WorldWideScience

Sample records for energy physical protection

  1. Physical protection

    International Nuclear Information System (INIS)

    Myers, D.A.

    1989-01-01

    Physical protection is defined and its function in relation to other functions of a State System of Accounting for and Control of Nuclear Materials is described. The need for a uniform minimum international standard for physical protection as well as the need for international cooperation in physical protection is emphasized. The IAEA's INFCIRC/225/Rev. 1 (Annex 1) is reviewed. The Convention on the Physical Protection of Nuclear Material (Annex 2) is discussed. Photographs show examples of typical physical protection technology (Annex 3)

  2. Physical protection

    International Nuclear Information System (INIS)

    Myre, W.C.; DeMontmollin, J.M.

    1989-01-01

    Serious concern about physical protection of nuclear facilities began around 1972. R and D was initiated at Sandia National Laboratories which had developed techniques to protect weapons for many years. Special vehicles, convoy procedures, and a communications system previously developed for weapons shipments were improved and extended for shipments of other sensitive materials. Barriers, perimeter alarms, portal and internal control systems were developed, tested, and published in handbooks and presented at symposia. Training programs were initiated for U.S. and foreign personnel. Containment and surveillance techniques were developed for the IAEA. Presently emphasis is on computer security, active barriers, and techniques to prevent theft or sabotage by ''insiders''

  3. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  4. Implementation of U.S. Department of Energy physical protection upgrades in Lithuania and Uzbekistan

    International Nuclear Information System (INIS)

    Haase, M.; Romesberg, L.; Showalter, R.; Soo Hoo, M.S.; Corey, J.; Engling, E.

    1996-01-01

    Since 1994, the U.S. Department of Energy (DOE) has provided cooperative assistance to the non-nuclear weapons states of the Former Soviet Union. This effort, within DOE's program of Material Protection, Control, and Accounting (MPC ampersand A), identified the Institute of Nuclear Physics (INP) in Uzbekistan and the Ignalina Nuclear Power Plant (INPP) in Lithuania as sites for cooperative MPC ampersand A projects. The INP, located just outside of Tashkent, is the site of a 10-megawatt WWR-SM research reactor. This reactor is expected to remain operational as a major nuclear research and isotope production reactor for Central Asia. The INPP, located 100 kilometers northeast of the capital city of Vilnius, consists of two Russian-made RBMK reactors with a combined power output of 3,000 megawatts (electric). This power plant has been the subject of international safety and security concerns, which prompted DOE's cooperative assistance effort. This paper describes U.S. progress in a multi-national effort directed at implementing physical protection upgrades in Lithuania and Uzbekistan. The upgrades agreed upon between DOE and the INP and between DOE and the INPP have been designed to interface with upgrades being implemented by other donor countries. DOE/INPP upgrade projects include providing training on U.S. approaches to physical protection, access control through the main vehicle portal, a hardened central alarm station, and improved guard force communications. DOE/INP upgrade projects in Uzbekistan include an access control system, a hardened fresh fuel storage vault, an interior intrusion detection and assessment system, and an integrated alarm display and assessment system

  5. Protecting plutonium: physical safeguards

    International Nuclear Information System (INIS)

    Ney, J.F.

    1975-10-01

    In the development of physical protection systems, objectives for improving overall performance include the following: (1) Increase the time required for the malefactor to achieve his goal; (2) decrease the time required for detection of malevolent activities; (3) reduce the time for adequate response force arrival; (4) increase the capability to neutralize the malefactor; (5) reduce the total protection system costs, while increasing the level of protection; (6) improve acceptance levels (social, environmental, legal, and institutional); and (7) increase nuclear fuel cycle safety. Fortunately, there is sufficient lead time and technical base to explore and develop new protection system concepts so that a completely integrated and tested protection system capable of providing unprecedented levels of security can be available when needed. Although it will be impossible to completely eliminate all risks, it should be both possible and economically feasible to install protection systems which will deter or prevent a malefactor from using the nuclear fuel cycle to disrupt society

  6. Temporary physical protection systems

    International Nuclear Information System (INIS)

    Williams, J.D.; Gangel, D.J.; Madsen, R.W.

    1991-01-01

    Terrorism and other aspects of world political instability have created a high demand for temporary physical protection systems within the nuclear materials management community. They can be used when vehicles carrying important assets are away from their permanent fixed site location, around areas where experiments are being temporarily conducted, around construction areas and one portions of a fixed site physical security system which is temporarily inoperable. Physical security systems can be grouped into four categories: tactical, portable, semi-permanent, and fixed. The resources and experience gained at Sandia National Laboratories in over forty years of developing and implementing security systems for protecting nuclear weapons and fixed nuclear facilities is now being applied to temporary physical security systems. This paper emphasizes temporary physical security systems and their component parts that are presently available and identify additional system-subsystem objectives, requirements, and concepts

  7. International Physical Protection Advisory Service

    International Nuclear Information System (INIS)

    Soo Hoo, M.S.; Ek, D.; Hageman, A.; Jenkin, T.; Price, C.; Weiss, B.

    1998-01-01

    Since its inception in 1996, the purpose of the International Physical Protection Advisory Service (IPPAS) has been to provide advice and assistance to International Atomic Energy Agency (IAEA) Member States on strengthening and enhancing the effectiveness of their state system of physical protection of nuclear materials and facilities. Since the protection of nuclear materials and facilities is a Member State's responsibility, participation within the IPPAS program is voluntary. At the request of a Member State, the IAEA forms a multinational IPPAS team consisting of physical protection specialists. These specialists have broad experience in physical protection system design, implementation, and regulatory oversight. The exact make-up of the team depends upon the needs of the requesting state. IPPAS missions to participating states strive to compare the domestic procedures and practices of the state against international physical protection guidelines (IAEA Information Circular 225) and internationally accepted practice. The missions utilize a top to bottom approach and begin by reviewing the legal and regulatory structure and conclude with reviews of the implementation of the state regulations and international guidelines at individual facilities. IPPAS findings are treated as IAEA Safeguards Confidential Information. To date, IPPAS missions have been concluded in Slovenia, Bulgaria, Romania, Hungary, and Poland

  8. Methodology for proliferation resistance and physical protection of Generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Bari, R.; Peterson, P.; Nishimura, R.; Roglans-Ribas, J.

    2005-01-01

    Enhanced proliferation resistance and physical protection (PR and PP) is one of the technology goals for advanced nuclear concepts. Under the auspices of the Generation IV International Forum an international experts group has been chartered to develop an evaluation methodology for PR and PP. This methodology will permit an objective PR and PP comparison between alternative nuclear systems and support design optimization to enhance robustness against proliferation, theft and sabotage. The assessment framework consists of identifying the threats to be considered, defining the PR and PP measures required to evaluate the resistance of a nuclear system to proliferation, theft or sabotage, and establishing quantitative methods to evaluate the proposed measures. The defined PR and PP measures are based on the design of the system (e.g., materials, processes, facilities), and institutional measures (e.g., safeguards, access control). The assessment methodology uses analysis of pathways' with respect to specific threats to determine the PR and PP measures. Analysis requires definition of the threats (i.e. objective, capability, strategy), decomposition of the system into its relevant elements (e.g., reactor core, fuel recycle facility, fuel storage), and identification of targets. (author)

  9. Physical protection upgrades in Ukraine

    International Nuclear Information System (INIS)

    Djakov, A.

    1998-01-01

    The U.S. DOE is providing nuclear material safeguards assistance in both material control and accountability and in physical protection to several facilities in Ukraine. This paper summarizes the types of physical protection upgrades that have been or are presently being implemented at these facilities. These facilities include the Kiev Institute for Nuclear Research, Kharkov Institute of Physics and Technology, Sevastopol Institute of Nuclear Energy and Industry, and the South Ukraine Nuclear Power Plant. Typical upgrades include: hardening of storage areas; improvements in access control, intrusion detection, and CCTV assessment; central alarm station improvements; and implementation of new voice communication systems. Methods used to implement these upgrades and problems encountered are discussed. Training issues are also discussed

  10. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    International Nuclear Information System (INIS)

    Haase, M.; Hine, C.; Robertson, C.

    1996-01-01

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy''s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades

  11. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  12. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  13. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  14. Designing physical protection technology for insider protection

    International Nuclear Information System (INIS)

    Trujillo, A.A.; Waddoups, I.G.

    1986-01-01

    Since its inception, the nuclear industry has been engaged in providing protection against an insider threat. Although insider protection activities have been fairly successful in the past, present societal conditions require increased protection to further minimize the existence of an insider or the consequences of an insider-perpetrated incident. Integration of insider protection techniques into existing administrative and operational procedures has resulted in economic and operational impacts. Future increases in insider protection may result in even greater impacts, so we must proceed wisely as new approaches are developed. Increased emphasis on background investigations, security clearances, human reliability programs, security awareness activities, and the development of technology to address the insider threat are evidence of continuing concern in this area. Experience ranging from operational test and evaluation of developmental equipment to conceptual designs for new facilities has led to the development of general principles and conclusions for mitigating the insider threat while minimizing adverse impacts on site operations. Important principles include real-time monitoring of personnel and material and requiring that the physical protection and material control and accounting systems to be much more coordinated and integrated than in the past

  15. The physics of radiation protection

    International Nuclear Information System (INIS)

    Doerschel, B.; Schuricht, V.; Steuer, J.

    1996-01-01

    The book is aimed at both practising specialists and scientists wishing to learn about the fundamental science of radiation protection. The first part of the book, 'Physical Fundamentals of Radiation Protection', presents a concise description of radiation sources and radiation fields, interaction of radiation with matter, radiation effects and radiation damage, basic concept of radiation protection, radiation exposure of man, radiation protection measuring techniques and physical fundamentals for limiting radiation exposure. The second part, 'Calculational Exercises for Radiation Protection' is intended to supplement the first part by carrying out relevant calculations, amending and adding special aspects and to give guidance in solving practical problems. The book is written for scientists as well as for students and staff working in nuclear facilities, hospitals and institutions responsible for radiation and environmental protection. (UK)

  16. Physical protection of power reactors

    International Nuclear Information System (INIS)

    Darby, J.L.

    1979-01-01

    Sandia Laboratories has applied a systematic approach to designing physical protection systems for nuclear facilities to commercial light-water reactor power plants. A number of candidate physical protection systems were developed and evaluated. Focus is placed on the design of access control subsystems at each of three plant layers: the protected area perimeter, building surfaces, and vital areas. Access control refers to barriers, detectors, and entry control devices and procedures used to keep unauthorized personnel and contraband out of the plant, and to control authorized entry into vital areas within the plant

  17. Physical protection of nuclear installations

    International Nuclear Information System (INIS)

    Toepfer, K.

    1989-01-01

    This contribution investigates the possible danger and the legal basis of physical protection and explains the current, integrated system provided for, as well as the underlying possible scenarios of an assault: (1) by a violent crowd of aggressors outside the installation, (2) by a small group of aggressors outside the installation, (3) by a person allowed to enter (internal assault). The physical protection system supplements the internal safety measures to enhance protection against hypothetical and possible acts of terrorism or other criminal assault. The system covers external and internal controlled areas, access monitoring, physical protection control room and service, security checks of the personnel, and activities to disclose sabotage. Some reflections on the problem field between security controls and the constitutional state conclude this contribution. (orig./HSCH) [de

  18. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  19. Generic physical protection logic trees

    International Nuclear Information System (INIS)

    Paulus, W.K.

    1981-10-01

    Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle

  20. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: An Advisory Group met to consider the up-dating and extension of the Recommendations for the Physical Protection of Nuclear Material, produced in 1972. Twenty-seven experts from 11 countries and EURATOM were present. Growing concern has been expressed in many countries that nuclear material may one day be used for acts of sabotage or terrorism. Serious attention is therefore being given to the need for States to develop national systems for the physical protection of nuclear materials during use, storage and transport throughout the nuclear fuel cycle which should minimize risks of sabotage or theft. The revised Recommendations formulated by the Advisory Group include new definitions of the objectives of national systems of physical protection and proposals for minimizing possibilities of unauthorized removal and sabotage to nuclear facilities. The Recommendations also describe administrative or organizational steps to be taken for this purpose and the essential technical requirements of physical protection for various types and locations of nuclear material, e.g., the setting up of protected areas, the use of physical barriers and alarms, the need for security survey, and the need of advance arrangements between the States concerned in case of international transportation, among others. (author)

  1. Generic physical protection logic trees

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, W.K.

    1981-10-01

    Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle.

  2. The Physics of Energy

    Science.gov (United States)

    Jaffe, Robert L.; Taylor, Washington

    2018-01-01

    Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.

  3. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  4. Physical training improves body weight and energy balance but does not protect against hepatic steatosis in obese mice.

    Science.gov (United States)

    Evangelista, Fabiana S; Muller, Cynthia R; Stefano, Jose T; Torres, Mariana M; Muntanelli, Bruna R; Simon, Daniel; Alvares-da-Silva, Mario R; Pereira, Isabel V; Cogliati, Bruno; Carrilho, Flair J; Oliveira, Claudia P

    2015-01-01

    This study sought to determine the role of physical training (PT) on body weight (BW), energy balance, histological markers of nonalcoholic fatty liver disease (NAFLD) and metabolic gene expression in the liver of ob/ob mice. Adult male ob/ob mice were assigned into groups sedentary (S; n = 8) and trained (T; n = 9). PT consisted in running sessions of 60 min at 60% of maximal speed conducted five days per week for eight weeks. BW of S group was higher from the 4(th) to 8(th) week of PT compared to their own BW at the beginning of the experiment. PT decreased daily food intake and increased resting oxygen consumption and energy expenditure in T group. No difference was observed in respiratory exchange ratio, but the rates of carbohydrate and lipids oxidation, and maximal running capacity were greater in T than S group. Both groups showed liver steatosis but not inflammation. PT increased CPT1a and SREBP1c mRNA expression in T group, but did not change MTP, PPAR-α, PPAR-γ, and NFKB mRNA expression. In conclusion, PT prevented body weight gain in ob/ob mice by inducing negative energy balance and increased physical exercise tolerance. However, PT did not change inflammatory gene expression and failed to prevent liver steatosis possible due to an upregulation in the expression of SREBP1c transcription factor. These findings reveal that PT has positive effect on body weight control but not in the liver steatosis in a leptin deficiency condition.

  5. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  6. Environment protection and energy politics

    International Nuclear Information System (INIS)

    Grawe, J.

    1993-01-01

    The lecture first deals with the aims and legal basis in German and European law of environment protection with regard to energy politics. It then goes to deal with European regulations for environment protection and their effects on the energy supply: Air pollution abatement, tax for the protection of the climate, internalisation of external costs. The following European energy-political measures impinge on environment protection: Sponsored projects, least-cost planning, third-party access to the public electricity supply. The discrepancy between European and national policies can be lessened or resolved by the following means: Harmonisation, subsidiarity principle, and scope for entrepreneurial solutions. (orig.) [de

  7. Pathway Aggregation in the Risk Assessment of Proliferation Resistance and Physical Protection (PR&PP) of Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2015-01-01

    The framework for Proliferation Resistance and Physical Protection (PR & PP) evaluation is to define a set of challenges, to obtain the system responses, and to assess the outcomes. The assessment of outcomes heavily relies on pathways, defined as sequences of events or actions that could potentially be followed by a State or a group of individuals in order to achieve a proliferation objective, with the defined threats as initiating events. There may be large number of segments connecting pathway stages (e.g. acquisition, processing, and fabrication for PR) which can lead to even larger number of pathways or scenarios through possible different combinations of segment connections, each with associated probabilities contributing to the overall risk. Clustering of these scenarios in specified stage attribute intervals is important for their tractable analysis and outcome assessment. A software tool for scenario generation and clustering (OSUPR) is developed that utilizes the PRCALC code developed at the Brookhaven National Laboratory for scenario generation and the K- means, mean shift and adaptive mean shift algorithms as possible clustering schemes. The results of the study using the Example Sodium Fast Breeder as an example system show that clustering facilitates the probabilistic or deterministic analysis of scenarios to identify system vulnerabilities and communication of the major risk contributors to stakeholders. The results of the study also show that the mean shift algorithm has the most potential for assisting the analysis of the scenarios generated by PRCALC.

  8. Pathway Aggregation in the Risk Assessment of Proliferation Resistance and Physical Protection (PR&PP) of Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aldemir, Tunc [Ohio State Univ., Columbus, OH (United States); Denning, Richard [Ohio State Univ., Columbus, OH (United States); Catalyurek, Umit [Ohio State Univ., Columbus, OH (United States); Yilmaz, Alper [Ohio State Univ., Columbus, OH (United States); Yue, Meng [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, Lap-Yan [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-23

    The framework for Proliferation Resistance and Physical Protection (PR & PP) evaluation is to define a set of challenges, to obtain the system responses, and to assess the outcomes. The assessment of outcomes heavily relies on pathways, defined as sequences of events or actions that could potentially be followed by a State or a group of individuals in order to achieve a proliferation objective, with the defined threats as initiating events. There may be large number of segments connecting pathway stages (e.g. acquisition, processing, and fabrication for PR) which can lead to even larger number of pathways or scenarios through possible different combinations of segment connections, each with associated probabilities contributing to the overall risk. Clustering of these scenarios in specified stage attribute intervals is important for their tractable analysis and outcome assessment. A software tool for scenario generation and clustering (OSUPR) is developed that utilizes the PRCALC code developed at the Brookhaven National Laboratory for scenario generation and the K- means, mean shift and adaptive mean shift algorithms as possible clustering schemes. The results of the study using the Example Sodium Fast Breeder as an example system show that clustering facilitates the probabilistic or deterministic analysis of scenarios to identify system vulnerabilities and communication of the major risk contributors to stakeholders. The results of the study also show that the mean shift algorithm has the most potential for assisting the analysis of the scenarios generated by PRCALC.

  9. Energy and physics

    Energy Technology Data Exchange (ETDEWEB)

    Kapitsa, P L

    1976-01-01

    The development of large power energy sources is reviewed in the light of fundamental limitations imposed by nature on the energy flux density. The energy sources based on electrostatic generators, gas units (direct conversion of hydrogen oxidation chemical energy to electric one), solar batteries, geothermal energy, wind power and hydroelectric power appear to be unpromising. The solution of the world energy crisis is connected with nuclear energy, and, first of all, with thermonuclear reaction of deuterium and tritium nuclei. In contrast to uranium employment the thermonuclear process produces no significant quantity of radioactive wastes, runs far less risk during accidents and cannot be used as an explosive. The realisation of a controlled thermonuclear reaction is pointed out to face a number of physical and technical problems still to be solved.

  10. 32 CFR 644.140 - Physical protection.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...

  11. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  12. National practices in physical protection of nuclear materials. Regulatory basis

    International Nuclear Information System (INIS)

    Goltsov, V.Y.

    2002-01-01

    Full text: The Federal law 'On The Use Of Atomic Energy' containing the section on physical protection of nuclear materials and nuclear facilities was issued in 1995 in Russian Federation. This document became the first federal level document regulating the general requirements to physical protection (PP). The federal PP rules developed on the base of this law by Minatom of Russia and other federal bodies of the Russian Federation were put in force by the government of Russia in 1997. The requirements of the convention on physical protection of nuclear materials (INFCIRC 274) and the modern IAEA recommendations (INFCIRC/225/Rev.4) are taken into account in the PP rules. Besides, while developing the PP rules the other countries' experience in this sphere has been studied and taken into account. The PP rules are action-obligatory for all juridical persons dealing with nuclear activity and also for those who are coordinating and monitoring this activity. Nuclear activity without physical protection ensured in accordance with PP rules requirements is prohibited. The requirements of PP Rules are stronger than the IAEA recommendations. The PP rules are establishing: physical protection objectives; federal executive bodies and organizations functions an implementation of physical protection; categorization of nuclear materials; requirements for nuclear materials physical protection as during use and storage as during transportation; main goals of state supervision and ministry level control for physical protection; notification order about the facts of unauthorized actions regarding nuclear materials and facilities. Besides the above mentioned documents, there were put in force president decrees, federal laws and regulations in the field of: counteraction to nuclear terrorism; interactions in physical protection systems; military and ministerial on-site guard activities; information protection. By the initiative of Minatom of Russia the corrections were put into the

  13. Outline of physical protection exercise field

    International Nuclear Information System (INIS)

    Kawata, Norio; Wakabayashi, Shuji; Naito, Aisaku

    2012-01-01

    The Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency set up exercise facilities for trainee of nuclear power emerging countries in Asia involved in Physical Protection (PP) including government officers in charge of nuclear security policy or nuclear security regulation, planning and management staff of PP facilities of operating companies, design professionals for PP facilities, and security personnel responsible for PP. After April in 2012, the facility started to be applied to actual ISCN's PP training and is expected as training field for not only Asian nuclear emerging country but also domestic nuclear energy companies and regulatory bodies. In order to provide effective and practical exercises, we set up the training facilities with basic measures and equipment typical of those used in actual PP facilities, e.g., protective fences, sensors, and cameras. This paper provides an outline of the facilities. (author)

  14. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  15. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  16. Environment protection and energy politics

    International Nuclear Information System (INIS)

    Pernice, I.

    1993-01-01

    Three aspects make the issue of energy politics and environment protection in the European Community interesting: Questions of competence, international stipulations, and the concrete measures the Community implements or plans in fulfillment of its duty to integrate these two political spheres. At the international level impulses for an environmentally benign energy policy are given by the World Climate Convention, the Agenda 21 passed at the Rio Conference, and by the European Energy Charter and its consequential documents. (orig./HSCH) [de

  17. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  18. Initiatives to strengthen physical protection in Japan

    International Nuclear Information System (INIS)

    Kurihara, H.; Yagi, T.; Endo, M.; Murajiri, M.

    2001-01-01

    Full text: The Nuclear Material Control Center (NMCC) was established under the approval of the Japanese Government in 1972 to function as an important organization to implement national safeguards system together with the Government. It has been also working on R and D of physical protection of nuclear materials and facilities, and enhancing the awareness of the importance of the physical protection among physical protection related people. Japan has now 52 nuclear power reactors, accounting for about one-third of the nations electricity generation. Also nuclear fuel cycle facilities as enrichment plants, radioactive waste disposal facilities and reprocessing plant are either in operation or under construction at Rokkasho-Mura, Aomori prefecture. NMCC is doing several initiatives to strengthen and increase the understanding of the physical protection in Japan by disseminating necessary information to people which are described in the following: 1. Physical protection seminar for the physical protection specialists and management people - It is very important for the physical protection specialists as well as management people who are working at nuclear facilities to be able to get access to the related sophisticated information on the information on the global physical protection issues, physical protection regulations, physical protection systems and equipment etc. This kind of seminar was started in 19xx and is held once a year for two days in Tokyo. The curriculum includes global physical protection issues, physical protection related activities such as terrorism, current R and D, and application of equipment, experiences gained at nuclear facilities. About 70 people participate in the seminar every year. 2. Physical protection seminar for the physical protection related local people - It is more and more important for the nuclear industry to disseminate information to the local people about the nuclear facility operation. Such local people as local government

  19. Physical protection educational program - information security aspects

    International Nuclear Information System (INIS)

    Tolstoy, A.

    2002-01-01

    Full text: Conceptual approaches for designing an expert training program on object physical protection taking into account information security aspects are examined. A special educational course does not only address the immediate needs for an educational support but also ensures that new professionals include new concepts and knowledge in their practice and encourages current practitioners towards such practice. Features of the modern physical protection systems (PPS) and classification of information circulating at them are pointed out. The requirements to the PPS information protection subsystem are discussed. During the PPS expert training on information security (IS) aspects they should receive certain knowledge, on the basis of which they could competently define and carry out the PPS IS policy for a certain object. Thus, it is important to consider minimally necessary volume of knowledge taught to the PPS experts for independent and competent implementation of the above listed tasks. For the graduate PPS IS expert training it is also necessary to examine the normative and legal acts devoted to IS as a whole and the PPS IS in particular. It is caused by necessity of conformity of methods and information protection tools implemented on a certain object to the federal and departmental IS requirements. The departmental normative IS requirements define an orientation of the PPS expert training. By curriculum development it is necessary to precisely determine for whom the PPS experts are taught. The curriculum should reflect common features of the PPS functioning of the certain object type, i.e. it should be adapted to a certain customer of the experts. The specified features were taken into account by development of an educational course 'Information security of the nuclear facility physical protection systems', taught at the Moscow Engineering Physics Institute (State University) according to the Russian-American educational program 'Master in Physical

  20. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  1. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  2. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  3. Regulatory control of physical protection systems

    International Nuclear Information System (INIS)

    Rajdeep; Mayya, Y.S.

    2017-01-01

    The safety of facilities in BARC is under the regulatory oversight of BSC. The security architecture for these facilities incorporates multiple layers of Physical Protection Systems. The demands of safety may sometimes conflict with the needs of security. Realizing the need to identify these interfaces and extend the regulatory coverage to Physical Protection Systems, a Standing Committee named Physical Protection System Review Committee (PPSRC) has been constituted as a 2"n"d tier entity of BSC. PPSRC includes experts from various domains concerned with nuclear security, viz. physical protection systems, cyber security, radiation safety, security operations, technical services and security administration

  4. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  5. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-01-01

    The design of an effective physical protection system includes the determination of physical protection system objectives, initial design of a physical protection system, design evaluation, and probably a redesign or refinement. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the physical protection system, that is, open-quotes what to protect against whom.close quotes The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control elements, procedures, communication devices, and protective forces personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. This paper reviews the physical protection system design and methodology mentioned above. Examples of the steps required and a brief introduction to some of the technologies used in modem physical protections system are given

  6. Consumer protection in energy law

    International Nuclear Information System (INIS)

    De Krom, H.; Van Leeuwen, E.T.W.M.; Schaap, A.R.

    2009-01-01

    This article provides an overview of the protection that energy consumers are entitled to in the framework of the energy law. First we provide an overview of the parties operating in the energy market that consumers deal with directly or indirectly. Next the supply permit is addressed, which provides an important safeguard for consumers against unreliable suppliers. In part 4 we address the protection of the consumer prior to and while closing an agreement. Part 5 addresses the supplier's obligations. Part 6 discusses the judicial processes that are available to the consumer in case of (partial) non-observance of the agreement. We also pay attention to the compensation schemes and emergency supply in case a supplier is permanently unable to fulfill his obligations. Finally, we address the termination of the agreement. [nl

  7. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  8. Software piracy: Physical and legal protection methods

    Energy Technology Data Exchange (ETDEWEB)

    Orlandi, E

    1991-02-01

    Advantages and disadvantages, in terms of reliability and cost, are assessed for different physical and legal methods of protection of computer software, e.g., encryption and key management. The paper notes, however, that no protection system is 100% safe; the best approach is to implement a sufficient amount of protection such as to make piracy uneconomical relative to the risks involved.

  9. A New Physical Protection System Design and Evaluation Process

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Kim, Myungsu; Bae, Yeongkyoung; Na, Janghwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    International Atomic Energy Agency(IAEA) had established security-related department and has been strengthening security measures against possible sabotage. IAEA enforces the recommendations for the physical protection of NPPs in the INFCIRC/ 225/Rev.5 to the member states and U.S. NRC also enforces the similar requirements in 10 CFR 73.55. Thus, in order to let Korean NPPs meet the new requirements in INFCIRC/225/Rev.5 or U.S. NRC requirements, Korea nuclear licensee should develop or establish appropriate physical protection system (PPS) design methods for the physical protection of the operating NPPs and new NPPs. KHNP is doing the project of 'Development of APR1400 Physical Protection System Design (2012- 2015, KHNP/KAERI /KEPCO E-C)'. This paper describes overview of a physical protection system (PPS) design and evaluation for an advanced nuclear power plant. It found that a new physical protection system (PPS)design and evaluation. KHNP is doing the project of Physical Protection System design according to U.S. NRC requirements and IAEA requirements in INFCIRC /225 /Rev.5 and will complete by 7.31, 2015 for development of APR1400 Physical Protection System. After completing this project, the results of project are expected to apply new NPPs.

  10. Physical protection of nuclear facilities and materials. Safeguards and the role of the IAEA in physical protection

    International Nuclear Information System (INIS)

    Smolej, M.

    1999-01-01

    The physical protection and security of nuclear facilities and materials concerns utilities, manufactures, the general public, and those who are responsible for licensing and regulating such facilities. The requirements and process to ensure an acceptable physical protection and security system have been evolutionary in nature. This paper reviews the first step of such process: the State's safeguards system and the international safeguards system of the International Atomic Energy Agency (IAEA), including the relationship between these two safeguards systems. The elements of these systems that are reviewed include the State System of Accounting for and Control of Nuclear Material, physical protection measures, and containment and surveillance measures. In addition, the interactions between the State, the facility operator, and the IAEA are described. The paper addresses the IAEA safeguards system, including material accountancy and containment and surveillance; the State safeguards system, including material control and accountancy, and physical protection; the role of the IAEA in physical protection; a summary of safeguards system interactions.(author)

  11. Physical implementation of protected qubits

    International Nuclear Information System (INIS)

    Douçot, B; Ioffe, L B

    2012-01-01

    We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory. We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays. We focus on two dual realizations: in one the protected state is stored in the parity of the Cooper pair number, in the other, in the parity of the flux number. In both cases the superconducting arrays allow a number of fault-tolerant operations that should make the universal quantum computation possible. (key issues reviews)

  12. Physical implementation of protected qubits

    Science.gov (United States)

    Douçot, B.; Ioffe, L. B.

    2012-07-01

    We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory. We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays. We focus on two dual realizations: in one the protected state is stored in the parity of the Cooper pair number, in the other, in the parity of the flux number. In both cases the superconducting arrays allow a number of fault-tolerant operations that should make the universal quantum computation possible.

