within the SDC group to develop gas microstrip chambers for use in precision tracking at the SSC, and in the GEM group, toward the development of a suitable forward calorimeter design. The theoretical high energy physics program has continued the study of a very successful string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. Work has also continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory

  12. 35th International Conference of High Energy Physics

    Science.gov (United States)

    The French particle physics community is particularly proud to have been selected to host the 35th ICHEP conference in 2010 in Paris. This conference is the focal point of all our field since more than fifty years and is the reference event where all important results in particle physics cosmology and astroparticles are presented and discussed. This alone suffices to make this event very important. But in 2010, a coincidence of exceptional events will make this conference even more attractive! What is then so special about ICHEP 2010 conference? It will be the first ICHEP conference where physics results obtained at the LHC will be presented! New results about the elusive Higgs boson, or signals of physics beyond the standard model might therefore be announced at this conference! Major discoveries in other domains such as gravitational waves, neutrino telescopes, neutrino oscillations, dark matter or in the flavour sector are also possible, just to name a few. In addition , 2010 will be an important date to shape up the future of our field. Several major projects will present the status of their Conceptual or Engineering Design Reports during the conference. The International Linear Collider (ILC) Global Design Effort team will present the report corresponding to the end of their Technical Design Phase 1. The Compact Linear Collider (CLIC) will also report on its Conceptual Design Report. Other major projects such as Super B factories will also be presented. These reports together with LHC physics results will form the basis for key political decisions needed to be taken in the years to come. In summary, there can be no doubt that Paris is the place to be in summer 2010 for anyone interested in High Energy Physics and we will make every effort to make your stay as interesting and enjoyable as possible.

  13. Characteristics of 'tween' participants and non-participants in the VERB™ summer scorecard physical activity promotion program.

    Science.gov (United States)

    Nickelson, Jen; Alfonso, Moya L; McDermott, Robert J; Bumpus, Elizabeth C; Bryant, Carol A; Baldwin, Julie A

    2011-04-01

    Creating community-based opportunities for youth to be physically active is challenging for many municipalities. A Lexington, Kentucky community coalition designed and piloted a physical activity program, 'VERB™ summer scorecard (VSS)', leveraging the brand equity of the national VERB™--It's What You Do! campaign. Key elements of VSS subsequently were adopted in Sarasota County, FL. This study identified characteristics of Sarasota's VSS participants and non-participants. Students in Grades 5-8 from six randomly selected public schools completed a survey assessing VSS participation, physical activity level, psychosocial variables, parental support for physical activity and demographics. Logistic regression showed that VSS participants were more likely to be from Grades 5 to 6 versus Grades 7 and 8 [odds ratio (OR) = 6.055] and perceive high versus low parental support for physical activity (OR = 4.627). Moreover, for each unit rise in self-efficacy, the odds of VSS participation rose by 1.839. Chi-squared automatic interaction detector (CHAID) analysis suggested an interaction effect between grade and school socioeconomic status (SES), with a large proportion of seventh and eighth graders from high SES schools being non-participants (76.6%). A VSS-style program can be expected to be more effective with tweens who are younger, in a middle SES school, having high self-efficacy and high parental support for physical activity.

  14. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  15. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy, Office of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000 Independence...

  16. Theoretical Physics to Face the Challenge of LHC : Lecture Notes of the Les Houches Summer School : 97th Session

    CERN Document Server

    Benakli, Karim; Douglas, Michael R; Mansoulie, Bruno; Rabinovici, Eliezer; Cugliandolo, Leticia F

    2015-01-01

    This book is based on lectures at the Les Houches Summer School held in August 2011 for an audience of advanced graduate students and postdoctoral fellows in particle physics, theoretical physics, and cosmology—areas where new experimental results were on the verge of being discovered at CERN. The school was held during a summer of great anticipation that at any moment contact might be made with the most recent theories of the nature of the fundamental forces and the structure of spacetime. In fact, during the session, the long anticipated discovery of the Higgs particle was announced. The book vividly describes the creative diversity and tension within the community of theoreticians who have split into several components—those doing phenomenology and those dealing with highly theoretical problems—with a few trying to bridge both domains. The theoreticians covered many directions in the theory of elementary particles, from classics such as the supersymmetric Standard Model to very recent ideas such as t...

  17. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  18. Attracting young women to the physical sciences: The Newton Summer Science Academy and other extra curricular programs

    Science.gov (United States)

    Chandrasekhar, Meera

    2000-03-01

    Early familiarity is regarded as one of the keys to attracting female students to traditionally male professions. I will describe four different extra curricular programs that my collaborators in the local school district and I have developed for students in grades 5-12. These programs are part of a project entitled ``Promoting Young Women in the Physical sciences", which also includes teacher training and programs in which parents participate with the child. Through these sustained and broad based interventions, we provide early experiences that we expect will prove positive to students. In particular, I will describe the Newton Summer Academy, a program for female high school students which integrates Physics, Chemistry, Math, Engineering and Economics. I will also address the successes and difficulties in starting and sustaining these programs.

  19. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  20. Low-energy meson physics (chiral theory)

    International Nuclear Information System (INIS)

    Volkov, M.K.; Pervushin, V.N.

    1976-01-01

    A quantum chiral theory which allows to obtain low-energy expansions of various hadron processes without introducing arbitrary parameters into the theory with the exception of hadron masses and interaction constants is presented. A hypothesis about the dynamic symmetry of strong interactions is suggested. The interaction lagrangian is derived which satisfies conditions of the dynamic symmetry. Examples of the use of the quantum chiral theory for describing low-energy processes of meson interaction are given. It is noted that the results obtained reproduce the actual qualitative pattern of various physical processes and in most cases result in good quantitative agreement with experiments

  1. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  2. Bell inequalities in high energy physics

    International Nuclear Information System (INIS)

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  3. Physical Alternative to the Dark Energy Paradigm

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-12-01

    Full Text Available The physical nature of the presently dominating enigmatic dark energy in the expanding universe is demonstrated to be explainable as an excess of the kinetic energy with respect to its potential energy. According to traditional Friedman cosmology, any non-zero value of the total energy integral is ascribed to the space curvature. However, as we show, in the flat universe the total energy also can be different from zero. Initially, a very small excess of kinetic energy originates from the early universe. The present observational data show that our universe has probably a flat space with an excess of kinetic energy. The evolutionary scenario shows that the universe presently is in the transitional stage where its radial coordinate expansion approaches the velocity of light. A possibility of the closed Bubble universe with the local Big Bang and everlasting expansion is demonstrated. Dark matter can be essentially contributed by the non-relativistic massive neutrinos, which have cooled to very low temperatures and velocities thus favoring the formation of the observed broad equipotential wells in galaxies.

  4. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  5. Physics with ultra-low energy antiprotons

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Holzscheiter, M.H.; Hughes, R.J.

    1989-01-01

    The experimental observation that all forms of matter experience the same gravitational acceleration is embodied in the weak equivalence principle of gravitational physics. However no experiment has tested this principle for particles of antimatter such as the antiproton or the antihydrogen atom. Clearly the question of whether antimatter is in compliance with weak equivalence is a fundamental experimental issue, which can best be addressed at an ultra-low energy antiproton facility. This paper addresses the issue. 20 refs

  6. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  7. UNIX at high energy physics Laboratories

    International Nuclear Information System (INIS)

    Silverman, Alan

    1994-01-01

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide

  8. Experimental perspectives in low energy lepton physics

    International Nuclear Information System (INIS)

    Fiorini, E.

    1986-01-01

    Low energy nuclear physics has been and is going to be an essential tool for the study of weak interaction and neutrino physics. The use of the atomic nucleus as a ''microlaboratory'' with well defined quantum numbers is undoubtedly going to yield important and sometimes perhaps unexpected results on the symmetry laws governing the subnuclear world. These searches are however very hard experimentally and the bottleneck on obtaining more stringent results only rarely depends on the need of large and expensive apparatuses as those used in high energy physics: more limiting are technical difficulties. The author believes therefore that a real break-through to overcome the present experimental limitations can only be obtained with totally new and sometime ''non canonical'' technical approaches. This paper is an admittedly incomplete discussion of some of them. The author considers separately searches for rare decays, detection of low energy neutrinos and measurements of the neutrino mass, even if some of these new techniques are common to more than one of these subjects

  9. Cyberinfrastructure for high energy physics in Korea

    International Nuclear Information System (INIS)

    Cho, Kihyeon; Kim, Hyunwoo; Jeung, Minho

    2010-01-01

    We introduce the hierarchy of cyberinfrastructure which consists of infrastructure (supercomputing and networks), Grid, e-Science, community and physics from bottom layer to top layer. KISTI is the national headquarter of supercomputer, network, Grid and e-Science in Korea. Therefore, KISTI is the best place to for high energy physicists to use cyberinfrastructure. We explain this concept on the CDF and the ALICE experiments. In the meantime, the goal of e-Science is to study high energy physics anytime and anywhere even if we are not on-site of accelerator laboratories. The components are data production, data processing and data analysis. The data production is to take both on-line and off-line shifts remotely. The data processing is to run jobs anytime, anywhere using Grid farms. The data analysis is to work together to publish papers using collaborative environment such as EVO (Enabling Virtual Organization) system. We also present the global community activities of FKPPL (France-Korea Particle Physics Laboratory) and physics as top layer.

  10. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    1999-01-01

    Full text: The main activity of our Department is experimental high energy physics with accelerators. Experiments are carried using large facilities: - at CERN, the European Laboratory for Particle Physics in Geneva, - at Celsius Storage Ring in Uppsala and - in DESY laboratory in Hamburg, where several groups of physicists from our Department are members of international collaborations. They are listed below together with the main physics interests: At CERN - Delphi at LEP - tests of the Standard Model, b-quark physics, SUSY search, - NA48 - CP-violation in K 0 decays, rare decays, - SMC - spin dependent nucleon structure function, the Bjorken sum, - NA49 and WA98 - heavy ion physics. At CELSIUS - WASA - threshold production of light mesons, rare meson decays. At DESY - ZEUS - proton and photon structure functions, diffractive production. In most of these experiments our Department also contributed to the instrumentation of detectors and is presently involved in data collection, detector supervision and in data analysis. At the same time the Department is also involved in preparation of new experiments: - CMS (Compact Muon Solenoid) and ALICE at the LHC (Large Hadron Collider) at CERN, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - an upgrade of the present detector at Celsius, - hyperfragment experiment at JINR, Dubna. The department has small workshop which was recently involved in an upgrade of the WASA detector. In our Department there are also two physicists working on the phenomenology of a quark-gluon plasma and on the low energy hadron-hadron interactions. Physicist from our Department collaborate with the Department of the Experimental Physics of Warsaw University. They are also involved in teaching and in supervision of diploma students. There is a group of 9 PhD students. (author)

  11. Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Gomes, M.; Santoro, A.

    1989-01-01

    Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)

  12. Topics in calorimetry for high energy physics

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1992-01-01

    These lectures focus on a series of topics now of interest or which have been of interest to designes of calorimeters in the past few years. The examples concentrate on calorimeters from DESY because its focus this year is on e-P physics, and on CDF and SDC because they are best known to the author. Calorimeters are, broadly speaking, devices to measure the total energy of particles. In general, no one device will be optimal for all types of particles. The two broadest classes of calorimeters in high energy physics are the electromagnetic calorimeters used primarily for photons and electrons, and the hadronic calorimeters used for most charged mesons and baryons. Most operate by absorbing and thereby measuring a significant amount of the incoming particles energy directly. Some particles may require special devices for their interactions and observation. Modern calorimeters are characterized by energy and position resolution, and cost and size. Calorimeter cost is often a trade-off between performance desired and money available. The optimum cost will require a careful choice of materials, reduction of the overall size of the detector, elimination of labor intensive construction techniques, and careful consideration of the cost of calibration systems. Since at least some of these requirements which optimize cost and resolution are contradictory, the ideal calorimeter in seldom what one ends up building

  13. A study of energy performance and audit of commercial mall in hot-summer/warm-winter climate zone in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhisheng, Li; Jiawen, Liao; Xiaoxia, Wang [School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006 (China); Lin, Yaolin [Building Energy Solutions and Technologies, Inc, San Jose Office, San Jose, CA 95134 (United States); Xuhong, Liu [School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, Guangdong, 510643 (China)

    2013-08-15

    The building energy performance improvement of large-scale public buildings is very important to release China's energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m{sup 2}, of which lighting energy consumption accounts for 30.03 kWh/m{sup 2} and the lift and elevator energy consumption accounts for 40.46 kWh/m{sup 2}. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m{sup 2} even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.

  14. Soviet Union: Summer school goes international

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The traditional annual Soviet Summer School, held in June in Dubna on the banks of the Volga, this year had international participation for the first time. Initiated by Moscow's Physical Engineering Institute and the Joint Institute for Nuclear Research, Dubna, the school has rotating themes, with the accent this year on developments in high energy physics.

  15. Soviet Union: Summer school goes international

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The traditional annual Soviet Summer School, held in June in Dubna on the banks of the Volga, this year had international participation for the first time. Initiated by Moscow's Physical Engineering Institute and the Joint Institute for Nuclear Research, Dubna, the school has rotating themes, with the accent this year on developments in high energy physics

  16. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  17. Special Colloquium for the CERN-Fermilab Hadron Collider Physics Summer School: Main Dilemmas in Particle Physics for the LHC

    CERN Document Server

    CERN. Geneva

    2007-01-01

    A review of the status of the most crucial issues in particle physics at the start of the LHC is presented. The main questions are related to electroweak symmetry breaking and the mystery of new physics at the TeV scale, that is reasonably expected to be nearby and yet must be very peculiar because it was not seen at LEP and in flavour physics experiments. The main current ideas on models will be discussed and their implications for LHC searches, dark matter etc.

