WorldWideScience

Sample records for energy neutron fields

  1. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  2. Monte Carlo calculations for intermediate-energy standard neutron field

    International Nuclear Information System (INIS)

    Joneja, O.P.; Subbukutty, K.; Iyengar, S.B.D.; Navalkar, M.P.

    Intermediate-Energy Standard Neutron Field (ISNF) which produces a well characterised spectrum in the energy range of interest for fast reactors including breeders, has been set up at NBS using thin enriched 235 U fission sources. A proposal has been made for setting up a similar facility at BARC using however, easily available natural U instead of enriched U sources, to start with. In order to simulate the neutronics of such a facility Monte Carlo method of calculations has been adopted and developed. The results of these calculations have been compared with those of NBS and it is found that there may be a maximum difference of 10% in spectrum characteristics for the two cases of using thick and thin fission sources. (K.B.)

  3. Field calibration of a TLD albedo dosemeter in the high-energy neutron field of CERF

    International Nuclear Information System (INIS)

    Haninger, T.; Kleinau, P.; Haninger, S.

    2017-01-01

    The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (CERN-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum Muenchen (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor N n for workplaces at high-energy particle accelerators. N n is a dimensionless factor relative to a basic detector calibration with 137 Cs and is used to calculate the personal neutron dose in terms of H p (10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like 252 Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators. (authors)

  4. Characterization of Monoenergetic Low Energy Neutron Fields with the {mu}TPC Detector

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C.; Lebreton, L.; Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J.; Grignon, C.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Mayet, F.; Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph (France)

    2011-12-13

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 2 keV up to 1 MeV. We present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of such low energy neutron fields.

  5. Portable instrument for measuring neutron energy spectra and neutron dose in a mixed n-γ field

    International Nuclear Information System (INIS)

    Daniels, C. J.; Silberberg, J. L.

    1980-01-01

    A portable high-speed neutron spectrometer consists of an organic scintillator, a true zero-crossing pulse shape discriminator, a 1 MHZ conversion-rate multichannel analyzer, an 8-bit microcomputer, and appropriate displays. The device can be used to measure neutron energy spectra and kerma rate in intense n- gamma radiation fields in which the neutron energy is from 5 to 15 MEV

  6. A {mu}TPC detector for the characterization of low energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C., E-mail: cedric.golabek@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Allaoua, A. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Grignon, C.; Guillaudin, O. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Lebreton, L., E-mail: lena.lebreton@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Mayet, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France)

    2012-06-21

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.

  7. Simulated workplace neutron fields

    International Nuclear Information System (INIS)

    Lacoste, V.; Taylor, G.; Rottger, S.

    2011-01-01

    The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields. (authors)

  8. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Saion, E.B.; Watt, D.E. (Saint Andrews Univ. (UK). Dept. of Physics); East, B.W. (Scottish Universities Research and Reactor Centre, Glasgow (UK)); Colautti, P. (Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against {gamma} ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author).

  9. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.; Colautti, P.

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against γ ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author)

  10. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  11. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  12. μ-TPC: a future standard instrument for low energy neutron field characterization

    International Nuclear Information System (INIS)

    Maire, D.; Lebreton, L.; Petit, M.; Billard, J.; Bourrion, O.; Bosson, G.; Guillaudin, O.; Lamblin, J.; Mayet, F.; Medard, J.; Muraz, J.F.; Richer, J.P.; Riffard, Q.; Santos, D.

    2013-06-01

    In order to measure energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, μ-TPC (Micro Time Projection Chamber), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nucleus recoil detector principle. The instrument will be presented with the associated method to measure the neutron energy. This article will emphasize the proton energy calibration procedure and energy measurements of a neutron field produced at 127 keV on the IRSN facility AMANDE. Finally the COMIMAC device, dedicated to the calibration, will be described. This original device, developed at the LPSC, is able to produce proton and electron beams with an accurate energy ranging from 1 keV to 50 keV. (authors)

  13. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  14. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  15. The influence of the energy distribution of workplace fields on neutron personal dosemeter reading

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.; Hager, L.G.; Horwood, N.A.

    2002-01-01

    Variations in the energy dependence of response of neutron personal dosemeters cause systematic errors in the readings obtained in workplace fields. The magnitude of these errors has been determined theoretically by folding measured and calculated workplace energy distributions with dosemeter response functions, to determine the response of a given personal dosemeter in that field. These results have been analysed with consideration of the dosemeter response to various calibration spectra, and with reference to different workplaces. The dosemeters in the study are discussed in terms of the workplaces for which they can be suitably calibrated. Deficiencies in the published neutron energy distributions are identified

  16. A sensitive search for dark energy through chameleon scalar fields using neutron interferometry

    International Nuclear Information System (INIS)

    Snow, W M; Li, K; Skavysh, V; Arif, M; Huber, M; Heacock, B; Young, A R; Pushin, D

    2015-01-01

    The physical origin of the dark energy, which is postulated to cause the accelerated expansion rate of the universe, is one of the major open questions of cosmology. A large subset of theories postulate the existence of a scalar field with a nonlinear coupling to matter chosen so that the effective range and/or strength of the field is greatly suppressed unless the source is placed in vacuum. We describe a measurement using neutron interferometry which can place a stringent upper bound on chameleon fields proposed as a solution to the problem of the origin of dark energy of the universe in the regime with a strongly-nolinear coupling term. In combination with other experiments searching for exotic short-range forces and laser-based measurements, slow neutron experiments are capable of eliminating this and many similar types of scalar-field-based dark energy models by laboratory experiments

  17. Characterisation of neutron fields around high-energy x-ray radiotherapy machines

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Turek, Karel

    2004-01-01

    Roč. 110, 1-4 (2004), s. 503-507 ISSN 0144-8420 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiotherapy machines * neutron fields * high-energy Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.617, year: 2003

  18. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    Science.gov (United States)

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to

  19. The impact of ICRP 60 recommendations on the dose equivalent in low- and high energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Jakes, J; Schraube, H [GSF-Forschungszentrum Neuberg, D-85758 Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1996-12-31

    The objectives of this study was to determine the impact of the increased risk factors for neutrons after ICRP 60 on the operational dose equivalent quantities at a few neutron fields selected with the respect to cover the broad variety of neutron spectra: (1) Cadarache calibration assembly, with average neutron energy around 0.6 MeV, designed to simulate realistic neutron spectra at workplaces. This assembly is basically composed of an almost spherical {sup 238}U converter irradiated by 14.6 MeV neutrons from an accelerator target, placed at its center, and a scattering chamber consisting of a cylindrical polyethylene duct and a series of additional shieldings; (2) Neutron spectra at exposed workplaces in nuclear power plants; (3) Moderated spectra of {sup 252}Cf fission source; (4) Neutron spectra behind a shielding made of the iron (the average energy 5.,89 MeV) and concrete (the average energy 46.51 MeV), respectively; (5) Cosmic rays induced neutron spectra measured on the top of the Zugspitze (2968 m) where there is the average neutron energy around 40 MeV. From the derived neutron spectra, the mean quality factors and conversion factors h after ICRP 21 and ICRP 60, respectively, were calculated. The dose equivalent conversion factors were taken for the region below 20 MeV, and the energy region above 20 MeV. The results show that the operational quantities were affected predominately in the low energy fields, where the changes are given by a factor of 1,3 for the neutron fields given above. As has been expected, the impact of the new recommendations depends on the shape of the neutron spectra. Therefore, this factor can be much higher in the fields where the intermediate energy region is dominant, which is the case of moderated and scattered spectra at some places in the nuclear power plant and around containers with the spent fuel elements. (J.K.) 9 refs.

  20. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  1. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  2. Applications of a lead pile coupled with fast reactor core of Yayoi as an intermediate energy neutron standard field

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-10-01

    Intermediate neutron column of YAYOI reactor is here evaluated as an intermediate energy neutron standard field which provides a base of the measurements of various reaction rates in that energy region, including detector calibration and Doppler coefficient determination. The experiments were performed using YAYOI's core as a fast neutron source by coupling with the large lead pile, which is a 160 ton's octagon of 2.5 m high and with a thickness of about 2.5 m face to face distance. Spatial variation of the neutron flux in the lead pile was estimated by gold activation foils, and the neutron spectrum by sandwich foils, a helium-3 proportional counter and a proton recoil counter. The calculated results were obtained using one and two- dimensional discrete ordinate code, ANISN and TWOTRAN II. Through comparison of experiment with calculation, it became clear that the neutron field at the central block has simple energy spectrum and stable spatial distribution of the neutron flux, the absolute of which was 5.0 x 10 4 (n/cm 2 /sec/Watt) at the representative energy of 1 KeV. The energy spectrum of the position and the spatial dependent neutron flux in the lead pile are both represented by the semiempirical formula, which must be useful both for evaluation of experimental data and for future applications. (auth.)

  3. Correlation of the neutron yield from the plasma focus upon variations in the magnetic field energy of the discharge circuit

    Science.gov (United States)

    Ablesimov, V. E.; Dolin, Yu. N.; Kalinychev, A. E.; Tsibikov, Z. S.

    2017-10-01

    The relation between neutron yield Y and magnetic field energy variations Δ W in the discharge circuit has been studied for a Mather-type plasma-focus camera. The activation technique (activation of silver isotopes) has been used to measure the integral yield of DD neutrons from the source. The time dependence of the neutron yield has been recorded by scintillation detectors. For the device used in the investigations, the neutron yield exhibits a linear dependence on variations in the magnetic field energy Δ W in the discharge circuit at the instant of neutron generation. It is also found that this dependence is related to the initial deuteron pressure in the discharge chamber.

  4. Pilot study for the implantation of a high-energy neutrons field

    International Nuclear Information System (INIS)

    Pinto, Jose Julio de O.; Mendes, Adriane C.; Federico, Claudio A.; Passaro, Angelo; Gaspar, Felipe de B.; Pazianotto, Mauricio T.

    2013-01-01

    In this work a theoretical study is presented for the implementation of a high-energy neutron field (14.1 MeV) produced by a neutron generator type DT (deuterium-tritium), to be installed in the premises of the Laboratorio de Radiacoes Ionizantes (LRI) of the Instituto de Estudos Avancados (IEAv). This evaluation was performed by means of computer simulation by Monte Carlo method, using the computer code MCNP5 (Monte Carlo N-Particle). The neutron spectra were simulated computationally for pre-selected points of the installation, allowing to estimate the beam quality in the positions provided for use of the direct beam. These simulations also allow assist the basement of a project to install the consistent D-T generator with the guidelines for radiation protection and radiation safety standards determined by the Comissao Nacional de Energia Nuclear (CNEN), by estimating the dose rates provided in accessible points to Individuals Occupationally Exposed (IOE) in the facility. The computational determination of spectra, fluxes and doses produced in different positions previously selected within and outside the laboratory, will serve as guidance from previous studies for the future installation of this generator in the physical facilities of the LRI

  5. Personal dosimetry in a mixed field of high energy muons and neutrons

    International Nuclear Information System (INIS)

    Cossairt, J.D.; Elwyn, A.J.

    1986-11-01

    High energy accelerators quite often emit muons. These particles behave in matter as would heavy electrons and are thus difficult to attenuate with shielding in many situations. Hence, these muons can be a source of radiation exposure to personnel and suitable methods of measuring the absorbed dose received to these people is obviously required. In practical situations, such muon radiation fields are often mixed with neutrons, well-known to be an even more troublesome particle species with respect to dosimetry. In this paper, we report on fluence measurements made in such a mixed radiation field and a comparison of dosimeter responses. We conclude that commercial self-reading dosimeters and film badges provided an adequate measure of the absorbed dose due to muons

  6. Energy and direction distribution of neutrons in workplace fields: Implication of the results from the EVIDOS project for the set-up of simulated workplace fields

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Lacoste, V.; Reginatto, M.; Zimbal, A.

    2007-01-01

    Workplace neutron spectra from nuclear facilities obtained within the European project EVIDOS are compared with those of the simulated workplace fields CANEL and SIGMA and fields set-up with radionuclide sources at the PTB. Contributions of neutrons to ambient dose equivalent and personal dose equivalent are given in three energy intervals (for thermal, intermediate and fast neutrons) together with the corresponding direction distribution, characterised by three different types of distributions (isotropic, weakly directed and directed). The comparison shows that none of the simulated workplace fields investigated here can model all the characteristics of the fields observed at power reactors. (authors)

  7. Development of a TPC for energy and fluence references in low energies neutronic fields (from 8 keV to 5 MeV)

    International Nuclear Information System (INIS)

    Maire, Donovan

    2015-01-01

    In order to judge the measurement reliability, metrology requires to measure quantities with their uncertainties, in relation to a reference through a documented and unbroken chain of calibrations. In neutron radiation field, instrument response has to be known as a function of the neutron energy. Then detector calibrations are required using reference neutron fields. In France, primary reference neutron fields are held by the LNE-IRSN, at the Laboratory for Neutron Metrology and Dosimetry (LMDN). In order to improve reference neutron field characterization, the LNE-IRSN MIMAC μTPC has been developed. This detector is a Time Projection Chamber (TPC), using a gas at low pressure (30 mbar abs. to 1 bar abs.). Nuclear recoils are generated by neutron elastic scattering onto gas atoms. By measuring the nuclear recoil energy and scattering angle, the μTPC detector is able to measure the energy distribution of the neutron fluence between 8 keV and 5 MeV. The main challenge was to perform accurate spectrometry of neutron fields in the keV range, following a primary procedure. First of all, a metrological approach was followed in order to master every physical process taking part in the neutron detection. This approach led to develop the direct and inverse models, representing the detector response function and its inverse function respectively. Using this detailed characterization, the energy distribution of the neutron fluence has been measured for a continuous neutron field of 27 keV. The reconstructed energy is 28,2 ± 4,5 keV, the difference between μTPC integral fluence measurement and other measurement methods is less than 6%. The LNE-IRSN MIMAC μTPC system becomes the only one system able to measure simultaneously energy and fluence at energies lower than 100 keV, following a primary procedure. The project goal is then reached. These measurements at energies lower than 100 keV shows also a non-linearity between the ionization charge and the ion kinetic energy

  8. Determination of cross sections for the production of low-energy monoenergetic neutron fields; Determination de sections efficaces pour la production de champs neutroniques monoenergetiques de basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Lamirand, Vincent

    2011-11-18

    The response of a neutron detector, defined as the reading of the device per unit of incident fluence or dose, varies with neutron energy. The experimental determination of this variation, i.e. of the response function of this instrument, has to be performed by facilities producing monoenergetic neutron fields. These neutrons are commonly produced by interaction between accelerated ions (proton or deuteron) onto a thin target composed of a reactive layer deposited on a metallic backing. Using the {sup 7}Li(p, n), {sup 3}H(p, n), {sup 2}H(d, n) and {sup 3}H(d, n) reactions, monoenergetic neutrons are obtained between 120 keV and 20 MeV in the ion beam direction (0 deg.). To reach lower neutron energies, the angle of the measuring point with respect to the ion beam direction can be increased. However, this method presents several problems of neutron energy and fluence homogeneities over the detector surface, as well as an important increase of the scattered neutron contribution. Another solution is to investigate other nuclear reactions, as {sup 45}Sc(p, n) allowing to extend the neutron energy range down to 8 keV at 0 deg.. A complete study of this reaction and its cross section has been undertaken within the framework of a scientific cooperation between the laboratory of neutron metrology and dosimetry (IRSN, France), two European national metrological institutes, the National Physical Laboratory (UK) and the Physikalisch-Technische Bundesanstalt (Germany), and IRMM, the Institute for Reference Materials and Measurements (EC). In parallel, other possible reactions have been investigated: {sup 65}Cu(p, n), {sup 51}V(p, n), {sup 57}Fe(p, n), {sup 49}Ti(p, n), {sup 53}Cr(p, n) and {sup 37}Cl(p, n). They were compared in terms of neutron fluence and minimum energy of the produced neutrons. (author)

  9. Test of the rem-counter WENDI-II from Eberline in different energy-dispersed neutron fields

    International Nuclear Information System (INIS)

    Gutermuth, F.; Radon, T.; Fehrenbacher, G.; Siekmann, R.

    2004-03-01

    The neutron rem-counter WENDI-II from Eberline was tested in high-energy particle accelerator produced neutron fields. A radioactive 241 Am-Be(αn) source was used as a reference. The experimentally determined responses are compared to Monte-Carlo simulations of the response function done by R. H. Olsher et al. (2000). The energy spectra of the accelerator produced neutron fields were determined employing Monte-Carlo simulations, too. According to the simulations done by C. Birattari et al. (1998) and in this work these neutron fields exhibit large contributions to the ambient dose equivalent resulting from neutrons with kinetic energy of more than 20 MeV up to a few 100 MeV. The WENDI-II detector proved to show a response of approximately 3.10 9 pulses per Sievert ambient dose equivalent. Considering the experimental and statistical uncertainties the results are consistent with the assumption that the dose response of the WENDI-II reproduces quite accurately the function for the ambient dose equivalent of the ICRP 74

  10. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. High energy neutron dosimeter

    International Nuclear Information System (INIS)

    Rai, K.S.F.