  13. Physical protection enhancements in Japan and the role of JNES

    International Nuclear Information System (INIS)

    Nishida, Seishi

    2010-01-01

    The possibility of terrorist attacks on nuclear material and nuclear facilities has posed a continuing threat since the events of September 11, 2001. The Japanese government has strengthened its physical protection regime, including legislative amendments, due to the necessity of upgrading the degree of protection of nuclear facilities to be equivalent to international levels, in order to cope effectively with the threat of theft of nuclear material and sabotage of nuclear facilities. In relation to these enhancements of the physical protection regime in Japan, the Japan Nuclear Energy Safety Organization (JNES) gives technical support to the regulatory agency, the Nuclear and Industrial Safety Agency (NISA), in the area of physical protection examination and inspection, through the development of technical guides for inspectors and operators, acquisition, analysis, and evaluation of related information, and international cooperation. This support is aimed at ensuring the consistent implementation of physical protection measures in Japan. In the future also, the JNES will provide further support to the NISA aimed at a well-developed physical protection framework in Japan, giving consideration to international physical protection enhancements such as publication of IAEA nuclear security series documents, inter alia Recommendations for physical protection of nuclear material and nuclear facilities being also Revision 5 of INFCIRC 225. (author)

  14. Physical Protection of Nuclear Safeguards Technology

    International Nuclear Information System (INIS)

    Hoskins, Richard

    2004-01-01

    IAEA's Nuclear Security Plan is established to assist Member States in implementing effective measures against nuclear terrorism. Four potential threats were identified: theft of nuclear weapon, nuclear explosive device, radiological dispersal device and an attack on radiation facility. In order to achieve effective protection of nuclear materials and facilities, the IAEA sponsored the Convention of the Physical Protection of Nuclear Materials which focuses on the protection of nuclear materials 'in international transport. The IAEA also promoted INFCIRC/255 entitled the Physical Protection of Nuclear Materials and Nuclear Facilities and published TECDOC/967 for the protection of nuclear materials and facilities against theft and sabotage and during transport. Assistance is available for the Member States through the International Physical Protection Advisory Service (IPPAS) and the International Nuclear Security Advisory Service (INSServ). (author)

  15. The international safeguards system and physical protection

    International Nuclear Information System (INIS)

    Canty, M.J.; Lauppe, W.D.; Richter, B.; Stein, G.

    1990-02-01

    The report summarizes and explains facts and aspects of the IAEA safeguards performed within the framework of the Non-Proliferation Treaty, and shows perspectives to be discussed by the NPT Review Conferences in 1990 and 1995. The technical background of potential misuse of nuclear materials for military purposes is explained in connection with the physical protection regime of the international safeguards, referring to recent developments for improvement of technical measures for material containment and surveillance. Most attention is given to the peaceful uses of nuclear energy and their surveillance by the IAEA safeguards, including such new technologies and applications as controlled nuclear fusion, laser techniques for uranium enrichment, and particle accelerators. The report's concluding analyses of the current situation show potentials for improvement and desirable or necessary consequences to be drawn for the international safeguards system, also taking into account recent discussions on the parliamentary level. (orig./HP) [de

  16. An integrated system for physical protection

    International Nuclear Information System (INIS)

    Kumar, Ranajit

    2001-01-01

    An Integrated Physical Protection System (IPPS) was developed for the consolidation of all sub systems, sensors and elements related to physical protection for an efficient and effective security environment of a facility. An effective physical protection system discharges the functions of detection, delay, communication, response, access control etc. IPPS performs, controls and monitors all the above functionality and helps in taking quick action on occurrence of unusual incidents by instantly reporting the incident in easily understandable audio, video, graphical and textual format and also by initiating automatic interactions among sub-systems

  17. High energy overcurrent protective device

    Science.gov (United States)

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  18. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1989-12-01

    A Technical Committee on Physical Protection of Nuclear Material met in April-May 1989 to advise on the need to update the recommendations contained in document INFCIRC/225/Rev.1 and on any changes considered to be necessary. The Technical Committee indicated a number of such changes, reflecting mainly: the international consensus established in respect of the Convention on the Physical Protection of Nuclear Material; the experience gained since 1977; and a wish to give equal treatment to protection against the theft of nuclear material and protection against the sabotage of nuclear facilities. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. 1 tab

  19. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-01-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  20. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [es

  1. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [fr

  2. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1985-01-01

    In this session, physical protection, nuclear material accounting and control, and containment and surveillance have been discussed, with emphasis on the interactions of these measures within the context of IAEA safeguards. In addition, the current physical protection equipment and techniques have been reviewed. The interactions can be summarized as follows. Although physical protection is a fundamental element of IAEA safeguards, it is solely a state/facility operator responsibility. While the IAEA has an interest in promoting the implementation of effective physical protection systems, it serves only in an advisory capacity. Nuclear material accounting directly involves the state, facility operator, and the IAEA. Facility records and reports provided by the state are independently verified by the IAEA. The SSAC is of fundamental importance in this process. Containment and surveillance measures are used by the UAEA. Installation and routine use of C/S equipment must be approved by the state and facility operator, and must not affect facility operations or safety

  3. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  4. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  5. Physical protection equipment study. Final report

    International Nuclear Information System (INIS)

    Haberman, W.

    1977-06-01

    This report summarizes the work performed by MITRE for the U.S. Nuclear Regulatory Commission. The major products of this effort are a Catalog of Physical Protection Equipment, a Guide for Evaluation of Physical Protection Equipment, a book of Reference Materials, and a set of guidelines for use in the development of a methodology for measuring levels of security system effectiveness. A summary of recommendations resulting from this study is also presented

  6. Application of a Physical Protection to HANARO

    International Nuclear Information System (INIS)

    Ryu, Jeong-Soo; Park, Cheol; Cho, Yeong-Garp; Lee, Jung-Hee; Jung, Hoan-Sung

    2006-01-01

    After the fearful terror attack on September 11, 2001, in USA, international nuclear society has strengthened its physical protection system against nuclear reactors to prevent the theft of nuclear materials and its ill-intended application, and the destruction of nuclear installations and the obstruction of an operation in such facilities. In the nuclear agreements between Korea and USA or other countries, the observance of the IAEA recommendations on a physical protection for a nuclear installation and nuclear materials is clearly requested. Since IAEA recommendation on physical protection was revised more strictly, KAERI made a plan to follow the strengthened IAEA recommendation and to improve the physical protection for the HANARO and fuel fabrication building. In response to the plan for the improvement of the physical protection system, the reactor hall, control room, and fuel fabrication building was established as the boundary of a physical protection concept. Accordingly, the existing doors were recommended to be replaced with new security doors against a terror attack. Therefore, security doors reflecting the design characteristics of the HANARO have been developed to replace the existing doors, and the design, fabrication, driving and leak tight tests were carried out before an installation. For securing a safety and easy operation of the security doors, HANARO access control system (HANACS) has been developed to perform a real time communication and identification of persons for an access control

  7. Experimental medium energy physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses the following topics: search for the ξ(2230) at LEAR; hyperon-antihyperon production studies at LEAR; relativistic proton-nucleus and heavy ion-nucleus collisions at the SPS; search for the H dibaryon at the AGS; hypernuclear physics research; CEBAF activities; pion physics at PSI; and H particle experiment design and development

  8. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  9. Design and evaluation of physical protection systems of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jin Soo; Lee, Hyun Chul; Hwang, In Koo; Kwack, Eun Ho; Choi, Yung Myung

    2001-06-01

    Nuclear material and safety equipment of nuclear facilities are required to be protected against any kind of theft or sabotage. Physical protection is one of the measures to prevent such illegally potential threats for public security. It should cover all the cases of use, storage, and transportation of nuclear material. A physical protection system of a facility consists of exterior intrusion sensors, interior intrusion sensors, an alarm assessment and communication system, entry control systems, access delay equipment, etc. The design of an effective physical protection system requires a comprehensive approach in which the designers define the objective of the system, establish an initial design, and evaluate the proposed design. The evaluation results are used to determine whether or not the initial design should be modified and improved. Some modelling techniques are commonly used to analyse and evaluate the performance of a physical protection system. Korea Atomic Energy Research Institute(KAERI) has developed a prototype of software as a part of a full computer model for effectiveness evaluation for physical protection systems. The input data elements for the prototype, contain the type of adversary, tactics, protection equipment, and the attributes of each protection component. This report contains the functional and structural requirements defined in the development of the evaluation computer model.

  10. Physical protection of radioactive material in transport

    International Nuclear Information System (INIS)

    1975-01-01

    Safety in the transport of radioactive material is ensured by enclosing the material, when necessary, in packaging which prevents its dispersal and which absorbs to any adequate extent any radiation emitted by the material. Transport workers, the general public and the environment are thus protected against the harmful effects of the radioactive material. The packaging also serves the purpose of protecting its contents against the effects of rough handling and mishaps under normal transport conditions, and against the severe stresses and high temperatures that could be encountered in accidents accompanied by fires. If the radioactive material is also fissile, special design features are incorporated to prevent any possibility of criticality under normal transport conditions and in accidents. The safe transport requirements are designed to afford protection against unintentional opening of packages in normal handling and transport conditions and against damage in severe accident conditions; whereas the physical protection requirements are designed to prevent intentional opening of packages and deliberate damage. This clearly illustrates the difference in philosophical approach underlying the requirements for safe transport and for physical protection during transport. This difference in approach is, perhaps, most easily seen in the differing requirements for marking of consignments. While safety considerations dictate that packages be clearly labelled, physical protection considerations urge restraint in the use of special labels. Careful consideration must be given to such differences in approach in any attempt to harmonize the safety and physical protection aspects of transport. (author)

  11. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Science.gov (United States)

    2010-01-01

    ... fuel in transit. 73.37 Section 73.37 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.37 Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1...

  12. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  13. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  14. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  15. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  16. [Medium energy particle physics

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of 3 H, 3 He, 4 He; Detailed Balance in pd right reversible γ 3 H; Interaction Dynamics); and Search for the Rare Decay Μ + → e + + γ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects

  17. INMM Physical Protection Technical Working Group Workshops

    International Nuclear Information System (INIS)

    Williams, J.D.

    1982-01-01

    The Institute of Nuclear Materials Management (INMM) established the Physical Protection Technical Working Group to be a focal point for INMM activities related to the physical protection of nuclear materials and facilities. The Technical Working Group has sponsored workshops with major emphasis on intrusion detection systems, entry control systems, and security personnel training. The format for these workshops has consisted of a series of small informal group discussions on specific subject matter which allows direct participation by the attendees and the exchange of ideas, experiences, and insights. This paper will introduce the reader to the activities of the Physical Protection Technical Working Group, to identify the workshops which have been held, and to serve as an introduction to the following three papers of this session

  18. Physics at collider energy

    International Nuclear Information System (INIS)

    Horgan, R.; Jacob, M.

    1981-01-01

    Present expectations for hadron interactions at energies of the order of 500 GeV or greater in the centre of mass are reviewed. In particular, prospects for producing the weak vector bosons, information about large cross-sections as available from cosmic-ray results, and finally anticipated jet phenomena are discussed. (orig.)

  19. Protecting and securing the energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Gillham, B. [Conoco Canada Ltd., Calgary, AB (Canada)

    2002-07-01

    Critical Infrastructure Protection (CIP) includes protection against physical and cyber attacks as well as potential interruptions and vulnerabilities such as natural disasters and human error. CIP makes it possible to deal with the consequences of infrastructure failures that can have regional, national and international impacts. The energy sector is challenged because there has been an irreversible move to automated control systems and electronic transactions. In addition, due to mergers and joint ventures, the line between traditional oil, natural gas companies and power companies is not perfectly clear. Energy industries can no longer be seen in isolation of each other because they depend on other critical infrastructures. Industry should lead CIP programs through risk management assessments, develop and implement global information technology standards, and enhance response and recovery planning. The National Petroleum Council (NPC) will continue to develop the capabilities of the newly formed Information Sharing and Assessment Centre (ISAC). The sector will also continue to develop common vulnerability assessment goals. It was noted that response and recovery plans must include the cyber dimension, because there has been an increasing number of scans and probes from the Internet since the events of September 11, 2001. It was noted that physical incidents can often turn into cyber incidents and vice versa.

  20. Physical protection nuclear facilities against sabotage

    International Nuclear Information System (INIS)

    Hagemann, A.

    2001-01-01

    Full text: INFCIRC 225 Rev. 4 has introduced the Design Basis Threat, DBT, as a key element of the states physical protection system. The DBT is a definition which determines the level of physical protection of nuclear material during use, storage, transport and of nuclear facilities. It the basis for physical protection concepts and for the design of measures the operator or licensee has to provide. By this means it is also a definition of the responsibility for the physical protection which the operator accepts with the license. The new chapter designated to the physical protection against sabotage which has resulted also in the amendment of the title in INFCIRC 225 demonstrates the grown international concern about the potential consequences of sabotage. More than the physical protection against unauthorized removal the physical protection against sabotage has interfaces with the nuclear safety field. The basis of protection against sabotage therefore is much more based on the facility design-the safety design of the facility. Using the DBT the competent authority is in the position to determine the level of protection against sabotage and the remaining risk which has to be accepted. This risk of course depends on the real threat which is not known in advance. The acceptance of the remaining risk depends on both the assessment of the threat, its credibility and the potential consequences. There has been no serious act of sabotage in the past nor an attempt of. Despite of this the Harnun attack of the Japanese underground and some other recent terrorist activities could have given reasons to reconsider what threat might be credible. The German physical protection system has been developed since the increasing terrorist activities in the 1970s. From the beginning the protection against sabotage played an important role in the German system of physical protection. The requirements for the physical protection against unauthorized removal and against sabotage were

  1. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  2. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  3. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  4. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  5. Energy: Between Physics and Metaphysics.

    Science.gov (United States)

    Bunge, Mario

    2000-01-01

    The general concept of energy is somewhat unclear as long as it is confined to physics since every chapter of it defines its own particular concept of energy. The general concept can be elucidated in terms of the hypergeneral concepts of concrete things and changeability. Concludes that physicists and philosophers can learn from one another.…

  6. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  7. Risk Assessment Methodology for Protecting Our Critical Physical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    BIRINGER,BETTY E.; DANNEELS,JEFFREY J.

    2000-12-13

    Critical infrastructures are central to our national defense and our economic well-being, but many are taken for granted. Presidential Decision Directive (PDD) 63 highlights the importance of eight of our critical infrastructures and outlines a plan for action. Greatly enhanced physical security systems will be required to protect these national assets from new and emerging threats. Sandia National Laboratories has been the lead laboratory for the Department of Energy (DOE) in developing and deploying physical security systems for the past twenty-five years. Many of the tools, processes, and systems employed in the protection of high consequence facilities can be adapted to the civilian infrastructure.

  8. Physical protection of nuclear operational units

    International Nuclear Information System (INIS)

    1981-07-01

    The general principles of and basic requirements for the physical protection of operational units in the nuclear field are established. They concern the operational units whose activities are related with production, utilization, processing, reprocessing, handling, transport or storage of materials of interest for the Brazilian Nuclear Program. (I.C.R.) [pt

  9. Physical protection philosophy and techniques in Sweden

    International Nuclear Information System (INIS)

    Dufva, B.

    1988-01-01

    The circumstances for the protection of nuclear power plants are special in Sweden. A very important factor is that armed guards at the facilities are alien to the Swedish society. They do not use them. The Swedish concept of physical protection accepts that the aggressor will get into the facility. With this in mind, the Swedish Nuclear Power Inspectorate (SKI) has established the policy that administrative, technical, and organizational measures will be directed toward preventing an aggressor from damaging the reactor, even if he has occupied the facility. In addition, the best conditions possible shall be established for the operator and the police to reoccupy the plant. The author believes this policy is different from that of many other countries. Therefore, he focusses on the Swedish philosophy and techniques for the physical protection of nuclear power plants

  10. [High energy physics

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1991-01-01

    An intense analysis effort on the data we obtained in a seven month run on E704 last year has produced a flood of new results on polarization effects in particle production at 200 GeV/c. We are fortunate to be able to report in detail on those results. Our other Fermilab experiment, E683 (photoproduction of jets) has been delayed an unbelievable amount of time by Fermilab schedule slippages. It was scheduled and ready for beam two years ago exclamation point As this report is being written, we have been running for two months and are expecting four months of production data taking. In this report we show some of our preliminary results. In addition we are near the end of a six month run on our CERN experiment, NA47 (SMC) which will measure the spin dependent structure functions for the proton and neutron. It is with a sense of relief, mixed with pride, that we report that all the equipment which we constructed for that experiment is currently working as designed. The random coincidence of accelerator schedules has left us slightly dazed, but all experiments are getting done and analyzed in a timely fashion. As members of the Solenoidal Detector Collaboration, we have been preparing for the only currently approved experiment at the SSC. Here we report on our scintillating fiber tracker design and simulation activities. In addition we report the results of our investigation of the detector response to heavy Z particles. Since our last report, we have joined the D0 collaboration with the primary aim of contributing to the D0 upgrade over the next few years. It is also important for us to gain experience in collider physics during the period leading up to the SDC turn-on

  11. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  12. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  13. Status of physical protection systems of nuclear facilities; survey report

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kwack, Eun Ho; Ahn, Jin Soo; Lee, Hyun Chul; Kim, Jung Soo

    2002-02-01

    This report presents a survey on the physical protection equipment for a nuclear power plant. This survey was conducted by Korea Atomic Energy Research Institute as a part of the project, 'Development of Technologies for National Control of and Accountancy for Nuclear Material,' funded by the Ministry of Science and Technology of Korea. A physical protection system of a nuclear plant includes outer and inner fences, intrusion detection sensors, alarm generation system, illumination equipment, central monitoring and control station, entry control and management system, etc. The outermost fence indicates the boundary of the plant area and prevents a simple or unintentional intrusion. The inner fence area of each plant unit associated with intrusion detection sensors, illuminators, monitoring cameras, serves the key role for physical protection function for the nuclear plant

  14. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  15. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-11-01

    The design of an effective physical protection system (PPS) includes the determination of the PPS objectives, the initial design of a PPS, the evaluation of the design, and probably, the redesign or refinement of the system. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the PPS, that is, ''what to protect against whom.'' The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control devices, communication devices, procedures, and protective force personnel to meet the objectives of the system. Once a PPS is designed, it must be analyzed and evaluated to ensure it meets the PPS objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. After the system is installed, the threat and system parameters may change with time. If they do, the analysis must be performed periodically to ensure the system objectives are still being met

  16. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  17. Physical protection cooperation with Former Soviet Union countries

    International Nuclear Information System (INIS)

    Williams, J.D.

    1995-01-01

    This paper presents an overview of physical protection cooperation activities between Sandia (SNL) and the Former Soviet Union (FSU) regarding Material Protection Control and Accounting (MPC ampersand A) responsibilities. Begun four years ago as part of the Safe, Secure Dismantlement Program, this project is intended to stem proliferation of weapons of mass destruction. Purpose of the program is to accelerate progress toward a goal shared by both Russia and the United States: to reduce the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This will be accomplished by strengthening the MPC ampersand A systems in both, countries. This new program (US Department of Energy Laboratory-to-Laboratory MPC ampersand A program) is designed to complement Government-to-Government programs sponsored by US Senators Nunn and Lugar. US and Russian representatives exchange visits and discuss physical protection philosophies. Russian representatives have received formal training in the US process of system design and analysis to include the design of an effective physical protection system, determination of physical protection system objectives, initial design of a physical protection system, evaluation of the design, and often redesign or refinement of the existing system. Some Russian organizations have philosophies similar to those of the United States, but when they differ, the US and Russian representatives must negotiate. Other Russian organizations, because of heavy reliance on guard forces, have not developed a systematic design process. Cooperative work between US national laboratories and Russian counterparts has resulted in major physical protection enhancements at a Russian demonstration site and other advancements for Laboratory-to-Laboratory projects

  18. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  19. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  20. New evaluation system for antisabotage physical protection

    International Nuclear Information System (INIS)

    Itakura, Shuichiro; Nakagome, Yoshihiro

    2008-01-01

    The discussion on an appropriate level of physical protection has not been elaborated so far because of the confidentiality of its nature, thus resulting in a lack of consensus on this issue. In view of this context, a new system for the evaluation of antisabotage physical protection systems is proposed in this paper, in which we introduce openness to a certain extent in the process of the evaluation. The proposed system is composed of the following three elements; (1) establishment of an evaluation basis threat (EBT), which should be less strong but more likely to occur than the design basis threat (DBT); (2) employment of realistic standard scenarios in the process of evaluation; (3) disclosure of results of evaluation implemented based on the above EBT and standard scenarios. It is expected that this considerably open system will foment peace of mind among citizens as well as create a deterrent effect that would minimize the occurrence of sabotage on nuclear facilities. (author)

  1. The physical protection of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Technical Committee met 21-25 June 1993 to consider changes to INFCIRC/225/Rev.2. The revised document, INFCIRC/225/Rev.3, reflects the Technical Committee recommendations for changes to the text as well as other modifications determined necessary to advance the consistency of the Categorization Table in INFCIRC/225/Rev.2 with the categorization table contained in The Convention of the Physical Protection of Nuclear Material and to reflect additional improvements presented by the experts. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  2. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1993-09-01

    Technical Committee met 21-25 June 1993 to consider changes to INFCIRC/225/Rev.2. The revised document, INFCIRC/225/Rev.3, reflects the Technical Committee recommendations for changes to the text as well as other modifications determined necessary to advance the consistency of the Categorization Table in INFCIRC/225/Rev.2 with the categorization table contained in The Convention of the Physical Protection of Nuclear Material and to reflect additional improvements presented by the experts. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  3. Applications of fiber optics in physical protection

    International Nuclear Information System (INIS)

    Buckle, T.H.

    1994-03-01

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors

  4. Low-energy nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    The 1985 annual report of the Schuster Laboratory, Manchester University, England, on low-energy nuclear physics, is presented. The report includes experiments involving: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects. Technical developments are also described. (U.K.)

  5. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  6. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  7. Assessment of physical protection systems: EVA method

    International Nuclear Information System (INIS)

    Bernard, J.-L.; Lamotte, C.; Jorda, A.

    2001-01-01

    CEA's missions in various sectors of activity such as nuclear, defence, industrial contracts and the associated regulatory requirements, make it necessary to develop a strategy in the field of physical protection. In particular, firms having nuclear materials are subject to the July 25, 1980 law no.80-572 on the protection and control of nuclear materials. A holding permit delivered by the regulatory authority is conditioned to the protection by the operator of the nuclear materials used. In France it is the nuclear operator who must demonstrate, in the form of a security study, that potential aggressors would be neutralised before they could escape with the material. To meet these requirements, we have developed methods to assess the vulnerability of our facilities. The EVA method, the French acronym for 'Evaluation de la vulnerabilite des Acces' (access vulnerability system) allows dealing with internal and external threats involving brutal actions. In scenarios relating to external threat, the intruders get past the various barriers of our protection system, attempting to steal a large volume of material in one swoop and then escape. In the case of internal threat, the goal is the same. However, as the intruder usually has access to the material in the scope of his activities, the action begins at the level of the target. Our protection system is based on in-depth defense where the intruders are detected and then delayed in their advance towards their target to allow time for intervention forces to intercept them

  8. Physical protection of nuclear materials and facilities in CEA

    International Nuclear Information System (INIS)

    Garnier-Gratia, M.-H.; Jorda, A.

    2001-01-01

    Full text: CEA (Commissariat a l'Energie Atomique), as nuclear operator, is responsible for the control and protection of their nuclear materials. Inside CEA, DCS (Central Security Division) is in charge of the security matters, DCS defines the CEA strategy in this field, especially in physical protection. The paper will present the physical protection strategy of CEA. DCS defines the rules and methods; the operators have to apply in order to fulfill the security objectives of CEA. CEA has to provide the regulatory authority with documents proving that it is in accordance with the requirements of the 25th July 1980 law and 12th May 1981 decree. It has to implement all the necessary means in order to achieve the results requested by the regulatory authority. All these arrangements are described in the 'license and control file'. This file should specify the facility safeguards and physical protection system. Accounting measures are also described. In this file, the petitioner has to justify its capacity for holding nuclear materials and for exercising authorized activities on them. So the organization and the installed means have to be described in this authorization file. For physical protection, containment, surveillance and physical protection measures are presented: Containment measures must prevent the unauthorized or unjustified movements of nuclear material in the framework of the authorized activities; Surveillance measures must guarantee the integrity of the containment, check that no material is exiting by an abnormal channel; Physical protection measures for the materials, the premises and the facilities are intended to protect them against malevolent actions by means of security systems. The Central Security Division has established guidelines to provide guidance to the nuclear materials holders in writing such files. Each holding unit has to establish a 'license and control file' and each CEA site establishes a 'site license and control file

  9. Energy policies and climate protection

    International Nuclear Information System (INIS)

    Kerr, A.

    1994-01-01

    One year after the United Nations Conference on Environment and Development, an assessment is made of what progress is being made towards sustainability. The work of the Intergovernmental Panel on Climate Change (IPCC) on climate change has provided the expert background for action to protect the climate. It lists some of the measured and noticed first signs of climate change as identified by the German Bundestag Enquete Commission, and mentions the effects of climatically induced catastrophes on the world's insurance industry and the fact that the Third World is likely to suffer most from climatic change. A Greenpeace report advocates the phasing out of fossil fuels and of nuclear power as a way to combat climatic change. The article reviews developments relevant to protecting the climate worldwide and specifically in the Netherlands, incorporating Greenpeace's views on these

  10. Energy evaluation of protection effectiveness of anti-vibration gloves.

    Science.gov (United States)

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-09-01

    This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.

  11. Nuclear energy, environmental protection and international conflicts

    International Nuclear Information System (INIS)

    Menke-Glueckert, P.

    1975-01-01

    Some general and some critical remarks on: nuclear energy as an image for politics; nuclear energy as a model for research planning; nuclear controversy; the principle of precaution in nuclear and radiation protection law; reactor safety on probation; advantages and economy of nuclear energy; communication difficulties; the special role of nuclear energy; the need for European site planning; supervision of fissionable materials; the world's energy household in danger; global structure politics and nuclear energy; nuclear energy with a capacity for social innovations. (HP/LN) [de

  12. Low energy bar pp physics

    International Nuclear Information System (INIS)

    Amsler, C.; Crowe, K.

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of bar pp annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and bar pp interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with bar p's at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs

  13. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  14. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Physical protection. Vol. 6 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report M ethodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) , IAEA-TECDOC-1434 (2004), together with its previous report G uidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEATECDOC-1362 (2003). This INPRO manual is comprised of an overview volume and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The INPRO Manual for the area of physical protection (Volume 6) provides guidance to the assessor of an INS (innovative nuclear energy system) under a physical protection regime in a country that is planning to install a nuclear power program (or maintaining or enlarging an existing one), and describes the application of the

  15. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  16. Radiation protection in nuclear energy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  17. Diet discussion begins for signing convention on physical protection

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    As a part of the amendment of the domestic laws required for signing the 'Convention on the Physical Protection of Nuclear Materials', the government placed the bill for the partial amendment of the 'Law for the Regulations of Nuclear Source Materials, Nuclear Fuel Materials and Reactors' to the current session of the Diet, following the formal approval by the Cabinet on March 11. This bill provides for punishment in the case of endangering or threat related to the handling and use of nuclear materials. The Atomic Energy Commission proposed in December, last year the early signing of the Convention and the legislation on the antiterrorism and physical protection measures required for the signing. The amendment consists mainly of two parts: one stipulates the obligation for those who manage the handling of nuclear materials to take the proper measures for their physical protection, and the other stipulates the punishment of the crimes related to nuclear materials. Regarding the other amendment of the relevant domestic laws, the Criminal Law was partially amended in June, last year. The Aviation Act and the Ships Safety Act, both related to the transport of nuclear materials, will not be amended, but only the relevant Ministerial Ordinances will be revised. The Convention on the Physical Protection of Nuclear Materials came into force in February, 1987, and consists of 23 articles. (Kako, I.)

  18. Critical energy infrastructure protection in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, Angela [Canadian Centre for Intelligence and Security Studies, Carleton University (Canada)

    2010-12-15

    In Canada government acknowledged the need to protect energy assets against attacks. However, so far no strategy has been developed. The aim of this report is to present the characteristics of the energy sector in Canada, the threats, and how the government is responding to those threats. The energy sector in Canada is concentrated and diverse and is under not only terrorism or cyber attacks threats but also environmental threats. This report shows that the Government of Canada is focusing on the protection and assurance of important energy infrastructures but that they are facing several challenges resulting in long delays in the adoption of a formal strategy.

  19. Nuclear energy for environmental protection

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1992-01-01

    In 1990 nuclear energy supplied about 17% of the total electric power produced in the world, what makes it the third most used power source after coal and hydropower. In this paper the advantages of using nuclear power for generating large quantities of electric power are presented

  20. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  1. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  2. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  3. Physical protection of plutonium in USA

    International Nuclear Information System (INIS)

    Kaseda, Noboru

    1974-01-01

    The present situation of nuclear substance protection in USA is introduced for reference sake. The protection regulation has been revised since 1973 as follows: the protection plan once approved by AEC shall not be modified without the prior approval by AEC; AEC shall inspect the execution of the approved protection plan by measuring and testing nuclear substances and related equipments, and by checking the records of retention, use and transportation of nuclear substances; in the event of finding some imperfection, those concerned with the facilities shall improve the imperfection, and shall report the results to AEC: in the event of danger of theft or obstruction, report shall be made to AEC, and AEC shall contact with FBI, custom bureau, coast guard or CIA according to the matter. The requisites of AEC are briefly described. For atomic power plants, AEC has not prescribed requirements, but regulates by tentative system. In transportation, the protection requirements of AEC are applied to the cases of 2 kg or more Pu and 5 kg or more U-235 in 20% or more enriched U, and the regulations for road, rail, sea and air transport are prescribed separately. AEC has published a regulation guide concerning ten fields, e.g. power reactor, research reactor, fuel processing facility and environment. Although AEC has strengthened the protection system, several documents have been published and aroused argument, which forced AEC to examine them. Two documents are introduced. One is ''Profiles - the curve of binding energy'' published in the ''New Yorker'' in 1973, and the other is ''Nuclear theft: risks and safeguards'', published in 1974. AEC staff evaluation report, GESMO report and others are outlined. (Iwakiri, K.)