  18. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Office of Science, Department of..., General Services Administration, notice is hereby given that the High Energy Physics Advisory Panel will... Sciences Directorate (NSF), on long-range planning and priorities in the national high-energy physics...

  19. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Wednesday 6 July 09:15 - 10:00 F. CERUTTI (CERN) Presentation of the Summer Student Programme D. Heagerty (CERN) Computer rules O. ULLALAND (CERN) Workshops presentation 10:15 - 11:00 D. SCHLATTER (CERN) Introduction to CERN 11:15 Film on CERN Thursday 7 July 09:15 - 11:00 L. Di Lella (CERN) Introduction to Particle Physics (1-2/4) 11:15 - 12:00 P. Chomaz (GANIL / CERN) Introduction to Nuclear Physics (1/3) 12:00 Discussion Session 14:00 - 14:45 M. Lindroos (CERN) ISOLDE Facility 15:00 M. Lindroos (CERN) ISOLDE Visit Friday 8 July 09:15 - 10:00 L. Di Lella (CERN) Introduction to Particle Physics (3/4) 10:15 - 11:00 P. Chomaz (GANIL / CERN) Introduction to Nuclear Physics (2/3) 11:15 - 12:00 G. ROLANDI (CERN) How an experiment is designed (1/2) 12:00 Discussion Session Monday 11 July 09:15 - 10:00 L. Di Lella (CERN) Introduction to Particle Physi...

  20. High Energy Physics (HEP) benchmark program

    International Nuclear Information System (INIS)

    Yasu, Yoshiji; Ichii, Shingo; Yashiro, Shigeo; Hirayama, Hideo; Kokufuda, Akihiro; Suzuki, Eishin.

    1993-01-01

    High Energy Physics (HEP) benchmark programs are indispensable tools to select suitable computer for HEP application system. Industry standard benchmark programs can not be used for this kind of particular selection. The CERN and the SSC benchmark suite are famous HEP benchmark programs for this purpose. The CERN suite includes event reconstruction and event generator programs, while the SSC one includes event generators. In this paper, we found that the results from these two suites are not consistent. And, the result from the industry benchmark does not agree with either of these two. Besides, we describe comparison of benchmark results using EGS4 Monte Carlo simulation program with ones from two HEP benchmark suites. Then, we found that the result from EGS4 in not consistent with the two ones. The industry standard of SPECmark values on various computer systems are not consistent with the EGS4 results either. Because of these inconsistencies, we point out the necessity of a standardization of HEP benchmark suites. Also, EGS4 benchmark suite should be developed for users of applications such as medical science, nuclear power plant, nuclear physics and high energy physics. (author)

  1. Colloquia on High Energy Physics: IFAE 2012

    International Nuclear Information System (INIS)

    Barion, L.; Bozzi, C.; Fioravanti, E.; Pagliara, G; Ricci, B.

    2013-01-01

    The 2012 edition of the 'Incontri di Fisica delle Alte Energie' (IFAE2012) was held at the Aula Magna del Rettorato of the Ferrara University from April 11th to 13th. The Conference was attended by more than 150 participants, with about 75 presentations and 35 posters covering the most recent advances in High Energy Physics, Astroparticle and Neutrino Physics, Heavy Ions and Detection Techniques. Only plenary sessions were held, giving young researchers the opportunity to present their work to a large audience, either with talks or posters, which were on permanent display during the entire conference. The scientific program was organized in 7 sessions: 1-Standard Model and beyond; 2-QCD; 3-Heavy Flavour; 4-Heavy Ions; 5-Astro particles; 6-Neutrino Physics; 7-New Technologies. Introductory, state-of-the art talks, opened the Conference and each session. More detailed talks followed, stimulating lively discussions and interactions between the speakers and the participants. Three talks and two posters by young researchers (Matteo Biassoni, Roberta Cardinale, Stefano Perazzini, Federica Primavera and Laura Zotti) were selected for their high quality and awarded a prize money. It would not have been possible to held this conference without the support of INFN Sezione di Ferrara, Universita' di Ferrara and the generous contributions of Hamamatsu, Caen, National Instruments and AdvanSiD, whom we gratefully acknowledge.

  2. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  3. Proceedings of the 2. Nuclear Physics Session of the Jorge Andre Swieca Summer School - v. 1

    International Nuclear Information System (INIS)

    1985-01-01

    Several lectures on the field of Nuclear Physics are presented in a pedagogical way. In all of them an introduction is given, mainly on the basis of Quantum Mechanics and Elementary Particles. Whenever is possible the models are compared with the available experimental data. (L.C.) [pt

  4. Italian Meeting on High Energy Physics

    CERN Document Server

    Nicrosini, Oreste; Vercesi, Valerio; IFAE 2006; Incontri Di Fisica Delle Alte Energie

    2007-01-01

    This book collects the Proceedings of the Workshop ``Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 April 2006". This is the fifth edition of a new series of meetings on fundamental research in particle physics and was attended by more than 150 researchers. Presentations, both theoretical and experimental, addressed the status of Standard Model and Flavour phyiscs, Neutrino and Cosmological topics, new insights beyond the present understanding of particle physics and cross-fertilization in areas such as medicine, biology, technological spin-offs and computing. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation in 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.

  5. Polarized targets in high energy physics

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1994-01-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous 3 He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail

  6. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  7. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  8. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  9. High energy collider physics. Final report

    International Nuclear Information System (INIS)

    Ruchti, R.C.; Biswas, N.N.; Wayne, M.R.

    1997-01-01

    With the demise of the Superconducting Supercollider (SSC) Project, there was great concern that the technological developments for that accelerator and its associated detectors might well be lost in the aftermath. In the case of scintillating fiber tracking, such as not been the case. During the period 1990--1993, several tracking technologies were under development for SDC, including Scintillating Fiber Tracking, Straw-tubes, and Microstrip Gas Chambers. In summer 1990, several members of the Fiber Tracking Group (FTG) proposed the use of Scintillating Fiber Tracking to the D0 experiment at Fermilab. This proposal was accepted, and D0 now is building a 75,000 fiber channel tracking detector with readout via Visible Light Photon Counters (VLPC) which were devices pioneered by the SDC Fiber Tracking Group. In addition, all the preshower detectors for D0 also make use of fiber readout (in this case waveshifting fibers) and VLPC for photosensing. In February 1993, a full 7 months prior to cancellation of the SSC project by Congress, the SDC experiment rejected scintillating fiber tracking for further development. Fortunately for all concerned, the D0 experiment had already embraced this technology, so this important detector concept could be further developed, refined, and utilized for physics experimentation. In early 2000, data will be taken with the D0 fiber tracker to study Top Quarks, Beauty Particles, Electroweak Physics, QCD phenomena, and to search for new phenomena. The University of Notre Dame has played a fundamental and seminal role in the development and implementation of this detector technology. R. Ruchti has served as cospokesman of the Fiber Tracking Group since its inception in 1989, and has been a pioneer of fiber tracking technology since 1980. In addition, at least one other experiment at Fermilab, E835, has utilized scintillating fibers with VLPC readout to study Charmonium in proton-antiproton collisions using a gas-jet target in the Tevatron

  10. Studies in theoretical high energy particle physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Brekke, L.; Keung, Wai-Yee; Sukhatme, U.

    1993-01-01

    Theoretical work on the following topics is briefly summarized: symmetry structure of conformal affine Toda model and KP hierarchy; solitons in the affine Toda and conformal affine Toda models; classical r-matrices and Poisson bracket structures on infinite-dimensional groups; R-matrix formulation of KP hierarchies and their gauge equivalence; statistics of particles and solitons; charge quantization in the presence of an Alice string; knotting and linking of nonabelian flux; electric dipole moments; neutrino physics in gauge theories; CP violation in the high energy colliders; supersymmetric quantum mechanics; parton structure functions in nuclei; dual parton model. 38 refs

  11. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  12. Application of nanotechnologies in high energy physics

    International Nuclear Information System (INIS)

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  13. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  14. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  15. Data Preservation in High Energy Physics

    CERN Document Server

    Mount, Richard; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gülzow, Volker; Kemp, Yves; Ozerov, Dmitri; Diaconu, Cristinel; South, David; Lobodzinski, Bogdan; Olsson, Jan; Haas, Tobias; Wrona, Krzysztof; Szuba, Janusz; Schnell, Gunar; Sasaki, Takashi; Katayama, Nobu; Hernandez, Fabio; Mele, Salvatore; Holzner, Andre; Hemmer, Frederic; Schroeder, Matthias; Barring, Olof; Brun, Rene; Maggi, Marcello; Igo-Kemenes, Peter; Van Wezel, Jos; Heiss, Andreas; Chen, Gang; Wang, Yifang; Asner, David; Riley, Daniel; Corney, David; Gordon, John

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group.

  16. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  17. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  18. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  19. Conference summary on new trends in high-energy physics

    International Nuclear Information System (INIS)

    Terazawa, H.

    2001-01-01

    Concluding remarks on over forty papers contributed to the International Conference on New Trends in High-Energy Physics, Yalta, Crimea, Ukraine, September 22 - 29, 2001 are presented. Also presented are some comments on future prospects in high energy physics

  20. Grid computing in high-energy physics

    International Nuclear Information System (INIS)

    Bischof, R.; Kuhn, D.; Kneringer, E.

    2003-01-01

    Full text: The future high energy physics experiments are characterized by an enormous amount of data delivered by the large detectors presently under construction e.g. at the Large Hadron Collider and by a large number of scientists (several thousands) requiring simultaneous access to the resulting experimental data. Since it seems unrealistic to provide the necessary computing and storage resources at one single place, (e.g. CERN), the concept of grid computing i.e. the use of distributed resources, will be chosen. The DataGrid project (under the leadership of CERN) develops, based on the Globus toolkit, the software necessary for computation and analysis of shared large-scale databases in a grid structure. The high energy physics group Innsbruck participates with several resources in the DataGrid test bed. In this presentation our experience as grid users and resource provider is summarized. In cooperation with the local IT-center (ZID) we installed a flexible grid system which uses PCs (at the moment 162) in student's labs during nights, weekends and holidays, which is especially used to compare different systems (local resource managers, other grid software e.g. from the Nordugrid project) and to supply a test bed for the future Austrian Grid (AGrid). (author)

  1. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  2. Selected problems in experimental intermediate energy physics

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron

  3. Using REDUCE in high energy physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1997-01-01

    This book describes the use of the symbolic manipulation language REDUCE in particle physics. There are several general purpose mathematics packages available to physicists, including Mathematica, Maple, and REDUCE. Each has advantages and disadvantages, but REDUCE has been found to be both powerful and convenient in solving a wide range of problems. This book introduces the reader to REDUCE and demonstrates its utility as a mathematical tool in physics. The first chapter of the book describes the REDUCE system, including some library packages. The following chapters show the use of REDUCE in examples from classical mechanics, hydrodynamics, general relativity, and quantum mechanics. The rest of the book systematically presents the Standard Model of particle physics (QED, weak interactions, QCD). A large number of scattering and decay processes are calculated with REDUCE. All example programs from the book can be downloaded via Internet. The emphasis throughout is on learning through worked examples. This will be an essential introduction and reference for high energy and theoretical physicists. (author)

  4. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  5. 1996 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1997-07-02

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  6. 1996 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1997-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  7. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2002-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: * At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. * At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. * At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. * Super-Kamiokande and Icarus - neutrino mass and oscillations study. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department, participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now

  8. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2003-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. - At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. - Super-Kamiokande and Icarus - neutrino mass and oscillation studies. The groups of our Department participated in the construction phase of the experiments, both in hardware and in the development of the software used in data analysis. Presently they take part in data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - the study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now a

  9. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2004-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA4B - the CP-violation and rare K 0 decays; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon; - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At RHIC - study of pp elastic scattering. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-photon interactions. - Super-Kamiokande and K2 K - a study of neutrino oscillations. The groups from our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - search for optical flashes of cosmic origin: ''π of the sky'' project - search for optical counterparts of γ ray bursts, - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our

  10. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    2000-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: 1. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation in rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition to the quark-gluon plasma state. 2. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - the production of light mesons near threshold and their rare decays. 3. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data acquisition, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - a new version of the WASA detector at CELSIUS in Uppsala, - relativistic hyperfragment production experiment in Dubna, Russia. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of the WASA - Promice

  11. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2001-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation and rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition in the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold production of light mesons, and their decays. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN; - ALICE - experiment to study the heavy ion interactions at the LHC; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN; - WASA- 4π - commissioning of a new version of the WASA detector at CELSIUS in Uppsala; - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of

  12. Some problems of physics of ultrahigh energy cosmic rays

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1999-01-01

    Nearest 15-20 years will be years of flourishing of experimental researches into the energy of cosmic rays at > or ∼ 10 15 eV and of new discoveries in the physics of elementary particles of ultrahigh energies. Unsolved problems of modern physics of ultrahigh energy cosmic rays, which are relevant to the problems of elementary particles physics, are reviewed

  13. High energy particle physics in the United Kingdom

    International Nuclear Information System (INIS)

    1985-06-01

    The paper reviews the U.K. participation in High Energy Particle Physics (HEPP) research. The funding of science in Higher Education and the Research Councils; high energy particle physics; relevance of particle physics to science and technology; particle physics in the U.K.; CERN; and the opportunity cost of HEPP within the science budget; are all discussed. (U.K.)