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures

  12. Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields

    CERN Document Server

    Endo, A; Noguchi, H; Tanaka, S; Iida, T; Furuichi, S; Kanda, Y; Oki, Y

    2003-01-01

    The size distributions of sup 3 sup 8 Cl, sup 3 sup 9 Cl, sup 8 sup 2 Br and sup 8 sup 4 Br aerosols generated by irradiations of argon and krypton gases containing di-octyl phthalate (DOP) aerosols with 45 MeV and 65 MeV quasi-monoenergetic neutrons were measured in order to study the formation mechanism of radioactive particles in high energy radiation fields. The effects of the size distribution of the radioactive aerosols on the size of the added DOP aerosols, the energy of the neutrons and the kinds of nuclides were studied. The observed size distributions of the radioactive particles were explained by attachment of the radioactive atoms generated by the neutron-induced reactions to the DOP aerosols. (author)

  13. Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Bartlett, D.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Lacoste, V.; Lindborg, L.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.

    2007-01-01

    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discussed. (authors)

  14. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  15. The Efficiency of the BC-720 Scintillator in a High-Energy (20--800 MeV) Accelerator Neutron Field

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Leslie H. [Univ. of Missouri, Columbia, MO (United States)

    2005-12-01

    High-energy neutron doses (>20 MeV) are of little importance to most radiation workers. However, space and flight crews, and people working around medical and scientific accelerators receive over half of their radiation dose from high-energy neutrons. Unfortunately, neutrons are difficult to measure, and no suitable dosimetry has yet been developed to measure this radiation. In this paper, basic high-energy neutron interactions, characteristics of high-energy neutron environments, present neutron dosimetry, and quantities used in neutron dosimetry are discussed before looking into the potential of the BC-720 scintillator to improve dosimetry. This research utilized 800 MeV protons impinging upon the WNR Facility spallation neutron source at Los Alamos National Laboratory. Time-of-flight methods and a U-238 Fission Chamber were used to aid evaluation of the efficiency of the BC-720. Results showed that the efficiency is finite over the 20–650 MeV energy region studied, although it decreases by a factor of ten between 40 and 100 MeV. This limits the use of this dosimeter to measure doses at sitespecific locations. It also encourages modifications to use this dosimeter for any unknown neutron field. As such, this dosimeter has the potential for a small, lightweight, real-time dose measurement, which could impact neutron dosimetry in all high-energy neutron environments.

  16. A technique for determining fast and thermal neutron flux densities in intense high-energy (8-30 MeV) photon fields

    International Nuclear Information System (INIS)

    Price, K.W.; Holeman, G.R.; Nath, R.

    1978-01-01

    A technique for measuring fast and thermal neutron fluxes in intense high-energy photon fields has been developed. Samples of phorphorous pentoxide are exposed to a mixed photon-neutron field. The irradiated samples are then dissolved in distilled water and their activation products are counted in a liquid scintillation spectrometer at 95-97% efficiency. The radioactive decay characteristics of the samples are then analyzed to determine fast and thermal neutron fluxes. Sensitivity of this neutron detector to high energy photons has been measured and found to be small. (author)

  17. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  18. High-energy quasi-monoenergetic neutron fields: existing facilities and future needs

    CERN Document Server

    Pomp, S; Mayer, S; Reitz, G; Rottger, S; Silari, M; Smit, F D; Vincke, H; Yasuda, H

    2014-01-01

    The argument that well-characterised quasi-monoenergetic neutron (QMN) sources reaching into the energy domain >20 MeV are needed is presented. A brief overview of the existing facilities is given, and a list of key factors that an ideal QMN source for dosimetry and spectrometry should offer is presented. The authors conclude that all of the six QMN facilities currently in existence worldwide operate in sub-optimal conditions for dosimetry. The only currently available QMN facility in Europe capable of operating at energies >40 MeV, TSL in Uppsala, Sweden, is threatened with shutdown in the immediate future. One facility, NFS at GANIL, France, is currently under construction. NFS could deliver QMN beams up to about 30 MeV. It is, however, so far not clear if and when NFS will be able to offer QMN beams or operate with only so-called white neutron beams. It is likely that by 2016, QMN beams with energies >40 MeV will be available only in South Africa and Japan, with none in Europe.

  19. Intercomparison of radiation protection devices in a high-energy stray neutron field, Part II: Bonner sphere spectrometry

    International Nuclear Information System (INIS)

    Wiegel, B.; Agosteo, S.; Bedogni, R.; Caresana, M.; Esposito, A.; Fehrenbacher, G.; Ferrarini, M.; Hohmann, E.; Hranitzky, C.; Kasper, A.; Khurana, S.; Mares, V.; Reginatto, M.; Rollet, S.; Ruehm, W.; Schardt, D.; Silari, M.; Simmer, G.; Weitzenegger, E.

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package 'complex mixed radiation fields at workplaces' was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft fuer Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.

  20. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  1. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    CERN Document Server

    Silari, M; Beck, P; Bedogni, R; Cale, E; Caresana, M; Domingo, C; Donadille, L; Dubourg, N; Esposito, A; Fehrenbacher, G; Fernández, F; Ferrarini, M; Fiechtner, A; Fuchs, A; García, M J; Golnik, N; Gutermuth, F; Khurana, S; Klages, Th; Latocha, M; Mares, V; Mayer, S; Radon, T; Reithmeier, H; Rollet, S; Roos, H; Rühm, W; Sandri, S; Schardt, D; Simmer, G; Spurný, F; Trompier, F; Villa-Grasa, C; Weitzenegger, E; Wiegel, B; Wielunski, M; Wissmann, F; Zechner, A; Zielczyński, M

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with “complex mixed radiation fields at workplaces” and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. Th...

  2. Neutron applications in materials for energy

    CERN Document Server

    Kearley, Gordon J

    2015-01-01

    Neutron Applications in Materials for Energy collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being

  3. Moderation of neutron energy

    International Nuclear Information System (INIS)

    Marlatt, G.R.

    1986-01-01

    This patent describes a nuclear reactor system having a nuclear reactor which has a core including fuel assemblies, means for transmitting through the core a coolant, the coolant having a predetermined neutron-energy moderating property, sealed tubes in the core, each tube containing a material having a different neutron-energy moderating property than the coolant, means, when actuated, to engage at least certain of the tubes, for opening certain of the tubes to permit the coolant to replace the material in the tubes thereby to change the energy spectrum of the neutrons in the reactor, hydraulic means, connected to the opening means, for actuating the opening means to engage certain of the tubes to open the tubes. A device, external to the reactor, connected to the hydraulic means controlls the actuation of the opening means, the opening means being so set with reference to the tubes that only certain of the tubes are opened at any time as the opening means is advanced towards the tubes by the hydraulic means

  4. Development of neutron calibration field using accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  5. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    International Nuclear Information System (INIS)

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernandez, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; Garcia, M.J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, Th.

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with 'complex mixed radiation fields at workplaces' and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. The paper describes in detail the detectors employed in the experiment, followed by a discussion of the results. A comparison is also made with the H*(10) values predicted by the Monte Carlo simulations and those measured by the BSS systems.

  6. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  7. The neutron's Dirac-equation: Its rigorous solution at slab-like magnetic fields, non-relativistic approximation, energy spectra and statistical characteristics

    International Nuclear Information System (INIS)

    Zhang Yongde.

    1987-03-01

    In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs

  8. Neutron optics using transverse field neutron spin echo method

    International Nuclear Information System (INIS)

    Achiwa, Norio; Hino, Masahiro; Yamauchi, Yoshihiro; Takakura, Hiroyuki; Tasaki, Seiji; Akiyoshi, Tsunekazu; Ebisawa, Toru.

    1993-01-01

    A neutron spin echo (NSE) spectrometer with perpendicular magnetic field to the neutron scattering plane, using an iron yoke type electro-magnet has been developed. A combination of cold neutron guider, supermirror neutron polarizer of double reflection type and supermirror neutron analyser was adopted for the spectrometer. The first application of the NSE spectrometer to neutron optics by passing Larmor precessing neutrons through gas, solid and liquid materials of several different lengths which are inserted in one of the precession field have been examined. Preliminary NSE spectra of this sample geometry are discussed. (author)

  9. Energy response study of modified CR-39 neutron personnel dosimeter

    International Nuclear Information System (INIS)

    Sathian, Deepa; Bakshi, A.K.; Datta, D.; Nair, Sreejith S.; Sathian, V.; Mishra, Jitendra; Sen, Meghnath

    2018-01-01

    Personnel neutron dosimetry is an integral part of radiation protection. No single dosimeter provides the satisfactory energy response, sensitivity, angular dependence characteristics and accuracy necessary to meet the requirement of an ideal personnel neutron dosimeter. The response of a personnel neutron dosimeter is critically dependent upon the energy distribution of the neutron field. CR-39 personnel neutron dosimeters were typically calibrated in the standard neutron field of 252 Cf and 241 Am-Be in our laboratory, although actual neutron fields may vary from the calibration neutron spectrum. Recently the badge cassette of the personnel neutron dosimeter was changed due to frequent damage of the PVC badge used earlier. This paper discusses energy response of CR-39 solid state nuclear track detector loaded in this modified badge cassette as per latest ISO recommendation

  10. Characteristics of thermal neutron calibration fields using a graphite pile

    International Nuclear Information System (INIS)

    Uchita, Yoshiaki; Saegusa, Jun; Kajimoto, Yoichi; Tanimura, Yoshihiko; Shimizu, Shigeru; Yoshizawa, Michio

    2005-03-01

    The Facility of Radiation Standards of Japan Atomic Energy Research Institute is equipped with thermal neutron fields for calibrating area and personal neutron dosemeters. The fields use moderated neutrons leaked from a graphite pile in which radionuclide sources are placed. In January 2003, we have renewed the pile with some modifications in its size. In accordance with the renewal, we measured and calculated thermal neutron fluence rates, neutron energy distributions and angular distributions of the fields. The thermal neutron fluence rates of the ''inside-pile fields'' and the outside-pile fields'' were determined by the gold foil activation method. The neutron energy distributions of the outside-pile fields were also measured with the Bonner multi-sphere spectrometer system. The contributions of epithermal and fast neutrons to the total dose-equivalents were 9% in the southern outside-pile field and 12% in the western outside-pile field. The personal dose-equivalents, H p,slab (10, α), in the outside-pile fields are evaluated by considering the calculated angular distributions of incoming neutrons. The H p,slab (10, α) was found to be about 40% higher than the value in assuming the unidirectional neutron between the pile and the test point. (author)

  11. Monoenergetic neutron fields for the calibration of neutron dosemeters at the accelerator facility of the PTB

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.; Schoelermann, H.

    1987-01-01

    The present state in the realization of monoenergetic standard neutron fields and the possibility of calibrating neutron dose- and doserate meters at the accelerator facility of the PTB are described. There are excellent conditions for the performance of irradiations in the neutron energy range of 1 keV to 14.8 MeV. (orig.) [de

  12. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  13. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  14. Neutrons and sustainable energy research

    International Nuclear Information System (INIS)

    Peterson, V.

    2009-01-01

    Full text: Neutron scattering is essential for the study of sustainable energy materials, including the areas of hydrogen research (such as its separation, storage, and use in fuel-cells) and energy transport (such as fuel-cell and battery materials). Researchers at the Bragg Institute address critical questions in sustainable energy research, with researchers providing a source of expertise for external collaborators, specialist analysis equipment, and acting as a point of contact for the study of sustainable energy materials using neutron scattering. Some recent examples of sustainable energy materials research using neutron scattering will be presented. These examples include the storage of energy, in the form of hydrogen through a study of its location in and interaction with new porous hydrogen storage materials [1-3] and in battery materials through in-situ studies of structure during charge-discharge cycling, and use of energy in fuel cells by studying proton diffusion through fuel cell membranes.

  15. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  16. Do neutrons feel electric fields?

    International Nuclear Information System (INIS)

    Klein, Tony; Werner, Sam

    1991-01-01

    An accounts is given of the results of a co-operative research carried out at the University of Melbourne in Australia and the University of Missouri, Columbia in the United States on the physics of neutrons and their interactions as a test of fundamental principles in quantum mechanics and electrodynamics. In particular it comments on the verification of the Aharonov-Casher effect in electric as well as magnetic fields in the case of neutral particles. It was demonstrated that neutrons have a magnetic moment which precess and acquire phase shifts when exposed to magnetic fields. The sign of the measured phase shift agreed with the theoretical prediction and the magnitude was within one and a half standard deviations of it. 12 refs., 4 figs

  17. Neutron Dark-Field Imaging

    Science.gov (United States)

    Mullins, David

    2017-09-01

    Neutron imaging is typically used to image and reconstruct objects that are difficult to image using X-Ray imaging techniques. X-Ray absorption is primarily determined by the electron density of the material. This makes it difficult to image objects within materials that have high densities such as metal. However, the neutron scattering cross section primarily depends on the strong nuclear force, which varies somewhat randomly across the periodic table. In this project, an imaging technique known as dark field imaging using a far-field interferometer has been used to study a sample of granite. With this technique, interferometric phase images are generated. The dispersion of the microstructure of the sample dephases the beam, reducing the visibility. Collecting tomographic projections at different autocorrelation lengths (from 100 nanometers to 1.74 micrometers) essentially creates a 3D small angle scattering pattern, enabling mapping of how the microstructure is distributed throughout the sample.

  18. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... the material properties of the region where currents supporting the .... 1The evolution of magnetic field in neutron stars, in particular, the question of .... −10, 10. −9, 10. −8. M⊙/yr respec- tively. See Konar & Bhattacharya (1997) for details. Peq ≃ 1.9 ms ..... ported by a grant (SR/WOS-A/PM-1038/2014) from.

  19. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  20. Neutron energy measurement for practical applications

    Indian Academy of Sciences (India)

    M V Roshan

    2018-02-07

    . Elastic scattering of monoenergetic α-particles from neutron collision enables neutron energy measurement by calculating the amount of deviation from the position where collision takes place. The neutron numbers with ...

  1. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  2. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  3. Martian Neutron Energy Spectrometer (MANES)

    Science.gov (United States)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  4. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  5. Neutron energy measurement for practical applications

    Science.gov (United States)

    Roshan, M. V.; Sadeghi, H.; Ghasabian, M.; Mazandarani, A.

    2018-03-01

    Industrial demand for neutrons constrains careful energy measurements. Elastic scattering of monoenergetic α -particles from neutron collision enables neutron energy measurement by calculating the amount of deviation from the position where collision takes place. The neutron numbers with specific energy is obtained by counting the number of α -particles in the corresponding location on the charged particle detector. Monte Carlo simulation and COMSOL Multiphysics5.2 are used to account for one-to-one collision of neutrons with α -particles.

  6. Energy dependent neutron imaging

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Hitterman, R.L.; Rhodes, E.

    1990-01-01

    A waste package consisting of a container and high-level nuclear waste is being developed for the permanent disposal of radioactive waste. Yucca Mountain, Nevada, is being studied as a potential site for the underground high-level nuclear waste repository. A major consideration for choosing Yucca Mountain is the presence of zeolite in tertiary ash-flow tuffs. The presence of zeolites could provide geological barriers to radionuclide migration. The suitability of the tuffaceous rocks at Yucca Mountain for the repository is being investigated since the properties of the environment around a waste site must be well characterized to reliably predict performance. The results of experiments at Lawrence Livermore National Laboratory (LLNL) to assess the possibility of imaging water in Nevada Test Site welded tuff samples showed that nuclear magnetic resonance imaging is not viable. This leaves neutron tomography and high-frequency electromagnetic geotomography as possibilities for the practical imaging of distribution and flow of fluids in rock, including tuff specimens. Water tracers are needed in electromagnetic tomography techniques since the contrast for detecting water in cracks of tuff is lower than in granite because of the higher porosity in tuff. The results of preliminary testing with geotomography by LLNL indicates relatively low spatial resolution. More sensitive techniques for detecting water is needed. This paper describes preliminary experiments to apply pulsed neutrons to image water in a sample of tuff. 3 refs., 3 figs

  7. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  8. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields

    International Nuclear Information System (INIS)

    Fujibuchi, T.; Tanabe, Y.; Sakae, T.; Terunuma, T.; Isobe, T.; Kawamura, H.; Yasuoka, K.; Matsumoto, T.; Harano, H.; Nishiyama, J.; Masuda, A.; Nohtomi, A.

    2011-01-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field. (authors)

  9. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  10. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  11. A Neutron Radiography System for Field Use

    Science.gov (United States)

    1989-06-01

    provoked a major renewal of interest in neutron radiography because it promises to bring neutron radiography to the workplace , a convenience provided...II I~F I C II i IiH i ii MTL TR 89-52 I-AD A NEUTRON RADIOGRAPHY SYSTEM N FOR FIELD USE e~m JOHN J. ANTAL and ALFRED S. MAROTTA, and LOUIS J. FARESE...COVERED A NEUTRON RADIOGRAPHY SYSTEM FOR FIELD USE Final Report 6. PERFORMING OR1. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s) John J

  12. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  13. Transmutation of Minor Actinide in well thermalized neutron field and application of advanced neutron source (ANS)

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hirakawa, Naohiro

    1995-01-01

    Transmutation of Minor Actinide (MA) in a well thermalized neutron field was studied. Since MA nuclides have large effective cross sections in the well thermalized neutron field, the transmutation in the well thermalized neutron field has an advantage of high transmutation rate. However, the transmutation rate largely decreases by accumulation of 246 Cm when MA is transmuted only in the well thermalized neutron field for a long period. An acceleration method of burn-up of 246 Cm was studied. High transmutation rate can be obtained by providing a neutron field with high flux in the energy region between 1 and 100 eV. Two stage transmutation using the well thermalized neutron field and this field can transmute MA rapidly. The applicability of the Advanced Neutron Source (ANS) to the transmutation of MA was examined for a typical MA with the composition in the high-level waste generated in the conventional PWR. If the ANS is applied without changing the fuel inventory, the amount of MA which corresponds to that produced by a conventional 1,175 MWe PWR in one year can be transmuted by the ANS in one year. Furthermore, the amount of the residual can be reduced to about 1g (10 -5 of the initial MA weight) by continuing the transmutation for 5 years owing to the two stage transmutation. (author)

  14. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments

    International Nuclear Information System (INIS)

    Lee, K.W.; Sheu, R.J.