  4. International Physical Protection Advisory Service (IPPAS) Guidelines

    International Nuclear Information System (INIS)

    2014-01-01

    The International Physical Protection Advisory Service (IPPAS) was established by the IAEA in 1995 and is a fundamental part of the IAEA’s efforts to assist States, upon request, to establish and maintain an effective national nuclear security regime to protect against the unauthorized removal of nuclear and other radioactive material, and against the sabotage of nuclear and other associated facilities, as well as material during transport, while recognizing that the ultimate responsibility for physical protection lies with the State. IPPAS provides peer review on implementing relevant international instruments, in particular the Convention on the Physical Protection of Nuclear Material (CPPNM), together with the 2005 Amendment, and on implementing the IAEA Nuclear Security Series of guidance publications, in particular Fundamentals and Recommendations. IPPAS missions compare (insofar as this is possible) the procedures and practices employed by a State with the obligations specified under the CPPNM and the 2005 Amendment, as well as with the existing international consensus guidelines provided in relevant IAEA Nuclear Security Series publications. Since 1996, 63 IPPAS missions have been conducted in 40 countries, including 15 follow-up missions, as well as the recent mission to the IAEA Office of Safeguards Analytical Services laboratories, in Seibersdorf. More than 140 experts from 34 Member States have participated in the conduct of IPPAS missions as IPPAS team members or team leaders. The updated IPPAS guidelines reflect a modular approach to make them more flexible and responsive to the needs of States. The modular approach is an innovation of great value, ensuring the degree of flexibility required to fit individual national contexts, practices and objectives as expressed by the requesting States. In particular, it also offers States the opportunity to expand the scope of a requested IPPAS mission to embrace its nuclear security regime for the protection of

  5. Physics program at SPEAR energies

    International Nuclear Information System (INIS)

    Seiden, A.

    1982-01-01

    The author presents below a partial review of the physics program remaining to be completed over the SPEAR energy range along with examples of the running time needed for selected topics. The topics discussed are: meson spectroscopy from the psi; details of production and decay for the n/sub c/; charmed hadron spectroscopy; weak decays of D and F; and mechanism of e/sup +/e/sup -/ → qq-bar → Hadron States

  6. High Energy Physics in Europe

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A thorough survey of the present and possible future activities and resources in high energy physics in the CERN Member States has been carried out by a Working Group of ECFA (European Committee for Future Accelerators) under the Chairmanship of John Mulvey. The aim has been to obtain a view of the present European scene and to see whether it looks well adapted to the effective exploitation of possible future machines in Europe (particular LEP) and the rest of the world

  7. Studies in medium energy physics

    International Nuclear Information System (INIS)

    Green, A.; Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.E.; Worn, S.D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the US Department of Energy through special Research Grant DE-FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  8. PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION WORKING GROUP: METHODOLOGY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bari R. A.; Whitlock, J.; Therios, I.U.; Peterson, P.F.

    2012-11-14

    We summarize the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection (PR and PP) of Generation IV nuclear energy systems. We intend the results of the evaluations performed with the methodology for three types of users: system designers, program policy makers, and external stakeholders. The PR and PP Working Group developed the methodology through a series of demonstration and case studies. Over the past few years various national and international groups have applied the methodology to nuclear energy system designs as well as to developing approaches to advanced safeguards.

  9. Proliferation resistance and physical protection working group: methodology and applications

    International Nuclear Information System (INIS)

    Bari, Robert A.; Whitlock, Jeremy J.; Therios, Ike U.; Peterson, P.F.

    2012-01-01

    We summarize the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection (PR and PP) of Generation IV nuclear energy systems. We intend the results of the evaluations performed with the methodology for three types of users: system designers, program policy makers, and external stakeholders. The PR and PP Working Group developed the methodology through a series of demonstration and case studies. Over the past few years various national and international groups have applied the methodology to nuclear energy system designs as well as to developing approaches to advanced safeguards.

  10. States agree on stronger physical protection regime

    International Nuclear Information System (INIS)

    2005-01-01

    Full text: Delegates from 89 countries agreed on 8 July to fundamental changes that will substantially strengthen the Convention on the Physical Protection of Nuclear Material (CPPNM). IAEA Director General Mohamed ElBaradei welcomed the agreement in saying 'This new and stronger treaty is an important step towards greater nuclear security by combating, preventing, and ultimately punishing those who would engage in nuclear theft, sabotage or even terrorism. It demonstrates that there is indeed a global commitment to remedy weaknesses in our nuclear security regime.' The amended CPPNM makes it legally binding for States Parties to protect nuclear facilities and material in peaceful domestic use, storage as well as transport. It will also provide for expanded cooperation between and among States regarding rapid measures to locate and recover stolen or smuggled nuclear material, mitigate any radiological consequences of sabotage, and prevent and combat related offences. The original CPPNM applied only to nuclear material in international transport. Conference President Dr. Alec Baer said 'All 89 delegations demonstrated real unity of purpose. They put aside some very genuine national concerns in favour of the global interest and the result is a much improved convention that is better suited to addressing the nuclear security challenges we currently face.' The new rules will come into effect once they have been ratified by two-thirds of the 112 States Parties of the Convention, expected to take several years. 'But concrete actions are already taking place around the world. For more than 3 years, the IAEA has been implementing a systematic Nuclear Security plan, including physical protection activities designed to prevent, detect and respond to malicious acts,' said Anita Nillson, Director of the IAEA's Office of Nuclear Security. The Agency's Nuclear Security Fund, set up after the events of 9/11, has delivered $19.5 million in practical assistance to 121 countries

  11. Proceedings of the Tenth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    2011-01-01

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  12. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  13. Duke University High Energy Physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1993-03-01

    The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab's Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from bar p p collisions at √ bar s = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector

  14. Spinoff from high energy physics

    International Nuclear Information System (INIS)

    Hoffmann, Hans

    1994-01-01

    This year the CERN Courier is featuring the spinoff and technological benefits arising from research in fundamental physics. After initial illustrations in applied data processing sectors, this article by Hans Hoffman of CERN examines the rationale and underlying objectives of the 'new awareness' of the market value of basic science. He is the Chairman of a new panel on the subject set up recently by the International Committee for Future Accelerators (ICFA). The other members are: Oscar Barbalat of CERN, Hans Christian Dehne of DESY, Sin-ichi Kurakawa of KEK, Gennady Kulipanov of the Budker Institute (Novosibirsk), Anthony Montgomery, formerly of the SSC, A. H. Walenta of Siegen, Germany, and Zhongqiang Yu of IHEP Beijing. High energy physics - the quest to find and understand the structure of matter - is mainly seen as an essential part of human culture. However this basic science increasingly has to jostle for funding attention with other branches of science. Applied sciences aim for a rapid transformation of investment cash into viable market products. In times of economic difficulties this is attractive to funding agencies and governments, and economic usefulness and technological relevance also become criteria for a basic science like high energy physics.

  15. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Science.gov (United States)

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... perform their duties. (6) Prior to entry into a material access area, packages shall be searched for...

  16. The physical principles of radiation protection

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1990-01-01

    This lecture reviews the production of ionising radiation from the naturally occurring radioactive decay chains and introduces the mathematical expressions relating to secular equilibrium and the calculation of the activity of daughter products. The absorption of α, β and γ radiation is discussed from the point of view of the physical processes which occur, e.g. the photoelectric, Compton and pair production processes for γ-rays. Linear energy transfer and range-energy relationships are discussed for α and β particles. Units of measurement for ionising radiation, relative biological effectiveness, dose equivalence and quality factors for each type of radiation are reviewed. the behaviour and properties of radon, thoron and their daughter products are described, and units used in the assessments of effective dose from radon daughters are discussed. 16 refs., 1 tab., 15 figs

  17. The physical principles of radiation protection

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1982-01-01

    The production of ionising radiation from the naturally occurring radioactive decay chains is reviewed and mathematical expressions relating to secular equilibrium and the calculation of the activity of daughter products are introduced. The absorption of α, β and γ radiation is discussed from the point of view of the physical processes which occur, e.g. the photoelectric, Compton and pair production processes for γ-rays. Linear energy transfer (LET) and range-energy relationships are discussed for α and β particles. Units of measurement for ionising radiation, relative biological effectiveness, dose equivalence and quality factors for each type of radiation are reviewed. The behaviour and properties of radon, thoron and their daughter products are described, and the definition of the Working Level introduced

  18. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  19. 10 CFR 76.111 - Physical security, material control and accounting, and protection of certain information.

    Science.gov (United States)

    2010-01-01

    ... significance (Category III), and for protection of Restricted Data, National Security Information, Safeguards... 10 Energy 2 2010-01-01 2010-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  20. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  1. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  2. Proceedings of progress in high energy physics

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  3. Critical Energy Infrastructure Protection in Canada

    Science.gov (United States)

    2010-12-01

    department for the Energy sector, has been pro- active and innovative in enhancing protection for national critical energy infrastructure (NCI). While...prospérité (PSP), mais des relations transfrontalières plus informelles entre les propriétaires/opérateurs et leurs associations industrielles ...create innovative solutions for CIP. 9. International Cooperation: participate in international CIP initiatives and to strengthen information-sharing

  4. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  5. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1989-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  6. [High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1988-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  7. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  8. High energy physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    The hadron collider group is studying proton-antiproton interactions at the world's highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t bar t decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-μ-τ universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices

  9. Experiments in intermediate energy physics

    International Nuclear Information System (INIS)

    Dehnhard, D.

    2003-01-01

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers

  10. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  11. Abstracts of 20. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1988-01-01

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  12. Environmental protection and nuclear energy. 4. ed.

    International Nuclear Information System (INIS)

    1990-01-01

    The present energy supply has to be reconsidered based on the continous increase of CO 2 -concentration in the air. For this, questions on environmental protection, nuclear energy, safety of usable plants and estimation of technical subsequences serve for contributions to a discussion as a result of the consideration, 10 theses on an ethic of energy technology have been elaborated. The Union of Catholic Employers is considered that the improved reactor technology has a new chance in our country. The minimization of risks and damages of this technology has proceeded in a way that it can be shared with regard to Christian responsibility. (orig./DG) [de

  13. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  14. Abstracts of 21. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1989-01-01

    45 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, chiefly problems of radiation detection and measuring techniques in radiation protection

  15. Physics for radiation protection. 3. upd. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, James E.

    2013-09-01

    A highly practical resource for health physicists and other professionals in radiation protection. This third edition has been completely revised and updated with an emphasis on basic concepts as they apply to radiation issues such as the incident at the Fukushima-Daichi plant in Japan. Designed for readers with limited as well as basic science backgrounds, the book presents thorough and up-to-date explanations of radiation physics and the major concepts that underpin it. Extensive discussion is provided of radioactivity, including sources, materials and decay schemes for about 100 of the most common radionuclides encountered by practitioners. The text emphasizes practical calculations for radiation sources and levels in the workplace and the environment, and presents methods, including shielding, for modifying them. Comprehensive appendices and more than 400 figures are provided for such calculations; these are based on current resource data. Excerpts from the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided. Real-world examples and exercises demonstrate concepts and their use.

  16. 22nd DAE High Energy Physics Symposium

    CERN Document Server

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  17. International physical protection standards: support for development and implementation

    International Nuclear Information System (INIS)

    Soo Hoo, M.S.

    2002-01-01

    Full text: Since 1972, the IAEA has been a recognized organization in promoting the development of international standards on the physical protection of nuclear materials. This responsibility has continued through the present in the 1999 publication of the fourth revision of INFCIRC/225, the physical protection of nuclear material and nuclear facilities and in being the repository for the convention on the physical protection of nuclear material which was originally published in 1980 as INFCIRC/274. The IAEA has also published other reference documents in support these two standards. With changing world events and greater concern for the physical protection of nuclear materials and facilities, IAEA member states have increased IAEA physical protection responsibilities. Currently, the IAEA is serving as the secretariat for drafting revisions to the physical protection convention. The proposed revisions will strengthen international physical protection standards through the incorporation of physical protection fundamentals that should apply to all nuclear materials in international or domestic use, storage and transport. Furthermore, the physical protection fundamentals would also extend to include nuclear facilities. Presently, the physical protection convention applies only to nuclear materials that are in international transport. To complement efforts to develop and promote international physical protection standards, the IAEA is actively involved in assisting member states with the implementation of the standards. This is accomplished through the delivery of training courses, workshops and hosting other international forums for the exchange of information. Through review services such as the international physical protection advisory service (IPPAS), the IAEA provides advice to member states on the application of international standards at national and facility-specific levels. These services can be followed up with technical support to implement the

  18. SNAP: a tool for nuclear physical protection system modeling

    International Nuclear Information System (INIS)

    Engi, D.; Grant, F.H. III.

    1979-10-01

    Nuclear safeguards systems are concerned, in part, with the physical protection of nuclear materials. The function of a physical protection system is to define the facility against adversary activities which could lead to theft of nuclear material or sabotage resulting in a radiological release. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system analysis. This paper describes a detailed application of SNAP to a hypothetical nuclear facility

  19. Physical protection system using activated barriers

    International Nuclear Information System (INIS)

    Timm, R.E.; Zinneman, T.E.; Haumann, J.R.; Flaugher, H.A.; Reigle, D.L.

    1984-03-01

    The Argonne National Laboratory has recently installed an activated barrier, the Access Denial System, to upgrade its security. The technology of this system was developed in the late 70's by Sandia National Laboratory-Albuquerque. The Argonne National Laboratory is the first Department of Energy facility to use this device. Recent advancements in electronic components provide the total system support that makes the use of an activated barrier viable and desirable. The premise of an activated barrier is that it is deployed after a positive detection of an adversary is made and before the adversary can penetrate vital area. To accomplish this detection, sophisticated alarms, assessment, and communications must be integrated into a system that permits a security inspector to make a positive evaluation and to activate the barrier. The alarm sensor locations are selected to provide protection in depth. Closed circuit television is used with components that permit multiple video frames to be stored for automated, priority-based playback to the security inspector. Further, algorithms permit look-ahead surveillance of vital areas so that the security inspector can activate the access denial system in a timely manner and not be restricted to following the adversaries' penetration path(s)

  20. Directions in high energy physics

    International Nuclear Information System (INIS)

    DiLella, L.; Altarelli, G.

    1988-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. Contents: The CERN Proton-Antiproton Collider; Elastic Scattering and Total Cross-Section; Properties of Soft Proton-Antiproton Collisions; Physics of Hadronic Jets; Physics of the Intermediate Vector Bosons; Heavy Flavour Production; Searches for New Physics; Physics with ACOL; Physics at Supercolliders

  1. Research on effectiveness assessment programs for physical protection system

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik; Ham, Taekyu [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    PPS (Physical Protection System) is an integrated set of procedures, installation and human resources to protect valuable assets from physical attack of potential adversaries. Since nuclear facilities or radioactive materials can be attractive targets for terrorists, PPS should be installed and maintained throughout the entire lifecycle of nuclear energy systems. One of key ingredients for effective protection is a reliable assessment procedure of the PPS capability. Due to complexity of possible threat categories and pathways, several pathway analysis programs have been developed to ease analysis or visualization. ASSESS using ASD approach runs fast and adopts a relatively simple modeling process for facility elements. But uncertainty due to assumptions used in modeling might complicate the interpretation of results. On the other hand, 2D pathway program such as TESS can utilize more self-consistent detection probability and delay time since actual pathway on 2D map is available. Also, this pathway visualization helps users understand analysis result more intuitively. But, in general, 2D pathway programs require strong computational power and careful optimization. Another possible difference between two approaches is response force deployment and RFT.

  2. Research on effectiveness assessment programs for physical protection system

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik; Ham, Taekyu

    2015-01-01

    PPS (Physical Protection System) is an integrated set of procedures, installation and human resources to protect valuable assets from physical attack of potential adversaries. Since nuclear facilities or radioactive materials can be attractive targets for terrorists, PPS should be installed and maintained throughout the entire lifecycle of nuclear energy systems. One of key ingredients for effective protection is a reliable assessment procedure of the PPS capability. Due to complexity of possible threat categories and pathways, several pathway analysis programs have been developed to ease analysis or visualization. ASSESS using ASD approach runs fast and adopts a relatively simple modeling process for facility elements. But uncertainty due to assumptions used in modeling might complicate the interpretation of results. On the other hand, 2D pathway program such as TESS can utilize more self-consistent detection probability and delay time since actual pathway on 2D map is available. Also, this pathway visualization helps users understand analysis result more intuitively. But, in general, 2D pathway programs require strong computational power and careful optimization. Another possible difference between two approaches is response force deployment and RFT

  3. Protecting the Library and Its Resources. A Guide to Physical Protection and Insurance.

    Science.gov (United States)

    Johnson, Edward M., Ed.

    The first part of this manual contains information about providing physical protection for libraries and is organized into the following chapters--(1) types of physical losses, (2) the prevention of losses, (3) fire defense measures, (4) fire protection equipment, and (5) fire protection in library planning. The second part is concerned with…

  4. Advancement adopted for physical protection system at BARC facilities Tarapur

    International Nuclear Information System (INIS)

    Jaroli, Manish; Ameta, Rohit; Patil, V.H.; Dubey, K.

    2015-01-01

    Considering the prevailing security situation and threat perception to the nuclear installations in particular, it has become essential to strengthen security system at BARC Tarapur in an effective manner to avert any attempt of sabotage and to ensure smooth functioning of security and safety of the nuclear installations. International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various security guides for the physical protection system (PPS) for nuclear installations and there has been advancement in physical and personnel protection system due to evolution of new technologies. In line with this, latest technologies have been adopted in PPS for BARC facilities, Tarapur recently. This includes state of art RFID card based access control, visitor and contractor management system, electronic key management system. Digital signature based biometric visitor and contractor management system; Digital signature based leave management system; Distress alarm system (DAS); Guard tour monitoring system (GTMS); Secure network access system (SNAS) as well as multilayered access control system at plant level. This will strengthen the surveillance and monitoring of personnel and visitors at BARC facilities. (author)

  5. Proceedings of the Ninth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    2009-01-01

    The publication has been set up as proceedings of the Radiation Physics and Protection conference, the conference contains of the following subjects: Radiation Sources and Radioactive Waste; Theoretical Radiation Physics; Experimental Radiation Physics; Radiation and Nuclear Emergency; Non Ionizing Radiation; Medical Physics; Environment; Natural Radioactivity; Radiation Effect; Dosimetry; Elemental Analysis; Radiation Instruments. This conference consists of one volume and 459 pages., figs., tabs., refs

  6. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q 2 ; Measurement of the 5th Structure Function in Deuterium and 12 C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of 117 Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from 13 C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of 3 He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e'p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N → Δ Excitation; Experiment E-140: Measurement of the x-, Q 2 and A-Dependence of R = σ L /σ T ; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2γ Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions

  7. Low energy physics from superstrings

    International Nuclear Information System (INIS)

    Segre, G.C.

    1987-01-01

    The developments of the past year have resulted in growing interest in the theory of superstrings, a subject which is on the one hand extraordinarily exciting in the promise it holds for solutions of many of the outstanding problems of particle physics and on the other hand rather forbidding in the amount of new knowledge which needs to be acquired by the average theorist to understand the papers that are now being published on the recent developments. In a sense the term low energy superstrings is misleading: the work of the past fifteen years in string theory, culminating in last summer's stunning developments by Green and Schwartz have led theorists to believe a finite, consistent superstring theory can be formulated. An enormous amount of work is going on in this subject, the premise that an effective field theory in ten space-time dimensions can be obtained from the superstring theory is the start of the lectures. The lectures will cover this later stage, namely how does one proceed from the effective ten dimensional theory to an effective four dimensional theory, describing the world as we see it. 87 references, 2 tables

  8. The nuclear energy for the environment protection

    International Nuclear Information System (INIS)

    Souza, Jair A.M. de.

    1992-01-01

    The environmental question is currently the greater preoccupation all the world, particularly, the atmospheric pollution, generating the acid rains and the heater effect. The transportation, residential, agricultural, industrial and electric sectors contribute for the atmospheric pollution. In this work, the author analyzes important actions in Europe and United States of America in order to reduce this pollution. The paper intends to demystifies that the nuclear energy would be harmful to the environment, demonstrating exactly the contrary - due to the emission cares and controls coming from the nuclear power plants, this source of electric energy generation constitutes is an important factor of environment protection

  9. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1994-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  10. Fundamental physics with low-energy neutrons

    International Nuclear Information System (INIS)

    Barrón-Palos, Libertad

    2016-01-01

    Low-energy neutrons are playing a prominent role in a growing number of fundamental physics studies. This paper provides a brief description of the physics that some of the experiments in the area are addressing. (paper)

  11. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  12. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  13. Free Energy in Introductory Physics

    Science.gov (United States)

    Prentis, Jeffrey J.; Obsniuk, Michael J.

    2016-01-01

    Energy and entropy are two of the most important concepts in science. For all natural processes where a system exchanges energy with its environment, the energy of the system tends to decrease and the entropy of the system tends to increase. Free energy is the special concept that specifies how to balance the opposing tendencies to minimize energy…

  14. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  15. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo [KINAC, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012.

  16. The convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1980-05-01

    This document contains the full text of a convention to facilitate the safe transfer of nuclear material, and to insure the physical protection of nuclear material in domestic use, storage, and transport. Two annexes are included, which establish categories of nuclear materials and levels of physical protection to be applied in international transport

  17. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo

    2013-01-01

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012

  18. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  19. Optimal Physical Protection against Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doyoung; Kim, ChangLak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    There is no attempt with nuclear weapons to attack any places for terror or military victory since the atomic bombs dropped in Hiroshima and Nagasaki. People have obviously experienced horrible destructive power of nuclear weapons and continuously remembered a terrible tragedy, lots of organizations and experts express their concerns about the nuclear terrorism and try to interchange opinions for prevention of deadly weapons. The purpose of this paper is to provide the information of nuclear terrorism and what the potential risk of Republic of Korea is and how to do the efficient physical protection. Terror is from the old French terreur, which is derived from Latin verb terror meaning 'great fear'. This is a policy to suppress political opponents through using violence and repression. Many scholars have been proposed, there is no consensus definition of the term 'terrorism.' In 1988, a proposed academic consensus definition: 'Terrorism is an anxiety-inspiring method of repeated violent action, employed by (semi-) clandestine individual, group or state actors, for idiosyncratic, criminal or political reasons, whereby - in contrast to assassination - the direct targets of violence are not the main targets. The immediate human victims of violence are generally chosen randomly (targets of opportunity) or selectively (representative or symbolic targets) from a target population, and serve as message generators. These attacks showed that particular terrorists groups sought to cause heavy casualties and extreme terrorists were spontaneously prepared to make sacrifices for completion of that ultimate goal. Creation of nuclear weapons was like opening Pandora's box. Barack Obama has called nuclear terrorism 'the greatest danger we face'. Nuclear terror is one of the lethal risks. Using nuclear weapons or materials from terrorist groups is a fatal catastrophe to a targeting state though there is no accident similar like that. South

  20. Optimal Physical Protection against Nuclear Terrorism

    International Nuclear Information System (INIS)

    Lee, Doyoung; Kim, ChangLak

    2014-01-01

    There is no attempt with nuclear weapons to attack any places for terror or military victory since the atomic bombs dropped in Hiroshima and Nagasaki. People have obviously experienced horrible destructive power of nuclear weapons and continuously remembered a terrible tragedy, lots of organizations and experts express their concerns about the nuclear terrorism and try to interchange opinions for prevention of deadly weapons. The purpose of this paper is to provide the information of nuclear terrorism and what the potential risk of Republic of Korea is and how to do the efficient physical protection. Terror is from the old French terreur, which is derived from Latin verb terror meaning 'great fear'. This is a policy to suppress political opponents through using violence and repression. Many scholars have been proposed, there is no consensus definition of the term 'terrorism.' In 1988, a proposed academic consensus definition: 'Terrorism is an anxiety-inspiring method of repeated violent action, employed by (semi-) clandestine individual, group or state actors, for idiosyncratic, criminal or political reasons, whereby - in contrast to assassination - the direct targets of violence are not the main targets. The immediate human victims of violence are generally chosen randomly (targets of opportunity) or selectively (representative or symbolic targets) from a target population, and serve as message generators. These attacks showed that particular terrorists groups sought to cause heavy casualties and extreme terrorists were spontaneously prepared to make sacrifices for completion of that ultimate goal. Creation of nuclear weapons was like opening Pandora's box. Barack Obama has called nuclear terrorism 'the greatest danger we face'. Nuclear terror is one of the lethal risks. Using nuclear weapons or materials from terrorist groups is a fatal catastrophe to a targeting state though there is no accident similar like that. South

  1. Establishing an Information Security System related to Physical Protection

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2009-01-01

    A physical protection system (PPS) integrates people, procedures and equipment for the protection of assets or facilities against theft, sabotage or other malevolent attacks. In the physical protection field, it is important the maintain confidentiality of PPS related information, such as the alarm system layout, detailed maps of buildings, and guard schedules. In this abstract, we suggest establishing a methodology for an information security system. The first step in this methodology is to determine the information to protect and possible adversaries. Next, system designers should draw all possible paths to the information and arrange appropriate protection elements. Finally he/she should analyze and upgrade their information security system

  2. Physical protection concepts of nuclear materials. The French experience

    International Nuclear Information System (INIS)

    Arnaud, G.; Artaud, R.

    1995-01-01

    As the nuclear energy was being developed, it appeared necessary to set up protections against its potential hazards, that should be more complete and elaborate than those implemented on the other industrial installations. This had to be done both in the safety field to prevent the environment and the populations from the consequences of severe casualties, and in the security field to avoid the risk of proliferation and limit to an acceptable level the results of voluntarily provoked accidents and sabotages. Taking advantage of the gathered experience, this document gives consideration to the concepts used in France in order to ensure the physical protection of the nuclear materials. The following topics are tackled: context inside which are envisaged the specific measures, coherence with the general dispositions taken to protect industrial installations, importance and limitations of the part played by the regulations, respective responsibilities of the plant operators and the public authorities, compromise between objectives in view and means to implement, adjustment between the physical protection system and the operating requirements. In addition, the ways in which these systems should be implemented are discussed, underlining the necessity to make progressive steps under a permanent will, in order, first, to update and bring under conformity the old installations, and second, to ensure the maintenance of the systems, taking account of the evolutions of needs and techniques. Those points are commented on examples taken among the different types of installations to be found in France, showing the differences in approach coming from the type and the age of the facilities, and giving the present trends for the new plants. (authors). 1 annexe

  3. The legal imperative to protect critical energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Shore, J.J.M.

    2008-03-15

    Canada's critical infrastructure is comprised of energy facilities, communications centres, finance, health care, food, government and transportation sectors. All sectors face a range of physical or cyber threats from terrorism and natural phenomenon. Failures or disruptions in the sectors can cascade through other systems and disrupt essential services. The power outage in 2003 demonstrated gaps in North America's emergency preparedness. In 2006, al-Qaida called for terrorist attacks on North American oil fields and pipelines, specifically targeting Canada. Studies have confirmed that Canada is vulnerable to attacks on energy infrastructure. Government agencies and the private sector must work ensure the safety of Canada's energy infrastructure, as the primary responsibility of government is the protection of its citizenry. The fulfilment of the government's commitment to national security cannot be achieved without protecting Canada's critical energy infrastructure. However, Canada has not yet provided a framework linking federal government with critical infrastructures, despite the fact that a draft strategy has been under development for several years. It was concluded that governments and the private sector should work together to reduce risks, protect the public, and secure the economy. National security litigation against the government and legal imperatives for energy facility owners and operators were also reviewed. 98 refs., 20 figs.

  4. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  5. Methodology For Evaluation Of Regulatory Effectiveness In Physical Protection

    International Nuclear Information System (INIS)

    Izmaylov, Alexander; Valente, John; Griggs, James R.; Rexroth, Paul; Piskarev, Alexander; Babkin, Vladimir; Sokolov, Egor; Melton, Ronald B.; Cunningham, Mitchel E.; Baker, Kathryn A.; Brothers, Alan J.

    2005-01-01

    Material protection, control, and accounting (MPC and A) regulatory documents play an important role in securing and protecting nuclear material by regulating a variety of activities at different hierarchical levels. The development, implementation, and practical application of these regulatory documents requires a significant investment of financial and material resources. Therefore, it is important to evaluate the effectiveness of the regulatory development process and the extent to which regulations improve the effectiveness of MPC and A at nuclear sites. The joint Russian and U.S. Regulatory Development Project has a goal of evaluating the effectiveness of regulatory documents developed for MPC and A. As part of this joint Project, a methodology for evaluating effectiveness has been developed. This methodology was developed around physical protection objectives. The developed methodology specifies physical protection objectives to be accomplished through the implementation of a regulatory system based on the physical protection goals at the nuclear sites. It includes approaches to assessing regulatory effectiveness, the hierarchical structure of physical protection objectives to be accomplished through implementing regulations, a 'mapping' of the physical protection objectives to the regulatory framework, a list of criteria for evaluating the effectiveness of physical protection regulations and effectiveness indicators, as well as means and methods for gathering information and implementation of this evaluation.