  14. [Experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  15. Proceedings of the 25th SLAC Summer Institute on Particle Physics: Physics of Leptons (SSI97) , Stanford, CA, August 4-15, 1997

    International Nuclear Information System (INIS)

    Deporcel, Lilian

    1998-01-01

    One hundred ninety-eight physicists from 16 countries gathered at SLAC from August 4 to 15, 1997 to attend the XXV SLAC Summer Institute on Particle Physics. The theme of the school was ''The Physics of Leptons'', commemorating a century since the electron, the first lepton, was discovered. We heard about the electron's role as a probe of the structure of matter, as well as the beautifully precise tests of charged-lepton universality in Z 0 decays. The focus of the school then shifted from the charged leptons to their weak partners, the neutrinos. Summer Institute attendees were not surprised in early 1998 by Super-Kamiokande's announcement of evidence for neutrino mass. After all, they had already seen the mounting evidence, both solar and atmospheric, the preceding August, in a comprehensive review of all nonaccelerator-based neutrino oscillation experiments, as well as a topical conference report from Super-Kamiokande. We also heard about the past, present, and future of reactor- and accelerator-based oscillation experiments, including the prospects for terrestrial tests of the atmospheric neutrino anomaly. Leptons in cosmology and as harbingers of physics beyond the Standard Model were the subject of two more lecture series. The three-day topical conference concluding the Institute was highlighted by the Super-Kamiokande neutrino results, and Beppo-Sax's report on the cosmological origin of gamma-ray bursters. As for terrestrial accelerators, SLC, LEP, and the Tevatron put increasing pressure on the electroweak sector through precision measurements, but all direct searches for new phenomena still came up empty

  16. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  17. Report of the Subpanel on High Energy Physics Manpower of the High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    1978-06-01

    A report of a study by a Subpanel which was appointed by the High Energy Physics Advisory Panel (HEPAP) to examine the production in recent years of new researchers in high energy physics and the rate at which they have moved into short term and permanent positions in the field. The Subpanel made use of the 1973 and 1975 ERDA Census data, statistics collected by others, as well as a number of surveys conducted by the Subpanel itself. Even though many uncertainties and gaps exist in the available data, several important points are presented. (1) New Ph.D. production in high energy physics has decreased in recent years even more rapidly than in physics as a whole. (2) New Ph.D.'s in experimental and theoretical high energy physics have been produced for many years in roughly equal numbers in spite of the fact that employment in the field at all levels shows a ratio of experiment-to-theory approaching two-to-one. (3) A very large fraction of the approximately 1700 Ph.D.'s in high energy physics (employed at 78 universities and 5 national laboratories) hold tenured positions (383 theorists and 640 experimentalists). (4) The age distribution of those in the tenured ranks reveals that the number of retirements will be extremely small during the next decade but will then start to have a significant impact on the opportunities for those who are seeking careers in the field. (5) Promotions to tenure at the universities during the 4 year interval AY72/73-AY76/77 have averaged about 10 per year in experiment and 10 per year in theory

  18. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  19. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  20. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 18 July 09:15 - 11:00 G. ROSS Fundamental concepts in Particle Physics (1-2/6) 11:15 - 12:00 N. PALANQUE-DELABROUILLE Astroparticle Physics (1/3) 12:00 Discussion Session Tuesday 19 July 09:15 - 10:00 G. ROSS Fundamental concepts in Particle Physics (3/6) 10:15 - 12:00 N. PALANQUE-DELABROUILLE Astroparticle Physics (2-3/3) 12:00 Discussion Session Wednesday 20 July 09:15 - 10:00 G. ROSS Fundamental concepts in Particle Physics (4/6) 10:15 - 11:00 F. RADEMAKERS ROOT 11:15 - 12:00 L. ROSSI Super-conducting magnet technology for particle accelerators and detectors 12:00 Discussion Session Thursday 21 July 09:15 - 10:00 G. ROSS Fundamental concepts in Particle Physics (5/6) 10:15 - 12:00 C. DE LA TAILLE Introduction to Electronics (1-2/3) 12:00 Discussion Session Friday 22 July 09:15 - 10:00 C. DE LA TAILLE Introduction to Electronics (3/3) 10:15 -...

  1. The Department of Energy/American Chemical Society Summer School in Nuclear and Radiochemistry at San Jose State University

    International Nuclear Information System (INIS)

    Kinard, W.F.; Silber, H.B.

    2005-01-01

    A Summer School in Nuclear Chemistry sponsored by the U. S. Department of Energy and the American Chemical Society has been held at San Jose State University for the past 20 years. The intent of the program is to introduce outstanding college students to the field of nuclear and radiochemistry with the goal that some of these students will consider careers on nuclear science. The program features radiochemistry experiments along with radiation safety training, guest lectures by well known nuclear scientists and field trips to nuclear chemistry facilities in the San Francisco area. (author)

  2. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  3. Experimental evaluation on energy performance of innovative clean air heat pump for indoor environment control in summer and winter seasons

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    Based on the air purification capacity of regenerative silica gel rotor, an innovative clean air heat pump (CAHP) was designed, developed and investigated through experimental studies. The CAHP integrated air purification, dehumidification and heating/cooling in one unit. A prototype of the CAHP...... was developed. Laboratory experimental studies were conducted to investigate its energy performance under different outdoor climates including cold, mild-cold, mild-hot and extremely hot and humid climates. The energy performance of the CAHP was then evaluated by comparing with a conventional air source heat...... pump. The results showed that to keep same indoor air quality, the CAHP could save substantial amount of energy. For example, compared to the conventional air source heat pump, the CAHP could save up to 59%, 40%, 30% of electricity for ventilation and air conditioning in a test room in summer...

  4. RU SciTech: Weaving Astronomy and Physics into a University-sponsored Summer Camp for Middle School Students

    Science.gov (United States)

    Hart, Quyen N.

    2015-01-01

    We present a successful model for organizing a small University-sponsored summer camp that integrates astronomy and physics content with other science disciplines and computer programming content. The aim of our science and technology camp is to engage middle school students in a wide array of critical thinking tasks and hands-on activities centered on science and technology. Additionally, our program seeks to increase and maintain STEM interest among children, particularly in under-represented populations (e.g., Hispanic, African-American, women, and lower socioeconomic individuals) with hopes of decreasing disparities in diversity across many STEM fields.During this four-day camp, organized and facilitated by faculty volunteers, activities rotated through many STEM modules, including optics, telescopes, circuit building, computer hardware, and programming. Specifically, we scaffold camp activities to build upon similar ideas and content if possible. Using knowledge and skills gained through the AAS Astronomy Ambassadors program, we were able to integrate several astronomy activities into the camp, leading students through engaging activities, and conduct educational research. We present best practices on piloting a similar program in a university environment, our efforts to connect the learning outcomes common across all the modules, specifically in astronomy and physics, outline future camp activities, and the survey results on the impact of camp activities on attitudes toward science, technology, and science careers.

  5. Budget projections - 1991 through 1996 for research in high energy physics

    International Nuclear Information System (INIS)

    1991-05-01

    This research program in high energy physics is carried out under the general supervision of a committee which is composed of G.W. Brandenburg, G.J. Feldman, M.E. Franklin, R.J. Glauber, K. Kinoshita, F.M. Pipkin, K. Strauch, R. Wilson, and H. Yamamoto. Professor G.J. Feldman currently serves as chair of this committee. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. In the fall of 1991 S. Mishra will join this committee. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard's educational efforts are concentrated in graduate education, where they are currently supporting thirteen research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. These budget projections cover all of the Harvard based high energy physics experimental activities. The open-quotes umbrellaclose quotes nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared proportionally by the experimental groups. Harvard financially supports this high energy physics research program in many ways

  6. Physical and energy requirements of competitive swimming events.

    Science.gov (United States)

    Pyne, David B; Sharp, Rick L

    2014-08-01

    The aquatic sports competitions held during the summer Olympic Games include diving, open-water swimming, pool swimming, synchronized swimming, and water polo. Elite-level performance in each of these sports requires rigorous training and practice to develop the appropriate physiological, biomechanical, artistic, and strategic capabilities specific to each sport. Consequently, the daily training plans of these athletes are quite varied both between and within the sports. Common to all aquatic athletes, however, is that daily training and preparation consumes several hours and involves frequent periods of high-intensity exertion. Nutritional support for this high-level training is a critical element of the preparation of these athletes to ensure the energy and nutrient demands of the training and competition are met. In this article, we introduce the fundamental physical requirements of these sports and specifically explore the energetics of human locomotion in water. Subsequent articles in this issue explore the specific nutritional requirements of each aquatic sport. We hope that such exploration will provide a foundation for future investigation of the roles of optimal nutrition in optimizing performance in the aquatic sports.

  7. Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves

    CERN Document Server

    Westbrook, C; David, F; Coherent Atomic Matter Waves

    2001-01-01

    Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...

  8. 2013 European School of High-Energy Physics

    CERN Document Server

    Perez, G; ESHEP 2013

    2015-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the the- oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, Higgs physics, physics beyond the Standard Model, flavour physics, and practical statistics for particle physicists.

  9. 2012 European School of High-Energy Physics

    CERN Document Server

    Mulders, M; ESHEP 2012

    2014-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, flavour physics, physics beyond the Standard Model, neutrino physics, and cosmology.

  10. Weakly supervised classification in high energy physics

    International Nuclear Information System (INIS)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; Schwartzman, Ariel

    2017-01-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  11. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  12. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  13. Weakly supervised classification in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dery, Lucio Mwinmaarong [Physics Department, Stanford University,Stanford, CA, 94305 (United States); Nachman, Benjamin [Physics Division, Lawrence Berkeley National Laboratory,1 Cyclotron Rd, Berkeley, CA, 94720 (United States); Rubbo, Francesco; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA, 94025 (United States)

    2017-05-29

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  14. Networking for high energy physics in Japan

    International Nuclear Information System (INIS)

    Karita, Yukio; Abe, Fumio; Hirose, Hitoshi; Goto, Hiroyuki; Ogasawara, Ryusuke; Yuasa, Fukuko; Banno, Yoshiaki; Yasu, Yoshiji

    1989-01-01

    The computer network for high energy physics in Japan has grown over the last five or six years and is still expanding. Its original purpose was to provide the collaborators in universities access to the computing resources in KEK. Adding to the remote login from terminals, VAXs or Fujitsu computers located in universities have been connected to KEK's computers by DECnet or FNA (Fujitsu's SNA) and have formed the ''Japanese HEPnet''. Since the link between LBL and KEK was established in June 1987, the Japanese HEPnet is combined with the American HEPnet and is an indispensable tool for international collaboration. The current communication media for Japanese HEPnet, leased lines and public X.25, are being replaced by Gakujo-net (Monbusho's inter-university private X.25 network). DECnet, FNA, IP and Ethernet-bridge will run on Gakujo-net for the Japanese HEPnet. (orig.)

  15. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  16. Summer and Autumn activities

    CERN Multimedia

    Staff Association

    2013-01-01

    Time to recharge the batteries, and much more… The summer holidays are an ideal opportunity to spend more time with the family, to discover new countries, make new friends, in other words to take time away from the daily grind. This recharging is essential to your work-life balance, and CERN, as a modern and socially responsible employer, has recognized this as a central part of its human resources policy.Nevertheless we should not forget that, while many of you enjoy a well-deserved summer break, some of our colleagues are hard at work making LS1 (first Long Shutdown) a success in order to guarantee that at the beginning of 2015 the LHC will be able to start physics in an energy range never before reached by mankind. Preparing the questionnaire and the elections to the Staff Council During this summer your delegates in the Staff Council are hard at work preparing for the upcoming five-yearly review whose content will be decided by CERN Council in June 2014. Therefore, as every five years, to ...

  17. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    Cline, D.B.

    1993-01-01

    Progress on seven tasks is reported. (I)UCLA hadronization model, antiproton decay, PEP4/9 e + e - analysis: In addition to these topics, work on CP and CPT phenomenology at a φ factory and letters of support on the hadronization project are included. (II)ICARUS detector and rare B decays with hadron beams and colliders: Developments are summarized and some typcial events as shown; in addition, the RD5 collaboration at CERN and the asymmetric φ factory project are sketched. (III)Theoretical physics: Feynman diagram calculations in gauge theory; supersymmetric standard model; effects of quantum gravity in breaking of global symmetries; models of quark and lepton substructure; renormalized field theory; large-scale structure in the universe and particle-astrophysics/early universe cosmology. (IV)H dibaryon search at BNL, kaon experiments (E799/KTeV) at Fermilab: Project design and some scatterplots are given. (V)UCLA participation in the experiment CDF at Fermilab. (VI)Detectors for hadron physics at ultrahigh energy colliders: Scintillating fiber and visible light photon counter research. (VII)Administrative support and conference organization

  18. Proceedings of 2011 European School of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, C; Mulders, M [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on quantum field theory and the Standard Model, quantum chromodynamics, flavour physics, neutrino physics, physics beyond the Standard Model, cosmology, heavy ion physics, statistical data analysis, as well as an account for the physics results with the data accumulated during the first run of the LHC.

  19. 2011 European School of High-Energy Physics

    CERN Document Server

    Mulders, M; ESHEP2011; ESHEP 2011

    2014-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on quantum field theory and the Standard Model, quantum chromodynamics, flavour physics, neutrino physics, physics beyond the Standard Model, cosmology, heavy ion physics, statistical data analysis, as well as an account for the physics results with the data accumulated during the first run of the LHC.

  20. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  1. High energy physics at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Samios, N.P.