    2015-01-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with 252 Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252 Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6-8 extended-range sphere versus the 6'' standard sphere). (authors)

  15. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  16. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  17. Thermal neutron standard fields with the KUR heavy water facility

    International Nuclear Information System (INIS)

    Kanda, K.; Kobayashi, K.; Shibata, T.

    1978-01-01

    A heavy water facility attached to the KUR (Kyoto University Reactor, swimming pool type, 5 MW) yields pure thermal neutrons in the Maxwellian distribution. The facility is faced to the core of KUR and it contains about 2 tons of heavy water. The thickness of the layer is about 140 cm. The neutron spectrum was measured with the time of flight technique using a fast chopper. The measured spectrum was in good agreement with the Maxwellian distribution in all energy region for thermal neutrons. The neutron temperature was slightly higher than the heavy water temperature. The contamination of epithermal and fast neutrons caused by photo-neutrons of the γ-n reaction of heavy water was very small. The maximum intensity of thermal neutrons is 3x10 11 n/cm 2 sec. When the bismuth scatterer is attached, the gamma rays contamination is eliminated by the ratio of 0.05 of gamma rays to neutrons in rem. This standard neutron field has been used for such experiments as thermal neutron cross section measurement, detector calibration, activation analysis, biomedical purposes etc. (author)

  18. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    in nuclei. The neutrons are expected to form a 3P superfluid and the protons a 1S ... crust are expected to form a lattice; the electrons are free and highly degenerate, .... the reduced magnetic fields in neutron stars processed in binaries,.

  19. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  20. Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadayoshi; Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Oyanagi, Katsumi [Japan Radiation Engineering Co., Ltd., Hitachi, Ibaraki (Japan)

    2002-09-01

    Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, {sup 241}Am-Be and {sup 252}Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)

  1. Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field

    International Nuclear Information System (INIS)

    Yoshida, Tadayoshi; Tsujimura, Norio

    2002-01-01

    Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, 241 Am-Be and 252 Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)

  2. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  3. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    Science.gov (United States)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  4. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  5. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  6. Field neutron spectrometer using 3He, TEPC, and multisphere detectors

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1991-01-01

    Since the last DOE Neutron Dosimetry Workshop, there have been a number of changes in radiation protection standards proposed by national and international advisory bodies. These changes include: increasing quality factors for neutrons by a factor of two, defining quality factors as a function of lineal energy rather than linear energy transfer (see ACCRUE-40; Joint Task Group 1986), and adoption of effective dose equivalent methodologies. In order to determine the effects of these proposed changes, it is necessary to know the neutron energy spectrum in the work place. In response to the possible adoption of these proposals, the Department of Energy (DOE) initiated a program to develop practical neutron spectrometry systems for use by health physicists. One part of this program was the development of a truly portable, battery operated liquid scintillator spectrometer using proprietary electronics developed at Lawrence Livermore National Laboratory (LLNL); this instrument will be described in the following paper. The second part was the development at PNL of a simple transportable spectrometer based on commercially available electronics. This open-quotes field neutron spectrometerclose quotes described in this paper is intended to be used over a range of neutron energies extending from thermal to 20 MeV

  7. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  8. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  9. Neutron Scattering and High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.

  10. Development of moderated neutron calibration fields simulating workplaces of MOX fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Takada, Chie

    2005-01-01

    It is important for the MOX fuel facilities to control neutrons produced by the spontaneous fission of plutonium isotopes and those from (α,n) reactions between 18 O and α particles emitted by 238 Pu. Neutron dose meters should be calibrated for measuring these neutrons. We have developed moderated-neutron calibration fields employing a 252 Cf neutron source and moderators mainly for the characteristics evaluation and the calibration of neutron detectors used in MOX fuel facilities. Neutron energy spectrum can be adjusted by changing the position of the 252 Cf neutron source and combining different moderators to simulate the neutron field of the MOX fuel facility. This performance is realized owing to using an existing neutron irradiation room. (K. Yoshida)

  11. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  12. On the neutron diffraction in a crystal in the field of a standing laser wave

    International Nuclear Information System (INIS)

    Grigoryan, K.K.; Hayrapetyan, A.G.; Petrosyan, R.G.

    2010-01-01

    The possibility of high-energy neutron diffraction in a crystal is shown by applying the solution of time-dependent Schroedinger equation for a neutron in the field of a standing laser wave. The scattering picture is examined within the framework of non-stationary S-matrix theory, where the neutron-laser field interaction is considered exactly and the neutron-crystal interaction is considered as a perturbation described by Fermi pseudopotential (Farri representation). The neutron-crystal interaction is elastic, and the neutron-laser field interaction has both inelastic and elastic behaviors which results in the observation of an analogous to the Kapitza-Dirac effect for neutrons. The neutron scattering probability is calculated and the analysis of the results are adduced. Both inelastic and elastic diffraction conditions are obtained and the formation of a 'sublattice' is illustrated in the process of neutron-photon-phonon elastic interaction.

  13. A study of the cosmic-ray neutron field near interfaces

    CERN Document Server

    Sheu, R J; Jiang, S H

    2002-01-01

    This study investigated the characteristics of the cosmic-ray neutron field near air/ground and air/water interfaces with an emphasis on the angular distribution. Two sets of high-efficiency neutron detecting systems were used. The first one, called the Bonner Cylinders, was used for measurements of the energy information. The other one, referred to as the eight-channel neutron detector (8CND), was used to characterize the angular information of the neutron field. The measured results were used to normalize and confirm one-dimensional transport calculations for cosmic-ray neutrons below 20 MeV in the air/ground and air/water media. Annual sea level cosmic-ray neutron doses were then determined based on the obtained characteristics of low-energy cosmic-ray neutrons near interfaces and estimated contribution from high-energy neutrons.

  14. Intercomparison of radiation protection protection devices in a high-energy stray neutron field. Part III: Instrument response

    Czech Academy of Sciences Publication Activity Database

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernández, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; García, M. J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, T.; Latocha, M.; Mares, V.; Mayer, S.; Radon, T.; Reithmeier, H.; Rollet, S.; Roos, H.; Rühm, W.; Sandri, S.; Schardt, D.; Simmer, G.; Spurný, František; Trompier, F.; Villa-Grasa, C.; Weitzenegger, E.; Wiegel, B.; Wielunski, M.; Wissmann, F.; Zechner, A.; Zielczyński, M.

    2009-01-01

    Roč. 44, 7-8 (2009), s. 673-691 ISSN 1350-4487 R&D Projects: GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation protection devices * radiation field * detectors * dosemeters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.973, year: 2009

  15. Neutron Field Characterization of Irradiation Locations Applied to the Slovenian TRIGA Reactor

    International Nuclear Information System (INIS)

    Barbot, Loic; Domergue, Christophe; Breaud, Stephane; Destouches, Christophe; Villard, Jean-Francois; Snoj, Luka; Stancar, Ziga; Radulovic, Vladimir; Trkov, Andrej

    2013-06-01

    This work deals with several neutron flux measurement instruments and particle transport calculations combined in a method to assess the neutron field in experimental locations in nuclear reactor core or reflector. First test of this method in the TRIGA Mark II of Slovenia led to the assessment of three energy groups neutron fluxes in central irradiation locations within reactor core. (authors)

  16. Bubble detectors as a tool of the dosimetry and microdosimetry in neutron fields

    International Nuclear Information System (INIS)

    Spurny, F.; Vlcek, B.; Rannou, A.

    1998-01-01

    Two types of bubble detector were studied: the Bubble Damage Neutron Detector (BDND) and the Superheated Drop Detector (SDD). The detectors were tested in neutron beams and fields. The relative response of the detectors varied with the average neutron energy. The response of SDD 100 started to decrease at higher energies than for BDND's, at 100 keV it was only about 1/4 of the response to AmBe neutrons. The responses of SDD 1000 and SDD 6000 decreased with the average neutron energy in a rather similar way. Starting from the AmLi source they represented less than 0.1 of the response to AmBe neutrons. Their response to high energy neutrons was practically the same as to AmBe neutrons. This is important for individual air crew dosimetry on board aircraft. (M.D.)

  17. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  18. Fundamental physics with low-energy neutrons

    International Nuclear Information System (INIS)

    Barrón-Palos, Libertad

    2016-01-01

    Low-energy neutrons are playing a prominent role in a growing number of fundamental physics studies. This paper provides a brief description of the physics that some of the experiments in the area are addressing. (paper)

  19. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  20. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  1. Quasi-energy of ultracold neutrons

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1992-01-01

    A solution is found to the problem of the propagation of a neutron beam transmitted through a periodically acting high-speed chopper. It is a generalization of the Moshinsky's problem of the evolution of a plane wave in the right half-space after an ideal absorber at the origin of coordinates has been instantaneously removed. The energy spectrum of transmitted neutrons is found to be discrete and corresponding to their quasi-energy. Interference of the states corresponding to different satellite lines leads to a complex spatial pattern with typical beats. A number of experiments with ultracold neutrons are suggested and discussed. 12 refs.; 1 fig

  2. Neutron field features in a calibration hall

    International Nuclear Information System (INIS)

    Vega C, H.R.; Gallego, E.; Lorente, A.

    2004-01-01

    A new source facility ( 241 Am-Be) has been installed in a large size bunker-type room. To characterize the neutron fields in the facility, detailed calculations have been made with MCNP-4C, showing the different components of the neutron radiation reaching the reference points (direct, in scattered, backscattered). The contribution from neutrons scattered in the walls to the total ambient dose equivalent remains reasonably low ( 6 LiI(Eu) scintillator (0.4 cm 0 x 0.4 cm), UTA4 response matrix and BUNKIUT unfolding code. The calculated and experimentally obtained spectra are compared, with small differences found in the epithermal and thermal region, attributable to the concrete composition used in the calculations. The H*(10) rate has been determined from the spectra, and then compared to the reading of an active dosemeter (LB 6411), with differences found lower than 8%. (Author)

  3. A neutron spin echo spectrometer with two optimal field shape coils for neutron spin precession

    International Nuclear Information System (INIS)

    Takeda, T.; Ebisawa, T.; Tasaki, S.; Ito, Y.; Takahashi, S.; Yoshizawa, H.

    1995-01-01

    We have designed and have been constructing at the C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimal field shape (OFS) coils for neutron spin precession with the maximum field integral of 0.22 T m, an assembly of position sensitive detectors (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.005 A -1 to 0.2 A -1 and that of energy hω from 10 neV to 30 μeV. Performance tests of the OFS coils show that the inhomogeneity of the magnetic field integral in the OFS coils with the spiral coils is so small that the NSE signal amplitude decreases little even for the neutron cross section of 30 mm diameter as the Fourier time t increases up to 25 ns, though the precession coils are close to iron covers of the neighboring neutron guide. This verifies that the OFS precession coils are appropriate for this NSE spectrometer. Another test experiment shows that the homogeneity condition of the precession magnet is loosened by use of PSD. (orig.)

  4. The Covariance and Bicovariance of the Stochastic Neutron Field

    International Nuclear Information System (INIS)

    Perez, R.B.; Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    2000-01-01

    On the basis of the general stochastic neutron field theory developed by Munoz-Cobo et al, results on the covariance and bicovariance of the neutron field have been presented. These two statistical quantities are obtained from the counts observed in detectors operating during a period of time (gate length), Δ qc . A classical example is the so called Feynmann Y-function that is defined as the variance to mean ratio of the neutron field. Upon taking the limit of the covariance and bicovariance function for Δ qc r a rrow O , one obtains the two and three detector cross correlation functions respectively. The mathematical structure of the results so obtained have a transparent physical interpretation in terms of the space and delay time overlap between the field-of-view of the detectors. For the first time, an expression has been obtained for the bispectrum function of the stochastic neutron field and for the appropriate weight functions to be used as space-energy-angle correction factors for the one-point kinetics approximation

  5. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  6. Development and characterization of real-time wide-energy range personal neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Tsujimura, Norio (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Yamano, Toshiya; Suzuki, Toshikazu; Okamoto, Eisuke

    1994-04-01

    The authors developed a real-time personal neutron dosimeter which could give neutron dose equivalent over wide energy region from thermal to 10 odd MeV by using 2 silicon detectors, fast neutron sensor and slow neutron sensor. The energy response of this dosimeter was evaluated under thermal neutron field, monoenergetic neutron field between 200 keV and 15 MeV, and moderated [sup 252]Cf neutron field. The neutron dose equivalent was estimated by adding neutron dose equivalent below 1 MeV given by slow neutron sensor and that above 1 MeV by fast neutron sensor. It was verified from various field tests that this dosimeter is able to give neutron dose equivalent within a factor of 2 margin of accuracy in reactor, accelerator, fusion research and nuclear fuel handling facilities. This dosimeter has more than one order higher sensitivity than conventional personal neutron dosimeters and is insensitive to [gamma]-rays up to about 500 mSv/h. This dosimeter will soon be commercially available as a personal dosimeter which gives neutron and [gamma]-ray dose equivalents simultaneously by installing [gamma]-ray silicon sensor. (author).

  7. Reference radiation fields - Simulated workplace neutron fields - Part 2: Calibration fundamentals related to the basic quantities

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 8529-1, ISO 8529-2 and ISO 8529-3, deal with the production, characterization and use of neutron fields for the calibration of personal dosimeters and area survey meters. These International Standards describe reference radiations with neutron energy spectra that are well defined and well suited for use in the calibration laboratory. However, the neutron spectra commonly encountered in routine radiation protection situations are, in many cases, quite different from those produced by the sources specified in the International Standards. Since personal neutron dosimeters, and to a lesser extent survey meters, are generally quite energy dependent in their dose equivalent response, it might not be possible to achieve an appropriate calibration for a device that is used in a workplace where the neutron energy spectrum and angular distribution differ significantly from those of the reference radiation used for calibration. ISO 8529-1 describes four radionuclide based neutron reference radiations in detail. This part of ISO 12789 includes the specification of neutron reference radiations that were developed to closely resemble radiation that is encountered in practice

  8. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  9. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  10. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  11. Unique furnace system for high-energy-neutron experiments

    International Nuclear Information System (INIS)

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    1982-03-01

    The low flux of high energy neutron sources requires optimum utilization of the available neutron field. A furnace system has been developed in support of the US DOE fusion materials program which meets this challenge. Specimens positioned in two temperature zones just 1 mm away from the outside surface of a neutron window in the furnace enclosure can be irradiated simultaneously at two independent, isothermal (+- 1 0 C) temperatures. The temperature difference between these closely spaced isothermal zones is controllable from 0 to 320 0 C and the maximum temperature is 400 0 C. The design of the system also provides a controlled specimen environment, rapid heating and cooling and easy access to heaters and thermocouples. This furnace system is in use at the Rotating Target Neutron Source-II of Lawrence Livermore National Laboratory

  12. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  13. Compilation of neutron flux density spectra and reaction rates in different neutron fields

    International Nuclear Information System (INIS)

    Ertek, C.

    1979-07-01

    Upon the recommendation of International Working Group of Reactor Radiation Measurements (IWGRRM), the compilation of neutron flux density spectra and the reaction rates obtained by activation and fission foils in different neutron fields is presented. The neutron fields considered are as follows: 1/E; iron block; LWR core and pressure vessel; LMFBR core and blanket; CTR first wall and blanket; fission spectrum

  14. Neutron stars. [quantum mechanical processes associated with magnetic fields

    Science.gov (United States)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  15. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  16. Compilation of neutron flux density spectra and reaction rates in different neutron fields. V.3

    International Nuclear Information System (INIS)

    Ertek, C.

    1980-04-01

    Upon the recommendation of the International Working Group of Reactor Radiation Measurements (IWGRRM) a compilation of documents containing neutron flux density spectra and the reaction rates obtained by activiation and fission foils in different neutron fields is presented

  17. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    Science.gov (United States)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  18. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  19. Neutron and photon spectrometry in mixed radiation fields

    International Nuclear Information System (INIS)

    Jancar, A.; Kopecky, Z.; Veskrna, M.

    2014-01-01

    Spectrometric measurements of the mixed fields of neutron and photon radiation in the workplaces with the L-R-0 research reactor located in the UJV Rez and with the Van de Graaff accelerator, located in the UTEF laboratories Prague, are presented in this paper. The experimental spectrometric measurements were performed using a newly developed digital measuring system, based on the technology of analog-digital converters with a very high sampling frequency (up to 2 GHz), in connection with organic scintillation detector, type BC-501A, and stilbene detector. The results of experimental measurements show high quality of spectrometry mixed fields of neutron and photon radiation across the wide dynamic range of measured energy. (authors)

  20. The PTB thermal neutron reference field at GeNF

    International Nuclear Information System (INIS)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-01-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10 6 s -1 , can easily be reduced to less than 10 4 s -1 by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a 6 Li glass detector was employed to determine the absolute beam current and to calibrate the 3 He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within ±2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  1. The PTB thermal neutron reference field at GeNF

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-07-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10{sup 6} s{sup -1}, can easily be reduced to less than 10{sup 4} s{sup -1} by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a {sup 6}Li glass detector was employed to determine the absolute beam current and to calibrate the {sup 3}He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within {+-}2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  2. EVIDOS: Individual dosimetry in mixed neutron and photon radiation fields

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2006-01-01

    The EVIDOS project (partly funded by the European Commission RTD Programme: Nuclear Energy, Euratom Framework Programme V, 1998-2002, Contract No FIKR-CT-2001-00175) aimed at improving individual monitoring in mixed neutron-photon radiation fields by evaluating the performance of routine and novel personal dosimeters for mixed radiation, and by giving guidelines for deriving sufficiently accurate values of personal dose equivalent from the readings of area survey instruments and dosimeters. The main objective of EVIDOS was to evaluate different methods for individual dosimetry in mixed neutron-photon work-places in nuclear industry. This implied a determination of the capabilities and limitations of personal dosimeters and the establishment of methods to enable sufficiently accurate values of personal dose equivalent from spectrometers, area survey instruments and routine personal dosimeters. Also novel electronic personal dosimeters were investigated. To this end spectrometric and dosimetric investigations in selected representative workplaces in nuclear industry where workers can receive significant neutron doses were performed. As part of this project, a number of tasks were executed, in particular: (1) the determination of the energy and direction distribution of the neutron fluence; (2) the derivation of the (conventionally true) values of radiation protection quantities; (3) the determination of the readings of routine and innovative personal dosimeters and of area monitors; and (4) the comparison between dosimeter readings and values of the radiation protection quantities

  3. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    Directory of Open Access Journals (Sweden)

    Valencia E.