  6. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  7. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  8. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1991-01-01

    This report discusses the following topics: annihilations in the galactic halo; cosmic microwave background; stars as particle physics laboratories; large scale structure; galaxy formation; and non-topological solutions

  9. Medium energy elementary particle physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: muon beam development at LAMPF; muon physics; a new precision measurement of the muon g-2 value; measurement of the spin-dependent structure functions of the neutron and proton; and meson factories

  10. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  11. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  12. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  13. Impact of Y2K problem on physical protection system

    International Nuclear Information System (INIS)

    Kumar, R.; Swadia, N.S.; Zanwar, P.S.; Mishra, G.P.; Salunke, A.S.; Nigam, R.K.

    1999-01-01

    Year 2000 related system failures/problems in Physical Protection System pose no threat to general safety and functioning of any nuclear facility. But there can be potential security threats having radiation safety and non-proliferation concern and hence should be given due importance. Reviewing and testing Physical Protection System for Y2K compliance are easier than other systems as it does not directly affect operation of the plant. The existing emergency response capability at the nuclear facilities should be utilizes effectively to mitigate any Y2K induced events on Physical Protection System with dedicated manpower and channeled efforts

  14. Quantitative evaluation of physical protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Sun Yahua; Li Bin; Li Shiju

    2009-01-01

    Based on the prompt detection analysis, this paper introduced one analysis model of intrusion path in nuclear power plant by means of morphology analysis and developed the evaluation software for path model analysis of physical protection system. Quantitative analysis on three elements (detection, delay, and response) of physical protection system was presented with an imaginary intrusion event example in Mac Arthur nuclear center. The results indicated that the path prompt detection analysis worked effectively to find the weak point of the physical protection system in NPP, and meantime we can also get the high cost-effectiveness improved measures. It is an effective approach to evaluate the overall performance of the system. (authors)

  15. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  16. Radiation Physics for Personnel and Environmental Protection

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1999-01-01

    The Fermi National Accelerator Laboratory FERMILAB- TM- 1834 Fermi National Accelerator Laboratory This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This manuscript has been authored by Universities Research Association, Inc. under con- tract No. DE- ACO% 76CH03000 with the U. S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid- up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for This text is dedicated to my wife Claudia, and our children, Joe and Sally, who provided me with love, cheerfulness, and their support during the long hours spent in the preparation of various versions of this text. I acknowledge the opportunity provided by the Fermilab Director, John Peoples, Jr., to be a part of the U. S. Particle Accelerator School. Also, the encouragement of Mel Month and A. Lincoln Read to teach in the USPAS has been sincerely appreciated. Several members of the Fermilab Environment, Safety and Health Section have greatly assisted me during the

  17. Environment: renewable energy, environmental protection and energy efficiency

    International Nuclear Information System (INIS)

    1998-01-01

    The second in the series of IPPSO policy papers for discussion deals with the place of renewable energy sources and environmental protection in relation to the soon-to-be deregulated electricity industry in Ontario. The paper provides a broad statement of principles, defines the issues, identifies the problems, and discusses the various options under consideration. Some of the more important design questions regarding a renewable portfolio standard were discussed, among them the technologies to be included, the treatment of existing generators and expansions, establishment of minimum amounts and targets, responsibility for and means of compliance, compensation for the intermittent nature of some of the renewable resources, mandatory disclosure and labelling, development by the IMO of environmental dispatch protocols, research and development funding for renewable energy technologies, emission caps with tradeable targets, and concerns about the operation of a system benefits fund for energy efficiency. 5 refs

  18. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  19. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  20. Physical limitations of semiconductor devices defects, reliability and esd protection

    CERN Document Server

    Vashchenko, V A

    2008-01-01

    Provides an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics. This title focuses on power semiconductor devices and self-triggering pulsed power devices for ESD protection clamps.

  1. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  2. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  3. 75 FR 33901 - Physical Protection of Byproduct Material

    Science.gov (United States)

    2010-06-15

    ... positioning system (GPS) tracking as a national requirement for vehicles transporting highly radioactive..., Maryland. NRC's Agencywide Documents Access and Management System (ADAMS): Publicly available documents... also proposed to establish physical protection systems to detect, assess, and respond to unauthorized...

  4. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  5. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  6. Audit of the management and cost of the Department of Energy`s protective forces

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Department of Energy`s safeguards and security program is designed to provide appropriate, efficient, and effective protection of the Department`s nuclear weapons, nuclear materials, facilities, and classified information. These items must be protected against theft, sabotage, espionage, and terrorist activity, with continuing emphasis on protection against the insider threat. The purpose of the audit was to determine if protective forces were efficiently managed and appropriately sized in light of the changing missions and current budget constraints. The authors found that the cost of physical security at some sites had grown beyond those costs incurred when the site was in full production. This increase was due to a combination of factors, including concerns about the adequacy of physical security, reactions to the increase in terrorism in the early 1980s with the possibility of hostile attacks, and the selection of security system upgrades without adequate consideration of cost effectiveness. Ongoing projects to upgrade security systems were not promptly reassessed when missions changed and levels of protection were not determined in a way which considered the attractiveness of the material being protected. The authors also noted several opportunities for the Department to improve the operational efficiency of its protective force operations, including, eluminating overtime paid to officers prior to completion of the basic 40-hour workweek, paying hourly wages of unarmed guards which are commensurate with their duties, consolidating protective force units, transferring law enforcement duties to local law agencies, eliminating or reducing paid time to exercise, and standardizing supplies and equipment used by protective force members.

  7. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  8. Metrology of radiation protection. Pt. 1. Physical requirements and terminology

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S R

    1979-10-01

    Starting from a general consideration of the needs for radiation protection the physical requirements of a relevant metrology are developed. The expedient physical quantities are introduced and problems in the realization and dissemination of their units discussed. It is shown that owing to these difficulties, derived or operational quantities have to be developed for the construction and calibration of practical measuring instruments. Finally the relations between the metrology of radiation protection and of medical radiology are pointed out and commented. (orig.).

  9. Physical protection evaluation methodology program development and application

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  10. A Regulators Systematic Approach to Physical Protection for Nuclear Facilities

    International Nuclear Information System (INIS)

    Bayer, Stephan; Doulgeris, Nicholas; Leask, Andrew

    2004-01-01

    This paper outlines the framework for a physical protection regime which needs to be incorporated into the design and construction phases of nuclear facility. The need for physical protection considerations at the outset of the design of nuclear facilities is explained. It also discusses about the consequences of malicious activity and the management of risk. Various risk and consequences evaluations are undertaken, notably using design basis threat methodology. (author)

  11. Physical protection evaluation methodology program development and application

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik

    2015-01-01

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  12. The European Physical Society Conference on High Energy Physics

    Science.gov (United States)

    2017-07-01

    The European Physical Society Conference on High Energy Physics (EPS- HEP) is one of the major international conferences that review the field. It takes place every other year since 1971. It is organized by the High Energy and Particle Physics Division of the European Physical Society in cooperation with an appointed European Local Institute of Research or an internationally recognized University or Academy Body. EPS-HEP 2017 was held on 5-12 July in Venice, Italy at Palazzo del Cinema and Palazzo del Casinò, located in the Lido island. The conference has been organized by the Istituto Nazionale di Fisica Nucleare (INFN) and by the Department of Physics and Astronomy of the University of Padova. Editorial Board: Paolo Checchia, Mauro Mezzetto, Giuseppina Salente, Michele Doro, Livia Conti, Caterina Braggio, Chiara Sirignano, Andrea Dainese, Martino Margoni, Roberto Rossin, Pierpaolo Mastrolia, Patrizia Azzi, Enrico Conti, Marco Zanetti, Luca Martucci, Sofia Talas Lucano Canton.

  13. PARTICIPATION IN HIGH ENERGY PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    White, Christopher

    2012-12-20

    This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

  14. Safeguards and physical protection - The Belarus experience

    International Nuclear Information System (INIS)

    Krevsun, E.

    1999-01-01

    Taking into account the new initiatives of the IAEA Belarus indented to continue activity on improving the Material Protection, Control and Accounting system in various directions. The significant ones are: electronic transmission of information to the IAEA, measurement standards of nuclear materials, upgraded Wiegard cards with photographs of their holders, preventive measures (threat, evaluation of safety for objects, sabotage from the staff etc.). The Belarus experience testifies that there is a unique way for increasing nuclear and radiation safety: cooperation and exchange of experience on a global scale

  15. Fundamentals of health physics for the radiation-protection officer

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  16. Proceedings of the Eleventh Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    2013-01-01

    The proceeding contains of 404 pages, the available maertial of 35 contributions: and covering of conference topics: Plenary, Invited, Keynote Talks. Nuclear Power Plant Accident. Cosmogenic Radionuclides. Waste Storage and Disposal Solutions. Radiation Medical Physics. Radiation Detection and Measurements. Radioactive in Building Materials. Radiation Protection Regulations and public Protection. Environmental Radioactivity.

  17. Fundamentals of health physics for the radiation-protection officer

    International Nuclear Information System (INIS)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs

  18. History of Physical Terms: "Energy"

    Science.gov (United States)

    Frontali, Clara

    2014-01-01

    Difficulties encountered by teachers in giving a definition of the term "energy", and by students in grasping its actual meaning, reflect the lengthy process through which the concept eventually came to maturity around 1850. Tracing the history of this process illuminates the different aspects covered by the term and shows the important…

  19. Leveraging physical protection technology for international safeguards applications

    International Nuclear Information System (INIS)

    Glidewell, Don

    2001-01-01

    Full text: In an effort to improve the effectiveness, efficiency, and reliability of equipment used for International Safeguards, the European Safeguards Research and Development Association (ESARDA) Reflection Group requested the ESARDA Containment and Surveillance Working Group to investigate the feasibility of employing physical protection technologies for international safeguards applications. The physical protection market has traditionally been much greater than the international safeguards market. Consequently, physical protection technology has been subjected to greater testing and evaluation, and has enjoyed much greater real world experience. The larger market yields economies of scale, and the greater testing and experience should arguably result in improved reliability. This paper will compare requirements for physical protection versus international safeguards equipment, and identify types of physical protection equipment, which have potential for safeguards applications. It will evaluate both Commercial Off-the-Shelf (COTS) and non-COTS equipment. Finally, for selected physical protection equipment, the paper will evaluate the degree of modification that would be needed to make it acceptable for safeguards applications. (author)

  20. Observations on physical protection methods for protecting against unauthorized acts by an insider

    International Nuclear Information System (INIS)

    Ericson, D.M.; Goldman, L.A.; Lobner, R.R.

    1983-01-01

    Two basic approaches have evolved over the past several years for physical protection against sabotage by insiders. One, area-type physical protection, involves the use of access controls at area boundaries. Current practices at nuclear power plants generally fall into this category. The second, component-level physical protection, involves hardware at individual components as well as access controls at the boundary. The area-type physical protection concepts include team, area, and operational zoning. Team zoning requires the formation of multiperson teams that must be used to gain access to vital areas. Area zoning divides the plant into two or more zones, each of which is operated and maintained by separate, dedicated teams. Operational zoning is a closed-loop access control system that permits an initial vital area access, but blocks access to certain other vital areas until the operability of equipment in the first area is verified by test or inspection. Component-level physical protection is also a closed-loop system in which both area and component access are monitored. Each of the above measures can provide effective protection against an insider in certain instances, but each has weaknesses that must be recognized. An approach for protection against the insider is to take the most promising features of each of the above physical protection measures and supplement these capabilities with damage control and design changes as appropriate for a particular plant

  1. European School of High-Energy Physics

    CERN Document Server

    2006-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures notes on field theory and the Standard Model, quantum chromodynamics, flavour physics and CP violation, experimental aspects of CP violation in K and B decays, relativistic heavy-ion physics, and the scientific programme of the Joint Institute for Nuclear Research. These core scientific topics are complemented by a lecture about the physics of ski jumping.

  2. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  3. [Experimental and theoretical high energy physics program

    International Nuclear Information System (INIS)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac endash Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e + e - collisions at CERN; bar p endash p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab

  4. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  5. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  6. New informative techniques in high energy physics

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Ukhov, V.I.

    1992-01-01

    A number of new informative techniques applied to high energy physics are considered. These are the object-oriented programming, systems integration, UIMS, visualisation, expert systems, neural networks. 100 refs

  7. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  8. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  9. A high energy physics perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  10. Teaching ``The Physics of Energy'' at MIT

    Science.gov (United States)

    Jaffe, Robert

    2009-05-01

    New physics courses on energy are popping up at colleges and universities across the country. Many require little or no previous physics background, aiming to introduce a broad audience to this complex and critical problem, often augmenting the scientific message with economic and policy discussions. Others are advanced courses, focussing on highly specialized subjects like solar voltaics, nuclear physics, or thermal fluids, for example. About two years ago Washington Taylor and I undertook to develop a course on the ``Physics of Energy'' open to all MIT students who had taken MIT's common core of university level calculus, physics, and chemistry. By avoiding higher level prerequisites, we aimed to attract and make the subject relevant to students in the life sciences, economics, etc. --- as well as physical scientists and engineers --- who want to approach energy issues in a sophisticated and analytical fashion, exploiting their background in calculus, mechanics, and E & M, but without having to take advanced courses in thermodynamics, quantum mechanics, or nuclear physics beforehand. Our object was to interweave teaching the fundamental physics principles at the foundations of energy science with the applications of those principles to energy systems. We envisioned a course that would present the basics of statistical, quantum, and fluid mechanics at a fairly sophisticated level and apply those concepts to the study of energy sources, conversion, transport, losses, storage, conservation, and end use. In the end we developed almost all of the material for the course from scratch. The course debuted this past fall. I will describe what we learned and what general lessons our experience might have for others who contemplate teaching energy physics broadly to a technically sophisticated audience.

  11. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  12. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  13. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1991-04-01

    The report summarizes the research and development activities of the Section for nuclear physics and energy physics at the University of Oslo in 1990. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. The experimental activities in nuclear physics have, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Using the CACTUS multidetector system, several experiments in collaboration with the nuclear physics group at the University of Bergen have been completed. Some results have been published and were also presented at the international conference in Oak Ridge, USA, while more data remains to be analyzed

  14. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  15. Trends in experimental high-energy physics

    International Nuclear Information System (INIS)

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry

  16. Prizes reward high-energy physics

    CERN Multimedia

    2005-01-01

    The European Physical Society (EPS) has recognized four individuals and a collaboration for their work on charge-parity (CP) violation, gamma-ray astronomy, cosmology and outreach activities. Heinrich Wahl, formerly of CERN, and the NA31 collaboration share the 2005 High Energy and Particle Physics Prize for their work on CP violation at CERN (½ page)

  17. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    Rees, M.J.

    1983-01-01

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  18. Studies in theorectical high energy particles physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  19. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  20. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  1. Vulnerability Analysis of Physical Protection System at Hypothetical Facility

    International Nuclear Information System (INIS)

    Jung, Won Moog; Lee, Ho Jin; Yu, Dong Han; Min, Gyung Sik

    2006-01-01

    Since the 9/11 event in the U.S.A, International terror possibilities has been increasing for nuclear facilities including nuclear power plants(NPPs). It is necessary to evaluate the performance of an existing physical protection system(PPS) at nuclear facilities based on such malevolent acts. A PPS is a complex configuration of detection, delay, and response elements. Detection, delay, and response elements are all important to the analysis and evaluation of a PPS and its effectiveness. Methods are available to analyze a PPS and evaluate its effectiveness. Sandia National Laboratory(SNL) in the U.S.A was developed a System Analysis of Vulnerability to Intrusion (SAVI) computer code for evaluating the effectiveness of PPS against outsider threats. This study presents the vulnerability analysis of the PPS at hypothetical facility using SAVI code that the basic input parameters are from PPS of Hanaro Research Reactor at Korea Atomic Energy Research Institution. It is understand that PPS of research reactor and critical assemblies are deficient that that of NPP and nuclear materials of RRCAS are compact to transport For analysis, first, the site-specific Adversary Sequence Diagrams(ASDs) of the PPS is constructed. It helps to understand the functions of the existing PPS composed of physical areas and Protection Elements(PEs). Then, the most vulnerable path of an ASD as a measure of effectiveness is determined. The results in the analysis can used to suggest the possible PPS upgrades to the most vulnerable paths for the system like research reactor

  2. Statistics for High Energy Physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The lectures emphasize the frequentist approach used for Dark Matter search and the Higgs search, discovery and measurements of its properties. An emphasis is put on hypothesis test using the asymptotic formulae formalism and its derivation, and on the derivation of the trial factor formulae in one and two dimensions. Various test statistics and their applications are discussed.  Some keywords: Profile Likelihood, Neyman Pearson, Feldman Cousins, Coverage, CLs. Nuisance Parameters Impact, Look Elsewhere Effect... Selected Bibliography: G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys.\\ Rev.\\ D {\\bf 57}, 3873 (1998). A. L. Read, Presentation of search results: The CL(s) technique,'' J.\\ Phys.\\ G {\\bf 28}, 2693 (2002). G. Cowan, K. Cranmer, E. Gross and O. Vitells,  Asymptotic formulae for likelihood-based tests of new physics,' Eur.\\ Phys.\\ J.\\ C {\\bf 71}, 1554 (2011) Erratum: [Eur.\\ Phys.\\ J.\\ C {\\bf 73}...

  3. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve ''control loops'' between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  4. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely-activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve (control loops) between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  5. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  6. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    Science.gov (United States)

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  7. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  8. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  9. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  10. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  11. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  12. Physical protection system to detect and control the illicit trafficking and transfer of nuclear materials in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Ho [Catholic Univ. of Daegu, Gyeongbuk (Korea, Republic of); Moon, Joo Hyun [Dongguk Univ., Gyeongbuk (Korea, Republic of)

    2011-11-15

    Physical protection has played an essential role in ensuring the implementation of global nuclear nonproliferation framework for the past decades. Since the 9/11 terrorist attacks upon the United States, physical protection has also played the same role in combating nuclear terrorism. Nowadays, physical protection is more highlighted than before with global nuclear security regimes more strengthened. Ever since the commencement of the first nuclear power plant in 1978, Korea has devotedly implemented international physical protection standards as an exemplary country in respect of the peaceful use of nuclear energy. The Korean government has recently reinforced national physical protection policy including the revision of laws and regulations. In this paper, the national policy is extensively reviewed and additional measures are proposed to enhance the national physical protection system. (orig.)

  13. Radiation protection and dosimetry problems around medium energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, R; Pavlovic, S; Markovic, S [Inst. of Nuclear Sciences Vinca, Belgrade (Yugoslavia); Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In the Institute of Nuclear Sciences `VINCA`, the Accelerator Installation `TESLA`, which is an ion accelerator facility consisting of an isochronous cyclotron `VINCY`, a heavy ion source, a D{sup -} / H{sup -} ion source, three low energy and five high energy experimental channels is now under construction. The Tesla Accelerator Installation should by the principal facility for basic and applied research in physics, chemistry, biology, and material science, as well as for production of radioisotopes, medical diagnostics and therapy with radioisotopes and accelerated particle beams. Some problems in defining radiation protection and safety programme, particularly problems in construction appropriate shielding barriers at the Accelerator Installation `TESLA` are discussed in this paper. (author) 1 fig., 9 refs.

  14. Medical Physics expert and competence in radiation protection

    International Nuclear Information System (INIS)

    Vano, E.; Lamn, I. N.; Guerra, A. del; Van Kleffens, H. J.

    2003-01-01

    The Council Directive 97/43/EURATOM on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, defines the Medical Physical Expert as an expert in radiation physics or radiation technology applied to exposure, within the scope of the Directive, whose training and competence to act is recognized by the competent authorities; and who, as appropriate, acts or gives advice on patient dosimetry, on the development and use of complex techniques and equipment, on optimization, on quality assurance, including quality control, and on other matters relating to radiation protection, concerning exposure within the scope of this Directive. As a consequence, it might be implied that his competence in radiation protection should also cover the staff and the public. In fact, the training programmes of medical physics experts include all the aspects concerning these topics. Some confusion could arise in the medical area when the Qualified Expert defined in the Council Directive 96/29/Euratom laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation is considered. The Qualified Expert is defined as a person having the knowledge and training needed to carry out physical, technical or radiochemical tests enabling doses to be assessed, and to give advice in order to ensure effective protection of individuals and the correct operation of protective equipment, whose capacity to act a qualified expert is recognized by the competent authorities. A qualified expert may be assigned the technical responsibility for the tasks of radiation protection of workers and members of the public. In Europe, the Qualified Expert is acting at present in the Medical Area in countries where there are not enough Medical Physics Experts or in countries where this role was established before the publication of the Council Directive 97/43/EURATOM. Now, the coherent

  15. Amendment of the regulations on the physical protection of nuclear materials (section 18c) made by Royal Decree no. 1809 of 2 november 1984 pursuant to Act no. 28 of 12 may 1972 on atomic energy activities

    International Nuclear Information System (INIS)

    1989-08-01

    These Regulations were made by Royal Decree of 25 August 1989 and entered into force on 20 October 1989. They insert a new Section in the 1984 Decree on physical protection of nuclear materials providing that in accordance with the 1979 Regulations on the transport of dangerous goods by air as amended, nuclear materials shall be transported in compliance with the relevant Technical Instructions of the International Civil Aviation Organisation (ICAO) [fr

  16. Modular safety interlock system for high energy physics experiments

    International Nuclear Information System (INIS)

    Kieffer, J.; Golceff, B.V.

    1980-10-01

    A frequent problem in electronics systems for high energy physics experiments is to provide protection for personnel and equipment. Interlock systems are typically designed as an afterthought and as a result, the working environment around complex experiments with many independent high voltages or hazardous gas subsystems, and many different kinds of people involved, can be particularly dangerous. A set of modular hardware has been designed which makes possible a standardized, intergrated, hierarchical system's approach and which can be easily tailored to custom requirements

  17. Nuclear energy and radiation protection law: no. 14 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The full text of Jordan's Nuclear Energy and Radiation Protection Law, no. 14 1987. The law's 39 articles govern all aspects organizing the utilization of nuclear energy and radiation protection activities in the country; including terms and conditions for licensing activities and personnel, and the import, export, and disposal of radioactive sources. The law establishes for the purpose of implementing its regulations, a consultative technical committee and a radiation protection board, both in the Ministry of Energy and Mineral Resources

  18. Physical protection design and analysis training for the former Soviet Union

    International Nuclear Information System (INIS)

    Soo Hoo, M.S.; Chapek, J.F.; Ebel, P.E.

    1996-01-01

    Since 1978, Sandia National Laboratories has provided training courses in the systematic design of Physical Protection Systems (PPS). One such course, the International Training Course (TC) on the Physical Protection of Nuclear Facilities and Materials, is sponsored by the Department of Energy's International Safeguards Division , the International Atomic Energy Agency, and the Department of State. Since 1978, twelve 3- and 4-week classes have been conducted by Sandia for these sponsors. One- and two-week adaptations of this course have been developed for other customers, and, since 1994, nine of these abbreviated courses have been presented in the Russian language to participants from the Former Soviet Union (SU). These courses have been performed in support of the Department of Energy's program on Material Protection, Control and Accounting (MPC ampersand A) for the Russian Federation and the Newly Independent States. MPC ampersand A physical protection training assumes participants have more narrowly defined backgrounds. In using affective approaches, the overall goal of training in the context of the MPC ampersand A Program is to develop modern and effective, indigenous capabilities for physical protection system design and analysis within the SU. This paper contrasts the cognitive and affective approaches to training and indicates why different approaches are required for the ITC and the MPC ampersand A Programs

  19. [Safeguards for the physical protection of nuclear materials and facilities

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-01-01

    Testimony is given on the subject of safeguards for the physical protection of nuclear materials and facilities, particularly during transportation. The ERDA nation-wide safe-secure transportation system and the Safe-Secure Trailer are described. The nationwide ERDA voice communication system is also described. Development of hardware and systems is discussed. The use of adversary simulation for evaluating protection systems is mentioned

  20. Physical protection of facilities and special nuclear materials in france

    International Nuclear Information System (INIS)

    Jeanpierre, G.

    1980-01-01

    Physical protection of nuclear facilities and special nuclear materials is subject in France to a national governmental regulation which provides for the basic principles to be taken into account and the minimal level of protection deemed necessary. But the responsibility of implementation is left to the facility management and the resulting decentralization allows for maximum efficiency. All safeguards measures comply with the commitments taken at the international level by the French government

  1. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  2. Yugoslavia: Act of 21 November 1984 on radiation protection and the safe use of nuclear energy

    International Nuclear Information System (INIS)

    1985-01-01

    This Act which entered into force on 1 December 1984 repeals the 1976 Act on Protection against Ionizing Radiation and regulates most of the peaceful uses of nuclear energy and radiation protection in Yugoslavia. The Act lays down the licensing procedure for nuclear installations and covers safety-related questions in connection with standards, technical criteria etc. It also takes into account several areas regulated at international level, namely safeguards and physical protection of nuclear material. (NEA) [fr

  3. Study of Physical Protection System at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ina, I.; Zarina Masood

    2016-01-01

    Physical protection program at PUSPATI TRIGA Reactor (RTP) which is located at Nuklear Malaysia, Bangi Complex has been strengthened and upgraded from time to time to accommodate current situation needs. However, there is always room for improvement. Hence, study have been made to look deeper into physical protection components such as delay systems, external sensors, PPS intruder alarm sensors, use of video system, personnel security or insider threats, access control operation system operation rules and security culture that may need to take into consideration. (author)

  4. Text of the Convention on the Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1979-11-01

    The Final Act of the Meeting of Governmental Representatives to Consider the Drafting of a Convention on the Physical Protection of Nuclear Material was signed on 26 October 1979. According to paragraph 11 of the Final Act, ''The Meeting recommended that the text of the Convention be transmitted for information to the Twenty-Third General Conference of the International Atomic Energy Agency.''

  5. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  6. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  7. Computing in radiation protection and health physics - 10 years further

    International Nuclear Information System (INIS)

    Behrens, R.; Greif, N.; Struwe, H.; Wissmann, F.

    2008-01-01

    Computing influences radiation protection and health physics more extensively as ever before. The good old data processing and main frame computing has changed towards information technology in a wider sense. Technologies and operating systems out of workplace computing have amended microprocessor technology in measuring devices. The boundaries between them are constantly in a state of flux. The use of the world wide web has become indispensable. No radiation protection expert could still manage without a workplace computer. Measuring networks, radiation protection information systems, data bases, computer simulation and other challenging applications form the image of today. (orig.)

  8. Specialists training on nuclear materials control, accounting and physical protection in the Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Khromov, V.V.; Pogozhin, N.S.; Kryuchkov, E.F.; Glebov, V.B.; Geraskin, N.I.

    1998-01-01

    Educational program to train specialists on non-proliferation problems and nuclear materials control, accounting and physical protection systems (NMCA and PP) at the Science Master's level was developed and is being realized in Moscow Sate Institute of Engineering and Physics at the support of the USA Ministry of Energy. The program is intended to train students who already got the Bachelor's degree on physical and technical subjects. The United methodological base of the program comprises lecture courses, practice in laboratories and computer programs. The educational program contains the following parts for training the students. 1) Deep scientific and technical knowledge. 2) System approach to designing and analysis of the NMCA and PP systems. 3) Knowledge of scientific and technical principles, means, devices and procedures used in the NMCA and PP systems. 4) Judicial, international and economical aspects of nuclear materials management. 5) Application of computer and information technologies for nuclear materials control and accounting. 6) Extensive practice in laboratories, using the most up-to-date equipment and devices used in the worldwide practice of NM control

  9. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  10. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  11. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  12. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  13. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  14. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  15. Radiation Protection in Medical Physics : Proceedings of the NATO Advanced Study Institute on Radiation Protection in Medical Physics Activities

    CERN Document Server

    Lemoigne, Yves

    2011-01-01

    This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.

  16. Radiologic science for technologists: physics, biology, and protection

    International Nuclear Information System (INIS)

    Bushong, S.C.

    1980-01-01

    The second edition of a textbook primarily for students in radiologic technology is presented. Separate chapters discuss mammography, computed tomography, diagnostic ultrasound, and design of radiologic physics. Radiation protection is specifically presented in two chapters as well as being integrated throughout the text. The fundamentals of radiobiology, molecular and cellular effects of irradiation, and early and late radiation effects comprise four chapters

  17. Chapter 1: A little of Radiation Physics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    The chapter 1 presents the subjects: 1) quantities and units of radiation physics which includes: the electron volt (eV); Exposure (X); Absorbed dose (D); Dose equivalent (H); Activity (A); Half-life; Radioactive decay; 2) Radiation protection which includes: irradiation and radioactive contamination; irradiation; contamination; background radiation; dose limits for individual occupationally exposed (IOE) and for the general public.

  18. Convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1991-09-01

    The document refers to the Convention on the Physical Protection of Nuclear Material (IAEA-INFCIRC-274). Part I contains the status list as of September 6, 1991; Part II contains the texts of reservations/declarations made upon expressing consent to be bound; Part III contains the texts of reservations/declarations made upon signature

  19. Foundations of radiation physics and radiation protection. 5. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2017-01-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  20. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  1. Physics landscape-fixed target energies

    International Nuclear Information System (INIS)

    Berger, E.L.