    1982-01-01

    The high energy plans at BNL are centered around the AGS and ISABELLE, or a variant thereof. At present the AGS is maintaining a strong and varied program. This last year a total of 4 x 10 19 protons were delivered on target in a period of approximately 20 weeks. Physics interest is very strong, half of the submitted proposals are rejected (thereby maintaining high quality experiments) and the program is full over the next two years. The future colliding beam facility will utilize the AGS as an injector and will be a dedicated facility. It will have six intersection regions, run > 10 7 sec/year, and explore a new domain of energy and luminosity. Common to all the considered alternatives is a large aperture proton ring. These possible choices involve pp, ep, and heavy ion variants. The long term philosophy is to run the AGS as much as possible, continuously to upgrade it in performance and reliability, and then to phase it down as the new collider begins operation

  2. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1981-01-01

    At our current understanding of elementary particle physics, the fundamental constituents are the photon, quarks, gluons and leptons with a few highly forecasted heavy bosons. Calorimeters are essential for detecting all of these particles. Quarks and gluons fragment into many particles - at high energies, so many particles that one may not want to measure each one separately. This group of both charged and neutral particles can only be measured by calorimeters. The energy of an electron needs to be measured by a calorimeter and muon identification is enhanced by the recognition of a minimum ionizing particle passing through the calorimeter. Sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers - are reviewed. What follows is a very cursory overview of some fundamental aspects of sampling calorimeters. First, the properties of shower development are described for both the electromagnetic and hadronic cases. Then, examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described. 21 references

  3. Perspectives on High-Energy-Density Physics

    Science.gov (United States)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare

  4. Working with physics High-energy communicator

    CERN Document Server

    Bradshaw, Kate

    2006-01-01

    "Kate Bradshaw is a science communicator working at CERN, the world's largest particle physics Laboratory. She talked to Physics Review about her route from A-level physics to her present job." (3 pages)

  5. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  6. Setting the foundations for international and crossdisciplinary learning: The US-Denmark Summer School "Renewable Energy: In Practice"

    DEFF Research Database (Denmark)

    Favaloro, Tela; Jenkins, Bryan M.; Lehmann, Martin

    The grand challenges posed by global climate change, scarce natural resources, and the volatility of the international energy market require targeted action towards finding technologically, economically, and socially viable solutions based on renewable energy generation and sustainable practice...... and foster a holistic and creative mind set. The three-week workshop takes place annually, alternating each summer between California and Denmark, and is open to selected students from US and European Universities. The program is preceded by a week of online preparation, where students utilize video...... and Denmark, but also over a dozen other countries. The program introduces and reinforces a holistic approach to sustainable development by offering access to leading experts in politics, economics, science, and technology in parallel with multi-disciplinary, client-oriented projects. Participants are either...

  7. Setting the foundations for international and crossdisciplinary learning: The US-Denmark Summer School "Renewable Energy: In Practice"

    DEFF Research Database (Denmark)

    Favaloro, Tela; Jenkins, Bryan M.; Lehmann, Martin

    The grand challenges posed by global climate change, scarce natural resources, and the volatility of the international energy market require targeted action towards finding technologically, economically, and socially viable solutions based on renewable energy generation and sustainable practice...... conferencing and other tools to facilitate interaction between the international participants and learn more about the communities and technologies involved. A primary focus of the program is experiential learning through diverse and cross-cultural interactions, with participants coming not only from the US...... engaging across disciplines cultivates entrepreneurially-minded and complex systems thinking necessary for innovation. Over the eight years of the summer school, a number of lessons have been learned regarding effective program design and assessment. In this proceeding, we will elaborate on these learnings...

  8. UPR/Mayaguez High Energy Physics

    International Nuclear Information System (INIS)

    Lopez, Angel M.

    2015-01-01

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico's Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group's history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group's leveraging of funds from the Department of Energy's core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group's research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group's work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group's scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass

  9. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  10. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  11. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  12. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2006-01-01

    The activities of the Department are centered around experiments performed at large accelerator laboratories: I. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - Data taking experiments: COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies of the gluon polarization in the nucleon; - Experiments that finished data taking but continue the analysis: NA49 and WA98 - heavy ion experiments, study hadronic and nuclear interactions, searching for the quark-gluon plasma. II. The 'Pi of the Sky' experiment, searching for optical flashes associated with Gamma Ray Bursts takes data with a set of CCD cameras mounted in the Chile Observatory Station, and works on an extension of the system. III. WASA experiment, recently transferred from the CELSIUS storage ring in Uppsala to Juelich, studies near threshold resonance production. IV. ZEUS experiment at HERA in Hamburg - studies of proton structure functions and diffractive interactions. V. Neutrino experiments at SuperKamiokande and K2K in Japan - studies of the neutrino oscillations. VI. Preparations for future experiments: a) ICARUS - in preparation for the neutrino beam from CERN, to study neutrino oscillations, b) Experiments at the future Large Hadron Collider at CERN: CMS - Compact Muon Solenoid, LHCb - study of b-quark production, ALICE - study of heavy ion collisions. A team of physicists, engineers and technicians, using our well equipped mechanical workshop, with 'clean room' (class 100 000) facilities has performed a large scale production of straw tube modules for the LHCb experiment. Preparations for LHC physics requires an active participation of the teams involved in the computer GRID implementation. There is also a small group involved in theoretical work on the phenomenology of quark-gluon plasma formation and the low energy hadronic reactions. Several physicists from our department are actively involved in science popularization. A close

  13. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2009-01-01

    Full text: The main activities of the Department can be grouped into four parts: I. An ongoing analysis of data from large accelerator facilities At CERN SPS: The Compass experiment, ' a flagship of the CERN fixed target program ', studies the structure of the nucleon. Gluon polarization analysis was the main subject this year. Compass is an active experiment, and there is an ongoing effort in data taking and detector development. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. In 2008, important results on transverse momentum spectra were published. At COSY: The WASA experiment works with low energy (up to 3.7 GeV) beams of protons and deuterons, studying rare decays of eta mesons. New limits on branching ratios for such decays have been determined. This information is important for the theory of C and CP symmetry, and chiral perturbation theory. II. Preparations for soon-to-be-operating experiments at the LHC Three teams work on LHC experiments: CMS, LHCb and ALICE. The CMS experiment is ready for data taking. The muon trigger system, based on resistive plate chambers RPC, has been installed and tested using cosmic ray muons. Simulations of physical processes predicted by some extensions of the Standard Model were performed. The LHCb experiment team has worked on the system of the Inner Detector positioning station Rasnik, and the beam phase and intensity monitor (together with a P-III team). Simulations of the B decays into vector mesons, for the High Level Trigger, were performed. The ALICE team has worked on the installation of the photon detector PHOS and tests with cosmic muons. Simulations of neutral pion reconstruction were performed. Preparation of the computing base for future large experiments - work within the Worldwide LHC Computing Grid was actively pursued by a dedicated team. In 2008, many activities were directed at information and popularization of LHC physics. Our department members actively

  14. Pattern recognition in high energy physics

    International Nuclear Information System (INIS)

    Tenner, A.G.

    1980-01-01

    In high energy physics experiments tracks of elementary particles are recorded by different types of equipment. Coordinates of points of these tracks have to be measured for the geometrical reconstruction and the further analysis of the observed events. Pattern recognition methods may facilitate the detection of tracks or whole events and the separation of relevant from non-relevant information. They may also serve for the automation of measurement. Generally, all work is done by digital computation. In a bubble chamber tracks appear as strings of vapour bubbles that can be recorded photographically. Two methods of pattern recognition are discussed. The flying spot digitizer encodes the pattern on the photograph into point coordinates in the memory of a computer. The computer carries out the pattern recognition procedure entirely on the basis of the stored information. Cathode ray instruments scan the photograph by means of a computer steered optical device. Data acquisition from the film is performed in a feedback loop of the computation. In electronic experimental equipment tracks are defined by the spacial distribution of hits of counters (wire counters, scintillation counters, spark chambers). Pattern recognition is generally performed in various stages both by on-line and off-line equipment. Problems in the data handling arise both from the great abundance of data and from the time limits imposed on the on-line computation by high measuring rates. The on-line computation is carried out by hardwired logic, small computers, and to an increasing extent by microprocessors. (Auth.)

  15. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  16. Main physical problems of superhigh energy accelerators

    International Nuclear Information System (INIS)

    Lapidus, L.I.

    1979-01-01

    A survey is given of the state and prospects for the scientific researches to be carried out at the largest charged particle accelerators now under construction. The fundamental problems of the elementary particle physics are considered which can be solved on the base of experiments at high-energy accelerators. The problems to be solved involve development of the theory of various quark number, accurate determination of the charged and neutral intermediate vector boson masses in the Weinberg-Salam theory, the problem of production of t-quark, W -+ - and Z deg bosons, Higgs mesons and investigation of their interactions, examination of quark and lepton spectra, studies on the effects of strong interactions. As a result of the investigations on hadrons at maximum momentum transfers, the data on space-time structure at short distances can be obtained. It is emphasized that there are no engineering barriers to the construction of such accelerators. The main problem lies in financial investment. A conclusion is drawn that the next generation of accelerators will be developed on the base of cooperation between many countries [ru

  17. Performance and carcass characteristics of steers fed with two levels of metabolizable energy intake during summer and winter season.

    Science.gov (United States)

    Arias, R A; Keim, J P; Gandarillas, M; Velásquez, A; Alvarado-Gilis, C; Mader, T L

    2018-05-22

    Climate change is producing an increase on extreme weather events around the world such as flooding, drought and extreme ambient temperatures impacting animal production and animal welfare. At present, there is a lack of studies addressing the effects of climatic conditions associated with energy intake in finishing cattle in South American feed yards. Therefore, two experiments were conducted to assess the effects of environmental variables and level of metabolizable energy intake above maintenance requirements (MEI) on performance and carcass quality of steers. In each experiment (winter and summer), steers were fed with 1.85 or 2.72 times of their requirements of metabolizable energy of maintenance. A total of 24 crossbred steers per experiment were used and located in four pens (26.25 m2/head) equipped with a Calan Broadbent Feeding System. Animals were fed with the same diet within each season, varying the amount offered to adjust the MEI treatments. Mud depth, mud scores, tympanic temperature (TT), environmental variables, average daily gain, respiration rates and carcass characteristics plus three thermal comfort indices were collected. Data analysis considered a factorial arrangement (Season and MEI). In addition, a repeated measures analysis was performed for TT and respiration rate. Mean values of ambient temperature, solar radiation and comfort thermal indices were greater in the summer experiment as expected (Pcarcass characteristics were affected by season but not by the level of MEI. Finally, due to the high variability of data as well as the small number of animals assessed in these experiments, more studies on carcass characteristics under similar conditions are required.

  18. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    Full text: The main activities of the Department can be grouped into four parts: I. An ongoing analysis of data from large accelerator facilities. At CERN SPS: The Compass experiment, 'a flagship of the CERN fixed target program', studies the structure of the nucleon. Gluon polarization analysis was the main subject of this year. Compass is an active experiment, and there is an ongoing effort on data taking and detector development. Two heavy ion experiments. WA98 and NA49. have finished data taking, but continue analysis. The wide purpose NA61 experiment has taken data, and our team works on the hadron-nucleus processes, important for the neutrino program. At COSY: The WASA experiment works with low energy (up to 3,7 GeV) beams of protons and deuterons. studying η → 3π 0 decays and leptonic decays of eta mesons. New limits on branching ratios for such decays have been determined. Production of M mesons in the pd interaction was measured for the first time in the near threshold energy range. Altogether 8 publications came from the experiment. II. Start of the LHC operation. Three teams work on LHC experiments: CMS, LHCb and ALICE. The CMS experiment is ready for data taking. The muon trigger system, based on the resistive plate chambers RFC, has been installed and tested. Three papers on the detector performance have been published, and 25 submitted for publication. The LHCb experiment team has worked on the system of the Inner Detector positioning station Rasnik, and the beam phase and intensity monitor (together with the (P-III team). Simulations of the B decays into vector mesons, for the High Level Trigger, were performed. The ALICE team has worked on the installation of the photon detector PHOS and tests with cosmic muons. Simulations for the neutral pion reconstruction were performed. The first very preliminary data on multiplicity from pp collisions at 900 GeV have been published. Preparation of the computing base for future large experiments - work

  19. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  20. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  1. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  2. Research in high energy theoretical physics: Progress report

    International Nuclear Information System (INIS)

    Clavelli, L.J.; Harms, B.C.; Jones, S.T.

    1987-01-01

    This paper briefly discusses many papers submitted in theoretical High Energy Physics by the Physics Department of the University of Alabama. Most papers cover superstring theory, parity violations, and particle decay

  3. Physics of (very) high energy e+-e- colliders

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1984-10-01

    I review the physics capabilities of e + e - colliders of hundred GeV to TeV center-of-mass energies, emphasizing issues relevant to the physics of symmetry breaking in the weak interactions. 24 references

  4. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 Monday 8 August 09:15 - 10:00 A. Höcker CP Violation (3/4) 10:15 - 12:00 J-J. GOMEZ-CADENAS Neutrino Physics (1-2/4) 12:00 Discussion Session Tuesday 9 August 09:15 - 10:00 A. Höcker CP Violation (4/4) 10:15 - 11:00 J-J. GOMEZ-CADENAS Neutrino Physics (3/4) 11:15 - 12:00 F. GREY The GRID 12:00 Discussion Session 14:15 - 17:00 Student Sessions Wednesday 10 August 09:15 - 10:00 J-J. GOMEZ-CADENAS Neutrino Physics (4/4) 10:15 - 12:00 J. LESGOURGUES Introduction to Cosmology (1-2/5) 12:00 Discussion Session 14:15 - 17:00 Student Sessions Thursday 11 August 09:15 - 11:00 J. LESGOURGUES Introduction to Cosmology (3-4/5) 11:15 - 12:00 G. KALMUS The ILC Story 12:00 Discussion Session Friday 12 August 09:15 - 10:00 J. LESGOURGUES Introduction to Cosmology (5/5) 10:15 - 11:00 G. VENEZIANO String theory: has Einstein's dream come true? 11:00  Discussion...