    2014-03-01

    Full Text Available To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland using Total Absorption γ-ray Spectroscopy (TAGS technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  4. Energy dependence of fast neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Morgan, K.Z.

    1978-01-01

    Registration of fast-neutron induced recoil tracks by the electrochemical etching technique as applied to sensitive Lexan polycarbonate foils provides a simple and inexpensive means of fast neutron personnel dosimetry. The sensitivity (tracks/neutron) of recoil particle registration is given as a function of neutron energy. Neutrons of 7 Li (p,n) 7 Be, 3 T (d,n) 4 He and 9 B, respectively. Results are compared with other studies using other neutron sources and conventional etching method

  5. Characterisation of neutron fields: challenges in assessing the directional distribution

    International Nuclear Information System (INIS)

    Cauwels, Vanessa; Vanhavere, Filip; Reginatto, Marcel

    2014-01-01

    The SCK.CEN has carried out neutron field characterisation campaigns at several nuclear reactors. The main goal of these measurement campaigns was to evaluate the performance of different neutron personal dosemeters. To be able to evaluate the performance of neutron personal dosemeters in terms of H p (10), knowledge of the directional distribution is indispensable. This distribution was estimated by placing several personal dosemeters on all six sides of a slab phantom. The interpretation and conversion of this information into a reliable value for H p (10) requires great care. The data were analysed using three methods. In the first approach, a linear interpolation was performed on three perpendicular axes. In the other two approaches, an icosahedron was used to model the angle of incidence of the neutrons and a linear interpolation or a Bayesian analysis was performed. This study describes the limitations and advantages of each of these methods and provides recommendations for their use to estimate the personal dose equivalent H p (10) for neutron dosimetry. Neutron personal dosimetry is complicated by the fact that the neutron dose quantity H p (10) is strongly energy and angular dependent. Instead of simply assuming that the fluence is unidirectional or that the fluence is isotropic, an attempt was made to estimate the directional distribution of the neutron field using a relatively simple measurement procedure. A number of active and passive personal dosemeters were placed on the six faces of a slab phantom and the results were analysed via different algorithms to obtain partial fluences in several directions of incidence. The results from all calculations in this study show the importance of introducing information about the directional distribution of the neutron fluence for the estimation of the personal dose equivalent H p (10). The difference between H p (10) dose estimates carried out using a unidirectional or an isotropic distribution can be of up

  6. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  7. Neutron dosemeter responses in workplace fields and the implications of using realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Thomas, D.J.; Horwood, N.; Taylor, G.C.

    1999-01-01

    The use of realistic neutron calibration fields to overcome some of the problems associated with the response functions of presently available dosemeters, both area survey instruments and personal dosemeters, has been investigated. Realistic calibration fields have spectra which, compared to conventional radionuclide source based calibration fields, more closely match those of the workplace fields in which dosemeters are used. Monte Carlo simulations were performed to identify laboratory systems which would produce appropriate workplace-like calibration fields. A detailed analysis was then undertaken of the predicted under- and over-responses of dosemeters in a wide selection of measured workplace field spectra assuming calibration in a selection of calibration fields. These included both conventional radionuclide source calibration fields, and also several proposed realistic calibration fields. The present state of the art for dosemeter performance, and the possibilities of improving accuracy by using realistic calibration fields are both presented. (author)

  8. Neutrons in the field of metallurgy

    International Nuclear Information System (INIS)

    Novion, C. de

    1989-01-01

    Beams of thermal neutrons are now widely used for the study of material structure. Following a summary of the characteristics of the neutron-material interaction, and an outlook on the major uses of neutrons in metallurgy, we present some examples of application. The comparative advantages and drawbacks of neutrons and X-rays are discussed. 14 refs [fr

  9. Spin-polarized neutron matter at different orders of chiral effective field theory

    OpenAIRE

    Sammarruca, F.; Machleidt, R.; Kaiser, N.

    2015-01-01

    Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...

  10. A medium energy neutron deep penetration experiment

    International Nuclear Information System (INIS)

    Amian, W.; Cloth, P.; Druecke, V.; Filges, D.; Paul, N.; Schaal, H.

    1986-11-01

    A deep penetration experiment conducted at the Los Alamos WNR facility's Spallation Neutron Target is compared with calculations using intra-nuclear-cascade and S N -transport codes installed at KFA-IRE. In the experiment medium energy reactions induced by neutrons between 15 MeV and about 150 MeV inside a quasi infinite slab of iron have been measured using copper foil monitors. Details of the experimental procedure and the theoretical methods are described. A comparison of absolute reaction rates for both experimentally and theoretically derived reactions is given. The present knowledge of the corresponding monitor reaction cross sections is discussed. (orig.)

  11. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    International Nuclear Information System (INIS)

    Pokotilovski, Yu.N.

    2013-01-01

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated

  12. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2013-02-26

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.

  13. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  14. Absorbed dose conversion coefficients for embryo and foetus in neutron fields

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    The Monte Carlo code MCNPX has been used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to neutron fields. There are situations, such as on-board aircraft, where high-energy neutrons are often peaked in top down (TOP) direction. In addition to previous publications for standard irradiation geometries, this study provides absorbed dose conversion coefficients for the embryo of 8 weeks and the foetus of 3, 6 or 9 months at TOP irradiation geometry. The conversion coefficients are compared with the coefficients in isotropic irradiation (ISO). With increasing neutron energies, the conversion coefficients in TOP irradiation become dominant. A set of conversion coefficients is constructed from the higher value in either ISO or TOP irradiation at a given neutron energy. In cases where the irradiation geometry is not adequately known, this set of conversion coefficients can be used in a conservative dose assessment for embryo and foetus in neutron fields. (authors)

  15. About the first experiment on investigation of 129I, 237Np, 238Pu and 239Pu transmutation at the nuclotron 2.52 GeV deuteron beam in neutron field generated in U/Pb-assembly 'Energy plus transmutation'

    International Nuclear Information System (INIS)

    Krivopustov, M.I.; Pavliouk, A.V.; Malakhov, A.I.

    2008-01-01

    Preliminary results of the first experiment with energy 2.52 GeV at the electronuclear setup which consists of Pb-target (diameter 8.4 cm, length 45.6 cm) and nat U-blanket (206.4 kg), transmutation samples of 129 I, 237 Np, 238 Pu and 239 Pu (radioecological aspect) are described. Hermetically sealed samples in notable amounts are gathered in atomic reactors and setups of industries which use nuclear materials and nuclear technologies were irradiated in the field of neutrons produced in the Pb-target and propagated in the nat U-blanket. Estimates of transmutations were obtained as a result of measurements of gamma activities of the samples. The information about the space and energy distribution of neutrons in the volume of the lead target and the uranium blanket was obtained with the help of sets of activation threshold detectors (Al, Co, Y, I, Au, Bi and others), solid-state nuclear track detectors, 3 He neutron detectors and nuclear emulsion. Comparison of the experimental data with the results of simulation with the MCNPX program was performed

  16. Heterogeneous analysis of non-uniform neutron field formation

    International Nuclear Information System (INIS)

    Zagrebaev, A.M.; Fedosov, A.M.

    1979-01-01

    Investigated are the specific features of spatial-energy neutron distribution formation in the transient zone between regions, operating at different levels of energy release with accounting for the real structure of fuel element lattice and control elements in the channel reactors of high power. Presented are the calculation results, obtained by heterogeneous method in the two-group monopole approximation by means of the HETLAT code. The analysis, based on the homogeneous model shows, that the efficiency of the transient zone in forming neutron flux qradient can be increased by introducing an additional interlayer of moderator between the layers with extreme multiplying properties. It is stressed, that the most favourable from the point of view of energy release uniformity in zones and width of the transient zone is the variant in which neutron flux gradient is carried out by moving the control elements on the boundaries of regions while the internal rows of control elements create the conditions for flattening the energy release in the zones. The result obtained corresponds to the recommendation on optimal control, coming from the Pontryagin maximum principle. The analysis of neutron field formation using heterogeneous models mainly proves the conclusions following from homogeneous calculations using the maximum principle. At the same time quantitative results for the zones of small dimensions (less than 10 migration lengths) with a vividly expressed heterogeneous structure essentially differ from the forecast, obtained on the basis of the simplified homogeneous one-group model. The heterogeneous analysis shows possibilities for further optimization of the transient zone structure with account of the control element location

  17. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  18. A preliminary investigation of the EBT2 radiochromic films response to low energy fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aydarous, Abdulkadir, E-mail: Aydarous@gmail.com [Physics Department, Faculty of Science, Taif University, Al-Hawiah, Taif, PO Box 888 (Saudi Arabia); Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St North, Oshawa, ON, L1H 7K4 (Canada); Aslam [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St North, Oshawa, ON, L1H 7K4 (Canada); Waker, Anthony [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St North, Oshawa, ON, L1H 7K4 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4M1 (Canada)

    2012-07-15

    EBT2 radiochromic films were used to study the relative dose distribution of the neutron field. The correlation between the beam current and the optical density showed good linear dependence with a correlation coefficient exceeding 98%. At any given beam energy, neutron dose rates can be changed by a factor of 40 without changing the neutron spectrum. This result is consistent with what was found by the Tissue Equivalent Proportional Counter measurements. The uniformity of the neutron field was inspected by the optical density profile of the exposed film. - Highlights: Black-Right-Pointing-Pointer Developing a 2D image for neutron field. Black-Right-Pointing-Pointer Investigation of EBT2 sensitivity to neutrons. Black-Right-Pointing-Pointer Studying the effect of irradiation parameters (beam energy and beam current) to the measured optical density.

  19. Conflict field energy

    International Nuclear Information System (INIS)

    Krebsbach-Gnath, C.

    1981-01-01

    Violent social controversies characterize the treatment of the energy problem. Solutions of this conflict decisively depend on the knowledge and evaluation of the causes and the possible development. How is it possible to explain the opinions, views, and the attitude of the population to different kinds of energy. Which factors are decisive for the explosive effect and the stability of the conflict in the field of nulcear energy. What will happen when there arises a possible lack of energy. Which socio-political effects will such a lack have. Are there new proposals for solving problems in the nulcear-energy debate. The contributions of this book are results of scientific and empiric works. They provide perceptive approaches and analyses to the problems and by discussing them are useful in giving an orientation for political action. (orig.) [de

  20. Pure Neutron Matter Constraints and Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Fattoyev, F J; Newton, W G; Xu, Jun; Li, Bao-An

    2013-01-01

    In this review, we will discuss the results of our recent work [1] to study the general optimization of the pure isovector parameters of the popular relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) nuclear energy-density functionals (EDFs), using constraints on the pure neutron matter (PNM) equation of state (EoS) from recent ab initio calculations. By using RMF and SHF parameterizations that give equivalent predictions for ground-state properties of doubly magic nuclei and properties of symmetric nuclear matter (SNM) and PNM, we found that such optimization leads to broadly consistent symmetry energy J and its slope parameter L at saturation density within a tight range of α(J) sym , (b) the symmetry energy at supra-saturation densities, and (c) the radius of neutron stars.

  1. Energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1990-04-15

    At the Research Station of Royal Veterinary and Agricultural University, Copenhagen, Denmark, investigation concerning cultivation and exploitation of field crops for production of fuels was carried out during the period 1986-1989. High yielding crops, such as sugar beet - BETA VULGARIS, jerusalem artichoke - HELIANTHUS TUBEROSUS, rhubarb - RHEUM RHAPONTICUM, and comfrey - SYMPHYTUM ASPERUM, were grown experimentally in the field. Different cultivation methods for the crops were used and evaluated. Simultaneously with the field experiment, laboratory investigation was carried out to determine the energy potential of different products and by-products from the crops processes, such as alcoholic and methanogenic fermantation. Production expenses for the crops were determined, and cost of the fuels was estimated. The experimental results show that beet is a superior crop for the climatic conditions of Northern Europe. In the season 1986, yields exceeded 20 t TS/ha in the form of roots and tops, where achieved. A combined exploitation of beet roots and tops via alcoholic and methanogenic fermantation gave a gross energy corresponding to 80 hl OE/ha/yr. Using methanogenic fermentation exclusively, from ensiled beet roots and tops, gross energy yield corresponding to 85 hl IE/ha/yr, was achieved. The cost of energy in the form of alcohol from beet roots was estimated to be 5.17 DKK/1 OE (0.64 ECU/l OE). The cost of energy in the form of methane from ensiled beet tops, was estimated to be 2.68 DKK/l OE (0.33 ECU/l OE). At the present time, methane produced on the basis of ensiled beet roots and tops appears to be competitive with fossil fuels. Irrespective of the cost, however, the possibility of producing clean energy from field crops remains of interest for the future. (author) 27 refs.

  2. Mirror displacement energies and neutron skins

    International Nuclear Information System (INIS)

    Duflo, J.; Zuker, A.P.

    2002-01-01

    A gross estimate of the neutron skin [0.80(5)(N-Z)/A fm] is extracted from experimental proton radii, represented by a four parameter fit, and observed mirror displacement energies (CDE). The calculation of the latter relies on an accurately derived Coulomb energy and smooth averages of the charge symmetry breaking potentials constrained to state of the art values. The only free parameter is the neutron skin itself. The Nolen Schiffer anomaly is reduced to small deviations (rms=127 keV) that exhibit a secular trend. It is argued that with state of the art shell model calculations the anomaly should disappear. Highly accurate fits to proton radii emerge as a fringe benefit

  3. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  4. Neutron separation energies of Zr isotopes

    International Nuclear Information System (INIS)

    Gomes, L.C.; Dietzsch, O.

    1976-01-01

    Q values are reported for (d,t) reactions on all the stable isotopes of zirconium. The neutron separation energies of 94 Zr and 96 Zr differ greatly (by 27.5 and 22.1 keV, respectively) from the values in the 1971 Atomic Mass Evaluation. These results combined with those from other authors seem to indicate that the 1971 values for the masses of 93 Zr and 95 Zr are in error. (orig.) [de

  5. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    Science.gov (United States)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  6. A test-type hyper-thermal neutron generator for neutron capture therapy - estimation of neutron energy spectrum by simulation calculations and TOF experiments

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kobayashi, Katsuhei

    1999-01-01

    In order to clarify the irradiation characteristics of hyper-thermal neutrons and the feasibility of a hyper-thermal neutron irradiation field for neutron capture therapy, a 'test-type' hyper-thermal neutron generator was designed and made. Graphite of 6 cm thickness and 21 cm diameter was selected as the high temperature scatterer. The scatterer is heated up to 1200 deg. C maximum using molybdenum heaters. The radiation heat is shielded by reflectors of molybdenum and stainless steel. The temperature is measured using three R-type thermo-couples and controlled by a program controller. The total thickness of the generator is designed to be as thin as possible, 20 cm in maximum, in the standing point of the neutron beam intensity. The thermal stability, controllability and safety of the generator at high temperature employment were confirmed by the heating tests. As one of the experiments for the characteristics estimation, the neutron energy spectrum dependent on the scatterer temperature was measured by the TOF (time of flight) method using the LINAC neutron generator. The estimations by simulation calculations were also performed. From the experiment and calculation results, it was confirmed that the neutron temperature shifted higher as the scatterer temperature was higher. The prospect of the feasibility of the 'hyper-thermal neutron irradiation field for NCT' was opened from the estimation results of the generator characteristics by the simulation calculations and experiments

  7. Interaction of neutrons with the matter in the laser field

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.

    1980-01-01

    The interactions of neutrons with the molecules, atoms and nuclei in the presence of the coherent electromagnetic radiation are considered. There are two effects which are discussed in detail: 1) the ''acceleration'' of thermal neutrons passed through the excited by the resonance laser wave molecular gas; 2) the induced by the laser field the slow neutron capture accompanied by the compound nucleus level excitation. The given effects, if they are experimentally detected, give the possibility to control the neutron flux (spectrum change, polarization, spatial modulation and etc.) and change the interaction cross sections of thermal and resonance neutrons with nuclei due to excitation of p levels of the compound nucleus [ru

  8. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  9. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  10. Neutron applications in earth, energy and environmental sciences

    CERN Document Server

    Liang, Liyuan; Schober, Helmut

    2009-01-01

    This text is a comprehensive overview of neutron scattering techniques that enhance the study of materials at the micro and nanoscale. The well structured volume provides introductions to various neutron applications from leading experts in the field.