    1989-10-01

    An introductory review is presented of physics issues and opportunities at Fermilab fixed-target energies. Included are discussions of precision electroweak studies; deep inelastic lepton scattering; heavy quark production, spectroscopy, and decays; perturbative QCD; prompt photon production; massive lepton production; and spin dependence. 79 refs., 7 figs

  2. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  3. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Walsh, T.; Ruddick, K.

    1990-01-01

    This report discusses the following topics: The Soudan enterprise; study of strange quarks at Fermilab; direct photons at Fermilab; the Brookhaven programs; AMY and CLEO: studies of e + e - annihilations; cosmic ray studies with the DO muon chamber; progress report on HEP computer upgrade; muon triggering and reconstruction at SSC; and, theoretical high energy physics

  4. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  5. Physics with low energy pions and muons

    International Nuclear Information System (INIS)

    Konijn, J.

    1981-01-01

    This document is a collection of texts used for a course of lectures given by the author at the Technical University of Delft (NL) in 1981. It is therefore a comprehensive, Dutch language, review article starting with the discovery of pions and muons, describing their properties and finally discussing their applications in low energy physics. (C.F.)

  6. Indiana University High Energy Physics, Task A

    Energy Technology Data Exchange (ETDEWEB)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  7. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  8. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Ruddick, K.

    1988-01-01

    This report discusses experimental and theoretical work in High Energy Physics. Some topics discussed are: quantum field theory; supersymmetry; cosmology; superstring model; relic photinos; inflationary universe; dark matter; standard model; supernovae; semileptonic decay; quantum Langevin equation; underground neutrino detection at Soudan; strange quark systems; cosmic ray detection; superconducting super collider detectors; and studies of direct photon production

  9. Status of (US) High Energy Physics Networking

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1987-02-01

    The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality

  10. UNIX at high energy physics Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Alan

    1994-03-15

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

  11. Resume: networking in high energy physics

    International Nuclear Information System (INIS)

    Hutton, J.S.

    1985-11-01

    Networking in High Energy Physics covers communications inside the experiment and internationally. Inside the experiment the need for agreed 'codes of practice' is now accepted. Within Europe it is accepted that a common infrastructure based on the use of the ISO OSI protocols should be used. In the USA a community initiative has been proposed. The background to these approaches is discussed. (author)

  12. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  13. Physical protection and its role in nuclear non-proliferation

    International Nuclear Information System (INIS)

    Nilsson, A.

    1999-01-01

    Non-proliferation of nuclear weapons has been one of the main concerns of the international community since the first nuclear weapons were developed. To prevent the proliferation of nuclear weapons has been on the agenda for individual States, groups of States and the international organizations. A number of treaties, conventions and agreements, the most important being the Non-Proliferation Treaty, have been negotiated to prevent the horizontal proliferation of nuclear weapons. States have concluded safeguards agreements with the IAEA to fulfill their obligations according to Article III.1 of the NPT. Other agreements relate to the prevention of vertical proliferation and also to the disarmament of nuclear weapons. It has also been recognized that sub-national, terrorist, or criminal activities may pose a proliferation risk. Illicit trafficking of nuclear material, particularly highly enriched uranium or plutonium, is a non-proliferation concern. States have recognized the need to prevent, as far as possible, the use of nuclear material in unlawful activities. The Convention of Physical Protection of Nuclear Materials, obligates the State Parties to protect nuclear material from theft during international transport, and to make unlawful possession, use, etc., of nuclear material a criminal offense, subject to punishment under national law. Although the physical protection convention recognizes the importance of the physical protection of nuclear material in domestic use, storage and transport, it does not obligate the State party to establish the necessary systems for this purpose. It is this limitation which led many States to believe that the international physical protection regime needs to be strengthened. Although not legally binding per se, the recommendations documented in INFCIRC/225/Rev. 4, The Physical Protection of Nuclear Material and Nuclear Facilities, has obtained wide recognition. There is recognition among States that protecting nuclear material

  14. Energy supply and environmental protection as conflicting targets

    International Nuclear Information System (INIS)

    Maier, G.

    1976-01-01

    The conflict between sufficient energy supply and efficient environmental protection is didactically analysed as a complex of topics for the political education. Education principles and sequencies basing on opinions of supporters and opponents of nuclear energy are shown. Aims of education are briefly shown with the examples of the energy supply of the FRG and the energy problems of Europe. (HP) [de

  15. Convention on the Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1980-01-01

    The convention on the Physical Protection of Nuclear Material is composed of the text of 23 articles, annex 1 showing the levels of physical protection and annex 2 which is the categorization list of nuclear material. The text consists of definitions (article 1), the scope of applications (2), liability of protecting nuclear material during international transport (3 and 4), duty of mutual cooperation (5 and 6), responsibility for criminal punishment (7 to 13), and final provisions (14 to 23). It is to be noted that the nuclear material for military purposes and domestic nuclear facilities are excluded in the connection. After the brief description of the course leading to the establishment of the convention, individual articles and annexes and the respective Japanese version, and the explanation based on the intergovernmental meeting discussion on the draft convention are described. (J.P.N.)

  16. Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452332

    The present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer u...

  17. Radiation Protection and Dosimetry An Introduction to Health Physics

    CERN Document Server

    Stabin, Michael G

    2007-01-01

    This comprehensive text provides an overview of all relevant topics in the field of radiation protection (health physics). Radiation Protection and Dosimetry serves as an essential handbook for practicing health physics professionals, and is also ideal as a teaching text for courses at the university level. The book is organized to introduce the reader to basic principles of radiation decay and interactions, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. In addition to presenting the most up to date treatment of the topics and references to the literature, most chapters contain numerical problems with their solutions for use in teaching or self assessment. One chapter is devoted to Environmental Health Physics, which was written in collaboration with leading professionals in the area.

  18. Conceptual Framework for Physical Protection Against Sabotage Considering Plant-specific Radiological Consequences

    International Nuclear Information System (INIS)

    Lee, Joung Hoon; Yu, Dong Han

    2010-01-01

    According to the Generation IV (Gen IV) Technology Roadmap, Gen IV nuclear energy systems (NESs) should highlight proliferation resistance and physical protection (PR and PP) as one of the four goals along with sustainability, safety and reliability, and economics. Especially, physical protection (PP) is the typical important characteristic of an NES that impedes the theft of materials suitable for nuclear explosives or radiation dispersal devices (RDD) and the sabotage of facilities and transportation by subnation entities and other non-Host State adversaries. These two subjects have been studied separately. Proliferation is commonly considered as an international concern and the past work on the PR assessments can be found. On the other hands, PP is regarded as a State security concern, much of which is classified and facility-dependent. Recently, more concern has been focused on the PP design and regulation because of rapid environment changes including radiological consequences by internal sabotage and nuclear terrorism by RDDs. The current PP Regulation has been applied intensively to the existing nuclear facilities and could be a possible guidance for the future GEN-IV NESs. This paper first reviews the IAEA guide document, INFCIRC/225, which was accepted as the standard international guideline in the physical protection area. It has been updated several times up to now, and is undergoing another revision. The paper introduces current substantial changes in the document regarding PP including the national nuclear security and sabotage in the nuclear facilities. Then, it presents a conceptual framework for physical protection against sabotage considering plant-specific radiological consequence after malicious acts within certain vital areas. The framework combines the newly developed method of vital area identification, the current PSA level 2 works, and physical protection concepts. This would help to improve a design concept of new physical protection

  19. Conceptual Framework for Physical Protection Against Sabotage Considering Plant-specific Radiological Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joung Hoon; Yu, Dong Han [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2010-10-15

    According to the Generation IV (Gen IV) Technology Roadmap, Gen IV nuclear energy systems (NESs) should highlight proliferation resistance and physical protection (PR and PP) as one of the four goals along with sustainability, safety and reliability, and economics. Especially, physical protection (PP) is the typical important characteristic of an NES that impedes the theft of materials suitable for nuclear explosives or radiation dispersal devices (RDD) and the sabotage of facilities and transportation by subnation entities and other non-Host State adversaries. These two subjects have been studied separately. Proliferation is commonly considered as an international concern and the past work on the PR assessments can be found. On the other hands, PP is regarded as a State security concern, much of which is classified and facility-dependent. Recently, more concern has been focused on the PP design and regulation because of rapid environment changes including radiological consequences by internal sabotage and nuclear terrorism by RDDs. The current PP Regulation has been applied intensively to the existing nuclear facilities and could be a possible guidance for the future GEN-IV NESs. This paper first reviews the IAEA guide document, INFCIRC/225, which was accepted as the standard international guideline in the physical protection area. It has been updated several times up to now, and is undergoing another revision. The paper introduces current substantial changes in the document regarding PP including the national nuclear security and sabotage in the nuclear facilities. Then, it presents a conceptual framework for physical protection against sabotage considering plant-specific radiological consequence after malicious acts within certain vital areas. The framework combines the newly developed method of vital area identification, the current PSA level 2 works, and physical protection concepts. This would help to improve a design concept of new physical protection

  20. Analytic study for physical protection system (PPS) in nuclear power plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho, E-mail: thw@snu.ac.kr

    2013-12-15

    Highlights: • The physical protection system (PPS) is investigated. • General NPPs are modeled in the study. • Possible terror cases, likelihood, and consequence are studied. • PPS is constructed by analytical methods. - Abstract: The nuclear safeguard is analyzed in the aspect of the physical protection system (PPS) in nuclear power plants (NPPs). The PPS is reviewed and its related terror scenarios are investigated. The PPS is developed using analytical methods. In the terror scenarios, there are 8 possible cases for the terror attacks to the NPPs. Then, the likelihood of terror is classified by the general terror incidents. The consequence of terror is classified by Design Basis Threat (DBT) of the International Atomic Energy Agency (IAEA) scale. The physical protection method is suggested by defense-in-depth constraints and severe accident countermeasures. Finally, the advanced PPS is constructed, which could be used for the preparation for the possible terror attacks in the NPPs.

  1. Analytic study for physical protection system (PPS) in nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2013-01-01

    Highlights: • The physical protection system (PPS) is investigated. • General NPPs are modeled in the study. • Possible terror cases, likelihood, and consequence are studied. • PPS is constructed by analytical methods. - Abstract: The nuclear safeguard is analyzed in the aspect of the physical protection system (PPS) in nuclear power plants (NPPs). The PPS is reviewed and its related terror scenarios are investigated. The PPS is developed using analytical methods. In the terror scenarios, there are 8 possible cases for the terror attacks to the NPPs. Then, the likelihood of terror is classified by the general terror incidents. The consequence of terror is classified by Design Basis Threat (DBT) of the International Atomic Energy Agency (IAEA) scale. The physical protection method is suggested by defense-in-depth constraints and severe accident countermeasures. Finally, the advanced PPS is constructed, which could be used for the preparation for the possible terror attacks in the NPPs

  2. Energy and entropy in radiation dosimetry and protection

    International Nuclear Information System (INIS)

    Oliveira, A.D.

    2006-01-01

    In this work we present and discuss a proposal to describe the degradation of the energy of photons when they interact with matter, which can be applied in radiation dosimetry and protection. Radiation dosimetry is founded in the well known physical approach of field theory as showed by Roesch and Rossi. Fluence and energy deposited are the most fundamental quantities in radiation dosimetry allowing us to calculate absorbed dose. One of the main characteristics of absorbed dose, sometimes ignored, is that it is an intensive quantity pushing radiation dosimetry into the field of statistical physics. In radiation dosimetry it is often used what we can call collective or macroscopic concepts, such as, for example, effective energy, beam quality or beam hardening and absorbed dose. Some of these concepts are trials to describe macroscopically and with simplicity what happens microscopically with a rather higher degree of complexity. In other words, is a tentative to make a bridge between the non continuous world of atoms and photons to the continuous world of radiation protection dosimetry. In computer simulations, that allow to known accurately the energy deposited in matter, absorbed dose (or fluence) is still a very useful and used quantity; however, some issues are still open problems, source of many discussions in conferences and journals in spite of the development of microdosimetry and nano-dosimetry. In spite of that, macroscopic quantities like absorbed dose are still important quantities. One of the important and controversial open question in biological effects at low doses is the linear no threshold concept (L.N.T.). In our opinion this problem is directly related with the problem mentioned above of the bridge between microscopic and macroscopic concepts. Actually, the extrapolation to low dose region is a good expression of the challenge we have to deal in order to make the connections between both worlds, the discrete micro-world to the continuous macro

  3. German physical protection concept for the storage of spent fuel elements in transport and storage casks

    International Nuclear Information System (INIS)

    Weil, L.; Maier, R.

    2005-01-01

    Full text: In Germany, the legal regulations and requirements derived from rules and guidelines for the protection of storage facilities for spent fuel elements from disruptive action or other inference by third parties are structured hierarchically. The Atomic Energy Act constitutes the top level. It is supported by federal ordinances. The next level down is formed by the rules and guidelines. The storage of nuclear fuels may only be authorized, according to the provisions of the Atomic Energy Act, if the required protection from disruptive action or other interference by third parties can be guaranteed as following: it must be possible to prevent any danger to life and health due to a substantial amount of direct radiation or due to the release of a substantial amount of radioactive material; it must be possible to prevent singular or repeated acts of stealing nuclear fuels in such amounts that a critical accumulation can be produced directly without reprocessing and enrichment. Knowing that nuclear installations cannot be protected from every possible interference, physical protection is focused on basic security standards, the so-called design basic threat (DBT), departing from the assumed interference. DBT is regularly reviewed by the competent federal authorities and authorities of the states and are revised on the basis of newly gained knowledge, if necessary, such as in the wake of the terrorist attacks in the U.S. on September 11, 2001. The operator must guarantee and give proof of a sufficient level of physical protection of the plant. The sole physical protection measures implemented by the operator cannot ensure the required protection from other interference by third parties for an unlimited time span. The concept therefore requires additional physical protection measures by the police. (author)

  4. Proceedings of the Seventh Radiation Physics and Protection Conference (RPC-2004)

    International Nuclear Information System (INIS)

    2005-04-01

    The Conference of radiation physics and protection was held on 27-30 November, 2004 in Egypt. the specialists discussed radiation physics and protection, fundamental radiation physics and application, Natural and man made radiation sources and radiation measurements, radiation protection and environmental, applied radiation physics, physics in medicine and biology were disscused at the conference. More than 800 papers were presented in the conference

  5. Radiation protection in nuclear energy. V.2

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. The highlights of the conference were the sessions on the interface between nuclear safety and radiation protection, the evolution of radiation protection principles, exemption rules and accident experiences. The special session on the practical implications of the linear dose-response relationships also provoked particular interest. Although the session on optimization and decision aiding did not reveal any new developments, it did indicate an increasing emphasis on the optimization of radiation protection. A clear trend towards attaining lower collective doses per unit practice over a given time period, despite the increase in nuclear power plant capacity, is also apparent, although very few data on job-related worker doses have been published to date in the open literature. From the regulators' viewpoint, a very strong desire was expressed for a move towards regulatory strategies that exempt practices and sources causing insignificant individual and collective doses. Refs, figs and tabs

  6. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  7. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy, Office of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000 Independence...

  8. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  9. Protection of Distribution Systems with Distributed Energy Resources

    DEFF Research Database (Denmark)

    Bak-Jensen, Birgitte; Browne, Matthew; Calone, Roberto

    of 17 months of work of the Joint Working Group B5/C6.26/CIRED “Protection of Distribution Systems with Distributed Energy Resources”. The working group used the CIGRE report TB421 “The impact of Renewable Energy Sources and Distributed Generation on Substation Protection and Automation”, published...... by WG B5.34 as the entry document for the work on this report. In doing so, the group aligned the content and the scope of this report, the network structures considered, possible islanding, standardized communication and adaptive protection, interface protection, connection schemes and protection...... are listed (chapter 3). The first main part of the report starts with a summary of the backgrounds on DER and current practices in protection at the distribution level (chapter 4). This chapter contains an analysis of CIGRE TB421, protection relevant characteristics of DER, a review of current practices...

  10. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  11. Low-energy meson physics (chiral theory)

    International Nuclear Information System (INIS)

    Volkov, M.K.; Pervushin, V.N.

    1976-01-01

    A quantum chiral theory which allows to obtain low-energy expansions of various hadron processes without introducing arbitrary parameters into the theory with the exception of hadron masses and interaction constants is presented. A hypothesis about the dynamic symmetry of strong interactions is suggested. The interaction lagrangian is derived which satisfies conditions of the dynamic symmetry. Examples of the use of the quantum chiral theory for describing low-energy processes of meson interaction are given. It is noted that the results obtained reproduce the actual qualitative pattern of various physical processes and in most cases result in good quantitative agreement with experiments

  12. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Bourgois, L.

    1996-01-01

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  13. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  14. Bell inequalities in high energy physics

    International Nuclear Information System (INIS)

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  15. Physical Alternative to the Dark Energy Paradigm

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-12-01

    Full Text Available The physical nature of the presently dominating enigmatic dark energy in the expanding universe is demonstrated to be explainable as an excess of the kinetic energy with respect to its potential energy. According to traditional Friedman cosmology, any non-zero value of the total energy integral is ascribed to the space curvature. However, as we show, in the flat universe the total energy also can be different from zero. Initially, a very small excess of kinetic energy originates from the early universe. The present observational data show that our universe has probably a flat space with an excess of kinetic energy. The evolutionary scenario shows that the universe presently is in the transitional stage where its radial coordinate expansion approaches the velocity of light. A possibility of the closed Bubble universe with the local Big Bang and everlasting expansion is demonstrated. Dark matter can be essentially contributed by the non-relativistic massive neutrinos, which have cooled to very low temperatures and velocities thus favoring the formation of the observed broad equipotential wells in galaxies.

  16. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  17. Physics with ultra-low energy antiprotons

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Holzscheiter, M.H.; Hughes, R.J.

    1989-01-01

    The experimental observation that all forms of matter experience the same gravitational acceleration is embodied in the weak equivalence principle of gravitational physics. However no experiment has tested this principle for particles of antimatter such as the antiproton or the antihydrogen atom. Clearly the question of whether antimatter is in compliance with weak equivalence is a fundamental experimental issue, which can best be addressed at an ultra-low energy antiproton facility. This paper addresses the issue. 20 refs

  18. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  19. UNIX at high energy physics Laboratories

    International Nuclear Information System (INIS)

    Silverman, Alan

    1994-01-01

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide

  20. PROTECTION OF ENERGY CONSUMERS IN THE ECONOMIES OF EUROPEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Mihaela ȘTEȚ

    2013-10-01

    Full Text Available The paper realizes an analyze of the position of the energy consumers and presents some ways of influencing the behaviour of the energy consumers. The paper dealt also with the issue of the protection of domestic electricity and gas consumer which aims, in particular, its rights to receive energy at any time, in safe conditions and at affordable prices.

  1. Experimental perspectives in low energy lepton physics

    International Nuclear Information System (INIS)

    Fiorini, E.

    1986-01-01

    Low energy nuclear physics has been and is going to be an essential tool for the study of weak interaction and neutrino physics. The use of the atomic nucleus as a ''microlaboratory'' with well defined quantum numbers is undoubtedly going to yield important and sometimes perhaps unexpected results on the symmetry laws governing the subnuclear world. These searches are however very hard experimentally and the bottleneck on obtaining more stringent results only rarely depends on the need of large and expensive apparatuses as those used in high energy physics: more limiting are technical difficulties. The author believes therefore that a real break-through to overcome the present experimental limitations can only be obtained with totally new and sometime ''non canonical'' technical approaches. This paper is an admittedly incomplete discussion of some of them. The author considers separately searches for rare decays, detection of low energy neutrinos and measurements of the neutrino mass, even if some of these new techniques are common to more than one of these subjects

  2. Game theoretic analysis of physical protection system design

    International Nuclear Information System (INIS)

    Canion, B.; Schneider, E.; Bickel, E.; Hadlock, C.; Morton, D.

    2013-01-01

    The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefit analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget

  3. Cyberinfrastructure for high energy physics in Korea

    International Nuclear Information System (INIS)

    Cho, Kihyeon; Kim, Hyunwoo; Jeung, Minho

    2010-01-01

    We introduce the hierarchy of cyberinfrastructure which consists of infrastructure (supercomputing and networks), Grid, e-Science, community and physics from bottom layer to top layer. KISTI is the national headquarter of supercomputer, network, Grid and e-Science in Korea. Therefore, KISTI is the best place to for high energy physicists to use cyberinfrastructure. We explain this concept on the CDF and the ALICE experiments. In the meantime, the goal of e-Science is to study high energy physics anytime and anywhere even if we are not on-site of accelerator laboratories. The components are data production, data processing and data analysis. The data production is to take both on-line and off-line shifts remotely. The data processing is to run jobs anytime, anywhere using Grid farms. The data analysis is to work together to publish papers using collaborative environment such as EVO (Enabling Virtual Organization) system. We also present the global community activities of FKPPL (France-Korea Particle Physics Laboratory) and physics as top layer.

  4. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    1999-01-01

    Full text: The main activity of our Department is experimental high energy physics with accelerators. Experiments are carried using large facilities: - at CERN, the European Laboratory for Particle Physics in Geneva, - at Celsius Storage Ring in Uppsala and - in DESY laboratory in Hamburg, where several groups of physicists from our Department are members of international collaborations. They are listed below together with the main physics interests: At CERN - Delphi at LEP - tests of the Standard Model, b-quark physics, SUSY search, - NA48 - CP-violation in K 0 decays, rare decays, - SMC - spin dependent nucleon structure function, the Bjorken sum, - NA49 and WA98 - heavy ion physics. At CELSIUS - WASA - threshold production of light mesons, rare meson decays. At DESY - ZEUS - proton and photon structure functions, diffractive production. In most of these experiments our Department also contributed to the instrumentation of detectors and is presently involved in data collection, detector supervision and in data analysis. At the same time the Department is also involved in preparation of new experiments: - CMS (Compact Muon Solenoid) and ALICE at the LHC (Large Hadron Collider) at CERN, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - an upgrade of the present detector at Celsius, - hyperfragment experiment at JINR, Dubna. The department has small workshop which was recently involved in an upgrade of the WASA detector. In our Department there are also two physicists working on the phenomenology of a quark-gluon plasma and on the low energy hadron-hadron interactions. Physicist from our Department collaborate with the Department of the Experimental Physics of Warsaw University. They are also involved in teaching and in supervision of diploma students. There is a group of 9 PhD students. (author)

  5. Convention on the physical protection of nuclear materials

    International Nuclear Information System (INIS)

    1997-01-01

    The document refers to the Convention on the Physical Protection of Nuclear Material (IAEA-INFCIRC-274), including in Part I the status list of signature, ratification, acceptance, approval, accession or succession by States or organizations as of 31 December 1996, in Part II the texts of reservations/declarations made upon or following expressing consent to be bound, and in Part III the texts of reservations/declarations made upon signature

  6. Advanced digital video surveillance for safeguard and physical protection

    International Nuclear Information System (INIS)

    Kumar, R.

    2002-01-01

    Full text: Video surveillance is a very crucial component in safeguard and physical protection. Digital technology has revolutionized the surveillance scenario and brought in various new capabilities like better image quality, faster search and retrieval of video images, less storage space for recording, efficient transmission and storage of video, better protection of recorded video images, and easy remote accesses to live and recorded video etc. The basic safeguard requirement for verifiably uninterrupted surveillance has remained largely unchanged since its inception. However, changes to the inspection paradigm to admit automated review and remote monitoring have dramatically increased the demands on safeguard surveillance system. Today's safeguard systems can incorporate intelligent motion detection with very low rate of false alarm and less archiving volume, embedded image processing capability for object behavior and event based indexing, object recognition, efficient querying and report generation etc. It also demands cryptographically authenticating, encrypted, and highly compressed video data for efficient, secure, tamper indicating and transmission. In physical protection, intelligent on robust video motion detection, real time moving object detection and tracking from stationary and moving camera platform, multi-camera cooperative tracking, activity detection and recognition, human motion analysis etc. is going to play a key rote in perimeter security. Incorporation of front and video imagery exploitation tools like automatic number plate recognition, vehicle identification and classification, vehicle undercarriage inspection, face recognition, iris recognition and other biometric tools, gesture recognition etc. makes personnel and vehicle access control robust and foolproof. Innovative digital image enhancement techniques coupled with novel sensor design makes low cost, omni-directional vision capable, all weather, day night surveillance a reality

  7. Convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1990-08-01

    The document refers to the Convention on the Physical Protection of Nuclear Material (INFCIRC/274). Part I contains reservations/declarations made upon or following signature and Part II contains reservations/declarations made upon or following deposit of instrument of consent to be bound. The status of signature, ratification, acceptance, approval or accession by States or organizations as of 31 July 1990 is presented in an attachment

  8. Convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1982-01-01

    The document presents the original draft for a Convention on the Physical Protection of Nuclear Material, full reports of all the discussions held by representatives of Member States at meetings called by the IAEA, texts of written comments provided by Member States and the final agreed text of the Convention, list of original signatory States and status of the list of signatory States at the date of publication

  9. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  10. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  11. Topics in calorimetry for high energy physics

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1992-01-01

    These lectures focus on a series of topics now of interest or which have been of interest to designes of calorimeters in the past few years. The examples concentrate on calorimeters from DESY because its focus this year is on e-P physics, and on CDF and SDC because they are best known to the author. Calorimeters are, broadly speaking, devices to measure the total energy of particles. In general, no one device will be optimal for all types of particles. The two broadest classes of calorimeters in high energy physics are the electromagnetic calorimeters used primarily for photons and electrons, and the hadronic calorimeters used for most charged mesons and baryons. Most operate by absorbing and thereby measuring a significant amount of the incoming particles energy directly. Some particles may require special devices for their interactions and observation. Modern calorimeters are characterized by energy and position resolution, and cost and size. Calorimeter cost is often a trade-off between performance desired and money available. The optimum cost will require a careful choice of materials, reduction of the overall size of the detector, elimination of labor intensive construction techniques, and careful consideration of the cost of calibration systems. Since at least some of these requirements which optimize cost and resolution are contradictory, the ideal calorimeter in seldom what one ends up building

  12. Proceedings of the Eigth Radiation Physics and Protection Conference (RPC-2006)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    The publication's has been set up in 487 papers and also as electronic of the conference of Radiation Physics and Protection, it consists of the following session (1) nuclear physics; (2) neutron physics, shielding and applications; (3) radiation detection and dosimetry; (4) environmental and protection; (5) nuclear physics; (6) radiation effects; (7) medical physics and biophysics; (8) atmospheric dispersion, atomic physics; (9) radiation physics and protection awarded contribution.

  13. Proceedings of the Eigth Radiation Physics and Protection Conference (RPC-2006)

    International Nuclear Information System (INIS)

    2007-06-01

    The publication's has been set up in 487 papers and also as electronic of the conference of Radiation Physics and Protection, it consists of the following session (1) nuclear physics; (2) neutron physics, shielding and applications; (3) radiation detection and dosimetry; (4) environmental and protection; (5) nuclear physics; (6) radiation effects; (7) medical physics and biophysics; (8) atmospheric dispersion, atomic physics; (9) radiation physics and protection awarded contribution

  14. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  15. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Office of Science, Department of..., General Services Administration, notice is hereby given that the High Energy Physics Advisory Panel will... Sciences Directorate (NSF), on long-range planning and priorities in the national high-energy physics...

  16. Does physical activity protect against drug abuse vulnerability?

    Science.gov (United States)

    Bardo, Michael T; Compton, Wilson M

    2015-08-01

    The current review examined recent literature to determine our state of knowledge about the potential ability of physical activity serve as a protectant against drug abuse vulnerability. Both preclinical and clinical studies were examined using either associational or random assignment study designs. In addition to examining drug use as an outcome variable, the potential neural mediators linking physical activity and drug abuse vulnerability were examined. Several important conclusions may be drawn. First, the preclinical evidence is solid in showing that physical activity in various forms is able to serve as both a preventive and treatment intervention that reduces drug use, although voluntary alcohol drinking appears to be an exception to this conclusion. Second, the clinical evidence provides some evidence, albeit mixed, to suggest a beneficial effect of physical activity on tobacco dependent individuals. In contrast, there exists only circumstantial evidence that physical activity may reduce use of drugs other than nicotine, and there is essentially no solid information from random control studies to know if physical activity may prevent initiation of problem use. Finally, both preclinical and clinical evidence shows that various brain systems are altered by physical activity, with the medial prefrontal cortex (mPFC) serving as one potential node that may mediate the putative link between physical activity and drug abuse vulnerability. It is concluded that novel neurobehavioral approaches taking advantage of novel techniques for assessing the physiological impact of physical activity are needed and can be used to inform the longitudinal random control studies that will answer definitively the question posed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Science.gov (United States)

    2010-01-01

    ... strategic special nuclear material in transit. 73.25 Section 73.25 Energy NUCLEAR REGULATORY COMMISSION... Transit § 73.25 Performance capabilities for physical protection of strategic special nuclear material in transit. (a) To meet the general performance objective and requirements of § 73.20 an in-transit physical...

  18. High Energy Physics (HEP) benchmark program

    International Nuclear Information System (INIS)

    Yasu, Yoshiji; Ichii, Shingo; Yashiro, Shigeo; Hirayama, Hideo; Kokufuda, Akihiro; Suzuki, Eishin.