  5. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  6. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  7. High energy physics: Experimental, theoretical and phenomenology institute

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.; Durand, B.; Durand, L.; Erwin, A.; Fry, W.; Goebel, C.; Halzen, F.; Loveless, R.; March, R.; Morse, R.; Olsson, M.; Pondrom, L.; Prepost, R.; Reeder, D.; Sheaff, M.; Smith, W.; Thompson, M.; Wu, S.L.

    1991-01-01

    This report discusses research in the following task: hadron physics at Fermilab; Lepton hadron scattering; electromagnetic ampersand weak interactions at the Stanford Linear Accelerator Center - SLAC; hyperon beam program - hadroproduction of heavy beam flavors at Fermilab; ultra high energy colliding beam physics; Institute for high energy physics phenomenology; weak ampersand electromagnetic interactions using PETRA at DESY ampersand LEP at CERN; theoretical high energy physics; DUMAND; study of ultra high energy gamma rays; data analysis facility; and R ampersand D for major subsystems for the SSC detectors

  8. LOS ALAMOS: the future of medium energy physics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A 'Workshop on Program Options in Intermediate Energy Physics' was recently held at LAMPF and the topics discussed there are summarized. The purpose of the meeting was to establish priorities for experimental research at intermediate energies. (W.D.L.).

  9. Scientists from all over the world attend the 2007 - Frederic Joliot/Otto Hahn Summer School on Nuclear Reactors, ''Physics, Fuels and Systems''

    International Nuclear Information System (INIS)

    Fischer, U.; Sanchez-Espinoza, V.H.

    2007-01-01

    For more than ten years, the Frederic Joliot/Otto Hahn Summer School has been organized alternately by the Karlsruhe Research Center in Germany and the French Commissariat a l'Energie Atomique (CEA), Cadarache, in France. This year, the Summer School was held at the Center for Advanced Training in Technology and the Environment of the Karlsruhe Research Center on August 29 to September 7. The overarching topic of the event was the sustainability of nuclear power, including topical issues of generation-IV reactor concepts, transmutation and actinide separation, and geologic final storage. Next year's Frederic Joliot/Otto Hahn Summer School will be organized by CEA at Aix-en-Provence together with the Nuclear Safety Research Program of the Karlsruhe Research Center. (orig.)

  10. Data Preservation in High Energy Physics

    International Nuclear Information System (INIS)

    Mount, Richard; Brooks, Travis; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gulzow, Volker

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  11. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  12. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    Full text: The main activities of the Department can be grouped into three parts: I. An ongoing analysis of data from large accelerator facilities. At CERN SPS: In the COMPASS experiment, the Warsaw team participated in the data taking and analysis related to the structure of the nucleon. 5 publications were prepared. The result concerning the polarization distribution of quarks and antiquarks in the nucleon with the flavour separation is new, important, and obtained with a significant contribution from the team. The collaboration is preparing for the next stage of the experiment, COMPASS , which will be realized in 2011. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. 4 publications have been published and one submitted. The wide purpose NA61 experiment has taken data, and the IPJ team worked on the measurement of the production cross sections of pions and kaons, which are important for the neutrino program. At COSY: The WASA experiment is dedicated to the search for a signal of the violations of basic chiral symmetries and testing perturbative theories in the light mesons decays produced in proton-proton, proton-deuteron and deuteron-deuteron collisions at different energies. A new limit of the extremely rare decay eta → e + e - within MS is being searched for. The branching ratio of the pi0→e + e - decay should be determined with better precision. 3 publications have been published and one submitted. II. Data taking and first analysis by the LHC experiments. Three teams work on LHC experiments: CMS, LHCb and ALICE. In 2010, the LHC accelerator provided proton-proton and Pb-Pb data and all LHC collaborations prepared dozens of publications on the detector performance and physics analysis, which have been published or submitted for publication. The CMS team worked on the muon trigger system, based on the resistive plate chamber RPC. The system was optimized and synchronized during data taking with high precision. The

  13. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere. The model results indicate that both the high and low clouds are persistent throughout the summer months in both years. Because of large cloud water, low clouds significantly reduce the solar radiation flux reaching the surface, which nevertheless still dominate the surface energy balance, accounting for more than 50% of the surface heating. The low clouds also contribute significantly the downward longwave radiation to the surface with values strongly dependent on the cloud base temperature. The presence of low clouds effectively decreases the temperature and moisture gradients near surface, resulting in a substantial decrease in the sensible and latent heat fluxes from surface, which partially compensate the decrease of the net radiative cooling of the surface. For example, in the two days, May 8 and July 11 of 1988, the total cloud cover of 80% is simulated, but the respective low cloud cover (water was 63% (114 gm-2 and 22% (21 gm-2. As a result, the downward solar radiation is smaller by 161 Wm-2 in May 8. On the other hand, the cloud temperature was _ lower, yielding 56 Wm-2 smaller downward longwave radiation. The near surface temperature and gradient is more than _ smaller (and moisture gradient, leading to 21 and 81 Wm-2 smaller sensible heat and latent heat fluxes. It is also demonstrated that the model is capable to reproduce the intraseasonal variation of shortwave CRF, and catches the relationship between total cloud cover and SW CRF. The model results show the dominance of high cloud on the regional mean longwave CRF and low cloud on the intra

  14. 1997 European School of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1998-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Quantum Chromodynamics, Flavour Physics, Physics at LEP II and Heavy Ion physics, as well as reports on Cosmology, Dark Matter and a Quantum Theory of two-dimensional space-time. (orig.)

  15. 1997 European School of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1998-05-20

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Quantum Chromodynamics, Flavour Physics, Physics at LEP II and Heavy Ion physics, as well as reports on Cosmology, Dark Matter and a Quantum Theory of two-dimensional space-time. (orig.)

  16. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  17. Energy becomes riddle for particle physics

    CERN Multimedia

    Nancy, J

    2003-01-01

    Assuming Einstein's theory of gravity is correct, dark energy must be present in the universe. Physicist's attempts to use quantum field theory to find the amount of dark energy present though, have been very unsuccessful (1/2 page).

  18. Evaluation of the Energy and Comfort Performance of a Plus-Energy House under Scandinavian Summer Conditions

    DEFF Research Database (Denmark)

    Pean, Thibault Quentin; Gennari, Luca; Kazanci, Ongun Berk

    2016-01-01

    The thermal indoor environment and the energy performance of a plus-energy house are evaluated in the present study. The study case is EMBRACE, a two-storey dwelling of 59 m2 designed to host a single family. The building includes a semi-outdoor space covered by a glazed envelope, where the therm...

  19. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 1 August 09:15 - 10:00 P. WELLS The Higgs Saga at LEP 10:15 - 11:00 E. KIRITSIS Beyond the Standard Model (1/4) 11:15 - 12:00 G. COWAN Introduction to Statistics (1/3) 12:00 Discussion Session Tuesday 2 August 09:15 - 11:00 E. KIRITSIS Beyond the Standard Model (2-3/4) 11:15 - 12:00 G. COWAN Introduction to Statistics (2/3) 12:00 Discussion Session Wednesday 3 August 09:15 - 10:00 G. COWAN Introduction to Statistics (3/3) 10:15 - 11:00 E. KIRITSIS Beyond the Standard Model (4/4) 11:15 - 12:00 K. JAKOBS Physics at Hadronic Colliders (1/4) 12:00 Discussion Session Thursday 4 August 09:15 - 11:00 K. JAKOBS Physics at Hadronic Colliders (2-3/4) 11:15 - 12:00 A. WEINSTEIN Gravitation Waves 12:00 Discussion Session 16:30 - 18:00 Poster Session Friday 5 August 09:15 - 11:00 A. Höcker CP Violation (1-2/4) 11:15 - 12:00 K. JA...

  20. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 11 July 09:15 - 10:00 L. Di Lella (CERN) Introduction to Particle Physics (4/4) 10:15 - 11:00 P. Chomaz (GANIL / CERN) Introduction to Nuclear Physics (3/3) 11:15 - 12:00 G. ROLANDI (CERN) How an experiment is designed (2/2) 12:00 Discussion Session Tuesday 12 July  09:15 - 11:00 O. BrÜning (CERN) Accelerators (1-2/5) 11:15 - 12:00 O. ULLALAND (CERN) Detectors (1/5) 12:00 Discussion Session Wednesday 13 July 09:15 - 10:00 O. BrÜning (CERN) Accelerators (3/5) 10:15 - 11:00 R. LANDUA (CERN) Antimatter in the Lab (1/2) 11:15 - 12:00 O. ULLALAND (CERN) Detectors (2/5) 12:00 Discussion Session Thursday 14 July 09:15 - 10:00 O. ULLALAND (CERN) Detectors (3/5) 10:15 - 11:00 G. ROLANDI (CERN) Antimatter in the Lab (2/2) 11:15 - 12:00 O. BrÜning (CERN) Accelerators (4/5) 12:00 Discussion Session Friday 1...

  1. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [Univ. of Chicago, IL (United States). Enrico Fermi Inst.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  2. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  3. My Summer with Science Policy

    Science.gov (United States)

    Murray, Marissa

    This past summer I interned at the American Institute of Physics and helped research and write articles for the FYI Science Policy Bulletin. FYI is an objective digest of science policy developments in Washington, D.C. that impact the greater physical sciences community. Over the course of the summer, I independently attended, analyzed, and reported on a variety of science, technology, and funding related events including congressional hearings, government agency advisory committee meetings, and scientific society events. I wrote and co-wrote three articles on basic energy research legislation, the National Institute of Standards and Technology improvement act, and the National Science Foundation's big ideas for future investment. I had the opportunity to examine some challenging questions such as what is the role of government in funding applied research? How should science priorities be set? What is the right balance of funding across different agencies and programs? I learned about how science policy is a two-way street: science is used to inform policy decisions and policy is made to fund and regulate the conduct of science. I will conclude with how my summer working with FYI showed me the importance of science advocacy, being informed, and voting. Society of Physics Students.

  4. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  5. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  6. The simple physics of energy use

    CERN Document Server

    Rez, Peter

    2017-01-01

    In industrially developed countries, energy is used primarily for three things—maintaining a comfortable environment in buildings, transporting people and goods and manufacturing products. Each accounts for about one-third of the total primary energy use. Controlling the indoor temperature accounts for most of the energy use in buildings. Therefore, this strongly depends on the local climate. Electricity accounts for a high proportion of the energy transfer in developed countries. The problem is that electricity cannot easily be stored, and that supply therefore has to match demand. This makes the use of intermittent renewables such as solar and wind particularly challenging. Transportation efficiency can be measured by the energy used to move a person or a tonne of freight over a given distance, but there is also the journey time to consider. Transportation, with the exception of trains, is constrained by the energy density and convenience of fuels, and it is hard to beat liquid hydrocarbons as fuels. Mate...

  7. High energy physics in our society

    International Nuclear Information System (INIS)

    Crozon, M.

    1984-09-01

    General survey of interactions between elementary particle physics and our society. The problem is studied for different aspects of our society: men and education, economics, technics, politics, international affairs, honours, myths.. [fr

  8. A numerical analysis of biogeochemical controls with physical modulation on hypoxia during summer in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    B. Wang

    2017-06-01

    Full Text Available A three-dimensional (3-D physical–biogeochemical coupled model was applied to explore the mechanisms controlling the dissolved oxygen (DO dynamics and bottom hypoxia during summer in the Pearl River estuary (PRE. By using the numerical oxygen tracers, we proposed a new method (namely the physical modulation method to quantify the contributions of boundary conditions and each source and sink process occurring in local and adjacent waters to the DO conditions. A mass balance analysis of DO based on the physical modulation method indicated that the DO conditions at the bottom layer were mainly controlled by the source and sink processes, among which the sediment oxygen demand (SOD at the water–sediment interface and the re-aeration at the air–sea interface were the two primary processes determining the spatial extent and duration of bottom hypoxia in the PRE. The SOD could cause a significant decrease in the bottom DO concentrations (averaged over July–August 2006 by over 4 mg L−1 on the shelf off the Modaomen sub-estuary, leading to the formation of a high-frequency zone of hypoxia (HFZ. However, the hypoxia that occurred in the HFZ was intermittent and distributed in a small area due to the combined effects of re-aeration and photosynthesis, which behaved as sources for DO and offset a portion of the DO consumed by SOD. The bottom DO concentrations to the west of the lower Lingdingyang Bay (i.e. the western shoal near Qi'ao Island were also largely affected by high SOD, but there was no hypoxia occurring there because of the influence of re-aeration. Specifically, re-aeration could lead to an increase in the bottom DO concentrations by ∼ 4.8 mg L−1 to the west of the lower Lingdingyang Bay. The re-aeration led to a strong vertical DO gradient between the surface and the lower layers. As a result, the majority (∼ 89 % of DO supplemented by re-aeration was transported to the lower layers through vertical diffusion and

  9. PETC review: A global role for energy. Issue 10, Summer 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, K.H.; Friedman, S.; Eastman, M.L.; Finseth, D.H.; Ruth, L.A.; Reiss, J. [eds.

    1994-10-01

    This issue contains five feature articles. `Build It and They Will Come` describes the international reputation of the Pittsburgh Energy Technology Center which prompts professionals from around the world to come to PETC for training, technical expertise, and collaboration on research projects. `PETC`s Overseas Activities` reviews international projects with which PETC staff have helped. The most prestigious of all conferences dedicated solely to the timely international exchange of basic scientific information on coal is described in `The 7th International Conference on Coal Science`. `What is Coal?` attempts to present a true picture of the nature and complexity of coal. `NOx Reduction by SCR/SNCR` reviews technologies which may be required to meet new NOx compliance standards.