  11. Discussions in symposium 'neutron dosimetry in neutron fields - from detection techniques to medical applications'

    International Nuclear Information System (INIS)

    Tanimura, Y.; Sato, T.; Kumada, H.; Terunuma, T.; Sakae, T.; Harano, H.; Matsumoto, T.; Suzuki, T.; Matsufuji, N.

    2008-01-01

    Recently the traceability system (JCSS) of neutron standard based on the Japanese law 'Measurement Act' has been instituted. In addition, importance of the neutron dose evaluation has been increasing in not only the neutron capture medical treatment but also the proton or heavy particle therapy. Against such a background, a symposium 'Neutron dosimetry in neutron fields - From detection techniques to medical applications-' was held on March 29, 2008 and recent topics on the measuring instruments and their calibration, the traceability system, the simulation technique and the medical applications were introduced. This article summarizes the key points in the discussion at the symposium. (author)

  12. The Martin Marietta Energy Systems personnel neutron dosimetry program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1991-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages five sites for the US Department of Energy. Personnel dosimetry for four of the five sites is coordinated through a Centralized External Dosimetry System (CEDS). These four sites are the Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant (Y-12), the Oak Ridge K-25 Site (K-25), and the Paducah Gaseous Diffusion Plant (PGDP). The fifth Energy Systems site, Portsmouth Gaseous Diffusion Plant, has an independent personnel dosimetry program. The current CEDS personnel neutron dosimeter was first issued in January 1989, after an evaluation and characterization of the dosimeters' response in the workplaces was performed. For the workplace characterization, Energy Systems contracted with Pacific Northwest Laboratory (PNL) to perform neutron measurements at selected locations at ORNL and Y-12. K-25 and PGDP were not included because their neutron radiation fields were similar to others already planned for characterization at ORNL and Y-12. Since the initial characterization, PNL has returned to Oak Ridge twice to perform follow up measurements, and another visit is planned in the near future

  13. Least squares analysis of fission neutron standard fields

    International Nuclear Information System (INIS)

    Griffin, P.J.; Williams, J.G.

    1997-01-01

    A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252 Cf spontaneous fission and 235 U thermal fission fields are presented

  14. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  15. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry

    International Nuclear Information System (INIS)

    Fiechtner, A.; Boschung, M.; Wernli, C.

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed. (authors)

  16. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  17. Surface energy of very neutron rich nuclei

    CERN Document Server

    Von Groote, H

    1976-01-01

    For a microscopic model calculation of the nuclear surface-energy coefficient sigma the surface energy is defined as the energy loss of an uncharged, semiinfinite (inhomogeneous) two-component system compared to an infinite (homogeneous) system with the same particle asymmetry delta . Using the Thomas-Fermi model the calculations are performed for a series of systems with increasing delta , starting from symmetric matter ( delta =0) and extending beyond the drip line of the neutrons, until the system undergoes a phase transition to a homogeneous system. The results for the surface energy as well as for the neutron skin and for the surface diffuseness are compared to the macroscopic approach of the Droplet Model (DM), which turns out to be a good approximation for small asymmetries typical for the region of the valley of beta -stability. For larger asymmetries, close to the drip lines, terms of higher order than contained in the DM approach are no longer negligible. Beyond the drip lines the pressure of the ou...

  18. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy

    International Nuclear Information System (INIS)

    Irazola, L.; Terrón, J.A.; Bedogni, R; Pola, A.; Lorenzoli, M.; Sánchez-Nieto, B.; Gómez, F.; Sánchez-Doblado, F.

    2016-01-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. - Highlights: • Neutron-to-photon discrimination of a thermal neutron detector used in radiotherapy. • Photon and anisotropic response study with distance and beam incidence of thermal neutron detector. • Borated rubber for estimating photon contribution in any thermal neutron detector.

  19. Selective data analysis for diamond detectors in neutron fields

    Directory of Open Access Journals (Sweden)

    Weiss Christina

    2017-01-01

    Full Text Available Detectors based on synthetic chemical vapor deposition diamond gain importance in various neutron applications. The superior thermal robustness and the excellent radiation hardness of diamond as well as its excellent electronic properties make this material uniquely suited for rough environments, such as nuclear fission and fusion reactors. The intrinsic electronic properties of single-crystal diamond sensors allow distinguishing various interactions in the detector. This can be used to successfully suppress background of γ-rays and charged particles in different neutron experiments, such as neutron flux measurements in thermal nuclear reactors or cross-section measurements in fast neutron fields. A novel technique of distinguishing background reactions in neutron experiments with diamond detectors will be presented. A proof of principle will be given on the basis of experimental results in thermal and fast neutron fields.

  20. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  1. Method for measuring and evaluation dose equivalent rate from fast neutrons in mixed gamma-neutron fields around particles accelerators

    International Nuclear Information System (INIS)

    Cruceru, I.; Sandu, M.; Cruceru, M.

    1994-01-01

    A method for measuring and evaluation of doses and dose equivalent rate in mixed gamma- neutron fields is discussed in this paper. The method is basedon a double detector system consist of an ionization chamber with components made from a plastic scintillator, coupled to on photomultiplier. Generally the radiation fields around accelerators are complex, often consisting of many different ionizing radiations extending over a broad range of energies. This method solve two major difficulties: determination of response functions of radiation detectors; interpretation of measurement and determination of accuracy. The discrimination gamma-fast neutrons is assured directly without a pulse shape discrimination circuit. The method is applied to mixed fields in which particle energies are situated in the energy range under 20 MeV and an izotropic emision (Φ=10 4 -10 11 n.s -1 ). The dose equivalent rates explored is 0.01mSV--0.1SV

  2. Coulomb displacement energies and neutron density distributions

    International Nuclear Information System (INIS)

    Shlomo, S.

    1979-01-01

    We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)

  3. Electromagnetic multipole fields of neutron stars

    International Nuclear Information System (INIS)

    Roberts, W.J.

    1979-01-01

    There is now indisputable evidence that some pulsars possess space velocities so high that internal asymmetries in the dynamics of their formation are strongly implied. We develop in this paper a complete formalism for the calculation of the only such mechanism that has yet been subjected to quantitative analysis: electromagnetic recoil radiation. To make the general problem tractable without doing violence to the physics, we have made the following simplifying assumptions: (1) the magnetic induction B in athin shell enclosing the surface can be satisfactorily approximated by a sum of vacuum multipole fields; (2) the star is spherical, and all parts are in good electrical contact; (3) vertical-bar Ω X r vertical-barvery-much-less-thanc everywhere within the star; and (4) the star is surrounded by a vacuum. Our qualitative conclusions hold even if these assumptions are violated, but corrections to our quantitative results required by a relaxation of our assumptions are not easily computed.Given this simple electrodynamic model of a neutron star, we solve the following problems: (1) What electric multipoles are induced by each magnetic multipole. (2) What is the general formula for the recoil produced by the projection on the rotational axis of a net linear momentum flux produced by the rotation of any two magnetic multipoles. (3) What is the set of centered multipoles that represents the field of an arbitrary off-centered multipole. We use these general results go perform a detailed analysis of the linear momentum radiated by an off-centered dipole. We find a force larger by a factor 6 than that obtained for the special case treated in the best previous calculation. In spite of this considerable increase in the computed strengrh of the effect, we still believe it to be too weak to produce the large space velocities observed for pulsars. For the mechanism to be effective, the pulsar must be born rotating near the breakup velocity

  4. Future possibilities with intermediate-energy neutron beams

    International Nuclear Information System (INIS)

    Brady, F.P.

    1987-01-01

    Future possibilities for using neutrons of intermediate energies (50 - 200 MeV) as a probe of the nucleus are discussed. Some of the recent thinking concerning a systematic approach for studying elastic and inelastic scattering of electrons and hadrons and the important role of medium- and intermediate-energy neutrons in such a programme is reviewed. The advantages of neutrons in this energy range over neutrons with lower energies and over intermediate-energy pions for determining nuclear-transition and ground state densities, and for distinguishing proton from neutron density (isovector sensitivity), are noted. The important role of (n,p) charge exchange reactions in nuclear excitation studies is also reviewed. Experimental methods for utilizing neutrons as probes in elastic, inelastic, and charge exchange studies at these energies are discussed

  5. Determination of energy distribution for photon and neutron microdosimetry

    International Nuclear Information System (INIS)

    Todo, A.S.

    1989-01-01

    This work was undertaken to provide basic physical data for use in both microdosimetry and dosimetry of high energy photons and also in the neutron radiation field. It is described the formalism to determine the initial electron energy spectra in water irradiated by photons with energies up to 1 GeV. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. The conditions under which first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical case. A study has been carried out, on the use of cylindrical, energy-proportional pulse-height detector for determining microdosimetric quantities, as neutron fractional dose spectra, D (L), in function of linear energy transfer, TLE. In the present study the Hurst detector was used and this device satisfies the requirement of the Bragg-Gray principle. It is developed a Monte Carlo Method to obtain the D(L) spectrum from a measured pulse-height spectrum H(h), and the knowledge of the distribution of recoil-particle track lenght, P(T) in the sensitive volume of the detector. These developed programs to find P(T) and D(L) are presented. The distribution of D(L) in LET were obtained using a known distribution of P(T) and the measured H(h) spectrum from sup(252)Cf neutron source. All the results are discussed and the conclusions are presented. (author)

  6. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  7. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Science.gov (United States)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  8. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.

  9. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  10. Continuous energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the neutron energy spectrum by target nuclei tagging

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)

  11. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  12. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  13. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  14. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  15. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  16. Neutron-energy-dependent cell survival and oncogenic transformation.

    Science.gov (United States)

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  17. Design of a graphite-moderated {sup 241}Am-Li neutron field to simulate reactor spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N., E-mail: tsujimura.norio@jaea.go.j [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Yoshida, T. [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan)

    2010-12-15

    A neutron calibration field using {sup 241}Am-Li sources and a moderator was designed to simulate the neutron fields found outside a reactor. The moderating assembly selected for the design calculation consists of a cube of graphite blocks with dimensions of 50 cm by 50 cm by 50 cm, in which the {sup 241}Am-Li sources are placed. Monte Carlo calculations revealed the optimal depth of the source to be 15 cm. This moderated neutron source can be used to provide a test field that has a large number of intermediate energy neutrons with a small portion of MeV component.

  18. The neutron field perturbation effect in the Dalat Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The perturbation effect of the thermal neutron field of the Dalat reactor is investigated when a fuel element is replaced by a water column or a plexiglass rod. In consequence, it is possible to replace the measurement of the relative distribution of the thermal neutron field on the surface of fuel element by that in the water column or in the plexiglass rod. (author). 5 refs. 4 figs. 4 tabs.

  19. New experimental research stand SVICKA neutron field analysis using neutron activation detector technique

    Science.gov (United States)

    Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert

    2018-04-01

    Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.

  20. Neutron spectrum determination by activation method in fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)

  1. Neutron spectrum determination by activation method in fast neutron fields at the RB reactors

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs

  2. Beam neutron energy optimization for boron neutron capture therapy using monte Carlo method

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Shekarian, E.

    2006-01-01

    In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as glioblastoma multiform requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalized in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The ptimal neutron energy for deep seated tumors depends on the sue and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  3. Local-field refinement of neutron scattering lengths

    Energy Technology Data Exchange (ETDEWEB)

    Sears, V F

    1985-06-01

    We examine the way in which local field effects in the neutron refractive index affect the values of coherent scattering lengths determined by various kinds of neutron optical measurements. We find that under typical experimental conditions these effects are negligible for interferometry measurements but that they are significant for gravity refractometry measurements, producing changes in the effective scattering length of as much as two or three standard deviations in some cases. Refined values of the scattering length are obtained for the thirteen elements for which data are presently available. The special role of local field effects in neutron transmission is also discussed.

  4. Local-field refinement of neutron scattering lengths

    International Nuclear Information System (INIS)

    Sears, V.F.

    1985-01-01

    We examine the way in which local field effects in the neutron refractive index affect the values of coherent scattering lengths determined by various kinds of neutron optical measurements. We find that under typical experimental conditions these effects are negligible for interferometry measurements but that they are significant for gravity refractometry measurements, producing changes in the effective scattering length of as much as two or three standard deviations in some cases. Refined values of the scattering length are obtained for the thirteen elements for which data are presently available. The special role of local field effects in neutron transmission is also discussed. (orig.)

  5. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  6. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  7. Time-grated energy-selected cold neutron radiography

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Brun, T.O.; Claytor, T.N.; Farnum, E.H.; Greene, G.L.; Morris, C.

    1998-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as Time-Gated Energy-Selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross section drops significantly. This difference in scattering characteristics can be recorded in the TGES radiography and, because the Bragg cutoff occurs at different energy levels for various materials, the approach can be used to differentiate among these materials. This paper outlines the TGES radiography technique and shows an example of radiography using the approach

  8. Self-energy dispersion effects on neutron matter superfluidity

    International Nuclear Information System (INIS)

    Zuo Wei

    2001-01-01

    The effects of the dispersion and ground state correlation of the single particle self-energy on neutron matter superfluidity have been investigated in the framework of the Extended Brueckner-Hartree-Fock and the generalized BCS approaches. A sizable reduction of the energy gap is found due to the energy dependence of the self-energy. And the inclusion of the ground state correlations in the self-energy suppresses further the neutron matter superfluidity

  9. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  10. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  11. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  12. Status of the low energy neutron source at Indiana University

    International Nuclear Information System (INIS)

    Baxter, D.V.; Cameron, J.M.; Derenchuk, V.P.; Lavelle, C.M.; Leuschner, M.B.; Lone, M.A.; Meyer, H.O.; Rinckel, T.; Snow, W.M.

    2005-01-01

    The National Science Foundation has recently approved funding for LENS (the low energy neutron source) at Indiana University and construction of this facility has begun. LENS represents a new paradigm for economically introducing neutron scattering into a university or industrial setting. In this design, neutrons are produced in a long-pulse (1 ms) mode through (p,n) reactions on a water-cooled Be target and the target is tightly coupled to a cryogenic moderator with a water reflector. This design gives a facility suitable for materials research, the development of new neutron instrumentation, and the education of new neutron scientists

  13. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  14. SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

    Directory of Open Access Journals (Sweden)

    SANG IN KIM

    2014-04-01

    Full Text Available The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software ‘K-SWR’. The detectors’ response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403. The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the 241Am-Be sources held in a graphite pile, a bare 241Am-Be source, and a DT neutron generator. Fluence-average energy (Eave varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [H*(10/h] varied from 0.99 to 16.5 mSv/h.

  15. The calibration method for personal dosimetry system in photon and neutron radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Trousil, J; Plichta, J [CSOD, Prague (Czech Republic); Nikodemova, D [SOD, Bratislava (Slovakia)

    1996-12-31

    The type testing of dosimetry system was performed with standard photon radiation fields within the energy range 15 keV to 1.25 MeV and electron radiation fields within the range 0.2 MeV to 3 MeV. For type testing of neutron dosimeters {sup 252}Cf and {sup 241}Am-Be radionuclide neutron sources was used, as well as a 14 MeV neutron generator. The neutron sources moderated by various moderating and absorbing materials was also used. The routine calibration of individual photon dosemeters was carried out using a {sup 137}Cs calibration source in the air kerma quality in the dose range 0.2 mGy to 6 Gy. The type testing of neutron dosemeters was performed in collaboration with Nueherberg laboratory on neutron generator with neutron energies -.57; 1.0;; 5.3 and 15.1 MeV. The fading and angular dependence testing was also included in the tests of both dosemeter systems. (J.K.).

  16. Nuclear symmetry energy and stability of matter in neutron stars

    International Nuclear Information System (INIS)

    Kubis, Sebastian

    2007-01-01

    It is shown that the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star

  17. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    Science.gov (United States)

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  18. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1998-03-01

    We study the equation of state (EOS) of {beta}-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson (a{sub 0}(980)). A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s}{approx}30 MeV. We find that the quantity most sensitive to the {delta}-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the {delta}-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger {delta}-meson coupling. (author) 8 refs, 6 figs, 2 tabs

  19. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  20. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  1. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  2. Crystalline Electric Field Levels in the Neodymium Monopnictides Determined by Neutron Spectroscopy

    DEFF Research Database (Denmark)

    Furrer, A.; Kjems, Jørgen; Vogt, O.

    1972-01-01

    Neutron inelastic scattering experiments have been carried out to determine the energies and widths of the crystalline electric field levels in the neodymium monopnictides NdP, NdAs, and NdSb. The energy level sequence is derived from the observed crystal field transition peak intensities, which...... are in good agreement with calculations based on elementary crystal field theory. The energy level widths are qualitatively discussed. It is found that the point-charge model cannot reproduce the crystal field levels satisfactorily....

  3. Differential neutron spectrometry in the very low neutron energy range. Neutron cross sections for Zr, Al, polyethylene and liquid fluoropolymers

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Novopol'tsev, M.I.; Geltenbort, P.; Brenner, T.

    2003-01-01

    Some results of the test of the time-of-flight neutron spectrometers in the energy range (0.05-2.5)μeV are described. The measurements of total and differential cross sections were performed for several substances relevant to the experiments in the physics of ultracold neutrons: Zr, Al, polyethylene and liquid fluoropolymers

  4. High energy neutron dosimetry for the fusion program

    International Nuclear Information System (INIS)

    Barr, D.W.; Norris, A.E.