    1993-01-01

    High Energy Physics (HEP) benchmark programs are indispensable tools to select suitable computer for HEP application system. Industry standard benchmark programs can not be used for this kind of particular selection. The CERN and the SSC benchmark suite are famous HEP benchmark programs for this purpose. The CERN suite includes event reconstruction and event generator programs, while the SSC one includes event generators. In this paper, we found that the results from these two suites are not consistent. And, the result from the industry benchmark does not agree with either of these two. Besides, we describe comparison of benchmark results using EGS4 Monte Carlo simulation program with ones from two HEP benchmark suites. Then, we found that the result from EGS4 in not consistent with the two ones. The industry standard of SPECmark values on various computer systems are not consistent with the EGS4 results either. Because of these inconsistencies, we point out the necessity of a standardization of HEP benchmark suites. Also, EGS4 benchmark suite should be developed for users of applications such as medical science, nuclear power plant, nuclear physics and high energy physics. (author)

  19. Colloquia on High Energy Physics: IFAE 2012

    International Nuclear Information System (INIS)

    Barion, L.; Bozzi, C.; Fioravanti, E.; Pagliara, G; Ricci, B.

    2013-01-01

    The 2012 edition of the 'Incontri di Fisica delle Alte Energie' (IFAE2012) was held at the Aula Magna del Rettorato of the Ferrara University from April 11th to 13th. The Conference was attended by more than 150 participants, with about 75 presentations and 35 posters covering the most recent advances in High Energy Physics, Astroparticle and Neutrino Physics, Heavy Ions and Detection Techniques. Only plenary sessions were held, giving young researchers the opportunity to present their work to a large audience, either with talks or posters, which were on permanent display during the entire conference. The scientific program was organized in 7 sessions: 1-Standard Model and beyond; 2-QCD; 3-Heavy Flavour; 4-Heavy Ions; 5-Astro particles; 6-Neutrino Physics; 7-New Technologies. Introductory, state-of-the art talks, opened the Conference and each session. More detailed talks followed, stimulating lively discussions and interactions between the speakers and the participants. Three talks and two posters by young researchers (Matteo Biassoni, Roberta Cardinale, Stefano Perazzini, Federica Primavera and Laura Zotti) were selected for their high quality and awarded a prize money. It would not have been possible to held this conference without the support of INFN Sezione di Ferrara, Universita' di Ferrara and the generous contributions of Hamamatsu, Caen, National Instruments and AdvanSiD, whom we gratefully acknowledge.

  20. International Training Course on Physical Protection (ITC-25) Report.

    Energy Technology Data Exchange (ETDEWEB)

    Overholt, Michelle Jungst [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The goal of this evaluation repor t is to provide the informa tion necessary to improve the effectiveness of the ITC provided to the In ternational Atomic Energy Agency Member States. This report examines ITC-25 training content, delivery me thods, scheduling, and logistics. Ultimately, this report evaluates whether the course pr ovides the knowledge and skills necessary to meet the students' needs in the protection of nuclear materials and facilities.

  1. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  2. Italian Meeting on High Energy Physics

    CERN Document Server

    Nicrosini, Oreste; Vercesi, Valerio; IFAE 2006; Incontri Di Fisica Delle Alte Energie

    2007-01-01

    This book collects the Proceedings of the Workshop ``Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 April 2006". This is the fifth edition of a new series of meetings on fundamental research in particle physics and was attended by more than 150 researchers. Presentations, both theoretical and experimental, addressed the status of Standard Model and Flavour phyiscs, Neutrino and Cosmological topics, new insights beyond the present understanding of particle physics and cross-fertilization in areas such as medicine, biology, technological spin-offs and computing. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation in 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.

  3. Polarized targets in high energy physics

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1994-01-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous 3 He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail

  4. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  5. International physical protection self-assessment tool for chemical facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  6. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements

  7. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  8. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  9. Studies in theoretical high energy particle physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Brekke, L.; Keung, Wai-Yee; Sukhatme, U.

    1993-01-01

    Theoretical work on the following topics is briefly summarized: symmetry structure of conformal affine Toda model and KP hierarchy; solitons in the affine Toda and conformal affine Toda models; classical r-matrices and Poisson bracket structures on infinite-dimensional groups; R-matrix formulation of KP hierarchies and their gauge equivalence; statistics of particles and solitons; charge quantization in the presence of an Alice string; knotting and linking of nonabelian flux; electric dipole moments; neutrino physics in gauge theories; CP violation in the high energy colliders; supersymmetric quantum mechanics; parton structure functions in nuclei; dual parton model. 38 refs

  10. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  11. Application of nanotechnologies in high energy physics

    International Nuclear Information System (INIS)

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  12. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  13. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  14. Data Preservation in High Energy Physics

    CERN Document Server

    Mount, Richard; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gülzow, Volker; Kemp, Yves; Ozerov, Dmitri; Diaconu, Cristinel; South, David; Lobodzinski, Bogdan; Olsson, Jan; Haas, Tobias; Wrona, Krzysztof; Szuba, Janusz; Schnell, Gunar; Sasaki, Takashi; Katayama, Nobu; Hernandez, Fabio; Mele, Salvatore; Holzner, Andre; Hemmer, Frederic; Schroeder, Matthias; Barring, Olof; Brun, Rene; Maggi, Marcello; Igo-Kemenes, Peter; Van Wezel, Jos; Heiss, Andreas; Chen, Gang; Wang, Yifang; Asner, David; Riley, Daniel; Corney, David; Gordon, John

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group.

  15. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  16. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  17. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  18. Physical Protection System Upgrades - Optimizing for Performance and Cost

    International Nuclear Information System (INIS)

    Hicks, Mary Jane; Bouchard, Ann M.

    1999-01-01

    CPA--Cost and Performance Analysis--is an architecture that supports analysis of physical protection systems and upgrade options. ASSESS (Analytic System and Software for Evaluating Security Systems), a tool for evaluating performance of physical protection systems, currently forms the cornerstone for evaluating detection probabilities and delay times of the system. Cost and performance data are offered to the decision-maker at the systems level and to technologists at the path-element level. A new optimization engine has been attached to the CPA methodology to automate analyses of many combinations (portfolios) of technologies. That engine controls a new analysis sequencer that automatically modifies ASSESS PPS files (facility descriptions), automatically invokes ASSESS Outsider analysis and then saves results for post-processing. Users can constrain the search to an upper bound on total cost, to a lower bound on level of performance, or to include specific technologies or technology types. This process has been applied to a set of technology development proposals to identify those portfolios that provide the most improvement in physical security for the lowest cost to install, operate and maintain at a baseline facility

  19. Resilience in physically abused children: protective factors for aggression.

    Science.gov (United States)

    Holmes, Megan R; Yoon, Susan; Voith, Laura A; Kobulsky, Julia M; Steigerwald, Stacey

    2015-04-27

    Aggression continues to be a serious problem among children, especially those children who have experienced adverse life events such as maltreatment. However, there are many maltreated children who show resilient functioning. This study investigated potential protective factors (i.e., child prosocial skills, child internalizing well-being, and caregiver well-being) that promoted positive adaptation and increased the likelihood of a child engaging in the healthy, normative range of aggressive behavior, despite experiencing physical maltreatment. Logistic regression analyses were conducted using two waves of data from the National Survey of Child and Adolescent Well-Being (NSCAW-I). Children who were physically maltreated were more likely to exhibit clinical levels of aggressive behavior at Time 1 than children who were not physically maltreated. Children's internalizing well-being, children's prosocial behavior, and caregivers' well-being were associated with lower likelihood of clinical levels of aggressive behavior at Time 1. Children's internalizing well-being and children's prosocial behavior remained significantly associated with nonclinical aggression 18 months later. These findings highlight the role of protective factors in fostering positive and adaptive behaviors in maltreated children. Interventions focusing on preventing early aggression and reinforcing child prosocial skills, child internalizing well-being, and caregiver well-being may be promising in promoting healthy positive behavioral adjustment.

  20. Resilience in Physically Abused Children: Protective Factors for Aggression

    Directory of Open Access Journals (Sweden)

    Megan R. Holmes

    2015-04-01

    Full Text Available Aggression continues to be a serious problem among children, especially those children who have experienced adverse life events such as maltreatment. However, there are many maltreated children who show resilient functioning. This study investigated potential protective factors (i.e., child prosocial skills, child internalizing well-being, and caregiver well-being that promoted positive adaptation and increased the likelihood of a child engaging in the healthy, normative range of aggressive behavior, despite experiencing physical maltreatment. Logistic regression analyses were conducted using two waves of data from the National Survey of Child and Adolescent Well-Being (NSCAW-I. Children who were physically maltreated were more likely to exhibit clinical levels of aggressive behavior at Time 1 than children who were not physically maltreated. Children’s internalizing well-being, children’s prosocial behavior, and caregivers’ well-being were associated with lower likelihood of clinical levels of aggressive behavior at Time 1. Children’s internalizing well-being and children’s prosocial behavior remained significantly associated with nonclinical aggression 18 months later. These findings highlight the role of protective factors in fostering positive and adaptive behaviors in maltreated children. Interventions focusing on preventing early aggression and reinforcing child prosocial skills, child internalizing well-being, and caregiver well-being may be promising in promoting healthy positive behavioral adjustment.

  1. Implementation of physical protection of nuclear material in Yugoslavia and Slovenia - recent and planned activities

    International Nuclear Information System (INIS)

    Pesic, M.; Nikolic, A.; Nikolic, D.; Stegnar, P.

    2002-09-01

    In more than ten last years region of South-East Europe (especially countries originated from previous the Socialistic Federal Republics of Yugoslavia) was involved (or surrounded, at least) by various conflicts, including wars of different intensities. These unfavourable conditions have put additional focus at nuclear material stored in various institutions in the region. Following the recommendations of the International Atomic Energy Agency (IAEA) on straighten the physical protection of nuclear material, various actions were done or are planned in the Yugoslavia and Slovenia in aim to increase level of physical protection of nuclear material during its different usage and storage. Especial attention is drawn to update the administration rules, education of the involved personnel and redundancy of different physical protection modes to prevent stealing and smuggling of nuclear material in both the countries or at country borders. The financial and expert help at low-level scale were offered by the IAEA and US government to Yugoslavia in 1996/97. It was used to increase the physical protection of fresh high-enriched uranium fuel stored and controlled regularly by the inspectors of the Safeguard Department of the IAEA. The further help and financial support is expected from the IAEA, USA and relevant European Union (EU) organisations in aim to tighter the borders of both the countries to prevent the illegal traffic of nuclear materials through the Europe. (author)

  2. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  3. Conference summary on new trends in high-energy physics

    International Nuclear Information System (INIS)

    Terazawa, H.

    2001-01-01

    Concluding remarks on over forty papers contributed to the International Conference on New Trends in High-Energy Physics, Yalta, Crimea, Ukraine, September 22 - 29, 2001 are presented. Also presented are some comments on future prospects in high energy physics

  4. Physical protection: his contribution to the safety culture

    International Nuclear Information System (INIS)

    Rodriguez, C.E.; Cesario, R.H.; Giustina, D.H.; Canibano, J.

    1998-01-01

    Full text: As a contribution to the safety culture improvement, the present paper aims at raising awareness about the importance of physical protection measures and, this way, increase the commitment of those responsible for the materials or nuclear installations safety that can cause severe radiological consequences to the public. To that purpose, a brief description is made of the basic criteria used for the design of a Physical Protection System and the introduction of our own computational tool designed and developed by the Nuclear Regulatory Authority to evaluate this type of systems. Likewise, comments are made on the illicit traffic events occurred during the last years involving nuclear materials and other radioactive sources out of some States control, showing that these type of materials are easily accessible and that there are always individuals willing to selling and buying it. Even though events like these won't grant enough uranium or plutonium to fabricate a nuclear weapon, but non-stables isotope and conventional explosives could be mixed to produce a huge contamination. These reported cases had built some public concern and threatened to set a lack of trust on the control systems in use. Even though, no nuclear material diversion and equipment of nuclear interest within the nuclear installations where it is in force the AR 10.13.1 Standard -Physical Protection of Nuclear Materials and Facilities-, have been detected as of today, as a conclusion we must say that only a permanent strengthening of each link of the safety chain will allow a level of an adequate safety. This requires that the already established politics set by the safety authorities reach a high level of commitment by the individuals involved. (author) [es

  5. Grid computing in high-energy physics

    International Nuclear Information System (INIS)

    Bischof, R.; Kuhn, D.; Kneringer, E.

    2003-01-01

    Full text: The future high energy physics experiments are characterized by an enormous amount of data delivered by the large detectors presently under construction e.g. at the Large Hadron Collider and by a large number of scientists (several thousands) requiring simultaneous access to the resulting experimental data. Since it seems unrealistic to provide the necessary computing and storage resources at one single place, (e.g. CERN), the concept of grid computing i.e. the use of distributed resources, will be chosen. The DataGrid project (under the leadership of CERN) develops, based on the Globus toolkit, the software necessary for computation and analysis of shared large-scale databases in a grid structure. The high energy physics group Innsbruck participates with several resources in the DataGrid test bed. In this presentation our experience as grid users and resource provider is summarized. In cooperation with the local IT-center (ZID) we installed a flexible grid system which uses PCs (at the moment 162) in student's labs during nights, weekends and holidays, which is especially used to compare different systems (local resource managers, other grid software e.g. from the Nordugrid project) and to supply a test bed for the future Austrian Grid (AGrid). (author)

  6. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  7. The millennium problem and physical protection systems in UK

    International Nuclear Information System (INIS)

    Groves, J.

    1999-01-01

    In the United Kingdom the Competent Authority is Nuclear Industries Directorate of the UK Government's department of Trade and Industry. It is charged with ensuring that the security regimes at all civil nuclear sites in the country conform with the rues laid down by Government. This task is achieved through giving advice, issuing and interpreting policy, performing trustworthiness checks and conducting security assessments of all aspects of security. This presentation is not concerned with safety or safeguards systems but purely with those concerned with physical protection

  8. Physics contributions to radiation protection in nuclear power plants

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1980-01-01

    Physical research and physical methods can essentially contribute to radiation protection in nuclear power plants. With their aid, properties of radiation sources can be determined, and calculations of radiation shields can be performed. In the present paper, such tasks are analyzed, the state of the art of their solution is evaluated, and trends of further work are shown. Focal points of the present study are the calculation of properties of radiation sources outside the reactor (fission products, activated corrosion products, decontamination facilities for contaminated media), exact and engineering methods for calculating radiation fields also in inhomogeneous shields, and classification of concretes for gamma-ray shielding. Objectives, possibilities, and problems of standardization of such activities are discussed. (author)

  9. Selected problems in experimental intermediate energy physics

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron

  10. Using REDUCE in high energy physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1997-01-01

    This book describes the use of the symbolic manipulation language REDUCE in particle physics. There are several general purpose mathematics packages available to physicists, including Mathematica, Maple, and REDUCE. Each has advantages and disadvantages, but REDUCE has been found to be both powerful and convenient in solving a wide range of problems. This book introduces the reader to REDUCE and demonstrates its utility as a mathematical tool in physics. The first chapter of the book describes the REDUCE system, including some library packages. The following chapters show the use of REDUCE in examples from classical mechanics, hydrodynamics, general relativity, and quantum mechanics. The rest of the book systematically presents the Standard Model of particle physics (QED, weak interactions, QCD). A large number of scattering and decay processes are calculated with REDUCE. All example programs from the book can be downloaded via Internet. The emphasis throughout is on learning through worked examples. This will be an essential introduction and reference for high energy and theoretical physicists. (author)

  11. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  12. 1996 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1997-07-02

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  13. 1996 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1997-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  14. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2002-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: * At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. * At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. * At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. * Super-Kamiokande and Icarus - neutrino mass and oscillations study. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department, participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now

  15. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2003-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. - At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. - Super-Kamiokande and Icarus - neutrino mass and oscillation studies. The groups of our Department participated in the construction phase of the experiments, both in hardware and in the development of the software used in data analysis. Presently they take part in data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - the study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now a

  16. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2004-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA4B - the CP-violation and rare K 0 decays; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon; - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At RHIC - study of pp elastic scattering. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-photon interactions. - Super-Kamiokande and K2 K - a study of neutrino oscillations. The groups from our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - search for optical flashes of cosmic origin: ''π of the sky'' project - search for optical counterparts of γ ray bursts, - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our

  17. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    2000-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: 1. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation in rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition to the quark-gluon plasma state. 2. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - the production of light mesons near threshold and their rare decays. 3. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data acquisition, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - a new version of the WASA detector at CELSIUS in Uppsala, - relativistic hyperfragment production experiment in Dubna, Russia. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of the WASA - Promice

  18. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2001-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation and rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition in the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold production of light mesons, and their decays. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN; - ALICE - experiment to study the heavy ion interactions at the LHC; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN; - WASA- 4π - commissioning of a new version of the WASA detector at CELSIUS in Uppsala; - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of

  19. Some problems of physics of ultrahigh energy cosmic rays

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1999-01-01

    Nearest 15-20 years will be years of flourishing of experimental researches into the energy of cosmic rays at > or ∼ 10 15 eV and of new discoveries in the physics of elementary particles of ultrahigh energies. Unsolved problems of modern physics of ultrahigh energy cosmic rays, which are relevant to the problems of elementary particles physics, are reviewed

  20. High energy particle physics in the United Kingdom

    International Nuclear Information System (INIS)

    1985-06-01

    The paper reviews the U.K. participation in High Energy Particle Physics (HEPP) research. The funding of science in Higher Education and the Research Councils; high energy particle physics; relevance of particle physics to science and technology; particle physics in the U.K.; CERN; and the opportunity cost of HEPP within the science budget; are all discussed. (U.K.)

  1. [Experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  2. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  3. Report of the Subpanel on High Energy Physics Manpower of the High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    1978-06-01

    A report of a study by a Subpanel which was appointed by the High Energy Physics Advisory Panel (HEPAP) to examine the production in recent years of new researchers in high energy physics and the rate at which they have moved into short term and permanent positions in the field. The Subpanel made use of the 1973 and 1975 ERDA Census data, statistics collected by others, as well as a number of surveys conducted by the Subpanel itself. Even though many uncertainties and gaps exist in the available data, several important points are presented. (1) New Ph.D. production in high energy physics has decreased in recent years even more rapidly than in physics as a whole. (2) New Ph.D.'s in experimental and theoretical high energy physics have been produced for many years in roughly equal numbers in spite of the fact that employment in the field at all levels shows a ratio of experiment-to-theory approaching two-to-one. (3) A very large fraction of the approximately 1700 Ph.D.'s in high energy physics (employed at 78 universities and 5 national laboratories) hold tenured positions (383 theorists and 640 experimentalists). (4) The age distribution of those in the tenured ranks reveals that the number of retirements will be extremely small during the next decade but will then start to have a significant impact on the opportunities for those who are seeking careers in the field. (5) Promotions to tenure at the universities during the 4 year interval AY72/73-AY76/77 have averaged about 10 per year in experiment and 10 per year in theory

  4. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  5. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  6. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  7. Evaluation of road-transit physical protection systems

    International Nuclear Information System (INIS)

    Gallagher, R.J.; Keeton, S.C.; Stimmell, K.G.; DeLaquil, P. III.

    1978-05-01

    To assess the overall effectiveness of a transportation physical protection system, computer codes which simulate armed attacks have been developed and are being used to examine a range of issues associated with road transportation systems. The paper discusses the purpose and features of three of these codes, SOURCE (which simulates the initial ambush), SABRES I (which covers the battle) and BARS (which treats the penetration of protective cargo barriers). The use of these methodologies to evaluate the value of additional vehicles, guards, armor and alternative tactics or equipment as a means of improving convoy security has recently been completed. The results which are presented demonstrate that the protection offered by the present commercial regulations for guards and vehicles is probably marginal. This could be substantially increased by the addition of armor to close escort vehicles instead of just the transporter and the use of appropriate tactics. Against the baseline threat of adversaries armed with M-16's, observation and harassment from a modest distance until re-enforcements arrive appears preferable to aggressive assault by the ambushed guard force

  8. Environmental protection and international law: the case of nuclear energy

    International Nuclear Information System (INIS)

    Dagicour, F.

    2002-03-01

    Given the very hazardous nature of its activity, the nuclear industry has often been considered to be without a future. Concerns over climate change and increasing international energy needs have, however, shone a new light on the positive aspects of nuclear energy. As the only clean, stable and inexpensive energy source, available, nuclear energy promises a constant supply of electricity while protecting the atmosphere. This new relationship between the environment and nuclear energy calls for an analysis of the international regulation of the risks posed by nuclear energy production. Since the beginning of the nuclear age, the long term, unknown, and large geographic scope of the risks and effects of this activity have led to the adoption of a set of normative rules outside of the scope of international environmental law. The norms that now regulate this new, ultra-hazardous activity resulted in a set of rules aimed at protecting the environment in the face of high risk activities that now form the heart of international environmental law. Unwilling relinquish national sovereignty, States adopted a system of non-binding regulation to protect the environment and promote the nuclear industry. The Chernobyl accident later pointed to the weakness of this approach. Despite this weakness, the adoption of a soft law approach has led to progress in environmental protection in an area where States have been loathe to give up their sovereignty. (author)

  9. 2013 European School of High-Energy Physics

    CERN Document Server

    Perez, G; ESHEP 2013

    2015-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the the- oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, Higgs physics, physics beyond the Standard Model, flavour physics, and practical statistics for particle physicists.

  10. 2012 European School of High-Energy Physics

    CERN Document Server

    Mulders, M; ESHEP 2012

    2014-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, flavour physics, physics beyond the Standard Model, neutrino physics, and cosmology.

  11. Weakly supervised classification in high energy physics

    International Nuclear Information System (INIS)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; Schwartzman, Ariel

    2017-01-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  12. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  13. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  14. Weakly supervised classification in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dery, Lucio Mwinmaarong [Physics Department, Stanford University,Stanford, CA, 94305 (United States); Nachman, Benjamin [Physics Division, Lawrence Berkeley National Laboratory,1 Cyclotron Rd, Berkeley, CA, 94720 (United States); Rubbo, Francesco; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA, 94025 (United States)

    2017-05-29

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  15. Networking for high energy physics in Japan

    International Nuclear Information System (INIS)

    Karita, Yukio; Abe, Fumio; Hirose, Hitoshi; Goto, Hiroyuki; Ogasawara, Ryusuke; Yuasa, Fukuko; Banno, Yoshiaki; Yasu, Yoshiji

    1989-01-01

    The computer network for high energy physics in Japan has grown over the last five or six years and is still expanding. Its original purpose was to provide the collaborators in universities access to the computing resources in KEK. Adding to the remote login from terminals, VAXs or Fujitsu computers located in universities have been connected to KEK's computers by DECnet or FNA (Fujitsu's SNA) and have formed the ''Japanese HEPnet''. Since the link between LBL and KEK was established in June 1987, the Japanese HEPnet is combined with the American HEPnet and is an indispensable tool for international collaboration. The current communication media for Japanese HEPnet, leased lines and public X.25, are being replaced by Gakujo-net (Monbusho's inter-university private X.25 network). DECnet, FNA, IP and Ethernet-bridge will run on Gakujo-net for the Japanese HEPnet. (orig.)

  16. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  17. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, P.B. (ed.)

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included in these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.

  18. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    International Nuclear Information System (INIS)

    Herrington, P.B.

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included in these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility

  19. Creatine pretreatment protects cortical axons from energy depletion in vitro

    Science.gov (United States)

    Shen, Hua; Goldberg, Mark P.

    2012-01-01

    Creatine is a natural nitrogenous guanidino compound involved in bioenergy metabolism. Although creatine has been shown to protect neurons of the central nervous system (CNS) from experimental hypoxia/ischemia, it remains unclear if creatine may also protect CNS axons, and if the potential axonal protection depends on glial cells. To evaluate the direct impact of creatine on CNS axons, cortical axons were cultured in a separate compartment from their somas and proximal neurites using a modified two-compartment culture device. Axons in the axon compartment were subjected to acute energy depletion, an in vitro model of white matter ischemia, by exposure to 6 mM sodium azide for 30 min in the absence of glucose and pyruvate. Energy depletion reduced axonal ATP by 65%, depolarized axonal resting potential, and damaged 75% of axons. Application of creatine (10 mM) to both compartments of the culture at 24 h prior to energy depletion significantly reduced axonal damage by 50%. In line with the role of creatine in the bioenergy metabolism, this application also alleviated the axonal ATP loss and depolarization. Inhibition of axonal depolarization by blocking sodium influx with tetrodotoxin also effectively reduced the axonal damage caused by energy depletion. Further study revealed that the creatine effect was independent of glial cells, as axonal protection was sustained even when creatine was applied only to the axon compartment (free from somas and glial cells) for as little as 2 h. In contrast, application of creatine after energy depletion did not protect axons. The data provide the first evidence that creatine pretreatment may directly protect CNS axons from energy deficiency. PMID:22521466

  20. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    Cline, D.B.

    1993-01-01

    Progress on seven tasks is reported. (I)UCLA hadronization model, antiproton decay, PEP4/9 e + e - analysis: In addition to these topics, work on CP and CPT phenomenology at a φ factory and letters of support on the hadronization project are included. (II)ICARUS detector and rare B decays with hadron beams and colliders: Developments are summarized and some typcial events as shown; in addition, the RD5 collaboration at CERN and the asymmetric φ factory project are sketched. (III)Theoretical physics: Feynman diagram calculations in gauge theory; supersymmetric standard model; effects of quantum gravity in breaking of global symmetries; models of quark and lepton substructure; renormalized field theory; large-scale structure in the universe and particle-astrophysics/early universe cosmology. (IV)H dibaryon search at BNL, kaon experiments (E799/KTeV) at Fermilab: Project design and some scatterplots are given. (V)UCLA participation in the experiment CDF at Fermilab. (VI)Detectors for hadron physics at ultrahigh energy colliders: Scintillating fiber and visible light photon counter research. (VII)Administrative support and conference organization

  1. Steps to implement the legal and regulatory infrastructure for physical protection of nuclear material in Peru

    International Nuclear Information System (INIS)

    Ramirez Quijada, R.

    2001-01-01

    physical protection where competency and requisites in physical protection of nuclear material are established. The proposed rule was first written taking into account the recommendations of INFCIRC/225/Rev.4 and then also the recommendations by an IPPAS mission in 1999. In order to cope with all of these subjects the projected rule (currently under review) has included both legal and technical aspects. The main parts include the objective and purpose, the responsibilities for the organizations engaged in the physical protection, categorization of nuclear material as established in the Convention on Physical Protection, requisites for transportation and storage an use of nuclear materials, requisites for nuclear installations, coordination levels between State authorities, and enforcing and sanctions. As the Institute Peruano de Energia Nuclear (IPEN) is the national competent organization in nuclear energy the proposed rule has also established that national competent authority on physical protection as being IPEN. The proposed rule foresees the participation of Ministry of Defense and Ministry of Internal Security. In order to achieve a good level of participation and engagement of these authorities, the document is going to be reviewed by these two state organizations. Additionally, pursuant to the Convention, the rule has been stated specifically that non-authorized removal or sabotage of nuclear material and installations will be punished by Civil and Penal Code. If some offenses related to the physical protection would happen, the current Penal Code and another Laws make it possible to punish them but it could be not at all easy. In order to close the legal circle for a good regulation of physical protection, some inclusions specifically related to this matter will be proposed to the Penal Code. It is expected that the proposed rule will be approved by early next year, but the additions to the Penal Code perhaps will need more time. One additional task for IPEN in

  2. Proceedings of 2011 European School of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, C; Mulders, M [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on quantum field theory and the Standard Model, quantum chromodynamics, flavour physics, neutrino physics, physics beyond the Standard Model, cosmology, heavy ion physics, statistical data analysis, as well as an account for the physics results with the data accumulated during the first run of the LHC.

  3. 2011 European School of High-Energy Physics

    CERN Document Server

    Mulders, M; ESHEP2011; ESHEP 2011

    2014-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on quantum field theory and the Standard Model, quantum chromodynamics, flavour physics, neutrino physics, physics beyond the Standard Model, cosmology, heavy ion physics, statistical data analysis, as well as an account for the physics results with the data accumulated during the first run of the LHC.

  4. Role of physical protection and safeguards technology used to Nuclear Material Security

    International Nuclear Information System (INIS)

    Djoko-Irianto, Ign.

    2005-01-01

    The presence of nuclear materials at any nuclear facility must be in secure and must be known as safeguards purpose such as its position, from or type and amount. The clarification of the amount be reported to the national regulatory body and International Atomic Energy Agency (IAEA) as the International regulatory body. The national regulatory body and IAEA will then verify that report. The verification must be done to know there is no difference of the amount, and to give the assurance to the International community that any diversion of safeguarded nuclear material from civil use to a prescribed military purpose would be detected. To carry out verification, several verification techniques such as non-destructive analysis, surveillance, unattended and remote monitoring and environmental sampling are explained to convey the impression how those techniques are implemented. According to the security requirement, the physical protection system including all components of physical protection system have to be effectively designed

  5. Energy policy seesaw between security and protecting the environment

    International Nuclear Information System (INIS)

    Finon, D.

    1994-01-01

    It is just the price of oil that causes the energy policies of importing countries to vacillate. Changing perceptions of energy supply factors has had as much to do with transfiguring government action modes since 1973 as has the idea of the legitimacy of that action. The present paper thus draws a parallel between the goal of energy security twenty years ago and that of global environmental protection today, which explains the critical reversion to a view of minimum government action in the energy field - a view that marked the eighties. (author). 20 refs

  6. Protection of large-stored-energy superconducting coils

    International Nuclear Information System (INIS)

    Kircher, F.

    1975-11-01

    When the stored energy of superconducting magnets increases, the problem of the protection of the coil when a quench occurs becomes more and more important, especially if the structure of the coil is such that the energy can be dissipated only in a small part of the coil. The aim of this paper is first to describe a program which enables to predict the increase of temperature inside the coil for several kinds of protection and to give results for KEK pulsed dipoles (under construction and planned for TRISTAN). (auth.)

  7. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  8. High energy physics at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Samios, N.P.