  10. Energy efficient cultivation strategy in springtime and summer. Final report; Energiezuinige teeltstrategie in voorjaar en zomer. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Raaphorst, M. [Business Unit Glastuinbouw, Praktijkonderzoek Plant en Omgeving PPO, Wageningen (Netherlands); Kempkes, F.; Elings, A.; Dieleman, A. [Plant Research International, Wageningen (Netherlands)

    2006-12-15

    In the summer, energy use in most types of cultivation depends mostly on the CO2 need, which is determined by the desired CO2 concentration in the greenhouse and the window opening. Based on the results of a literature study, knowledge of crop experts and model calculations with altered and standard cultivation strategy the aim is to demonstrate that CO2 and energy can be deployed more efficiently. Chapter 2 briefly discusses the working method and lists the cases for cucumber. Next, Chapter 3 discusses in more detail the extent to which environment factors such as light, CO2 and temperature influence photosynthesis and plant growth and how this has been processed in growth models. Chapter 4 shows the results in the area of production, energy saving and business economics for seven cases. In addition several reactions of growers are included. Chapter 5, finally, addresses several points for discussion and provides conclusions and recommendations. (mk) [Dutch] Gedurende de zomermaanden is het energieverbruik in de meeste teelten vooral afhankelijk van de CO2 behoefte, bepaald door de gewenste CO2 concentratie in de kas en de raamopening. Gebaseerd op de resultaten van een literatuuronderzoek, aanwezige kennis bij gewasdeskundigen en modelberekeningen met gewijzigde en standaard teeltstrategie moet worden aangetoond dat CO2 en energie efficienter kunnen worden ingezet. In hoofdstuk 2 worden kort de werkwijze en de te behandelen cases voor komkommer weergegeven. Vervolgens wordt in hoofdstuk 3 uitgebreid ingegaan in hoeverre de omgevingsfactoren licht, CO2 en temperatuur de fotosynthese en de groei van de plant beinvloeden en hoe dit in groeimodellen is verwerkt. In hoofdstuk 4 staan de resultaten op het gebied van productie, energiebesparing en bedrijfseconomie voor zeven cases vermeld. Bovendien wordt hier ingegaan op de reacties van telers hierop. Ten slotte komen in hoofdstuk 5 enkele discussiepunten aan bod, worden conclusies getrokken en aanbevelingen gegeven.

  11. Prevalence of illness, poor mental health and sleep quality and low energy availability prior to the 2016 Summer Olympic Games.

    Science.gov (United States)

    Drew, Michael; Vlahovich, Nicole; Hughes, David; Appaneal, Renee; Burke, Louise M; Lundy, Bronwen; Rogers, Margot; Toomey, Mary; Watts, David; Lovell, Gregory; Praet, Stephan; Halson, Shona L; Colbey, Candice; Manzanero, Silvia; Welvaert, Marijke; West, Nicholas P; Pyne, David B; Waddington, Gordon

    2018-01-01

    Establish the prevalence of illness symptoms, poor sleep quality, poor mental health symptoms, low energy availability and stress-recovery state in an Olympic cohort late in the 3 months prior to the Summer Olympic Games. Olympic athletes (n=317) from 11 sports were invited to complete questionnaires administered 3 months before the Rio 2016 Olympic Games. These questionnaires included the Depression, Anxiety and Stress Questionnaire, Perceived Stress Scale, Dispositional Resilience Scale, Recovery-Stress Questionnaire (REST-Q-52 item), Low Energy Availability in Females Questionnaire (LEAF-Q), Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index and custom-made questionnaires on probiotic usage and travel. Multiple illness (case) definitions were applied. ORs and attributable fractions in the population were used. Factor analyses were used to explore the relationships between variables. The response rate was of 42% (male, n=47, age 25.8±4.1 years; female, n=85, age 24.3±3.9 years). Low energy availability was associated with sustaining an illness in the previous month (upper respiratory, OR=3.8, 95% CI 1.2 to 12). The main factor relating to illness pertained to a combination of anxiety and stress-recovery states (as measured by the REST-Q-52 item). All participants reported at least one episode of illness in the last month (100% prevalence). All participants reported at least one illness symptom in the previous month. Low energy availability was a leading variable associated with illness in Olympic-class athletes. The estimates duration of symptoms ranged from 2 to 7 days. Factor analyses show the interdependence of various health domains and support multidisciplinary care. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Applying Physics to Clean Energy Needs

    Science.gov (United States)

    Environmental Science and Technology, 1975

    1975-01-01

    Solar and ocean thermal energy sources offer real potential for an environmentally clean fuel by the year 2000. A review of current research contracts relating to ocean-thermal energy, cost requirements of plant construction and uses of the electricity produced, such as synthesizing ammonia and synthetic fuels, are discussed. (BT)

  13. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  14. Gravitational Zero Point Energy induces Physical Observables

    OpenAIRE

    Garattini, Remo

    2010-01-01

    We consider the contribution of Zero Point Energy on the induced Cosmological Constant and on the induced Electric/Magnetic charge in absence of matter fields. The method is applicable to every spherically symmetric background. Extensions to a generic $f(R) $ theory are also allowed. Only the graviton appears to be fundamental to the determination of Zero Point Energy.

  15. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  16. Summaries of FY 1977, research in high energy physics

    International Nuclear Information System (INIS)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977

  17. Summaries of FY 1984 research in high energy physics

    International Nuclear Information System (INIS)

    1984-12-01

    The US Department of Energy, through the Office of Energy Research, Division of High Energy and Nuclear Physics, provides approximately 90 percent of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major US high energy accelerator facilities and over 90 universities under contract to do experimental and theoretical investigations on the properties, structure, and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the US Department of Energy. The areas covered include: (1) conception, design, construction, and operation of particle accelerators; (2) experimental research using the accelerators and ancillary equipment; (3) theoretical research; and (4) research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of unerstanding the basic nature of matter and energy

  18. Comparison of Summer and Winter Objectively Measured Physical Activity and Sedentary Behavior in Older Adults: Age, Gene/Environment Susceptibility Reykjavik Study.

    Science.gov (United States)

    Arnardottir, Nanna Yr; Oskarsdottir, Nina Dora; Brychta, Robert J; Koster, Annemarie; van Domelen, Dane R; Caserotti, Paolo; Eiriksdottir, Gudny; Sverrisdottir, Johanna E; Johannsson, Erlingur; Launer, Lenore J; Gudnason, Vilmundur; Harris, Tamara B; Chen, Kong Y; Sveinsson, Thorarinn

    2017-10-21

    In Iceland, there is a large variation in daylight between summer and winter. The aim of the study was to identify how this large variation influences physical activity (PA) and sedentary behavior (SB). Free living PA was measured by a waist-worn accelerometer for one week during waking hours in 138 community-dwelling older adults (61.1% women, 80.3 ± 4.9 years) during summer and winter months. In general, SB occupied about 75% of the registered wear-time and was highly correlated with age (β = 0.36). Although the differences were small, more time was spent during the summer in all PA categories, except for the moderate-to-vigorous PA (MVPA), and SB was reduced. More lifestyle PA (LSPA) was accumulated in ≥5-min bouts during summer than winter, especially among highly active participants. This information could be important for policy makers and health professionals working with older adults. Accounting for seasonal difference is necessary in analyzing SB and PA data.

  19. Comparison of Summer and Winter Objectively Measured Physical Activity and Sedentary Behavior in Older Adults: Age, Gene/Environment Susceptibility Reykjavik Study

    Directory of Open Access Journals (Sweden)

    Nanna Yr Arnardottir

    2017-10-01

    Full Text Available In Iceland, there is a large variation in daylight between summer and winter. The aim of the study was to identify how this large variation influences physical activity (PA and sedentary behavior (SB. Free living PA was measured by a waist-worn accelerometer for one week during waking hours in 138 community-dwelling older adults (61.1% women, 80.3 ± 4.9 years during summer and winter months. In general, SB occupied about 75% of the registered wear-time and was highly correlated with age (β = 0.36. Although the differences were small, more time was spent during the summer in all PA categories, except for the moderate-to-vigorous PA (MVPA, and SB was reduced. More lifestyle PA (LSPA was accumulated in ≥5-min bouts during summer than winter, especially among highly active participants. This information could be important for policy makers and health professionals working with older adults. Accounting for seasonal difference is necessary in analyzing SB and PA data.

  20. Section for nuclear physics and energy physics - Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The experimental activities in nuclear physics have in 1989 mainly been centered around the cyclotron laboratory with the Scanditronic MC-35 cyclotron. The installation of the CACTUS multidetector system has been completed. With 8 particle telescopes, 28 NaI detectors and 2 Ge detectors, this experimental arrangement represents a major improvement compared to earlier set-ups in the laboratory. Theoretical studies of manybody problems, and nuclear structure and reactions have continued. The study of problems related to the foundations of quantum mechanics has also been persued

  1. Indian Energy Beat. Spring/Summer 2014: News on Actions to Accelerate Energy Development in Indian Country

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    Articles include: Arizona Apache tribe set to break ground on new solar project; Native leaders give tribes a voice on White House Climate Task Force; Chaninik Wind Group Pursues Innovative Solutions to native Alaska energy challenges; and sections, Message from the Director, Tracey Lebeau; On the Horizon, Sharing Knowledge, and Building Bridges.

  2. Awards for high-energy physics at CERN

    CERN Multimedia

    2005-01-01

    Dave Barney of CMS with the Outreach Prize awarded by the European Physical Society. The European Physical Society (EPS) has awarded two prizes to CERN physicists. Dave Barney of CMS shared his Outreach Prize with Peter Kalmus of Queen Mary, University of London. This prize is awarded for communicating particle physics to the public. The NA31 collaboration and its spokesman, Heinrich Wahl, received the 2005 High Energy and Particle Physics Prize for their work on CP violation undertaken at CERN.

  3. 1994 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N [ed.; Gavela, B [ed.

    1995-06-30

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain lectures on field theory, the Standard Model, physics beyond the Standard Model, Quantum Chromodynamics and CP violation, as well as reports on the search for gravitational waves, stellar death and accounts of particle physics at CERN and JINR. Two local subjects are also treated: Pompeii and Mount Vesuvius. (orig.).

  4. 1994 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Gavela, B.

    1995-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain lectures on field theory, the Standard Model, physics beyond the Standard Model, Quantum Chromodynamics and CP violation, as well as reports on the search for gravitational waves, stellar death and accounts of particle physics at CERN and JINR. Two local subjects are also treated: Pompeii and Mount Vesuvius. (orig.)

  5. Solar energy utilization by physical methods.

    Science.gov (United States)

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  6. Perspectives in high-energy physics

    International Nuclear Information System (INIS)

    Quigg, C.

    2000-01-01

    The author sketches some pressing questions in several active areas of particle physics and outline the challenges they present for the design and operation of detectors. His assignment at the 1999 ICFA Instrumentation School is to survey some current developments in particle physics, and to describe the kinds of experiments they would like to do in the near future and illustrate the demands their desires place on detectors and data analysis. Like any active science, particle physics is in a state of continual renewal. Many of the subjects that seem most fascinating and most promising today simply did not exist as recently as twenty-five years ago. Other topics that have preoccupied physicists for many years have been reshaped by recent discoveries and insights, and transformed by new techniques in accelerator science and detector technology. To provide some context for the courses and laboratories at this school, he has chosen three topics that are of high scientific interest, and that place very different demands on instrumental techniques. He hopes that you will begin to see the breadth of opportunities in particle physics, and that you will also look beyond the domain of particle physics for opportunities to apply the lessons you learn here in Istanbul

  7. 1995 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1996-06-11

    The European School of High-Energy Physics is intended to give young experimentalists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Physics beyond the Standard Model, Quantum Chromodynamics and Deep Inelastic Scattering, B-Physics and CP Violation, Neutrino Oscillations, Dark Matter, Experimental Techniques, as well as reports on Heavy Ions and Collider Physics and an account of particle physics at JINR. Two local subjects are also treated: Conditions for Science in Russia, and Search for Heavy Elements. (orig.).

  8. 1995 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1996-01-01

    The European School of High-Energy Physics is intended to give young experimentalists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Physics beyond the Standard Model, Quantum Chromodynamics and Deep Inelastic Scattering, B-Physics and CP Violation, Neutrino Oscillations, Dark Matter, Experimental Techniques, as well as reports on Heavy Ions and Collider Physics and an account of particle physics at JINR. Two local subjects are also treated: Conditions for Science in Russia, and Search for Heavy Elements. (orig.)

  9. High Energy Physics at Tufts University

    International Nuclear Information System (INIS)

    Milburn, R.H.; Schneps, J.

    1991-01-01

    This report discusses the following: fermilab fixed target experiments; photoproduction at 20 GeV: SLAC BC72-75; soudan 2 nucleon decay project; physics at the antiproton-proton collider at √s = 1.8 TeV; Designing the solenoidal detector for the supercollider; charm physics at LEP in OPAL; neutrino telescope proposal; general kinematic description of polarization in scattering processes; polarization in inclusive hyperon production and QCD subprocesses; measuring quark helicity underlying hadronic jets; scattering in extended skyrmion models and spin dependence; the diquark-quark model of the excited baryons; computation and networking; and the science and technology center

  10. Sustainable Energy Landscape: Implementing Energy Transition in the Physical Realm

    NARCIS (Netherlands)

    Stremke, S.