    1977-01-01

    Neutron dosimetry by the foil activation method offers a flexible technique for characterizing neutron spectra ranging from thermal energies to 30 MeV with the potential for extension to higher neutron energies as investigated by the Los Alamos Radiochemistry Group at the Los Alamos Meson Physics Facility and in the Apollo-Soyuz Test Project. The use of this method for the neutron flux description in thermal, resonance, and fission spectrum assemblies has been demonstrated. An extension of the method to environments involving thermonuclear processes was developed at Los Alamos in the early 1950's to characterize mixed fission-thermonuclear systems

  5. Neutron spectrum perturbations due to scattering materials and their effect on the average neutron energy, the spectral index, and the hardness parameter

    International Nuclear Information System (INIS)

    Wright, H.L.; Meason, J.L.; Wolf, M.; Harvey, J.T.

    1976-01-01

    Measurements have been performed on the perturbing effect of a number of scattering materials by the 'free-field' neutron leakage spectrum from a Godiva Type Critical Assembly (White Sands Missile Range Fast Burst Reactor). The results of these measurements are interpreted in relation to some of the general parameters characterizing a neutron environment, namely, the average neutron energy >10 KeV, the spectral index and the hardness parameter. Three neutron spectrum measurements have been performed, each under different experimental configurations of scattering materials. Results from these measurements show the following with relation to the spectral index: (1) The neutron environment on the core surface and at 12-inches from the core surface (free-field) yield a spectral index of 6.8, (2) The neutron environment behind a 4.75-inch Plexiglas plate yield 4.6 for the spectral index and (3) The neutron environment behind a 2-inch aluminum plate yield 6.7 for the spectral index. It is concluded that the core surface and the 12-inch from core surface neutron environment are identical with the 'free-field' neutron environment at 20-inches when considering only those neutrons with energy >10 KeV. On the other hand, it appears that the 4.75 inches of Plexiglas severely perturbs the 'free-field' neutron environment, i.e., a much harder neutron spectrum >10 KeV. In the situation where 2-inches of aluminum is used as the perturbing medium, essentially no change in the neutron spectrum >10 KeV is noted

  6. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  7. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  8. Determination of neutron flux with an arbitrary energy distribution by measurement of irradiated foils activity

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2003-01-01

    A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)

  9. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  10. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n, (n,3n, (n,4n, (n,He3, (n,α and (n,2nα are studied. The cross-sections data of the (n,4n and (n,2nα are obtained for the first time. The cross-sections of (n,2n and (n,α reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  11. Neutrons for global energy solutions. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book of abstracts of the conference on neutrons for global energy solutions include contributions to the following topics: Views from politics: What do we need in European energy research: cooperation, large facilities, more science? Fundamental research for energy supply. View from the United States. View from industry: Neutrons for nuclear reactor development in transition stage between generation III and generation IV. Toyotas's expectations for neutron analysis. Instrumentation and cross cutting issues. Energy sources. Waste management and environment. Li ion batteries. Photovoltaics. Savings and catalysis. Fuel cells. Hydrogen storage.

  12. Neutrons for global energy solutions. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book of abstracts of the conference on neutrons for global energy solutions include contributions to the following topics: Views from politics: What do we need in European energy research: cooperation, large facilities, more science? Fundamental research for energy supply. View from the United States. View from industry: Neutrons for nuclear reactor development in transition stage between generation III and generation IV. Toyotas's expectations for neutron analysis. Instrumentation and cross cutting issues. Energy sources. Waste management and environment. Li ion batteries. Photovoltaics. Savings and catalysis. Fuel cells. Hydrogen storage.

  13. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  14. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-01-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  15. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, Roberto; Esposito, Adolfo [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Andreani, Carla [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Senesi, Roberto, E-mail: roberto.senesi@roma2.infn.i [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); De Pascale, Maria Pia; Picozza, Piergiorgio [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Pietropaolo, Antonino; Gorini, Giuseppe [CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Frost, Christopher D. [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom); Ansell, Stewart [STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom)

    2009-12-21

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  16. Determination of dose components in mixed gamma neutron fields by use of high pressure ionization chambers

    International Nuclear Information System (INIS)

    Golnik, N.; Pliszczynski, T.; Wysocka, A.; Zielczynski, M.

    1985-01-01

    The two ionization chamber method for determination of dose components in mixed γ-neutron field has been improved by increasing gas pressure in the chambers up to some milions pascals. Advantages of high pressure gas filling are the followings: 1) significant reduction of the ratio of neutron-to gamma sensitivity for the hydrogen-free chamber, 2) possibility of sensitivity correction for both chambers by application of appropriate voltage, 3) high sensitivity for small detectors. High-pressure, pen-like ionization chambers have been examined in fields of different neutron sources: a TE-chamber, filled with 0.2 MPa of quasi-TE-gas and a conductive PTFE chamber, filled with 3.1 MPa of CO 2 . The ratio of neutron-to-gamma sensitivity for the PTFE chamber, operated at electrical field strength below 100 V/cm, has not exceeded 0.01 for neutrons with energy below 8 MeV. Formula is presented for calculation of this ratio for any high-pressure, CO 2 -filled ionization chamber. Contribution of gamma component to total tissue dose in the field of typical neutron sources has been found to be 3 to 70%

  17. Neutron multiplicity for neutron induced fission of 235U, 238U, and 239Pu as a function of neutron energy

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Recent development in the theory and practice of neutron correlation (''coincidence'') counting require knowledge of the higher factorial moments of the P/sub ν/ distribution (the probability that (ν) neutrons are emitted in a fission) for the case where the fission is induced by bombarding neutrons of more than thermal energies. In contrast to the situation with spontaneous and thermal neutron induced fission, where with a few exceptions the P/sub ν/ is reasonably well known, in the fast neutron energy region, almost no information is available concerning the multiplicity beyond the average value, [ν], even for the most important nuclides. The reason for this is the difficulty of such experiments, with consequent statistically poor and physically inconsistent results

  18. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  19. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  20. Development of a filtered neutron field in KUR. In behalf of biological irradiation experiments

    International Nuclear Information System (INIS)

    Sato, Takashi; Utsuro, Masahiko; Utsumi, Hiroshi

    1995-07-01

    Very little direct measurements have been made of the biological effects of neutrons below 100keV. Recently, an iron-filtered 24keV neutron beam of Harwell Materials Testing Reactor, PLUTO, was reported to be highly efficient in inducing chromosome aberrations; the efficiency being comparable to that of fission neutrons. This results could have serious repercussions for radiation protection standards as the ICRP assume a decrease in neutron RBE below 100keV. The investigations reported here have as their primary purpose the production of neutron beams at the 24keV iron window energy, using the B-1 experimental facility of the Kyoto University Research Reactor (KUR) at the Research Reactor Institute, Kyoto University (KURRI). The filtered neutron filed for biomedical applications is designed to maximized the contributions of neutrons with other energies and gamma-rays. The characteristics of the radiation field were obtained by the simple transmission calculations for Fe(45cm) and Al(35cm) filters, by using the Monte Carlo code MCN P, and by the measurement of nuclear heating for Fe and Al filter pieces. The 24keV neutron flux and gamma-ray dose rate were measured using a proton recoil counter and TLDs, respectively. The measured findings are as follows: The 24keV neutron flux at the irradiation field was approximately 1x10 6 n/cm 2 /s, and the gamma-ray dose rate was 1.0Gy/h at the surface of the B-1 plug. Nuclear heating of the filter materials was 5.2mW/g for Fe and 4mW/g for Al, in maximum. (author)

  1. Differences in TLD 600 and TLD 700 glow curves derived from distict mixed gamma/neutron field irradiations

    International Nuclear Information System (INIS)

    Cavalieri, Tassio A.; Castro, Vinicius A.; Siqueira, Paulo T.D.

    2013-01-01

    In Neutron Capture Therapy, a thermal neutron beam shall impinge on a specific nuclide, such as 10 B, to promote a nuclear reaction which releases the useful therapeutic energy. A nuclear reactor is usually used as the neutron source, and therefore field contaminants such as gamma and high energy neutrons are also present in the field. However, mixed field dosimetry still stands as a challenge in some cases, due to the difficulty to experimentally discriminate the dose from each field component. For the mixed field dosimetry, the International Commission on Radiation end Units (ICRU) recommends the use of detector pairs with different responses for each beam component. The TLD 600/700 pair meets this need, because these LiF detectors have different Li isotopes concentration, with distinct thermal neutron responses because 6 Li presents a much higher neutron capture cross section than does 7 Li for low energy neutrons. TLD 600 is 6 Li enriched while TLD 700 is 7 Li enriched. However, depending on the neutron spectrum presented in the mixed field, TLD 700 response to thermal neutrons cannot be disregarded. This work aims to study the difference in TLD 600 and TLD 700 glow curves when these TLDs are submitted to mixed fields of different energy spectra and components balance. The TLDs were irradiated in a pure gamma source, and in mixed fields from an AmBe sealed source and from the IPEN/MB-01 reactor. These TLDs were read and had their two main dosimetric regions analyzed to observe the differences in the glow curves of these TLDs in each irradiation. Field components discrimination was achieved through Monte Carlo simulations run with MCNP radiation transport code. (author)

  2. First observations of power MOSFET burnout with high energy neutrons

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-01-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage ≥400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed

  3. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  4. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Krusche, M.; Schuricht, V.

    1980-01-01

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232 Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252 Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238 PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  5. Neutron activation analysis applied to energy and environment

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1975-01-01

    Neutron activation analysis was applied to a number of problems concerned with energy production and the environment. Burning of fossil fuel, the search for new sources of uranium, possible presence of toxic elements in food and water, and the relationship of trace elements to cardiovascular disease are some of the problems in which neutron activation was used. (auth)

  6. Generating energy dependent neutron flux maps for effective ...

    African Journals Online (AJOL)

    For activation analysis and irradiation scheme of miniature neutron source reactor, designers or engineers usually require information on thermal neutron flux levels and other energy group flux levels (such as fast, resonance and epithermal). A methodology for readily generating such flux maps and flux profiles for any ...

  7. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  8. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  9. Measurements for the energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Hoek, M.; Aronsson, D.

    1990-05-01

    The report describes measurements performed for the energy calibration of the TANSY neutron detectors (two arrays of 16 detectors each one). The calibration procedure determines four calibration parameters for each detector. Results of the calibration measurements are given and test measurements are presented. A relation of the neutron detector calibration parameters to producer's data for the photomulipliers is analysed. Also the tests necessary during normal operation of the TANSY neutron spectrometer are elaborated (passive and active tests). A method how to quickly get the calibration parameters for a spare detector in an array of the neutron detectors is included

  10. Experimentals on the energy-deposition of fast neutrons in phantoms

    International Nuclear Information System (INIS)

    Maier, E.

    1978-01-01

    The relative neutron sensitivities of a tissue-equivalent chamber and a carbon chamber with correction factors are given for four neutron energies and a 252 Cf-source. The necessary experimental and technical conditions for an application of the multi-detector mixed-field dosimetry with proportional counters are presented. The corrections accounting for charge recombination or the intensity decrease due to the chamber well are put on a theoretical basis. (DG) [de

  11. Evidos: optimisation of individual monitoring in mixed neutron/photon fields at workplaces of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Reginatto, M.; Schuhmacher, H.; Lacoste, V.; Muller, M.; Boschung, M.; Fiechtner, A.; Coeck, M.; Vanhavere, F.; Curzio, G.; D'errico, F.; Kyllonen, J.E.; Lindborg, L.; Molinos, C.; Tanner, R.; Derdau, D.; Lahaye, Th.

    2005-01-01

    Within its 5. Framework Programme, the EC is funding the project EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The aim of this project is the optimisation of individual monitoring at workplaces of the nuclear fuel cycle with special regard to neutrons. Various dosemeters for mixed field application - passive and new electronic devices - are tested in selected workplace fields in nuclear installations in Europe. The fields are characterised using a series of spectrometers that provide the energy distribution of neutron fluence (Bonner spheres) and newly developed devices that provide the energy and directional distribution of the neutron fluence. Results from the first measurement campaign, carried out in simulated workplace fields (IRSN, Cadarache. France), and those of a second measurement campaign, carried out at workplaces at a boiling water reactor and at a storage cask with used fuel elements (Kernkraftwerk Kriimmel, Germany), are described. (authors)

  12. Recent developments in the specification and achievement of realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Chartier, J.L.; Kluges, H.; Wiegel, B.; Schraube, H.

    1997-01-01

    In order to calibrate more accurately the neutron dosemeters involved in radiation protection, the concept of 'Realistic Neutron Calibration Fields' is considered as an appropriate alternative solution, making necessary new irradiation facilities which generate well-characterised neutron fields with energy and angular distribution replicating more closely practical workplace conditions. Several experienced laboratories have collaborated on a European project and proposed various approaches which are reviewed in this paper. A short description of the facilities currently in operation is given as well as a few characteristics of the available radiation fields. This description of the state of art is followed by a discussion of the problems to be solved for using such facilities for calibration purposes according to well-specified calibration procedures. (author)

  13. Recent developments in very low energy neutron technology

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Kawabata, Yuji; Yamaguchi, Akira; Yoshiki, Hajime.

    1993-01-01

    In this report, the recent state of the research and technical development of the neutrons in the energy region below 0.5 meV is introduced. The neutrons in this region are further divided into very cold neutrons (VCN) and ultracold neutrons (UCN). The UCNs are known by such characteristic behavior that they can be confined in a neutron bottle for long time. The attempt to verify the break of T conversion symmetry using neutrons is carried out. The experiment to show the break of T conversion symmetry by grasping the asymmetry of particle emission accompanying the beta decay of polarized neutrons is conceivable. In these cases, the use of UCNs in neutron bottles is effective. The optical properties of VCNs and UCNs are peculiar and resemble to those of light. The only VCN source in Japan is installed in the liquid deuterium CN source in the graphite facility of the KUR. VCNs are taken out from the reactor, and are converted to UCNs using a neutron turbine. The characteristics of an UCN bottle were measured, and the life of neutrons was determined as 887.6 ± 3s. The UCN experiment using superfluid helium was carried out, and the application of gravity to UCN spectrometry was developed as NESSIE. (K.I.)

  14. Monte carlo calculation of energy-dependent response of high-sensitive neutron monitor, HISENS

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji; Ebisawa, Tohru; Kobayashi, Keiji; Koide, Hiroaki; Seo, Takeshi; Kawano, Shinji

    1988-01-01

    A highly sensitive neutron monitor system, HISENS, has been developed to measure leakage neutrons from nuclear facilities. The counter system of HISENS contains a detector bank which consists of ten cylindrical proportional counters filled with 10 atm 3 He gas and a paraffin moderator mounted in an aluminum case. The size of the detector bank is 56 cm high, 66 cm wide and 10 cm thick. It is revealed by a calibration experiment using an 241 Am-Be neutron source that the sensitivity of HISENS is about 2000 times as large as that of a typical commercial rem-counter. Since HISENS is designed to have a high sensitivity in a wide range of neutron energy, the shape of its energy dependent response curve cannot be matched to that of the dose equivalent conversion factor. To estimate dose equivalent values from neutron counts by HISENS, it is necessary to know the energy and angular characteristics of both HISENS and the neutron field. The area of one side of the detector bank is 3700 cm 2 and the detection efficiency in the constant region of the response curve is about 30 %. Thus, the sensitivity of HISENS for this energy range is 740 cps/(n/cm 2 /sec). This value indicates the extremely high sensitivity of HISENS as compared with exsisting highly sensitive neutron monitors. (Nogami, K.)

  15. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  16. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    Science.gov (United States)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  17. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated 252 Cf, D 2 O-moderated 252 Cf, polyethylene-moderated 252 Cf, and WEP neutron howitzer with 252 Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 to 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated

  18. Free neutron-proton analyzing power at medium energies

    International Nuclear Information System (INIS)

    Newsom, C.R.

    1980-01-01

    In recent years, increasing efforts have been made to measure the nucleon-nucleon polarization parameters. To date, no free neutron-proton spin correlated parameters have been published in the energy range 500 to 800 MeV. Existing analyzing power data is of low precision and in most cases was obtained by quasi-free proton scattering. As a first step in determining the neutron-proton scattering matrix, the free neutron-proton analyzing power has been measured at the Los Alamos Physics Facility as a function of energy and angle. The experiment was performed by scattering a neutron beam from a polarized proton target. The neutron beam was generated by scattering 800 MeV protons from a Beryllium target and using the neutrons produced at 0 degrees. The incident energy ranged from 300 MeV to 800 MeV. The energy spread of the neutron beam made it possible to measure the analyzing power at different energies simultaneously. Angular distributions were taken from 60 to 170 degrees in the center of mass system (c.m.)

  19. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Energy Technology Data Exchange (ETDEWEB)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O [Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J, E-mail: scallon@lps.umontreal.ca [Institute of Experimental and Applied Physics of the CTU in Prague, Horska 3a/22, CZ-12800 Praha2 - Albertov (Czech Republic)

    2011-01-15

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of {sup 6}LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ({sup 252}Cf and {sup 241}AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  20. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    International Nuclear Information System (INIS)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O; Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6 LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ( 252 Cf and 241 AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  1. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Science.gov (United States)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  2. Calibration of a spectrometry multisphere system for neutron fields

    International Nuclear Information System (INIS)

    Carelli, Jorge L.; Cruzate, Juan A.; Papadopulos, Susana B.; Gregori, Beatriz N.; Ciocci Brazzano, Ligia

    2005-01-01

    In this work it is presented the calibration of the neutrons spectrometric system of the Nuclear Regulatory Authority (ARN) in the Institut de Protection et Sure te Nucleaires (Ipn), Labourite dadaist et de Recherche s en Dosimetric Extern e, Cadarache, France. The multisphere system is composed of 9 polyethylene spheres of high density, with a gaseous detector of 3 He and associate electronics. The matrix of energy response to the system neutrons was obtained applying the MCNPX code for the range of energies between thermal and 100 MeV with cross sections taken from library ENDF/B-VI. The neutron spectra of the multisphere system were obtained applying the deconvolution code LOUHI82. The relationship between the theoretical responses and the experiences obtained with the AmBe and 252 Cf sources are also presented in this work [es

  3. Energy spectra of fast neutrons by nuclear emulsion method

    International Nuclear Information System (INIS)

    Quaresma, A.A.