    1982-01-01

    The high energy plans at BNL are centered around the AGS and ISABELLE, or a variant thereof. At present the AGS is maintaining a strong and varied program. This last year a total of 4 x 10 19 protons were delivered on target in a period of approximately 20 weeks. Physics interest is very strong, half of the submitted proposals are rejected (thereby maintaining high quality experiments) and the program is full over the next two years. The future colliding beam facility will utilize the AGS as an injector and will be a dedicated facility. It will have six intersection regions, run > 10 7 sec/year, and explore a new domain of energy and luminosity. Common to all the considered alternatives is a large aperture proton ring. These possible choices involve pp, ep, and heavy ion variants. The long term philosophy is to run the AGS as much as possible, continuously to upgrade it in performance and reliability, and then to phase it down as the new collider begins operation

  9. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1981-01-01

    At our current understanding of elementary particle physics, the fundamental constituents are the photon, quarks, gluons and leptons with a few highly forecasted heavy bosons. Calorimeters are essential for detecting all of these particles. Quarks and gluons fragment into many particles - at high energies, so many particles that one may not want to measure each one separately. This group of both charged and neutral particles can only be measured by calorimeters. The energy of an electron needs to be measured by a calorimeter and muon identification is enhanced by the recognition of a minimum ionizing particle passing through the calorimeter. Sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers - are reviewed. What follows is a very cursory overview of some fundamental aspects of sampling calorimeters. First, the properties of shower development are described for both the electromagnetic and hadronic cases. Then, examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described. 21 references

  10. Perspectives on High-Energy-Density Physics

    Science.gov (United States)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare

  11. Working with physics High-energy communicator

    CERN Document Server

    Bradshaw, Kate

    2006-01-01

    "Kate Bradshaw is a science communicator working at CERN, the world's largest particle physics Laboratory. She talked to Physics Review about her route from A-level physics to her present job." (3 pages)

  12. UPR/Mayaguez High Energy Physics

    International Nuclear Information System (INIS)

    Lopez, Angel M.

    2015-01-01

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico's Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group's history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group's leveraging of funds from the Department of Energy's core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group's research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group's work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group's scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass

  13. Progress and cooperation. Y2K, safeguards and physical protection

    International Nuclear Information System (INIS)

    Chitumbo, K.; Hilliard, J.; Smith, J.

    1999-01-01

    The Year 2000 problem poses major technical challenges to computer systems. For that reason it has drawn considerable attention over the past four years at the IAEA and within the international safeguards community of States and organisations. Actions of IAEA are very close to completion for the conversion of al related systems to make them Y2K compliant. As a result of IAEA past work and continuing liaison with Member States, the following needs were identified: organizing assistance and/or training to help states evaluate existing accounting software, and upgrade it or develop new Y2K compliant software; providing Y2K compliant software when needed; providing guidance and assistance on physical protection issues; organizing assistance missions visiting a state encountering problems; establishing contingency plans

  14. Tabletop exercise as a tool of evaluating physical protection system

    International Nuclear Information System (INIS)

    Matsuzawa, Reina

    2014-01-01

    Evaluation of designed and implemented physical protection system (PPS) is essential for ensuring the effectiveness of PPS. In Japan, nuclear facility operators, which are required to assess performance of PPS, have conducted performance test of PPS element and periodical trainings as well as annual PPS exercise with relevant agencies. In addition to these practical or field efforts, non-field tool for evaluating PPS effectiveness such as tabletop exercise (TTX) can be utilized as it is applied in the USA and other countries. This paper discusses the potential advantage of TTX as an evaluation tool of PPS effectiveness, looking at the characterizations of TTX in comparison to field evaluations, and potential cases where operator would get benefit from TTX especially. (author)

  15. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  16. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  17. Evaluation of physical-protection elements for interior applications

    International Nuclear Information System (INIS)

    Scott, S.H.

    1983-01-01

    Considerable emphasis has been given in recent years to the threat of sabotage by an insider at nuclear facilities. This threat is inherently different from the outsider threat of theft or sabotage because of the insiders' unique knowledge and access to vital material and equipment. Thus, special safeguards elements are needed in order to counter the insider threat. In addition, insider physical protection system elements must be compatible with the operations, safety, and maintenance programs at the facility. To help identify elements which meet these needs, field evaluations were performed on an interior access control system, piping sensors, interior video motion detectors, and valve monitoring devices. These elements were tested in a realistic operating environment and both technical and operational evaluation data were obtained. Safeguards element descriptions and the results of the operational tests and evaluations are outlined

  18. Evaluation methodology for fixed-site physical protection systems

    International Nuclear Information System (INIS)

    Bennett, H.A.; Olascoaga, M.T.

    1980-01-01

    A system performance evaluation methodology has been developed to aid the Nuclear Regulatory Commission (NRC) in the implementation of new regulations designed to upgrade the physical protection of nuclear fuel cycle facilities. The evaluation methodology, called Safeguards Upgrade Rule Evaluation (SURE), provides a means of explicitly incorporating measures for highly important and often difficult to quantify performance factors, e.g., installation, maintenance, training and proficiency levels, compatibility of components in subsystems, etc. This is achieved by aggregating responses to component and system questionaires through successive levels of a functional hierarchy developed for each primary performance capability specified in the regulations, 10 CFR 73.45. An overall measure of performance for each capability is the result of this aggregation process. This paper provides a descripton of SURE

  19. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  20. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  1. CISM Advanced School on Crashworthiness : Energy Management and Occupant Protection

    CERN Document Server

    2001-01-01

    From the fundamentals of impact mechanics and biomechanics to modern analysis and design techniques in impact energy management and occupant protection this book provides an overview of the application of nonlinear finite elements, conceptual modeling and multibody procedures, impact biomechanics, injury mechanisms, occupant mathematical modeling, and human surrogates in crashworthiness.

  2. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  3. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  4. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2006-01-01

    The activities of the Department are centered around experiments performed at large accelerator laboratories: I. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - Data taking experiments: COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies of the gluon polarization in the nucleon; - Experiments that finished data taking but continue the analysis: NA49 and WA98 - heavy ion experiments, study hadronic and nuclear interactions, searching for the quark-gluon plasma. II. The 'Pi of the Sky' experiment, searching for optical flashes associated with Gamma Ray Bursts takes data with a set of CCD cameras mounted in the Chile Observatory Station, and works on an extension of the system. III. WASA experiment, recently transferred from the CELSIUS storage ring in Uppsala to Juelich, studies near threshold resonance production. IV. ZEUS experiment at HERA in Hamburg - studies of proton structure functions and diffractive interactions. V. Neutrino experiments at SuperKamiokande and K2K in Japan - studies of the neutrino oscillations. VI. Preparations for future experiments: a) ICARUS - in preparation for the neutrino beam from CERN, to study neutrino oscillations, b) Experiments at the future Large Hadron Collider at CERN: CMS - Compact Muon Solenoid, LHCb - study of b-quark production, ALICE - study of heavy ion collisions. A team of physicists, engineers and technicians, using our well equipped mechanical workshop, with 'clean room' (class 100 000) facilities has performed a large scale production of straw tube modules for the LHCb experiment. Preparations for LHC physics requires an active participation of the teams involved in the computer GRID implementation. There is also a small group involved in theoretical work on the phenomenology of quark-gluon plasma formation and the low energy hadronic reactions. Several physicists from our department are actively involved in science popularization. A close

  5. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2009-01-01

    Full text: The main activities of the Department can be grouped into four parts: I. An ongoing analysis of data from large accelerator facilities At CERN SPS: The Compass experiment, ' a flagship of the CERN fixed target program ', studies the structure of the nucleon. Gluon polarization analysis was the main subject this year. Compass is an active experiment, and there is an ongoing effort in data taking and detector development. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. In 2008, important results on transverse momentum spectra were published. At COSY: The WASA experiment works with low energy (up to 3.7 GeV) beams of protons and deuterons, studying rare decays of eta mesons. New limits on branching ratios for such decays have been determined. This information is important for the theory of C and CP symmetry, and chiral perturbation theory. II. Preparations for soon-to-be-operating experiments at the LHC Three teams work on LHC experiments: CMS, LHCb and ALICE. The CMS experiment is ready for data taking. The muon trigger system, based on resistive plate chambers RPC, has been installed and tested using cosmic ray muons. Simulations of physical processes predicted by some extensions of the Standard Model were performed. The LHCb experiment team has worked on the system of the Inner Detector positioning station Rasnik, and the beam phase and intensity monitor (together with a P-III team). Simulations of the B decays into vector mesons, for the High Level Trigger, were performed. The ALICE team has worked on the installation of the photon detector PHOS and tests with cosmic muons. Simulations of neutral pion reconstruction were performed. Preparation of the computing base for future large experiments - work within the Worldwide LHC Computing Grid was actively pursued by a dedicated team. In 2008, many activities were directed at information and popularization of LHC physics. Our department members actively

  6. A programmatic challenge - accelerating, expanding, and innovating physical protection

    International Nuclear Information System (INIS)

    Caravelli, J.

    2002-01-01

    Full text: In the wake of the September 11th terrorists attacks, the Office of international material protection and cooperation is responding to the international community's call to strengthen a global response to the serious challenge of securing nuclear material with the aim of preventing nuclear terrorism. Recent events underline the urgency to proactively address the threat posed by insufficiently secured nuclear material. The sobering reality is that, at present, the threat is disproportional to international efforts to mitigate and stop the proliferation of nuclear materials. The potential consequences of failing to address deficiencies in security systems, or for that matter aiming at anything below 'comprehensive' nuclear material security' is a horrifying reminder of the incredible challenge that we are facing. Against this backdrop, our Office has undertaken a comprehensive program review and is making all possible efforts to expand, accelerate and innovate our physical protection approach. The presentation that I propose to deliver will provide an overview of our new thinking regarding the vulnerability of nuclear/radioactive material post 9-11, touch on some of the obstacles that we are experiencing, and outline the steps that we are aggressively pursuing with the aim of achieving real threat reduction. My presentation will begin with a look at the success and knowledge gained from the bilateral material protection, control and accounting (MPC and A) cooperation between the United States and the Russian Federation and use this as a platform from which to launch a wider discussion on international efforts to strengthen practices for protecting nuclear material. I will examine lessons learned from our cooperation in relation to their applicability to today's security challenges and will outline how we are expanding on our traditional mission to address emerging threats. I will discuss programmatic efforts to bolster traditional, first line of defense

  7. Pattern recognition in high energy physics

    International Nuclear Information System (INIS)

    Tenner, A.G.

    1980-01-01

    In high energy physics experiments tracks of elementary particles are recorded by different types of equipment. Coordinates of points of these tracks have to be measured for the geometrical reconstruction and the further analysis of the observed events. Pattern recognition methods may facilitate the detection of tracks or whole events and the separation of relevant from non-relevant information. They may also serve for the automation of measurement. Generally, all work is done by digital computation. In a bubble chamber tracks appear as strings of vapour bubbles that can be recorded photographically. Two methods of pattern recognition are discussed. The flying spot digitizer encodes the pattern on the photograph into point coordinates in the memory of a computer. The computer carries out the pattern recognition procedure entirely on the basis of the stored information. Cathode ray instruments scan the photograph by means of a computer steered optical device. Data acquisition from the film is performed in a feedback loop of the computation. In electronic experimental equipment tracks are defined by the spacial distribution of hits of counters (wire counters, scintillation counters, spark chambers). Pattern recognition is generally performed in various stages both by on-line and off-line equipment. Problems in the data handling arise both from the great abundance of data and from the time limits imposed on the on-line computation by high measuring rates. The on-line computation is carried out by hardwired logic, small computers, and to an increasing extent by microprocessors. (Auth.)

  8. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  9. Main physical problems of superhigh energy accelerators

    International Nuclear Information System (INIS)

    Lapidus, L.I.

    1979-01-01

    A survey is given of the state and prospects for the scientific researches to be carried out at the largest charged particle accelerators now under construction. The fundamental problems of the elementary particle physics are considered which can be solved on the base of experiments at high-energy accelerators. The problems to be solved involve development of the theory of various quark number, accurate determination of the charged and neutral intermediate vector boson masses in the Weinberg-Salam theory, the problem of production of t-quark, W -+ - and Z deg bosons, Higgs mesons and investigation of their interactions, examination of quark and lepton spectra, studies on the effects of strong interactions. As a result of the investigations on hadrons at maximum momentum transfers, the data on space-time structure at short distances can be obtained. It is emphasized that there are no engineering barriers to the construction of such accelerators. The main problem lies in financial investment. A conclusion is drawn that the next generation of accelerators will be developed on the base of cooperation between many countries [ru

  10. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    Full text: The main activities of the Department can be grouped into four parts: I. An ongoing analysis of data from large accelerator facilities. At CERN SPS: The Compass experiment, 'a flagship of the CERN fixed target program', studies the structure of the nucleon. Gluon polarization analysis was the main subject of this year. Compass is an active experiment, and there is an ongoing effort on data taking and detector development. Two heavy ion experiments. WA98 and NA49. have finished data taking, but continue analysis. The wide purpose NA61 experiment has taken data, and our team works on the hadron-nucleus processes, important for the neutrino program. At COSY: The WASA experiment works with low energy (up to 3,7 GeV) beams of protons and deuterons. studying η → 3π 0 decays and leptonic decays of eta mesons. New limits on branching ratios for such decays have been determined. Production of M mesons in the pd interaction was measured for the first time in the near threshold energy range. Altogether 8 publications came from the experiment. II. Start of the LHC operation. Three teams work on LHC experiments: CMS, LHCb and ALICE. The CMS experiment is ready for data taking. The muon trigger system, based on the resistive plate chambers RFC, has been installed and tested. Three papers on the detector performance have been published, and 25 submitted for publication. The LHCb experiment team has worked on the system of the Inner Detector positioning station Rasnik, and the beam phase and intensity monitor (together with the (P-III team). Simulations of the B decays into vector mesons, for the High Level Trigger, were performed. The ALICE team has worked on the installation of the photon detector PHOS and tests with cosmic muons. Simulations for the neutral pion reconstruction were performed. The first very preliminary data on multiplicity from pp collisions at 900 GeV have been published. Preparation of the computing base for future large experiments - work

  11. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  12. Research in high energy theoretical physics: Progress report

    International Nuclear Information System (INIS)

    Clavelli, L.J.; Harms, B.C.; Jones, S.T.

    1987-01-01

    This paper briefly discusses many papers submitted in theoretical High Energy Physics by the Physics Department of the University of Alabama. Most papers cover superstring theory, parity violations, and particle decay

  13. Physics of (very) high energy e+-e- colliders

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1984-10-01

    I review the physics capabilities of e + e - colliders of hundred GeV to TeV center-of-mass energies, emphasizing issues relevant to the physics of symmetry breaking in the weak interactions. 24 references

  14. Energy security and climate change protection: Complementarity or tradeoff?

    International Nuclear Information System (INIS)

    Brown, Stephen P.A.; Huntington, Hillard G.

    2008-01-01

    Energy security and climate change protection have risen to the forefront of energy policy - linked in time and a perception that both goals can be achieved through the same or similar policies. Although such complementarity can exist for individual technologies, policymakers face a tradeoff between these two policy objectives. The tradeoff arises when policymakers choose the mix of individual technologies with which to reduce greenhouse gas emissions and enhance energy security. Optimal policy is achieved when the cost of the additional use of each technology equals the value of the additional energy security and reduction in greenhouse gas emission that it provides. Such an approach may draw more heavily on conventional technologies that provide benefits in only one dimension than on more costly technologies that both increase energy security and reduce greenhouse gas emissions. (author)

  15. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  16. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  17. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  18. Enhancement the physical protection system of the WWR-SM reactor at Institute of Nuclear Physics of Academy of Science of the Republic of Uzbekistan

    International Nuclear Information System (INIS)

    Karabaev, Kh.Kh.; Rakhimbaev, A.T.; Rakhmanov, A.B.; Salikhbaev, U.S.; Yuldashev, B.S.

    2004-01-01

    Full text: Joining of the Republic of Uzbekistan to Non-Proliferation Treaty required the revision of nuclear fuel protection system and radioactive sources from illegal access in all stages of work with nuclear materials. One of the primary technical actions of ensuring non-proliferation of nuclear materials is physical protection. The project was worked out on upgrading and enhancement of the physical protection of the reactor building. In cooperation with Sandia National Laboratory and support of the Department of Energy (DOE) USA The first stage of the physical protection upgrading provided for fresh fuel protection: - the new fresh fuel storage room was built and equipped with the modern control and detection system, - the reactor building was equipped with detection devices and access control, - the central alarm station (CAS) has been built and equipped with computer control and observing system, - code access system has been implemented. The first stage of upgrading of physical protection system was accomplished for 4 months, and put into operation in 1996. The second stage of physical protection system modernization included the construction of the second barrier of the physical protection, equipping it with observation and control devices and also extension of the CAS. The perimeter around the reactor building was cleaned from trees, bushed and in a short time a two-fence barrier was erected. The access control point provided the secured intensified control of the access to the reactor territory. The physical protection system was supplied with equipment for safeguard and TV observation of perimeter, access control to the territory of the reactor: - the CAS was extended and computer observation control system was upgraded, - the badge station has been constructed, equipped and set up, - all doors, windows, reactor hall gate have been replaced by strengthened metal ones, - uninterruptible power supply (UPS) and diesel-generator have been installed, - the

  19. High energy physics: Experimental, theoretical and phenomenology institute

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.; Durand, B.; Durand, L.; Erwin, A.; Fry, W.; Goebel, C.; Halzen, F.; Loveless, R.; March, R.; Morse, R.; Olsson, M.; Pondrom, L.; Prepost, R.; Reeder, D.; Sheaff, M.; Smith, W.; Thompson, M.; Wu, S.L.

    1991-01-01

    This report discusses research in the following task: hadron physics at Fermilab; Lepton hadron scattering; electromagnetic ampersand weak interactions at the Stanford Linear Accelerator Center - SLAC; hyperon beam program - hadroproduction of heavy beam flavors at Fermilab; ultra high energy colliding beam physics; Institute for high energy physics phenomenology; weak ampersand electromagnetic interactions using PETRA at DESY ampersand LEP at CERN; theoretical high energy physics; DUMAND; study of ultra high energy gamma rays; data analysis facility; and R ampersand D for major subsystems for the SSC detectors

  20. Expert training on physical protection of nuclear materials at universities of Russia

    International Nuclear Information System (INIS)

    Pogozhin, N.S.; Bondarev, P.V.; Geraskin, N.I.; Kryuchkov, E.F.; Tolstoy, A.I.

    2002-01-01

    Full text: The expert training on physical protection of nuclear materials in Russia is carry out by the universities on the following directions: 'Physical Protection, Control and Accountability of Nuclear Materials (MPCA)' master educational program. 'Physical and technical problems of atomic engineering' master educational standard. 'Technical Physics' direction. Qualification - master of physics. Duration of training - two years. 'Physical protection of nuclear objects' specialization. 'Nuclear physics and technology' educational standard of a direction for professionally qualified expert training. 'Safety and nonproliferation of nuclear materials' specialty. Qualification - engineer-physician. Duration of training - five years. The Master educational program is intended for the expert training with fundamental knowledge. The masters are assigned to work at the establishments of the Ministry of Atomic Energy of Russia and at the state committee on nuclear supervision (Gosatomnaozor). Many graduates continue their education as post-graduate students. The program is designed for the experts having education of an engineer or a bachelor. The program concept consists in integration in a uniform educational process: profound scientific and technical knowledge; system approach to designing MPCA systems; knowledge of scientific and technical principles, means, devices; MPCA facilities and tools; legal, political and economic aspects of nuclear material management; modern computer and information technologies for MPCA systems; research work and practice of the students. The educational program for 'physical protection of nuclear objects' specialization is intended for the expert training of a practical orientation. Engineer-physicians are assigned as a rule to work at the nuclear objects and are intended for operation and servicing of the certain physical protection systems (PPS). The program concept consists in training not only fundamental aspects of an engineering

  1. LOS ALAMOS: the future of medium energy physics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A 'Workshop on Program Options in Intermediate Energy Physics' was recently held at LAMPF and the topics discussed there are summarized. The purpose of the meeting was to establish priorities for experimental research at intermediate energies. (W.D.L.).

  2. Data Preservation in High Energy Physics

    International Nuclear Information System (INIS)

    Mount, Richard; Brooks, Travis; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gulzow, Volker

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  3. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  4. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    Full text: The main activities of the Department can be grouped into three parts: I. An ongoing analysis of data from large accelerator facilities. At CERN SPS: In the COMPASS experiment, the Warsaw team participated in the data taking and analysis related to the structure of the nucleon. 5 publications were prepared. The result concerning the polarization distribution of quarks and antiquarks in the nucleon with the flavour separation is new, important, and obtained with a significant contribution from the team. The collaboration is preparing for the next stage of the experiment, COMPASS , which will be realized in 2011. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. 4 publications have been published and one submitted. The wide purpose NA61 experiment has taken data, and the IPJ team worked on the measurement of the production cross sections of pions and kaons, which are important for the neutrino program. At COSY: The WASA experiment is dedicated to the search for a signal of the violations of basic chiral symmetries and testing perturbative theories in the light mesons decays produced in proton-proton, proton-deuteron and deuteron-deuteron collisions at different energies. A new limit of the extremely rare decay eta → e + e - within MS is being searched for. The branching ratio of the pi0→e + e - decay should be determined with better precision. 3 publications have been published and one submitted. II. Data taking and first analysis by the LHC experiments. Three teams work on LHC experiments: CMS, LHCb and ALICE. In 2010, the LHC accelerator provided proton-proton and Pb-Pb data and all LHC collaborations prepared dozens of publications on the detector performance and physics analysis, which have been published or submitted for publication. The CMS team worked on the muon trigger system, based on the resistive plate chamber RPC. The system was optimized and synchronized during data taking with high precision. The

  5. Challenge of high energy radiation dosimetry and protection

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, T.M.

    1976-08-01

    An accelerator health physicist can make contributions in many fields of science in addition to the various operational tasks that he is charged with. He can support others in his laboratory by designing shielding for new accelerators and storage rings, by consulting with experimenters on background radiation problems that they may encounter, by helping the high energy physicist select appropriate radiation sources for checking out his equipment, by providing him with low energy atomic and nuclear physics calculations, and many other ways. Most of all, he can perform and publish research using the many tools and techniques that are at his disposal at a high-energy accelerator laboratory

  6. 1997 European School of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1998-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Quantum Chromodynamics, Flavour Physics, Physics at LEP II and Heavy Ion physics, as well as reports on Cosmology, Dark Matter and a Quantum Theory of two-dimensional space-time. (orig.)

  7. 1997 European School of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1998-05-20

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Quantum Chromodynamics, Flavour Physics, Physics at LEP II and Heavy Ion physics, as well as reports on Cosmology, Dark Matter and a Quantum Theory of two-dimensional space-time. (orig.)

  8. Physical protection as the most important part of the national system of combating illicit trafficking

    International Nuclear Information System (INIS)

    Ivanov, P.; Kokhan, V.D.

    2001-01-01

    renders services related to physical protection and illicit trafficking to member states as well as is setting up the database and data-processing systems on illicit trafficking. The international regime should be based on national systems of combating illicit trafficking which include measures for prevention, detection and response regarding illicit trafficking in each specific state or across its borders. When undertaking these measures one should take into account specific characteristics of the state, its unique features and its geography, political and economic situation, as well as different types of potential threat of proliferation of nuclear weapons, availability of materials subjected to illicit trafficking in this state, general situation of criminal trafficking in this state, general situation of criminal trafficking with radioactive materials, potential consumers and suppliers, market features, possible incentives for crime etc. Vital components of national systems for combating illicit trafficking are: 1) legislation; 2) state control systems; 3) operator responsibilities; 4) physical protection of nuclear and radioactive materials and equipment; 5) export/import control of nuclear and radioactive materials and equipment; 6) clear definition of goals and responsibilities of national legislative authorities; 7) co-ordination of activities between national authorities as well as with international organizations. Eighty percent of all nuclear and radioactive materials in the Ukraine are concentrated at the companies and institutions supervised by the Ministry of Energy and Fuel. In view hereof we see the establishment of powerful and efficient systems of physical protection, accountancy and control directed against theft and unauthorized transportation of nuclear and radioactive materials as well as against acts of sabotage at nuclear installation performed by individuals or groups, as our contribution to combating illicit trafficking. These activities are

  9. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  10. Use of NMAC for the Evaluation of Physical Protection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Sik; Koh, Moon Sung; Seo, Hyoung Min; Kim, Jae San [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-10-15

    At the facility level, an NMAC system can help to deter and detect the unauthorized removal of nuclear material by maintaining an accurate inventory, including information related to its location. An effective NMAC system can detect insider activities and assess any irregularity involving nuclear material. Therefore, an NMAC can be a useful tool for evaluating a physical protection system at nuclear facility. In this study, elements of an NMAC system at the facility level were identified based on a draft document prepared by the IAEA. An evaluation sheet on the NMAC system was also developed by analyzing these elements. The NMAC system has been used as an important measure in safeguards. The system is useful in detecting and preventing insiders from acquiring nuclear material. Many countries are considering adopting the NMAC system for their own nuclear security. The IAEA has also recognized the importance of the NMAC system for strengthening the nuclear security regime. The Agency is preparing to publish a document on the use of the NMAC for nuclear security as implementation guide. The NMAC system consists of several elements such as management, nuclear material control, nuclear material movement and PIT. Those elements can be used as attributes for evaluating the NMAC system at a nuclear facility. In this study, all the elements comprising the NMAC system were extracted and major elements that were seen as significant for evaluating the system were selected. In addition, questionnaires on each selected element were developed. These questionnaires reflected the underlying purpose of the NMAC system for nuclear security.

  11. Activities and trends in physical protection modeling with microcomputers

    International Nuclear Information System (INIS)

    Chapman, L.D.; Harlan, C.P.

    1985-01-01

    Sandia National Laboratories developed several models in the mid to late 1970's including the Safeguards Automated Facility Evaluation (SAFE) method. The Estimate of Adversary Sequence Interruption (EASI), the Safeguards Network Analysis Procedure (SNAP), the Brief Adversary Threat Loss Estimator (BATLE), and others. These models were implemented on large computers such as the VAX 11/780 and the CDC machines. With the recent development and widespread use of the IBM PC and other microcomputers, it has become evident that several physical protection models should be made available for use on these microcomputers. Currently, there are programs under way to convert the EASI, SNAP and BATLE models to the IBM PC. The input and analysis using the EASI model has been designed to be very user friendly through the utilization of menu driven options. The SNAP modeling technique will be converted to an IBM PC/AT with many enhancements to user friendliness. Graphical assistance for entering the model and reviewing traces of the simulated output are planned. The BATLE model is being converted to the IBM PC while preserving its interactive nature. The current status of the these developments is reported in this paper

  12. The Vulnerability Assessment Code for Physical Protection System

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2007-01-01

    To neutralize the increasing terror threats, nuclear facilities have strong physical protection system (PPS). PPS includes detectors, door locks, fences, regular guard patrols, and a hot line to a nearest military force. To design an efficient PPS and to fully operate it, vulnerability assessment process is required. Evaluating PPS of a nuclear facility is complicate process and, hence, several assessment codes have been developed. The estimation of adversary sequence interruption (EASI) code analyzes vulnerability along a single intrusion path. To evaluate many paths to a valuable asset in an actual facility, the systematic analysis of vulnerability to intrusion (SAVI) code was developed. KAERI improved SAVI and made the Korean analysis of vulnerability to intrusion (KAVI) code. Existing codes (SAVI and KAVI) have limitations in representing the distance of a facility because they use the simplified model of a PPS called adversary sequence diagram. In adversary sequence diagram the position of doors, sensors and fences is described just as the locating area. Thus, the distance between elements is inaccurate and we cannot reflect the range effect of sensors. In this abstract, we suggest accurate and intuitive vulnerability assessment based on raster map modeling of PPS. The raster map of PPS accurately represents the relative position of elements and, thus, the range effect of sensor can be easily incorporable. Most importantly, the raster map is easy to understand

  13. Energy becomes riddle for particle physics

    CERN Multimedia

    Nancy, J

    2003-01-01

    Assuming Einstein's theory of gravity is correct, dark energy must be present in the universe. Physicist's attempts to use quantum field theory to find the amount of dark energy present though, have been very unsuccessful (1/2 page).

  14. Radiation protection and atomic energy legislation in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, L.

    1987-01-01

    The radiation protection and atomic energy laws of the Nordic countries Denmark, Finland, Iceland, Norway and Sweden are presented in this report in their status of March 1, 1984. As a background to this legislation the Nordic co-operation is briefly reviewed and the common basis for the legal texts is given. Some historical remarks for the legislation of each country are included. (orig./HP)

  15. Radiation and physical protection challenges at advanced nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Pickett, Susan E.

    2008-01-01

    Full text: The purpose of this study is to examine challenges and opportunities for radiation protection in advanced nuclear reactors and fuel facilities proposed under the Generation IV (GEN IV) initiative which is examining and pursuing the exploration and development of advanced nuclear science and technology; and the Global Nuclear Energy Partnership (GNEP), which seeks to develop worldwide consensus on enabling expanded use of economical, carbon-free nuclear energy to meet growing energy demand. The International Energy Agency projects nuclear power to increase at a rate of 1.3 to 1.5 percent a year over the next 20 years, depending on economic growth. Much of this growth will be in Asia, which, as a whole, currently has plans for 40 new nuclear power plants. Given this increase in demand for new nuclear power facilities, ranging from light water reactors to advanced fuel processing and fabrication facilities, it is necessary for radiation protection and physical protection technologies to keep pace to ensure both worker and public health. This paper is based on a review of current initiatives and the proposed reactors and facilities, primarily the nuclear fuel cycle facilities proposed under the GEN IV and GNEP initiatives. Drawing on the Technology Road map developed under GEN IV, this work examines the potential radiation detection and protection challenges and issues at advanced reactors, including thermal neutron spectrum systems, fast neutron spectrum systems and nuclear fuel recycle facilities. The thermal neutron systems look to improve the efficiency of production of hydrogen or electricity, while the fast neutron systems aim to enable more effective management of actinides through recycling of most components in the discharged fuel. While there are components of these advanced systems that can draw on the current and well-developed radiation protection practices, there will inevitably be opportunities to improve the overall quality of radiation

  16. Strengthened implementation of physical protection of nuclear material and nuclear facilities in the Republic of Korea

    International Nuclear Information System (INIS)

    Shim, H.-W.; Lee, J.-U.