    2015-01-01

    Since the beginning of the new millennium, the concept of “energy landscape” is being discussed by academia from the environmental design domain while more and more practitioners have been contributing to sustainable energy transition. Yet, there remains some ambiguity as to what exactly is meant

  11. Proceedings of the 24. SLAC summer institute on particle physics: The strong interaction, from hadrons to partons

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.; DePorcel, L.; Dixon, L. [eds.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}. Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Task D, Participation in high energy physics

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1990-09-01

    This grant was initiated in December of 1989. My request for DOE funds (July 7, 1989) listed three activities which would require support from DOE. These were communication of HEP and Basic Research activities via lectures, articles, TV, etc., science education activities and participation in E789, a fixed-target research on beauty physics at Fermilab. These activities are discussed in this report

  13. Art imitating high-energy physics

    CERN Multimedia

    Abbott, A

    2000-01-01

    Artists have been brought to CERN to learn about particle physics. In response they will each create an original piece of art which will be exhibited in "Signatures of the Invisible", a roadshow that will visit galleries across Europe next year (1/2 page).

  14. High energy nuclear collisions: physics perspectives

    International Nuclear Information System (INIS)

    Satz, H.

    1985-01-01

    The main aim of relativistic heavy ion experiments is to study the states of matter in strong interaction physics. We survey the predictions which statistical QCD makes for deconfinement and the transition to the quark-gluon plasma. 10 refs., 6 figs

  15. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Richter, B.

    1997-01-01

    A discussion of present and planned research programs and particle accelerators at the Stanford Linear Accelerator Center is given. Experiments with the Stanford Linear Collider Detector, B-factory design considerations and research programs the Next Linear Collider design and use, and Advanced Accelerator Research and Development at SLAC are discussed.(AIP) copyright 1997 American Institute of Physics

  16. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  17. High energy physics. Ultimate structure of matter and energy

    International Nuclear Information System (INIS)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  18. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  19. SUMMER STUDENT LECTURE PROGRAMME

    CERN Multimedia

    Françoise Benz

    2002-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500   DATE TIME LECTURER TITLE Monday 29 July 09:15 - 10:00 R. RATTAZZI Beyond the Standard Model (3/3) 10:15 - 11:00 P. WELLS Experimental test of the SM - LEP (3/3) 11:15 - 12:00 P. WELLS Discussion Session 14:00 - 16:00 R. ASSMANN The CLIC Concept for a Future Particle Collider at the Energy Frontier Tuesday 30 July 09:15 - 10:00 F. ANTINORI Heavy Ions (1/2) 10:15 - 12:00 F. DYDAK Neutrino Physics (1&2/4) Wednesday 31 July  09:15 - 10:00 F. ANTINORI Heavy Ions (2/2) 10:15 - 11:00 F. DYDAK Neutrino Physics (3/4) 11:15 - 12:00 F. DYDAK / F. ANTINORI Discussion Session Thursday 1 August 09:15 - 10:00 T. NAKADA CP Violation (1/4) 10:15 - 11:00 F. DYDAK Neutrino Physics (4/4) 11:15 - 12:00 F. BEDESCHI Experimental test of the SM Tevatron (1/2) Friday 2 August 09:15 - 10:00 T. NAKADA CP Violation (2/4) 10:15 ? 11:00 F. BEDESCHI Experimental test of the SM Tevatron (2/2) 11:15 ? 12:00 F. BEDESCHI / T. NAKADA Di...

  20. High Energy Physics at Tufts University

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses the following topics: Fermilab fixed target experiments; Soudan II nucleon decay project; Physics at the proton-antiproton collider at √s = 1.8 TeV; The Solenoidal Detector for the supercollider; Neutrino telescope proposal; Polarization in massive quark and hadron production; Production characteristics of top quarks; Scattering, spin dependence and mass corrections in Skyrmion models; and computation and networking

  1. Recent discoveries in high energy physics

    CERN Multimedia

    Schopper, Herwig

    1975-01-01

    At the 14th International Cosmic Ray Conference at Munich in August, Professor S chop per, Director of the DESY Laboratory, reviewed the recent findings. This is an abridged version of his talk. It is a little more specialised than we normally include but, for those who recall some of their physics education, it adds background to the arguments that we have been sketching in recent articles.

  2. Fixed target physics at high energies

    International Nuclear Information System (INIS)

    Kirk, T.B.

    1984-01-01

    The number and type of fixed target experiments that can be pursued at a proton synchrotron are very large. The advent of the Fermilab superconducting accelerator, the Tevatron, will extend and improve the results which are given here from recent CERN and Fermilab experiments. The sample of experiments given in this paper is neither meant to be inclusive nor intensive. Hopefully, it will give the flavor of contemporary fixed target physics to a predominantly cosmic ray oriented audience. (author)

  3. Physics of some environmental aspects of energy

    International Nuclear Information System (INIS)

    Hafemeister, D.

    1985-01-01

    Approximate numerical estimates are carried out on the following environmental effects from energy production and conservation: (1) The greenhouse effect caused by increased CO 2 in the atmosphere; (2) Loss of coolant accidents in nuclear reactors; (3) Increased radon concentrations in buildings with very low air infiltration rates; (4) Acid rain from the combustion of fossil fuels; and (5) Explosions of liquified natural gas

  4. Perspective in high energy physics instrumentation

    International Nuclear Information System (INIS)

    Rossi, L.

    1995-10-01

    The discovery potential of the next generation of particle accelerators, and in particular of the large hadron collider (LHC), can only be fully exploited by very sophisticated particle detectors. The basics of detectors for momentum and energy measurement is here presented together with a recollection of recent developments which are relevant for use at high luminosity accelerators

  5. 2015 CERN-Fermilab HCP Summer School

    CERN Multimedia

    2015-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the tenth edition, from 24 June to 3 July 2015. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Lecture Topics include: Statistics in HEP, Heavy Flavour, Heavy Ion, Standard Model, Higgs searches and measurements, BSM theory, BSM searches, Top physics, QCD and Monte Carlos, Accelerators, Detectors for the future, Trigger and DAQ, Dark Matter Astroparticle, and two special lectures on Future Colliders, and 20 years after the top discovery. Calendar and Details: Mark your calendar for  24 June - 3 July 2015, when CERN will welcome students to t...

  6. Can Low Energy Electrons Affect High Energy Physics Accelerators?

    International Nuclear Information System (INIS)

    Cimino, Roberto

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at which low-energy electrons (<∼ 20 eV) impacting on the wall create secondaries or are elastically reflected. It is shown that the ratio of reflected to true-secondary electrons increases for decreasing energy and that the SEY approaches unity in the limit of zero primary electron energy

  7. Technical Training: ELEC-2005 - Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    Learning for the LHC! ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms that will run throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays an...

  8. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  9. Overview. Department of High Energy Physics. Section 5

    International Nuclear Information System (INIS)

    Coghen, T.

    1995-01-01

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given

  10. Miniaturization of high-energy physics detectors. Vol. 14

    International Nuclear Information System (INIS)

    Stefanini, A.

    1983-01-01

    Continued experimental research in high-energy physics requires the reduction in size and cost of the advanced technical equipment involved. A new technology is rapidly evolving that promises to replace today's massive high-energy physics instruments--which may be composed of several thousand tons of sensitive parts--with miniaturized equivalents. Smaller, less expensive apparatus would create more opportunities for research worldwide, and many types of experiments now considered impractical could then be carried out. Scientists and engineers from many countries have contributed to this volume to provide a broad panorama of the new miniaturization technology in high-energy physics. They describe a wide range of new instruments and their applications, discuss limitations and technological problems, and explore the connections between technology and progress in the field of high-energy physics

  11. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  12. Final Report. Research in Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeffrey P. [San Francisco State Univ., CA (United States); Golterman, Maarten F.L. [San Francisco State Univ., CA (United States)

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  13. Basic research in theoretical high energy physics. Progress report

    International Nuclear Information System (INIS)

    Adler, S.L.

    1984-01-01

    Activities in numerous areas of basic research in theoretical high energy physics are listed, and some highlights are given. Areas of research include statistical mechanics, quantum field theory, lattice gauge theories, and quantum gravity. 81 references

  14. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  15. Artificial intelligence - applications in high energy and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U. E-mail: mueller@whep.uni-wuppertal.de

    2003-04-21

    In the parallel sessions at ACAT2002 different artificial intelligence applications in high energy and nuclear physics were presented. I will briefly summarize these presentations. Further details can be found in the relevant section of these proceedings.

  16. Proceedings of the 6. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1986-01-01

    Several works on nuclear, hadron and quark physics are presented covering both aspects; theoretical and experimental, are presented. Emphasis is given in the intermediate energy region, several MeV centil few GeV. (L.C.) [pt

  17. Theoretical high energy physics research at the University of Chicago

    International Nuclear Information System (INIS)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1990-09-01

    This report discusses research being done at the University of Chicago in High Energy Physics. Some topic covered are: CP violation; intermediate vector bosons; string models; supersymmetry; and rare decay of kaons

  18. Lecture note on circuit technology for high energy physics experiment

    International Nuclear Information System (INIS)

    Ikeda, Hirokazu.

    1992-07-01

    This lecture gives basic ideas and practice of the circuit technology for high energy physics experiment. The program of this lecture gives access to the integrated circuit technology to be applied for a high luminosity hadron collider experiment. (author)

  19. CHEP95: Computing in high energy physics. Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    These proceedings cover the technical papers on computation in High Energy Physics, including computer codes, computer devices, control systems, simulations, data acquisition systems. New approaches on computer architectures are also discussed

  20. Low-energy photo- and electroproduction for physical pions

    International Nuclear Information System (INIS)

    MacMullen, J.T.

    1979-02-01

    The Ward identities of current algebra are combined with gauge invariance constraints, on-shell PCAC and the Bjorken limit to obtain the low-energy expressions of the pion photo- and electroproduction invariant amplitudes for physical pions

  1. Nuclear physics with intermediate energy electrons

    International Nuclear Information System (INIS)

    Moniz, E.J.

    1988-01-01

    Nuclear physics is the study of strongly interacting matter and of the forces which govern its structure and dynamics. The goal of this paper is to give an understanding of nuclei as quantal many-body systems and of the nature of the strong force, ultimately in terms of the presumed underlying theory of quantum chromodynamics. The latter task will require a deeper understanding of hadron structure and of color confinement and, in turn, will provide the basis for exploring the structure of matter under extreme conditions, such as very high density or temperature. This program covers a very broad range of phenomena, theoretical concepts, and experimental tools and is reflected in the diverse degrees of freedom invoked in various contexts. This is indicated where degrees of freedom loosely identified with successively smaller distance scales are indicated. Very importantly, theoretical bridges have been built between the phenomenological descriptions associated with each set of degress of freedom. The mean field, determined self-consistently from the interactions of nucleons in quantum orbits, provides the basis for much of the authors microscopic understanding of nuclear structure and of our characterization of nuclear scattering processes. However, the authors are only beginning to address quantitatively the physics associated with short-range correlations, physics which takes us beyond the mean field description. The nuclear force has a very successful semi-phenomenological description in terms of hadronic degrees of freedom, both mesons and nucleon isobars. More problematic, of course, is our understanding of hadron structure and dynamics in terms of QCD

  2. CIPANP 2006 Low Energy Hadron Physics Summary

    International Nuclear Information System (INIS)

    Schumacher, Reinhard A.

    2006-01-01

    Recent results in the areas of hypernuclear physics, exotic atoms, photo- and electro-production of light mesons and baryons, and medium modifications of meson properties were presented at this conference. Facility highlights presentations were given for five laboratories: the ELSA complex at Bonn, the LEPS facility at SPring-8, the CLAS facility at Jefferson Lab, the MAMI complex at Mainz, and the COSY complex at Juelich. These talks collectively showed remarkably active programs at all these laboratories, as well as at BNL, KEK, PSI, and Frascati. No 'brand new' results were reported at this conference

  3. The physics of magnetic fusion energy

    International Nuclear Information System (INIS)

    Roberts, K.V.

    1980-01-01

    A personal account is given covering the period April 1956 until the present day of the challenging theoretical problems posed by the controlled release of energy by magnetic confinement fusion. The need to analyse in detail the working of a plasma apparatus or reactor as a function of time is stressed and the application of such analysis to the various thermonuclear devices which have been considered during this period, is examined. (UK)

  4. Workshop on low energy neutrino physics

    International Nuclear Information System (INIS)

    2009-01-01

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  5. Introduction to high energy cosmic ray physics

    International Nuclear Information System (INIS)

    Battistoni, G.; Grillo, A.F.

    1995-01-01

    After a few general qualitative considerations about the characteristics of primary cosmic rays arriving at the top of atmosphere, the fundamental concepts on their propagation and acceleration are discussed. The experimental situation, both from direct and indirect experiments, is presented, followed by a discussion on some concepts on hadronic interactions at high energy which are applied in a simplified and analytical model to the production of secondary particles in atmosphere

  6. UCLA intermediate energy nuclear physics and relativistic heavy ion physics. Annual report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    1984-01-01

    In this contract year the UCLA Intermediate Energy Group has continued to pursue a general set of problems in intermediate energy physics using new research tools and theoretical insights. Our program to study N-N scattering and proton-light nucleus scattering has been enhanced by a new polarized target facility (both hydrogen and deuterium) at the High Resolution Spectrometer (HRS) of the Los Alamos Meson Physics Facility (LAMPF). This facility has been constructed by our group in collaboration with physicists from KEK, LAMPF and the University of Minnesota; and the first set of experiments studying polarized beam-polarized target scattering at the HRS were completed this summer and early fall. The HRS mode of operation has led to some unique design features which are described. At the Bevalac, a new beam line spectrometer will be constructed for us during this year and next to significantly enhance our capability to study subthreshold k + , k - and anti p production in relativistic heavy ion collisions and to search for fractionally charged particles. During this period a proposal is being prepared for a very large acceptance spectrometer and its associated beam line which will be used to detect dilepton pairs produced in relativistic heavy ion collisions. In concert with these experimental projects, theoretical advances in the understanding of new data from the HRS, particularly spin transfer data, have been made by the UCLA group and are described

  7. Application of radix sorting in high energy physics experiment

    International Nuclear Information System (INIS)

    Chen Xuan; Gu Minhao; Zhu Kejun

    2012-01-01

    In the high energy physics experiments, there are always requirements to sort the large scale of experiment data. To meet the demand, this paper introduces one radix sorting algorithms, whose sub-sort is counting sorting and time complex is O (n), based on the characteristic of high energy physics experiment data that is marked by time stamp. This paper gives the description, analysis, implementation and experimental result of the sorting algorithms. (authors)

  8. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  9. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1985-01-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  10. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1984-12-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  11. 11th Latin American Symposium on High Energy Physics

    CERN Document Server

    2016-01-01

    SILAFAE is one of the premier series of international meetings – High energy physics in Latin America. The present edition will be held in the city of Antigua Guatemala, from November 14 - 18th 2016. The program contains plenary talks aimed at reviewing the status of the recent advances in frontier topics in High Energy Physics, both theoretical and experimental. It also includes parallel sessions of specialized talks.