    1977-01-01

    An experimental method which uses nuclear emulsion plates to determine the energy spectrum of fission neutrons is described. By using this technique, we have obtained the energy distribution of neutrons from spontaneous fission of Cf 2 5 2 . The results are in good agreement with whose obtained previously by others authors who have used different detection techniques, and they are consistent with a Maxwellian distribution as expected by Weisskopf's nuclear evaporation theory. (author)

  4. Low energy neutrons from a sup 2 sup 3 sup 9 PuBe isotopic neutron source inserting in moderating media

    CERN Document Server

    Vega, H R

    2002-01-01

    Several neutron applications share a common problem: the neutron source design. In this work MCNP computer code has been used to design a moderated sup 2 sup 3 sup 9 PuBe neutron source to produce low energy neutrons. The design involves the source located at the center of a spherical moderator. Moderator media studied were light water, heavy water and a heterogeneous combination of light water and heavy water. Similar moderating features were found between the 24.5 cm-radius container filled with heavy water (23.0-cm-thick) and that made with light water (3.5-cm-thick) plus heavy water (19.5-cm-thick). A sup 2 sup 3 sup 9 PuBe neutron source inserted in this moderator produces, at 27 cm, a neutron fluence of 1.8 x 10 sup - sup 4 n-cm sup - sup 2 per source neutron, with an average neutron energy of 0.34 MeV, where 47.8 % have an energy <= 0.4 eV. A further study of this moderator was carried out using a reflector medium made of graphite. Thus, 15-cm-thickness reflector improves the neutron field producing...

  5. Studies of neutron dissociation at Fermilab energies

    International Nuclear Information System (INIS)

    Ferbel, T.

    1975-01-01

    The latest results obtained in a continuing investigation of neutron dissociation in (pπ - ) systems in neutron--nucleus collisions between 50 and 300 GeV/c are summarized. The nuclear coherent dissociation data are discussed first; then new measurements of total cross sections of neutrons on nuclei in the Fermilab momentum range are presented; finally, neutron dissociation using a hydrogen target is considered, and the hydrogen data are compared with expectations from simple Deck models. A substantial correlation was observed between the mass and the t of the system produced. The spin structure of the pπ - amplitudes at low mass was described surprisingly well by the simple Deck mechanism. The t-channel helicity amplitudes contained comparable contributions from flip and nonflip terms, and the states produced were not restricted to those expected on the basis of the Morrison rule. (19 figures, 2 tables) (U.S.)

  6. Estimation of neutron energy distributions from prompt gamma emissions

    Science.gov (United States)

    Panikkath, Priyada; Udupi, Ashwini; Sarkar, P. K.

    2017-11-01

    A technique of estimating the incident neutron energy distribution from emitted prompt gamma intensities from a system exposed to neutrons is presented. The emitted prompt gamma intensities or the measured photo peaks in a gamma detector are related to the incident neutron energy distribution through a convolution of the response of the system generating the prompt gammas to mono-energetic neutrons. Presently, the system studied is a cylinder of high density polyethylene (HDPE) placed inside another cylinder of borated HDPE (BHDPE) having an outer Pb-cover and exposed to neutrons. The emitted five prompt gamma peaks from hydrogen, boron, carbon and lead can be utilized to unfold the incident neutron energy distribution as an under-determined deconvolution problem. Such an under-determined set of equations are solved using the genetic algorithm based Monte Carlo de-convolution code GAMCD. Feasibility of the proposed technique is demonstrated theoretically using the Monte Carlo calculated response matrix and intensities of emitted prompt gammas from the Pb-covered BHDPE-HDPE system in the case of several incident neutron spectra spanning different energy ranges.

  7. A compact neutron generator using a field ionization source.

    Science.gov (United States)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  8. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Akihiko, E-mail: aki-masuda@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Matsumoto, Tetsuro [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Iwamoto, Yosuke [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Satoh, Daiki; Sato, Tatsuhiko [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Iwase, Hiroshi [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yashima, Hiroshi [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Nishiyama, Jun [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Harano, Hideki [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nakamura, Takashi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan)

    2017-03-21

    Quasi-monoenergetic high-energy neutron fields induced by {sup 7}Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96–387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  9. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory.

    Science.gov (United States)

    Tews, I; Krüger, T; Hebeler, K; Schwenk, A

    2013-01-18

    Neutron matter presents a unique system for chiral effective field theory because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N(3)LO). We present the first complete N(3)LO calculation of the neutron matter energy. This includes the subleading three-nucleon forces for the first time and all leading four-nucleon forces. We find relatively large contributions from N(3)LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.

  10. Some principal problems in physics and low-energy neutron physics

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.A.

    2004-01-01

    The questions connected with internal particle (e.g. neutron) structure obtained at low-energy neutron physics are discussed. The first question deals with the charge neutron radius E 2 > 1/2 connected with the value of neutron-electron scattering length a ne determined at low neutron energies. At present, the obtained accuracy allows us to speak not only about the value of E 2 > but also on the segmentation of E 2 > into Dirac and Foldy addenda. The sign of the Dirac addendum is connected directly with the fundamental Yukawa theory explaining the origin of nuclear forces. One of the popular experimental values of the Dirac addendum (from a ne =(-1.32±0.03)·10 -16 cm) contradicts the Yukawa theory. The second question also concerns the subject of the structure of the neutron, namely its deformation. The notion of deformation (polarizability) of the nucleon in electromagnetic field was introduced in the mid-1950s. The reasons are given in favor of the opinion that the neutron polarizability was observed for the first time in neutron experiments as far back as 1957, i.e. earlier than proton polarizability was detected (1960). Finally, the third question deals with the search for a magnetic charge of the neutron. A beautiful experiment (Finkelstein, Shull, Zeilinger, 1986) testifying with high accuracy the absence of a magnetic charge of the neutron is discussed. This diffraction experiment was based on the concept of anomalously small effective mass of the neutron providing greatly enhanced sensitivity. The existence of an isolated magnetic charge in the nature would explain the quantization of electric and magnetic charges (Dirac, 1931)

  11. Neutron dose measurements with the GSI ball at high energy accelerators

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Gutermuth, F.; Radon, T.; Kozlova, E.

    2005-01-01

    Full text: At high energy particle accelerators the production of neutron radiation dominates radiation protection. For the radiation survey at accelerators there is a need for reliable detection systems (passive radiation monitors), which can measure the dose for a wide range of neutron energies independently on the beam pulse structure of the produced radiation. In this work a passive neutron dosemeter for the measurement of the ambient dose equivalent is presented. The dosemeter is suitable for measurements of the emerging neutron radiation at accelerators for the whole energy range up to about 10 GeV. The dosemeter consists of a polyethylene sphere, TL elements (pairs of TLD600/700) and an additional lead layer (PE/Pb) in neutron fields at high energy accelerators is investigated in this work. Results of dose measurements which were performed in realistic neutron fields at the high energy accelerator SPS at CERN (CERF facility) and in Cave A at the heavy ion synchrotron SIS at GSI are presented. The results of these measurements are compared with the expected dose values from the neutron spectra determined for the measurement positions at CERF and in Cave A (FLUKA) and with the dosemeter response derived by the calculated response functions (FLUKA) folded with the neutron spectra. The comparisons show that the additional lead layer in the PE/Pb-sphere improves significantly the response of the dosemeter. The response of the PE/Pb-sphere is 40 to 50 % higher at CERF and Cave A in comparison to the bare PE-sphere. At CERF the dose values of the PE/Pb-sphere is about 25 % lower than the expected dose value, whilst for Cave A, a rather good agreement was found (2 % deviation). (author)

  12. Symmetry energy and surface properties of neutron-rich exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  13. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  14. Quantum States of Neutron in Earth's Gravitational Field

    Indian Academy of Sciences (India)

    Keywords. Neutron; gravitational field; Bohr-Sommerfeld-Wilson quantization; projectile motion; elastic collision; Olympiad. Author Affiliations. Vijay A Singh1 Praveen Pathak1 K Krishna Chaitanya2. Homi Bhabha Centre For Science Education (TIFR), V N Purav Marg, Mankhurd Mumbai 400088, India. Physics Department ...

  15. Assessment of the neutron component in a neutron-gamma field of a californium-252 source

    International Nuclear Information System (INIS)

    Tetteh, G.K.

    1978-12-01

    Experiments have been performed to determine the percentages of the different components in the radiation field of californium-252 which has now some clinical applications. Using Rossi Chambers in conjunction with absorption investigations involving lead and aluminium thimbles, it is observed that the dose rates due to the different components are: neutrons 54%; gammas 30%; betas 16%

  16. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  17. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  18. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  19. Measurements of the energy spectrum of backscattered fast neutrons

    International Nuclear Information System (INIS)

    Segal, Y.

    1976-03-01

    Experimental measurements have been made of the energy spectra of neutrons transmitted through slabs of iron, lead and perspex for incident neutron energies of 0.5, 1.0, 1.5 and 1.8 MeV. The neutron energy measurements were made using a He-3 spectrometer. The dependence of the neutrons energy spectrum as a function of scattering thickness was determined. The neutrons source used was a 3MeV Van de Graaff accelerator with a tritium target using the H 3 (p,n) He 3 reaction. The results obtained by the investigator on energy dependence of transmitted neutrons as a function of thickness of scattering material were compared, where possible, with the results obtained by other workers. The comparisons indicated good agreement. The experiment's results are compared with MORSE Monte Carlo calculated values. It is worthwhile to note that direct comparison between measured cross section values and the recommended ones are very far from satisfactory. In almost all cases the calculated spectrum is harder than the experimental one, a situation common to the penetrating and the back-scattered flux

  20. Ceramics research in a high-energy neutron source

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1989-01-01

    The studies on the irradiation effect to ceramics have added much to the basic understanding of their behavior, for example, the amorphous state of ceramics related to radiation-induced metamictization, the radiation-induced strengthening and toughening due to ultrafine defect aggregates, the in situ degradation of electrical resistivity, the role of radiation-induced defects on thermal conductivity and so on. Most of the irradiation testing on ceramics in the fields of structural and thermal properties have been carried out by using fast fission neutrons of about 1 MeV, but if this energy could be significantly changed, the size and nature of damage cascade and the quantity of transmutation gases produced would change. The significance of neutron source parameters, the special test requirement for ceramics such as the use of miniature specimens, the control of test environment, the transient reduction of electrical resistivity and so on are discussed. A special case of ceramic studies is that on new oxide superconductors. These materials can be made into amorphous state at about 1 dpa using 1 MeV electrons, and are considered to be fairly damage-sensitive. (K.I.)

  1. Calibration of PADC-based neutron area dosemeters in the neutron field produced in the treatment room of a medical LINAC

    International Nuclear Information System (INIS)

    Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; García-Fusté, M.J.; San-Pedro, M. de; Tana, L.; D’Errico, F.; Ciolini, R.; Di Fulvio, A.

    2013-01-01

    PADC-based nuclear track detectors have been widely used as convenient ambient dosemeters in many working places. However, due to the large energy dependence of their response in terms of ambient dose equivalent (H ∗ (10)) and to the diversity of workplace fields in terms of energy distribution, the appropriate calibration of these dosemeters is a delicate task. These are among the reasons why ISO has introduced the 12789 Series of Standards, where the simulated workplace neutron fields are introduced and their use to calibrate neutron dosemeters is recommended. This approach was applied in the present work to the UAB PADC-based nuclear track detectors. As a suitable workplace, the treatment room of a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa), was chosen. Here the neutron spectra in two points of tests (1.5 m and 2 m from the isocenter) were determined with the INFN-LNF Bonner Sphere Spectrometer equipped with Dysprosium activation foils (Dy-BSS), and the values of H ∗ (10) were derived on this basis. The PADC dosemeters were exposed in these points. Their workplace specific H*(10) responses were determined and compared with those previously obtained in different simulated workplace or reference (ISO 8529) neutron fields. - Highlights: ► The neutron field of a medical LINAC was used to calibrate PADC neutron dosemeters. ► The neutron spectra were derived with a Dy-foil based Bonner Sphere Spectrometer. ► Workplace specific calibration factor were derived for the PADC dosemeters. ► These factors were compared with those obtained in reference neutron fields

  2. Testing of ENDF/B cross section data in the Californium-252 neutron benchmark field

    International Nuclear Information System (INIS)

    Mannhart, W.

    1979-01-01

    The fission neutron field of 252 Cf presently represents one of the most well-known neutron benchmark fields. For 13 neutron reactions which are of importance in reactor metrology, measurements of spectrum-averaged cross sections, [sigma], performed in this neutron field were compared with calculated average cross sections. This comparison allows one to draw conclusions as to the quality of different sigma(E) data taken from ENDF/B-IV, from ENDF/B-V, and from recent experiments and used in the calculation of average cross sections. The comparison includes an uncertainty analysis regarding the different uncertainty contributions of [sigma], of sigma(E), and of the spectral distribution of 252 Cf fission neutrons. Additionally, in a few examples, sensitivity studies were carried out. The sensitivity of the spectrum-averaged cross sections to individual characteristics of the sigma(E) data, such as normalization factors or shifts in the energy scale, was investigated. Similarly, the sensitivity of [sigma] to the spectral distribution of 252 Cf was determined. 4 figures, 2 tables

  3. EPR dosimetry in a mixed neutron and gamma radiation field.

    Science.gov (United States)

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  4. Neutron spectrometry in mixed fields: characterisation of the Ra-1- reactor workplace

    International Nuclear Information System (INIS)

    Gregori, B.; Carelli, J.; Cruzate, J.; Papadopulos, S.

    2006-01-01

    The characterisation of the neutron spectrum of a workplace is an essential dosimetric tool for improving the assessment of the personal equivalent dose of the workers. In addition, if the operational conditions of the facility are well defined, the set of field spectra obtained may be used as a reference for comparing the performance of different type of neutron detectors. Recently, using a neutron spectrometric system based on a set of moderated spheres with 3 He detector, the characterisation of the neutron spectra in workplaces of the Argentine Reactor No. 1 (R.A. -1) has been carried out. The spectrometric system consists of 12 spheres made of the high density polyethylene d mean δ =0.95 g cm 3 , with diameters between 3'' and 12'' and a proportional counter of 3 He, 4 atm of nominal pressure, Centronic trade mark, located in the centre of the spheres. The neutron response matrix was calculated using the M.C.N.P. -I.V.B. code and E.N.D.F./B-VI library in the energy range between thermal neutron and 100 MeV. The neutron spectrum was unfolded using the M.A.X.E.D. unfolding code. The validation of the spectrometric system was performed at Cea-Cadarache (France) with of 252 Cf, Am Be, and 252 Cf + D 2 O sources. Therefore, in this work, the spectral fluence of the field in the selected points of the facility (R.A.-1) has been presented and the ambient dose equivalent, H *(10), and the personal dose equivalent, Hp(10), have been derived from the neutron fluence, applying ICRP-74 recommended fluence to dose conversion factors. The quantities evaluated have uncertainties less than 15%, which is considered good enough for radiation protection requirements. (authors)

  5. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  6. Field Flows of Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  7. Neutron scattering from α-Ce at epithermal neutron energies

    Indian Academy of Sciences (India)

    phose into delocalised conduction electrons, while maintaining their f character.” “This insight that f electrons could form energy bands and contribute to the. Fermi surface was controversial for many ..... [11] A P Murani, Z A Bowden, A D Taylor, R Osborn and W G Marshall, Phys. Rev. B48, 13981 (1993). [12] Y Kuramoto ...

  8. The energy spectrum of delayed neutrons from thermal neutron induced fission of 235U and its analytical approximation

    International Nuclear Information System (INIS)

    Doroshenko, A.Yu.; Tarasko, M.Z.; Piksaikin, V.M.

    2002-01-01

    The energy spectrum of the delayed neutrons is the poorest known of all input data required in the calculation of the effective delayed neutron fractions. In addition to delayed neutron spectra based on the aggregate spectrum measurements there are two different approaches for deriving the delayed neutron energy spectra. Both of them are based on the data related to the delayed neutron spectra from individual precursors of delayed neutrons. In present work these two different data sets were compared with the help of an approximation by gamma-function. The choice of this approximation function instead of the Maxwellian or evaporation type of distribution is substantiated. (author)

  9. Development of a medium energy polarized neutron facility

    International Nuclear Information System (INIS)

    Burzynski, S.; Gysin, C.; Henneck, R.; Jourdan, J.; Kohler, D.; Pickar, M.A.; Plattner, G.R.; Sick, I.; Berdoz, A.; Foroughi, F.; Nussbaum, Ch.; Stammbach, Th.

    1984-01-01

    By the end of 1983 the major construction work for the new polarized neutron source was completed. The source will provide an essentially monoenergetic beam of both polarized and unpolarized neutrons in the energy range from 20 MeV to 70 MeV. Intensities are expected to be approx. 2 x 10 5 neutrons/s.cm 2 per μA of incident proton beam. The polarization is expected to be approx. 0.2 and can be chosen to be either longitudinal or transverse. Protons from the Philips injector cyclotron are focussed onto a liquid deuterium target and produce neutrons via the 2 H(p,n)2p reaction at 0 0 . This process provides essentially monoenergetic neutrons of almost the same energy as the incoming protons. The zero production angle implies that the neutron polarization comes from the polarization of the proton beam only. This allows an easy and fast change of the neutron spin direction by selecting proton spin states in the polarized ion source (atomic beam type). (Auth.)