    2005-01-01

    Full text: Since the 9.11 terror, strengthening physical protection has been an accelerated trend internationally. IAEA has been requesting that member states implement a strengthened physical protection of nuclear facilities on the basis of threat assessments. In order to cope with this demand, the Korean government promulgated the 'Law for Physical Protection and Radiological Emergency Preparedness (LPPRE)' as a substantial countermeasure against possible threats. Pursuant to LPPRE, which entered into force on February 16, 2004, nuclear enterprisers are obliged to implement an effective physical protection of nuclear materials, get approval for its physical protection system, and be constantly inspected on. The Ministry of Science and Technology (MOST) approved physical protection regulations of 24 domestic facilities operated by 14 enterprisers. National Nuclear management and Control Agency (NNCA) is entrusted with physical protection related duty and has been conducting physical protection inspection on nuclear materials in use, storage and transport. In addition, NNCA has established the methodology of threat assessment that entails organizing the threat assessment working group to develop a design basis threat (DBT). Korea is putting its best efforts to construct the threat assessment system and strengthen domestic physical protection regime in cooperation with competent authorities. (author)

  17. About role of human factors in the building of physical protection system

    International Nuclear Information System (INIS)

    Ivanov, P.

    2002-01-01

    Full text: A special role in establishing the physical protection system (at all levels) pertains to the human factor. It is necessary to specify a place of this matter within the overall security system. The nuclear energy sector security (as well as of other national industry sectors) is based on the people: developers, personnel, different level management responsible for decision-making process, the representative of regulatory, controlling and legal structures, and therefore, in general, the rote of the human factor can be considered to be significant. The operative situation while being formed during the physical protection ensuring, first of all, is affected by the following factors: political, social and economic, spiritual wealth and cultural factors and etc. In addition, a new problem suddenly appeared related to the safety and security of the energy complex, that is: uncontrolled processes such as: non-payment, debts on salary for several month period; all this factors effect negatively the level of safety and security. In this clear, that in such a difficult situation the role of an individual is increasing. Ignorance of the above factors or their non-objective (incomplete, partial ignorance) accounting (consideration) finally can lead to the negative and irremediable consequences. Thus, the content and the extent of the security of a society, in general, and every person, in particular, directly depend on the functioning of all society's structure, and, first of all, on the economic, social, political and legal structures. As a result, the physical protection system acquires a complex or comprehensive structure and I shall describe its specifics in the paper. (author)

  18. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [Univ. of Chicago, IL (United States). Enrico Fermi Inst.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  19. About role of human factors in the building of physical protection system

    International Nuclear Information System (INIS)

    Ivanov, P.

    2001-01-01

    In our opinion, our contribution to the fight against the illicit turnover has to be focused on ensuring the safe keeping and integrity of nuclear material and radiation sources and on creating powerful and highly efficient physical protection systems. A special role in establishing the physical protection system (at all levels) pertains to the human factor. The nuclear energy sector security (as well as of other national industry sectors) is based on the people: developers, personnel, different level management responsible for decision-making process, the representative of regulatory, controlling and legal structures, and therefore, in general, the role of the human factor can be considered to be significant. After having analyzed, even in a general way, the status of the affairs we can see: 1) the stage of designing and development of facilities is actually completed; 2) the existing concept of protection does not meet current requirements of the physical protection; 3) the next period is the operation when it is necessary to adapt with using capabilities available to the today requirements and to establish conditions under which the human factor could compensate technical backwardness; 4) the final stage is the ChNPP decommissioning, the Object Shelter problem. It is obvious that the ChNPP decommissioning process will increase acuteness of the problem related to the physical protection of this facility. The operative situation while being formed during the physical protection ensuring, first of all, is affected by the following factors: 1) political factors: changes in the geopolitical situation caused by fundamental changes, formation of a national state based on a principle of democracy and law, etc.; 2) social and economic factors: difficulties originated during the period of transition towards the market economy, decrease in the standard of living; increase in the crime rate and criminalization of social relations and others; 3) spiritual wealth and cultural

  20. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  1. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  2. The simple physics of energy use

    CERN Document Server

    Rez, Peter

    2017-01-01

    In industrially developed countries, energy is used primarily for three things—maintaining a comfortable environment in buildings, transporting people and goods and manufacturing products. Each accounts for about one-third of the total primary energy use. Controlling the indoor temperature accounts for most of the energy use in buildings. Therefore, this strongly depends on the local climate. Electricity accounts for a high proportion of the energy transfer in developed countries. The problem is that electricity cannot easily be stored, and that supply therefore has to match demand. This makes the use of intermittent renewables such as solar and wind particularly challenging. Transportation efficiency can be measured by the energy used to move a person or a tonne of freight over a given distance, but there is also the journey time to consider. Transportation, with the exception of trains, is constrained by the energy density and convenience of fuels, and it is hard to beat liquid hydrocarbons as fuels. Mate...

  3. The status of United States R and D programs in safeguards and physical protection

    International Nuclear Information System (INIS)

    Mangan, D.L.; Tape, J.W.

    1993-01-01

    The breakup of former Soviet Union and the strategic nuclear arms reduction agreements, START 1 and 2, when fully implemented, will result in the significant reduction and dismantlement of nuclear weapons. These events will produce the significant increase of stored nuclear materials requiring the utmost control and care for indefinite future. Some of these materials in addition to existing wastes and residues may need further processing. The control of nuclear materials through safeguards, both domestic and international, is one of only a few effective barriers to nuclear proliferation. The improved technology is the key to the cost effective safeguards of nuclear materials. The Department of Energy carries out the research and development programs at its national laboratories. As the most notable demonstration and training efforts of new technologies, there is International Training Courses on the State System of Accounting and Control and the Physical Protection of Nuclear Facilities and Materials. The Office of Research and Development of the Office of Intelligence and National Security Affairs, the Department of Energy, the Office of Safeguards and Security, International Safeguards Division and so on carry out the activities of the R and D on safeguards and physical protection. (K.I.)

  4. High energy physics in our society

    International Nuclear Information System (INIS)

    Crozon, M.

    1984-09-01

    General survey of interactions between elementary particle physics and our society. The problem is studied for different aspects of our society: men and education, economics, technics, politics, international affairs, honours, myths.. [fr

  5. Physical activity and dark skin tone: protective factors against low bone mass in Mexican men.

    Science.gov (United States)

    Vivanco-Muñoz, Nalleli; Jo, Talavera; Gerardo, Huitron-Bravo; Juan, Tamayo; Clark, Patricia

    2012-01-01

    A cross-sectional study was conducted on 268 Mexican men between the ages of 13 and 80 yr to evaluate the association of clinical factors related with bone mass. Men from high schools, universities, and retirement homes were invited to participate. Body mass index (BMI) was measured, and bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry for L1-L4 and total hip. Factors related to bone mass were assessed by questionnaire and analyzed using a logistic regression model. Demographic factors (age, education, and occupation), clinical data (BMI, skin tone, previous fracture, history of osteoporosis [OP], and history of fractures), and lifestyle variables (diet, physical activity, sun exposure, and smoking) were evaluated. Physical activity (≥ 60 min/5 times a week) reduced the risk for low BMD for age, osteopenia, and OP at the spine and total hip (odds ratio [OR]: 0.276; 95% confidence interval [CI]: 0.099-0.769; p=0.014; and OR: 0.184; 95% CI: 0.04-0.849; p=0.03, respectively). Dark skin tone was a protective factor, decreasing the risk by up to 70%. In this population of healthy Mexican men (aged 13-80 yr), dark skin and physical activity were protective factors against low bone mass. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  6. Saving energy and protecting environment of electric vehicles

    Science.gov (United States)

    Yuan, Lina; Chen, Huajun; Gong, Jing

    2017-05-01

    With the concept of low carbon economy, saving energy, and protecting environment spread, the development of the electric promotes the research pace of wireless charging electronic vehicles, which will become the best choice of energy supply in the future. To generalize and exploit the corresponding alternative fuels and the research and development, and promotion of electric vehicles, becomes the effective means to directly reduce the consumption of fuel, effectively relieves the problem of nervous energy and environmental pollution, and really conforms to the requirements of the national strategy of sustainable development in China. This paper introduces the status of electronic cars and wireless charging, expounds the principle of wireless charging, and concludes the full text.

  7. A practical field survey on equipments for physical protection

    International Nuclear Information System (INIS)

    Sekine, T.; Kubortera, H.; Kurihara, H.; Yagi, T.; Shibata, T.; Murajiri, M.

    2001-01-01

    Full text: Presented in this paper are the results of data-gathering and evaluation tests on equipments for physical protection system, which, considering the trends in relating technologies and changing threat environments, are most likely to be used in future Japanese nuclear facilities. The following tests are carried out as part of this program. (1) Out-door Sensor Test - Bistatic-Microwave Sensor, Buried-line E-field Sensor, E-field Sensor, and Tension-wire Sensor were selected and tested in Detection-Performance Tests and Environmental (False Alarm) tests. Detection-Probability was provided as the results of Detection-Performance Tests (live-intrusion test), in which Detection-Probability was represented as a function of behavior mode of intruders (covert/overt) and the number of intruders. The Detection-Probability in these tests were fairly high, because of laboratory-test-like nature of these test. The correlation between the Detection-Probability and the number of intruders was not significant. In Environmental Test, survey was done to clarify the correlation between False-Alarm rate of the sensors mentioned above and the atmospheric phenomena such as rainfall or direction/velocity of wind. (This work is sponsored by the Science and Technology Agency, Nuclear Safety Bureau (NSB), Office of Physical Protection of Nuclear Material.) (2) ln-door Sensor Test - 2 thermic-ray Sensors (Passive-IR Sensors) were set up in test-chamber for Detection- Probability Test and Environmental (False-Alarm) Test. Detection-Probability higher than 97% (with reliability level of 80%) was recorded in the former test. In the latter test, the detection-sensitivity of the sensor was set to provide 2 levels, 'Standard' and 'High'. In 'Standard' sensitivity test, 8 false alarms were observed during the test, but the analysis of the situation revealed that all of them were caused by imperfect construction of the test-chamber, and no false-alarm, except for once in 'High' sensitivity

  8. Applying Physics to Clean Energy Needs

    Science.gov (United States)

    Environmental Science and Technology, 1975

    1975-01-01

    Solar and ocean thermal energy sources offer real potential for an environmentally clean fuel by the year 2000. A review of current research contracts relating to ocean-thermal energy, cost requirements of plant construction and uses of the electricity produced, such as synthesizing ammonia and synthetic fuels, are discussed. (BT)

  9. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  10. Gravitational Zero Point Energy induces Physical Observables

    OpenAIRE

    Garattini, Remo

    2010-01-01

    We consider the contribution of Zero Point Energy on the induced Cosmological Constant and on the induced Electric/Magnetic charge in absence of matter fields. The method is applicable to every spherically symmetric background. Extensions to a generic $f(R) $ theory are also allowed. Only the graviton appears to be fundamental to the determination of Zero Point Energy.

  11. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  12. Summaries of FY 1977, research in high energy physics

    International Nuclear Information System (INIS)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977

  13. Summaries of FY 1984 research in high energy physics

    International Nuclear Information System (INIS)

    1984-12-01

    The US Department of Energy, through the Office of Energy Research, Division of High Energy and Nuclear Physics, provides approximately 90 percent of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major US high energy accelerator facilities and over 90 universities under contract to do experimental and theoretical investigations on the properties, structure, and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the US Department of Energy. The areas covered include: (1) conception, design, construction, and operation of particle accelerators; (2) experimental research using the accelerators and ancillary equipment; (3) theoretical research; and (4) research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of unerstanding the basic nature of matter and energy

  14. Section for nuclear physics and energy physics - Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The experimental activities in nuclear physics have in 1989 mainly been centered around the cyclotron laboratory with the Scanditronic MC-35 cyclotron. The installation of the CACTUS multidetector system has been completed. With 8 particle telescopes, 28 NaI detectors and 2 Ge detectors, this experimental arrangement represents a major improvement compared to earlier set-ups in the laboratory. Theoretical studies of manybody problems, and nuclear structure and reactions have continued. The study of problems related to the foundations of quantum mechanics has also been persued

  15. Awards for high-energy physics at CERN

    CERN Multimedia

    2005-01-01

    Dave Barney of CMS with the Outreach Prize awarded by the European Physical Society. The European Physical Society (EPS) has awarded two prizes to CERN physicists. Dave Barney of CMS shared his Outreach Prize with Peter Kalmus of Queen Mary, University of London. This prize is awarded for communicating particle physics to the public. The NA31 collaboration and its spokesman, Heinrich Wahl, received the 2005 High Energy and Particle Physics Prize for their work on CP violation undertaken at CERN.

  16. 1994 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N [ed.; Gavela, B [ed.

    1995-06-30

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain lectures on field theory, the Standard Model, physics beyond the Standard Model, Quantum Chromodynamics and CP violation, as well as reports on the search for gravitational waves, stellar death and accounts of particle physics at CERN and JINR. Two local subjects are also treated: Pompeii and Mount Vesuvius. (orig.).

  17. 1994 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Gavela, B.

    1995-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain lectures on field theory, the Standard Model, physics beyond the Standard Model, Quantum Chromodynamics and CP violation, as well as reports on the search for gravitational waves, stellar death and accounts of particle physics at CERN and JINR. Two local subjects are also treated: Pompeii and Mount Vesuvius. (orig.)

  18. Solar energy utilization by physical methods.

    Science.gov (United States)

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  19. Perspectives in high-energy physics

    International Nuclear Information System (INIS)

    Quigg, C.

    2000-01-01

    The author sketches some pressing questions in several active areas of particle physics and outline the challenges they present for the design and operation of detectors. His assignment at the 1999 ICFA Instrumentation School is to survey some current developments in particle physics, and to describe the kinds of experiments they would like to do in the near future and illustrate the demands their desires place on detectors and data analysis. Like any active science, particle physics is in a state of continual renewal. Many of the subjects that seem most fascinating and most promising today simply did not exist as recently as twenty-five years ago. Other topics that have preoccupied physicists for many years have been reshaped by recent discoveries and insights, and transformed by new techniques in accelerator science and detector technology. To provide some context for the courses and laboratories at this school, he has chosen three topics that are of high scientific interest, and that place very different demands on instrumental techniques. He hopes that you will begin to see the breadth of opportunities in particle physics, and that you will also look beyond the domain of particle physics for opportunities to apply the lessons you learn here in Istanbul

  20. Dealing with the regional challenge of physical protection of nuclear materials

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    2002-01-01

    Full text: The problem of protecting sensitive fissile and fissionable nuclear materials of misuses by governments has been the subject of the convention on physical protection of nuclear material (CPPNM), which entered into force on February 8, 1987. However, in May 2001 the final report of the expert meeting had already recognized 'a clear need to strengthen the international physical protection regime'. The board of governors of the International Atomic Energy Agency (IAEA) decided then to convene a group, which would meet in Vienna from 3 to 7 December 2001, to draft on amendment to the CPPNM. The tragic occurrences of September 11, 2001, however, changed the then generally accepted view on the problem of physical protection, because nuclear materials had to be protected from falling into the hands of terrorists rather than of governments thirst of nuclear sensitive materials. Moreover, crude explosive devices could be made by terrorists, or hired scientists, using readily available radioactive materials, like 226 Ra or 137 Cs to inflict damage to civilians. Thus physical protection of those and other radioactive materials became an instant challenge for national and international authorities to prevent the use of such materials in terrorist actions. The prevention of illicit trafficking of radioactive materials is now in the priority list of these authorities. Fortunately; an international conference on 'Measures to Detect, Intercept and Respond to the Illicit Uses of Nuclear Materials and Radioactive Sources' was held in Stockholm, Sweden, in May 2001. An IAEA document - GOV/2001/37-GC(45)/20 - recommended in its plan of activities a series of projects to be implemented between 2002 and 2005, which included developing and providing assistance for the application of: (i) standards for physical protection of nuclear materials and nuclear facilities in member states; (ii) norms and guidelines for nuclear material accounting and control in member states; (iii

  1. 1995 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1996-06-11

    The European School of High-Energy Physics is intended to give young experimentalists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Physics beyond the Standard Model, Quantum Chromodynamics and Deep Inelastic Scattering, B-Physics and CP Violation, Neutrino Oscillations, Dark Matter, Experimental Techniques, as well as reports on Heavy Ions and Collider Physics and an account of particle physics at JINR. Two local subjects are also treated: Conditions for Science in Russia, and Search for Heavy Elements. (orig.).

  2. 1995 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1996-01-01

    The European School of High-Energy Physics is intended to give young experimentalists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Physics beyond the Standard Model, Quantum Chromodynamics and Deep Inelastic Scattering, B-Physics and CP Violation, Neutrino Oscillations, Dark Matter, Experimental Techniques, as well as reports on Heavy Ions and Collider Physics and an account of particle physics at JINR. Two local subjects are also treated: Conditions for Science in Russia, and Search for Heavy Elements. (orig.)

  3. High Energy Physics at Tufts University

    International Nuclear Information System (INIS)

    Milburn, R.H.; Schneps, J.

    1991-01-01

    This report discusses the following: fermilab fixed target experiments; photoproduction at 20 GeV: SLAC BC72-75; soudan 2 nucleon decay project; physics at the antiproton-proton collider at √s = 1.8 TeV; Designing the solenoidal detector for the supercollider; charm physics at LEP in OPAL; neutrino telescope proposal; general kinematic description of polarization in scattering processes; polarization in inclusive hyperon production and QCD subprocesses; measuring quark helicity underlying hadronic jets; scattering in extended skyrmion models and spin dependence; the diquark-quark model of the excited baryons; computation and networking; and the science and technology center

  4. First Glossary of Modern Physics and Ionising Radiation Protection in Croatian

    International Nuclear Information System (INIS)

    Nodilo, M.; Petkovic, T.

    2011-01-01

    Motivation and encouragement for the Glossary were given as the research theme for the joint seminar between the Faculty of Electrical Engineering and Computing and Rudjer Boskovic Institute, within a postgraduate course subject ''Detectors and electronic instrumentation for particle physics''. A basic motivation is due to a lack of specialized literature in Croatian language in the field of protection of ionising radiation as well as the incompleteness of Croatian terminology in the same field. That is a general problem all over the World because the most glossaries are usually connected either with nuclear power plants or with an application of ionising radiation in medicine. On the other hand, a necessity for the specialized literature for radiation protection which follows a development of modern particle physics and its detection technique is rapidly growing up. A work and development on the Glossary were faced with serious difficulties, since various translations of foreign words and acronyms have already been used by various authors in Croatian literature. Different interpretations of the same term or concept, from diverse sources, had to be very often reconciled. However, the biggest challenge was finding proper Croatian words for the foreign terms, concepts, properties, and quantities which have not yet been commonly used so far in Croatian papers or/and Croatian legislative acts. According to our knowledge this seems to be the first comprehensive Glossary, describing the field of ionising radiation protection and bringing of 300 related entries (terms and guidelines). That is, certainly, the first characteristic Thesaurus in Croatian which includes background of modern physics and chemistry, particle phenomenology and its measurement, all dedicated to the radiological protection of workers, environment and people of the World. A Glossary brings a wide spectrum of terms of broad area of chemistry, radiation protection, nuclear and particle physics. A

  5. Legal Aspects of international cooperation in the physical protection of nuclear facilities and materials

    International Nuclear Information System (INIS)

    Herron, L.W.

    1981-10-01

    This paper provides a detailed analysis of developments in the number field having led the IAEA to promote international cooperation in ensuring adequate physical protection of nuclear facilities and materials. This work resulted in the establishment of recommendations and guidelines in this respect and culminated in the development of the 1980 Convention on the Physical Protection of Nuclear Materials. (NEA) [fr

  6. Physical protection of nuclear power plants-technical and legal aspects

    International Nuclear Information System (INIS)

    Castro Martins, O.J. de.

    1978-04-01

    The nuclear power plants are defined according to the definitions included in the Brazilian legislation and international conventions and their physical protection is analysed. Besides, the differences and the relations among nuclear security, safeguards and physical protection are established. (A.L.) [pt

  7. Sustainable Energy Landscape: Implementing Energy Transition in the Physical Realm

    NARCIS (Netherlands)

    Stremke, S.

    2015-01-01

    Since the beginning of the new millennium, the concept of “energy landscape” is being discussed by academia from the environmental design domain while more and more practitioners have been contributing to sustainable energy transition. Yet, there remains some ambiguity as to what exactly is meant

  8. Task D, Participation in high energy physics

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1990-09-01

    This grant was initiated in December of 1989. My request for DOE funds (July 7, 1989) listed three activities which would require support from DOE. These were communication of HEP and Basic Research activities via lectures, articles, TV, etc., science education activities and participation in E789, a fixed-target research on beauty physics at Fermilab. These activities are discussed in this report

  9. Art imitating high-energy physics

    CERN Multimedia

    Abbott, A

    2000-01-01

    Artists have been brought to CERN to learn about particle physics. In response they will each create an original piece of art which will be exhibited in "Signatures of the Invisible", a roadshow that will visit galleries across Europe next year (1/2 page).

  10. High energy nuclear collisions: physics perspectives

    International Nuclear Information System (INIS)

    Satz, H.

    1985-01-01

    The main aim of relativistic heavy ion experiments is to study the states of matter in strong interaction physics. We survey the predictions which statistical QCD makes for deconfinement and the transition to the quark-gluon plasma. 10 refs., 6 figs

  11. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Richter, B.

    1997-01-01

    A discussion of present and planned research programs and particle accelerators at the Stanford Linear Accelerator Center is given. Experiments with the Stanford Linear Collider Detector, B-factory design considerations and research programs the Next Linear Collider design and use, and Advanced Accelerator Research and Development at SLAC are discussed.(AIP) copyright 1997 American Institute of Physics

  12. Annual report 2004. Laboratory of Energy Engineering and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, L.; Zevenhoven, R. (eds.)

    2005-07-01

    This fifth annual report in this series, covering year 2004, gives an overview of the research, education and other activities of the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. From the research point of view, the laboratory continues in the Nordic Energy Research Program (2003-2006) in the field of CO{sub 2} capture and storage, and in the EU project 'ToMeRed' on toxic trace elements emissions control. The laboratory is also the operating agent for the IEA project 'Energy systems integration between society and industry'. The bulk of the research can be classified into three groups, in short: energy systems; spraying and combustion and combustion and waste treatment. This research takes mainly place in national and international consortia, but sometimes also in a direct cooperation with one industry partner. Some of the work involves the use and development of models and sub- models for the simulation and optimisation of energy systems and processes. Commercial softwares like Aspen Plus and Prosim are important tools for our work as well. Besides this, single particle modelling can be applied to fuel droplets, fuel particles or particles found in metallurgical industry. We make CFD calculations with commercial codes are made as well, while working on the improvement of (sub-) models for multiphase fluid dynamics.

  13. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  14. Applications of the INFCIRC225/rev5 to the national physical protection regime

    International Nuclear Information System (INIS)

    Kim, Jae Gwang

    2011-01-01

    The IAEA's first effort for playing a key role in physical protection of nuclear material and facilities resulted in the publication of 'Recommendations for the physical protection of nuclear material' in 1972. These recommendations were revised by a group of experts in co-operation with the IAEA Secretariat and the revised version was published in 1975 in INFCIRC/225. The document was subsequently revised in 1977(rev.1), 1989(rev.2), in 1993(rev.3) and 1998(rev4). The Physical Protection regime in ROK has been established on the basis of INFCIRC225 rev4 since 2004 IAEA recently published The INFCIRC 225 rev5 through the 2 years expert consultations. The publication recommended 12 nuclear security fundamentals and requirements of physical protection of nuclear material and nuclear facility to the member states. This paper suggests the several applications to the national physical protection system from the 12 fundamentals and the requirements

  15. Fingerprinting of nuclear material to strengthen physical protection

    International Nuclear Information System (INIS)

    Mueck, K.; Lindauer, H.; Falta, G.

    2002-01-01

    Full text: Physical protection of nuclear material against diversion and stealing presents a major step to prevent abuse of nuclear material for military or terrorist purposes. If such material had been diverted, however, and discovered by border traffic control, police control or other methods of investigation, identifying the site and time of diversion is of utmost importance to ensure that the point of possible diversion is closed and the possible delivery and end-use point becomes known. The quicker and more comprehensive these investigations are performed, the greater are the chances to find the criminal persons and the point of diversion. The paper, therefore, deals with fingerprinting methods used to obtain enough and comprehensive background information for investigators to find out the source of diversion and the channels through which it might have reached the point of discovery and the possible point of ultimate destination (end-use of the material). On the example of the round-robin test for the identification of illicit nuclear material performed by EURATOM in 1999, and the conclusions obtained by our laboratory it is demonstrated that a high amount of information can be drawn from a single sample and that this information can be used by investigators world-wide to find the point of origin of the material and its possible point of diversion. The set of information is segmented into 3 different levels: information gained in the first 24 hours after arrival of the unknown material, information gained up to one week after uptake and information gained up to one month after. The first information is to inform the investigators about the hazard and the relevance of the material, about preliminary investigation results and support the investigating judge on the justification to further detain the person(s). The second information should contain more detail on the material and the possible point of diversion and assist the investigators to decide on proper

  16. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  17. Evolution of the physical protection and control of nuclear materials in Brazil

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Renha, G.; Mafra, O.Y.

    2005-01-01

    Full text: Brazil started protecting its nuclear materials soon after the end of the World War II, when the Combined Development Trust intended to control the world supply of uranium and thorium. This happened in 1944, but on December 27, 1946, an amendment to the report of Committee II of the United Nations established that the international ownership of the unexplored uranium and thorium would not be mandatory. Brazil nationalized its thorium and uranium reserves in 1951. The Brazil-Germany agreement signed in 1975 enhanced the need for Brazilian nuclear safeguards and security. The physical protection (PP) and control of nuclear materials (CNM) became activities under the supervision of the Brazilian military forces. The System for Protection of the Brazilian Nuclear Program (SIPRON), established on 7 October 1980, took over the responsibilities for PP and other aspects of the Brazilian nuclear program. The central organ of SIPRON was the Brazilian National Security Council (CSN). The Brazilian Nuclear Energy Commission (CNEN) was in charge of coordinating, among others, the PP sector. Earlier that year - on 3 March 1980 - the Convention on the Physical Protection of Nuclear Material (CPPNM) was signed simultaneously in New York and Vienna. The Brazilian congress approved the CPPNM on 27 November 1984, and the Brazilian government deposited the ratification letter on 17 October 1985. On 16 April 1991 the Brazilian government issued a decree to enforce the CPPNM in the Brazilian territory. CNEN published the regulatory documents NE - 2.01 on 19 April 1996, and NN - 2.02 on 21 September 1999 for PP, and CNM, respectively. CNEN has the ultimate responsibility to enforce these regulations. The operational aspects of PP and CNM in Brazil are still improving. Potential nuclear terrorism for example needs to be examined. Activities concerning training personnel and implementing PP and CNM will be described in the paper. (author)

  18. Peculiarities of physical protection assurance of the nuclear materials at nuclear installation decommissioning stage

    International Nuclear Information System (INIS)

    Pinchuk, M.G.

    2001-01-01

    On December 15, 2000 Unit 3 of Chernobyl NPP, which is the last one in Ukraine having RBMK-type reactor, was permanently shutdown before the end of its lifetime. A number of projects related to establishing infrastructure for the plant decommissioning are being implemented in compliance with the Ukraine's commitments. Decommissioning stage includes activities on fuel unloading from the cores of Unit I and Unit 3, fuel cooling in the ponds followed by the fuel transportation to the spent fuel dry storage facility (currently under construction) for its safe long-term storage. Special facilities are being created for liquid and solid radioactive waste treatment. Besides, it is planned to implement a number of projects to convert Shelter Object in environmentally safe structure. Physical protection work being an essential part of the nuclear material management is organized in line with the recommendations of the IAEA, and the Laws of Ukraine 'On Nuclear Energy Utilization and Radiation Safety', 'On Physical Protection of Nuclear Installations and Materials', 'Regulations on Physical Protection of Nuclear Materials and Installations', other codes and standards. While organizing physical protection on ChNPP decommissioning stage we have to deal with some specific features, namely: Significant amount of fuel assemblies, which are continuously transferred between various storage and operation facilities; Big amount of odd nuclear material at Shelter Object; 'Theft of new fuel fragments from the central hall of the Shelter Object in 1995 with the intention of their further sale. The thieves were detained and sentenced. The stolen material was withdrawn, that prevented its possible proliferation and illicit trafficking. At present physical protection of ChNPP does not fully satisfy the needs of the decommissioning stage and Ukraine's commitments on non-admission of illicit trafficking. Work is carried out, aimed to improve nuclear material physical protection, whose main

  19. High energy physics. Ultimate structure of matter and energy

    International Nuclear Information System (INIS)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  20. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.