  12. High energy physics at Brookhaven National Lab

    International Nuclear Information System (INIS)

    Samios, N.P.

    1982-01-01

    The AGS is supporting an exciting, vibrant, and vital program. There are at present two modes of operation, Fast Extracted Beam (FEB) with a 1.4 second repetition rate and Slow Extracted Beam (SEB) with a 2 second repetition rate. The average intensity is 8 x 10/sup 12/ protons per pulse with peaks at 10/sup 13/ ppp. The FEB mode is mainly utilized for neutrino physics involving large detectors, 100-200 tons, placed at varying distances from the target, 300 meters and 1 kilometer. In the slow mode there is a one second flat top during which the beam emerges uniformly in time and it is split into four target stations: A, B, C, and D. These four are simultaneously illuminated and the fractions on each can be varied. A listing of the types of approved experiments is presented with their appropriate beam locations. The experimental program ran for 22 weeks. Over 200 users practice their trade at the AGS and the program is sufficiently rich that there is a reasonable chance that one or more experimenters will uncover new results that will change the way we think about particle physics

  13. Proceedings of the 5. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1984-05-01

    Several papers concerning the physics at intermediate energies (∼ 100-1000MeV) are presented in this proceedings. Almost all the works show overlapping between Nuclear and Particles Physics. There is a predominance in theoretical papers. (L.C.) [pt

  14. [High energy particle physics at Purdue, 1990--1991

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1991-05-01

    Progress made in the experimental and theoretical high energy physics program is reviewed. The CLEO experiment, particle astrophysics, dynamical symmetry breaking in gauge theories, the Collider Detector at Fermilab, the TOPAZ Experiment, and elementary particle physics beyond the standard model are included

  15. Assessment of the physical activity, body mass index and energy ...

    African Journals Online (AJOL)

    Background: Declining levels of physical activity at workplaces, during leisure time and when travelling, accompanied by increasing exposure to the mass media, are major determinants of the global obesity epidemic. This study aimed to assess physical activity, the body mass index (BMI) and energy intake of human ...

  16. 1993 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Gavela, M.B.

    1994-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain lectures on quantum field theory, quantum chromodynamics, CP violation, radiative corrections, cosmology, particle detectors and e + e - accelerators, as well as reports on results from HERA and LEP and accounts of particle physics research at CERN and in Poland and Russia. (orig.)

  17. Energy and Entropy as the Fundaments of Theoretical Physics

    Directory of Open Access Journals (Sweden)

    Pharis E. Williams

    2002-05-01

    Full Text Available Einstein's article titled, "The Fundaments of Theoretical Physics", from Science, Washington, D.C., May 24, 1940, is presented in its entirety as it is an outstanding presentation of the history and status of the foundations of theoretical physics as it stood in 1940. Further, it provides the background for discussing the new view of the fundaments of theoretical physics provided by the energy and entropy foundation of the Dynamic Theory.

  18. Physics of Nuclear Collisions at High Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hwa, Rudolph C. [Univ. of Oregon, Eugene, OR (United States)

    2012-05-01

    A wide range of problems has been investigated in the research program during the period of this grant. Although the major effort has been in the subject of heavy-ion collisions, we have also studied problems in biological and other physical systems. The method of analysis used in reducing complex data in multiparticle production to simple descriptions can also be applied to the study of complex systems of very different nature. Phase transition is an important phenomenon in many areas of physics, and for heavy-ion collisions we study the fluctuations of multiplicities at the critical point. Human brain activities as revealed in EEG also involve fluctuations in time series, and we have found that our experience enables us to find the appropriate quantification of the fluctuations in ways that can differentiate stroke and normal subjects. The main topic that characterizes the research at Oregon in heavy-ion collisions is the recombination model for the treatment of the hadronization process. We have avoided the hydrodynamical model partly because there is already a large community engaged in it, but more significantly we have found the assumption of rapid thermalization unconvincing. Recent results in studying LHC physics lead us to provide more evidence that shower partons are very important even at low p_T, but are ignored by hydro. It is not easy to work in an environment where the conventional wisdom regards our approach as being incorrect because it does not adhere to the standard paradigm. But that is just what a vibrant research community needs: unconventional approach may find evidences that can challenge the orthodoxy. An example is the usual belief that elliptic flow in fluid dynamics gives rise to azimuthal anisotropy. We claim that it is only sufficient but not necessary. With more data from LHC and more independent thinkers working on the subject what is sufficient as a theory may turn out to be incorrect in reality. Another area of investigation that

  19. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  20. Optical activity from high energy physics models

    International Nuclear Information System (INIS)

    Jaiswal, M.K.; Ganguly, A.K.

    2012-01-01

    Since the last decade we have come across some observational evidence suggest that the universe is currently undergoing acceleration. A way to resolve this problem is by introducing a scalar field that provides 'dark energy' with negative pressure, that couples to ordinary matter fields. There are many theories where the existence of light scalar fields is possible, e.g. in string theory there are many moduli fields that couple to matter or scalar tensor theory etc. One such theory goes by the name of the chameleonic theory. The introduction of chameleon field was to explain to the source of dark matter in the universe

  1. Summaries of research in high energy physics

    International Nuclear Information System (INIS)

    1987-11-01

    The compilation of summaries of research and technology R and D efforts contained in this volume is intended to present a detailed narrative description of the scope and nature of the HEP activities funded by the Department of Energy in the FY 1985/FY 1986 time period. Topic areas covered include the following: experimental research using the accelerators and particle detector facilities and other related research; theoretical research; conception, design, construction, and operation of particle accelerators and detectors facilities; and research and development programs intended to advance accelerator technology, particle detector technology, and data analysis capabilities

  2. High Energy Physics at Tufts University

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-15

    This report discusses the following topics: Neutrino Interactions in the 15-foot Bubble Chamber; Pion and Kaon Production of Charm and Charm-Strange States; Study of Heavy Flavors at the Tagged Particle Spectrometer; Neutrino Oscillations at the Fermilab Main Injector; Soudan II Nucleon Decay Project; Physics at the Antiproton-Proton Collider at {radical}{bar s} = 1.8 TeV; Designing the Solenoidal Detector for the Supercollider; Neutrino Telescope Proposal; Polarization in Inclusive Hyperon Production and QCD Subprocesses; Production and Decay Characteristics of Top Quarks; Scattering in Extended Skyrmion Models and Spin Dependence; Search for Top Quark Production at the Tevatron; Polarization Correlations in Hadronic Production of Top Quarks; and Computation and Networking.

  3. Calorimetry energy measurement in particle physics

    CERN Document Server

    Wigmans, Richard

    2017-01-01

    Particle physics is the science that pursues the age-old quest for the innermost structure of matter and the fundamental interactions between its constituents. Modern experiments in this field rely increasingly on calorimetry, a detection technique in which the particles of interest are absorbed in the detector. Calorimeters are very intricate instruments. Their performance characteristics depend on subtle, sometimes counter-intuitive design details. This book, written by one of the world's foremost experts, is the first comprehensive text on this topic. It provides a fundamental and systematic introduction to calorimetry. It describes the state of the art in terms of both the fundamental understanding of calorimetric particle detection, and the actual detectors that have been or are being built and operated in experiments. The last chapter discusses landmark scientific discoveries in which calorimetry has played an important role. This book summarizes and puts into perspective the work described in some 900...

  4. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  5. Princeton University High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Marlow, Daniel R. [Princeton Univ., NJ (United States)

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  6. Extra dimensions hypothesis in high energy physics

    Directory of Open Access Journals (Sweden)

    Volobuev Igor

    2017-01-01

    Full Text Available We discuss the history of the extra dimensions hypothesis and the physics and phenomenology of models with large extra dimensions with an emphasis on the Randall- Sundrum (RS model with two branes. We argue that the Standard Model extension based on the RS model with two branes is phenomenologically acceptable only if the inter-brane distance is stabilized. Within such an extension of the Standard Model, we study the influence of the infinite Kaluza-Klein (KK towers of the bulk fields on collider processes. In particular, we discuss the modification of the scalar sector of the theory, the Higgs-radion mixing due to the coupling of the Higgs boson to the radion and its KK tower, and the experimental restrictions on the mass of the radion-dominated states.

  7. High Energy Physics at Tufts University

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: Neutrino Interactions in the 15-foot Bubble Chamber; Pion and Kaon Production of Charm and Charm-Strange States; Study of Heavy Flavors at the Tagged Particle Spectrometer; Neutrino Oscillations at the Fermilab Main Injector; Soudan II Nucleon Decay Project; Physics at the Antiproton-Proton Collider at √ bar s = 1.8 TeV; Designing the Solenoidal Detector for the Supercollider; Neutrino Telescope Proposal; Polarization in Inclusive Hyperon Production and QCD Subprocesses; Production and Decay Characteristics of Top Quarks; Scattering in Extended Skyrmion Models and Spin Dependence; Search for Top Quark Production at the Tevatron; Polarization Correlations in Hadronic Production of Top Quarks; and Computation and Networking

  8. Summer Appendicitis

    African Journals Online (AJOL)

    hanumantp

    The increasing number of “fast food” restaurants where mainly high‑carbohydrate ... factors, food culture and the effect of migration for touristic purposes during the summer. .... Lal A, Hales S, French N, Baker MG. Seasonality in human.

  9. Task A, High energy physics program experiment and theory: Task B, High energy physics program numerical simulation

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses progress in experimental and theoretical High Energy Physics at Florida State University. Fixed target experiments, collider experiments, computing, networking, VAX upgrade, SSC preparation, detector development, and particle theory are some of the areas covered

  10. Scientists from all over the world attend the 2007 - Frederic Joliot/Otto Hahn Summer School on Nuclear Reactors, 'Physics, Fuels and Systems'; Wissenschaftler aus aller Welt bei der 2007 Frederic Joliot/Otto Hahn Summer School on Nuclear Reactors 'Physics, Fuels and Systems'

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.; Sanchez-Espinoza, V.H. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit

    2007-12-15

    For more than ten years, the Frederic Joliot/Otto Hahn Summer School has been organized alternately by the Karlsruhe Research Center in Germany and the French Commissariat a l'Energie Atomique (CEA), Cadarache, in France. This year, the Summer School was held at the Center for Advanced Training in Technology and the Environment of the Karlsruhe Research Center on August 29 to September 7. The overarching topic of the event was the sustainability of nuclear power, including topical issues of generation-IV reactor concepts, transmutation and actinide separation, and geologic final storage. Next year's Frederic Joliot/Otto Hahn Summer School will be organized by CEA at Aix-en-Provence together with the Nuclear Safety Research Program of the Karlsruhe Research Center. (orig.)

  11. Applications of neural networks in high energy physics

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1990-01-01

    Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab

  12. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. M. Ebert (Ute)

    2016-01-01

    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  13. Evaluation of monte carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    Rutjes, Casper; Sarria, David; Skeltved, Alexander Broberg; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-01-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate

  14. Low-energy antiprotons physics and the FLAIR facility

    International Nuclear Information System (INIS)

    Widmann, E

    2015-01-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR. (paper)

  15. ATLAS and ultra high energy cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Pinfold James

    2017-01-01

    Full Text Available After a brief introduction to extended air shower cosmic ray physics the current and future deployment of forward detectors at ATLAS is discussed along with the various aspects of the current and future ATLAS programs to explore hadronic physics. The emphasis is placed on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. The possible use of ATLAS as an “underground” cosmic muon observatory is briefly considered.

  16. Database applications in high energy physics

    International Nuclear Information System (INIS)

    Jeffery, K.G.

    1982-01-01

    High Energy physicists were using computers to process and store their data early in the history of computing. They addressed problems of memory management, job control, job generation, data standards, file conventions, multiple simultaneous usage, tape file handling and data management earlier than, or at the same time as, the manufacturers of computing equipment. The HEP community have their own suites of programs for these functions, and are now turning their attention to the possibility of replacing some of the functional components of their 'homebrew' systems with more widely used software and/or hardware. High on the 'shopping list' for replacement is data management. ECFA Working Group 11 has been working on this problem. This paper reviews the characteristics of existing HEP systems and existing database systems and discusses the way forward. (orig.)

  17. Laser beams in high energy physics

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1976-01-01

    Back-scattered ruby laser light from energetic electrons has facilitated a family of bubble chamber experiments in the interactions of highly polarized and quasi-monochromatic photons up to 10 GeV with 4π acceptance at the 100 to 200 event/μb level. Further studies of this sort demand the use of high-repetition-rate track chambers. To exploit the polarization and energetic purity intrinsic to the back-scattered beam one must achieve nearly two orders of magnitude increase in the average input optical power, and preferably also higher quantum energies. Prospects for this technique and its applications given modern laser capabilities and new accelerator developments are discussed

  18. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  19. Diamond detectors for high energy physics experiments

    Science.gov (United States)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  20. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...