  10. Hot neutron stars at birth and energy release

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    1994-01-01

    For the discussion of hot neutron stars at birth, it is necessary to calculate the equation of state for a so-called 'supernova matter' consisting of a neutron-rich nuclear matter and degenerated leptons. One of the aims of this paper is to obtain the realistic results for the equation of state. In 10-20s after the birth, new born hot neutron stars are cooled down by neutrino diffusion process, and gradually contract to usual cold neutron starts. It is another aim of this paper to determine how much energy is released during this cooling stage. The points to which attention was paid are explained. A three-nucleon interaction was introduced phenomenologically, as a two-nucleon interaction is insufficient to satisfy the empirical saturation property of symmetric nuclear matters. The separation of uncertain part from well-known part has the merit to clarify the dependence of the results on the present theoretical uncertainties. The validity of the simplified calculation as an approximation for the exact calculation is discussed. The results by both calculations were compared for the case of hot symmetric nuclear matters. The comparison of the density profiles for a hot neutron star and a cold neutron star is shown. The binding energy for hot and cold neutron stars was plotted. These results are examined. (K.I.)

  11. Neutron dose and energy spectra measurements at Savannah River Plant

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers, 3 He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs

  12. Transport of accelerator produced high energy neutrons though concrete

    International Nuclear Information System (INIS)

    Prabhakar Rao, G.; Sarkar, P.K.

    1996-01-01

    Development of a computational system for estimating the production and transport of high energy neutrons in particle accelerators is reported. The energy-angle distribution of neutrons from accelerated ions bombarding thick targets is calculated by a hybrid nuclear reaction model code, ALICE-91, modified to suit the purpose. Subsequent transmission of these neutrons through concrete slabs is treated using the anisotropic source-flux iteration technique (ASFIT) in the framework of a coupled neutron-gamma transport. Several parameters of both the codes have been optimized to obtain the transmitted dose through concrete. The calculations are found to be accurate and at the same time faster compared to the detailed Monte Carlo calculations. (author). 8 refs., 2 figs

  13. Bench mark spectra for high-energy neutron dosimetry

    International Nuclear Information System (INIS)

    Dierckx, R.

    1986-01-01

    To monitor radiation damage experiments, activation detectors are commonly used. The precision of the results obtained by the multiple foil analysis is largely increased by the intercalibration in bench-mark spectra. This technique is already used in dosimetry measurements for fission reactors. To produce neutron spectra similar to fusion reactor and high-energy high-intensity neutron sources (d-Li or spallation), accelerators can be used. Some possible solutions as p-Be and d-D 2 O neutron sources, useful as bench-mark spectra are described. (author)

  14. Nuclear symmetry energy and the neutron skin in neutron-rich nuclei

    NARCIS (Netherlands)

    Dieperink, AEL; Dewulf, Y; Van Neck, D; Waroquier, M; Rodin, [No Value

    2003-01-01

    The symmetry energy for nuclear matter and its relation to the neutron. skin in finite nuclei is discussed. The symmetry energy as a function of density obtained in a self-consistent Green function approach is presented and compared to the results of other recent theoretical approaches. A partial

  15. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  16. Neutron separation energies of Ca, Sn and Pb isotopes using different mass models

    International Nuclear Information System (INIS)

    Panda, R.N.; Patra, S.K.; Abbas, S.A.

    2015-01-01

    In this work we present an investigation of S 2n which is quite a sensitive quantity to test any microscopic model. Two popular models are Relativistic Mean Field (RMF) and Infinite Nuclear Matter (INM) model. The objective of the present study is to undertake a systematic analysis of two neutron separation energy using these models in comparison with experiment

  17. High energy neutron recoil scattering from liquid 4He

    International Nuclear Information System (INIS)

    Holt, R.S.; Needham, L.M.; Paoli, M.P.

    1987-10-01

    The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)

  18. Analysis of cavity effect on space- and time-dependent fast and thermal neutron energy spectra

    International Nuclear Information System (INIS)

    Kudo, Katsuhisa; Narita, Masakuni; Ozawa, Yasutomo.

    1975-01-01

    The effects of the presence of a central cavity on the space- and time-dependent neutron energy spectra in both thermal and fast neutron systems are analyzed theoretically with use made of the multi-group one-dimensional time-dependent Ssub(n) method. The thermal neutron field is also analyzed for the case of a fundamental time eigenvalue problem with the time-dependent P 1 approximation. The cavity radius is variable, and the system radius for graphite is 120 cm and for the other materials 7 cm. From the analysis of the time-dependent Ssub(n) calculations in the non-multiplying systems of polythene, light water and graphite, cavity heating is the dominant effect for the slowing-down spectrum in the initial period following fast neutron burst, and when the slowing-down spectrum comes into the thermal energy region, cavity heating shifts to cavity cooling. In the multiplying system of 235 U, cavity cooling also takes place as the spectrum approaches equilibrium after the fast neutron burst is injected. The mechanism of cavity cooling is explained analytically for the case of thermal neutron field to illustrate its physical aspects, using the time-dependent P 1 approximation. An example is given for the case of light water. (auth.)

  19. Scoping studies - photon and low energy neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.; Harker, Y.; Jones, J. [LMITCo, Idaho Falls, ID (United States); Harmon, F. [Idaho State Univ., Pocatello, ID (United States)

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  20. Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV

    CERN Document Server

    Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M

    2010-01-01

    Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.

  1. On the idea of low-energy nuclear reactions in metallic lattices by producing neutrons from protons capturing "heavy" electrons

    Science.gov (United States)

    Tennfors, Einar

    2013-02-01

    The present article is a critical comment on Widom and Larsens speculations concerning low-energy nuclear reactions (LENR) based on spontaneous collective motion of protons in a room temperature metallic hydride lattice producing oscillating electric fields that renormalize the electron self-energy, adding significantly to the effective electron mass and enabling production of low-energy neutrons. The frequency and mean proton displacement estimated on the basis of neutron scattering from protons in palladium and applied to the Widom and Larsens model of the proton oscillations yield an electron mass enhancement less than one percent, far below the threshold for the proposed neutron production and even farther below the mass enhancement obtained by Widom and Larsen assuming a high charge density. Neutrons are not stopped by the Coulomb barrier, but the energy required for the neutron production is not low.

  2. Energy of the field for the field

    International Nuclear Information System (INIS)

    2001-01-01

    Considering the problems that are presented in the field related with the lack of available energy is presented, the Biogas like energy alternative. This is a resulting product of the fermentation anaerobic (without air) of the organic residuals under appropriate conditions of humidity. It is a mixture of gases in which they prevail: Methane (CH 4 ) in a 55 to 70 percent, Dioxide of Carbon (CO 2 ) in a 28 to 43 percent and others as the hydro sulphide by 2 percent. The composition of the biogas depends of: the quality of the used material, of the biodigestor type, of the ambient temperature, of the adopted time of retention. Some of the advantages of the use of this alternative are: better sanitary conditions in the rural means. Decrease in the consumption of inorganic fertilizers. Increase of the agricultural productivity with the employment of the Bio fertilizing (20/25 bigger percent) in comparison with the fresh manure; conservation of natural resources as fuels, fossils and firewood; energy production in the own local consumption. Perfect ecological solution for the obtaining of renewable energy and bio fertilizing

  3. A multidimensional multigroup diffusion model for the determination of the frequency-dependent field of view of a neutron detector

    International Nuclear Information System (INIS)

    van der Hagen, T.H.J.J.; Hoogenboom, J.E.; van Dam, H.

    1992-01-01

    This paper reports on the sensitivity of a neutron detector to parametric fluctuations in the core of a reactor which depends on the position and the frequency of the perturbation. The basic neutron diffusion model for the calculation of this so-called field of view (FOV) of the detector is extended with respect to the dimensionality of the problem and the number of energy groups involved. The physical meaning of the FOV concept is illustrated by means of some simple examples, which can be handled analytically. The possibility of calculating the FOV by a conventional neutron diffusion code is demonstrated. In that case, the calculation in n neutron energy groups leads to 2n modified neutron diffusion equations

  4. Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA.

    Science.gov (United States)

    Tanimura, Y; Saegusa, J; Shikaze, Y; Tsutsumi, M; Shimizu, S; Yoshizawa, M

    2007-01-01

    The 8 and 27 keV monoenergetic neutron calibration fields have been developed by using (45)Sc(p, n)(45)Ti reaction. Protons from a 4-MV Pelletron accelerator are used to bombard a thin scandium target evaporated onto a platinum disc. The proton energies are finely adjusted to the resonance to generate the 8 and 27 keV neutrons by applying a high voltage to the target assemblies. The neutron energies were measured using the time-of-flight method with a lithium glass scintillation detector. The neutron fluences at a calibration point located at 50 cm from the target were evaluated using Bonner spheres. A long counter was placed at 2.2 m from the target and at 60 degrees to the direction of the proton beam in order to monitor the fluence at the calibration point. Fluence and dose equivalent rates at the calibration point are sufficient to calibrate many types of the neutron survey metres.

  5. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  6. Analytic computation of average energy of neutrons inducing fission

    International Nuclear Information System (INIS)

    Clark, Alexander Rich

    2016-01-01

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  7. Research activities on dosimetry for high energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The external dosimetry research group of JAERI has been calculating dose conversion coefficients for high-energy radiations using particle transport simulation codes. The group has also been developing radiation dose measurement techniques for high-energy neutrons in collaboration with some university groups. (author)

  8. The Clatterbridge high-energy neutron therapy facility: specification and performance

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Blake, S.W.; Shaw, J.E.; Bewley, D.K.

    1988-01-01

    A high energy neutron therapy facility has been installed at the Douglas Cyclotron Centre, Clatterbridge Hospital Merseyside, to extend M.R.C. clinical trials of fast neutrons. The neutron beam is produced by bombarding a beryllium target with 62 MeV protons. The target is isocentrically mounted with potential for 360 0 rotation, with a fully variable collimator, giving a range of rectilinear field sizes from 5 cm x 5 cm to 30 cm x 30 cm. Basic neutron beam data including output, field flatness, penumbra and depth-dose data have been measured. For a 10 cm x 10 cm field, 50% depth dose occurs at 16.2 cm in water and output is 1.63 cGy μ A -1 min -1 at maximum dose depth. Effectiveness of the target shielding and neutron-induced radioactivity in the treatment head were also measured. It is concluded that the equipment meets design specifications and fully satisfies criticisms of earlier neutron therapy equipment. A full radiation survey showed that radiation levels present no significant staff hazard. (UK)

  9. Monitor units are not predictive of neutron dose for high-energy IMRT

    Directory of Open Access Journals (Sweden)

    Hälg Roger A

    2012-08-01

    Full Text Available Abstract Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units.

  10. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  11. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron S n or two-neutron S 2n separation energy of neutron-rich isotopes. Relationships between S n (S 2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. S n, S 2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between S n, S 2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  12. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  13. Influence of media size on energy distribution of pulsed thermal neutrons

    International Nuclear Information System (INIS)

    Dabrowska, J.

    2007-01-01

    The work is devoted to the investigation of the diffusion cooling phenomenon of pulsed thermalized neutron fields in bounded media. It is aimed at the examination of the validity of the neutron temperature model that involves the assumption that an asymptotic energy distribution of neutrons in bounded media can be described by the Maxwell distribution but with a shifted temperature, lower than a temperature of medium. The research carried out entirely by means of Monte Carlo simulation of the neutron transport was preceded by a measurement of the time decay constants obtained in all variants of Monte Carlo simulations of the experiment and the measured one was stated. The form of asymptotic energy distribution of neutrons and its dependence on the size of medium was investigated in three kinds of materials of different thermal neutron transport properties: energy independent scatterer with negligible absorption (silica), energy dependent scatterer with 1/v absorption (borated silica) and energy dependent scatterer with 1/v absorption (water). As it was expected, in the case of large media, which can be treated as infinite, neutrons attained the Maxwell energy distribution at the temperature of the medium. For all materials under investigation the average and the most probable values of the energy distribution steadily decreased with decreasing geometric dimensions of the media. At the same time a growing distortion from the pure Maxwellian energy distribution was observed, which means that the concept of the neutron temperature fails in the case of small media. Although the spectra under investigation in general did not have the Maxwellian shape, the most probable velocity in a neutron density distribution decreased linearly with the increasing geometric buckling of the medium. This dependence manifested a stronger cooling than the one predicted by a certain approximate formula. The neutron spectrum in a small medium of pure silica was cooler than the spectrum in

  14. The response of the BTI bubble detectors in mixed gamma-neutron workplace fields

    International Nuclear Information System (INIS)

    Vanhavere, F.; Coeck, M.; Lievens, B.; Reginatto, M.

    2005-01-01

    Full text: Bubble detectors have become a mature technology and are used as neutron dosemeters in a wide range of applications. At the SCK-CEN and Belgonucleaire they are used as official personal neutron dosemeter for the personnel. Two types are commercially available from Bubble Technology Industries: the BD-PND, which has a neutron energy threshold of around 100 keV, and the BDT, which is mainly sensitive to thermal neutrons. At Belgonucleaire only the BD-PND is worn, and the results are corrected with a site specific factor. At the SCK-CEN both the BD-PND and BDT are worn and a combination of both results is applied for the dose records. In the EC project EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields), a whole range of neutron dosemeters were irradiated in workplace fields in nuclear installations in Europe, including both types of bubble detectors. The bubble detectors were exposed on a phantom with different angles towards the reference directions in the workplace fields. We will report the bubble detectors' results in the simulated workplace fields at Cadarache (CANEL and Sigma), in the workplaces at Kruemmel (boiling water reactor, transport cask), at Mol (Venus research reactor SCK-CEN, MOX-fuel facility Belgonucleaire) and Ringhals (pressurized water reactor, transport cask). The responses of the bubble detectors and the combination of both will be compared to the reference values determined with Bonner Spheres and a novel directional spectrometer. The dosemeter readings were checked for consistency by folding the dosemeter response functions with the corresponding workplace fluence spectra in the same workplace. (author)

  15. Design of hyper-thermal neutron irradiation fields for neutron capture therapy in KUR-heavy water neutron irradiation facility. Mounting of hyper-thermal neutron converter in therapeutic collimator

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2001-01-01

    Neutron capture therapy (NCP) using thermal neutron needs to improve of depth dose distribution in a living body. Epi-thermal neutron following moderation of fast neutron is usually used for improving of the depth dose distribution. The moderation method of fast neutron, however, gets mixed some of high energy neutron which give some of serious effects to a living body, and involves the difficulty for collimation of thermal neutron to the diseased part. Hyper-thermal neutrons, which are in an energy range of 0.1-3 eV at high temperature side of thermal neutron, are under consideration for application to the NCP. The hyper-thermal neutrons can be produced by up-scattering of thermal neutron in a high temperature material. Fast neutron components in collimator for the NCP reduce on application of the up-scattering method. Graphite at high temperature (>1000k) is used as a hyper-thermal neutron converter. The hyper-thermal neutron converter is planted to mount on therapeutic collimator which is located at the nearest side of patient for the NCP. Total neutron flux, ratio of hyper-thermal neutron to total neutron, and ratio of gamma-ray dose to neutron flux are calculated as a function of thickness of the graphite converter using monte carlo code MCNP-V4B. (M. Suetake)

  16. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  17. Spectral correction factors for conventional neutron dose meters used in high-energy neutron environments improved and extended results based on a complete survey of all neutron spectra in IAEA-TRS-403

    International Nuclear Information System (INIS)

    Oparaji, U.; Tsai, Y. H.; Liu, Y. C.; Lee, K. W.; Patelli, E.; Sheu, R. J.

    2017-01-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (E n > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252 Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252 Cf, 241 Am-Be and 239 Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6''-9'') are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. (authors)

  18. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  19. Naturalness in an Effective Field Theory for Neutron Star Matter

    International Nuclear Information System (INIS)

    Razeira, Moises; Vasconcellos, Cesar A.Z.; Bodmann, Bardo E.J.; Coelho, Helio T.; Dillig, Manfred

    2004-01-01

    High density hadronic matter is studied in a generalized relativistic multi-baryon lagrangian density. By comparing the predictions of our model with estimates obtained within a phenomenological naive dimensional analysis based on the naturalness of the coefficients of the theory, we show that naturalness plays a major role in effective field theory and, in combination with experiment, could represent a relevant criterium to select a model among others in the description of global static properties of neutron stars

  20. Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry

  1. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  2. Neutron measurements in the stray field produced by 158 GeV/c lead ion beams

    International Nuclear Information System (INIS)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Nava, E.; Silari, M.; Ulrici, L.

    1997-01-01

    This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV/c 208 Pb 82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system and different types of ion chambers. Activation measurements with 12 C plastic scintillators and with 32 S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs. (author)

  3. Characterisation of the IRSN CANEL/T400 facility producing realistic neutron fields for calibration and test purposes

    International Nuclear Information System (INIS)

    Gressier, V.; Lacoste, V.; Lebreton, L.; Muller, H.; Pelcot, G.; Bakali, M.; Fernandez, F.; Tomas, M.; Roberts, N. J.; Thomas, D. J.; Reginatto, M.; Wiegel, B.; Wittstock, J.

    2004-01-01

    The new CANEL/T400 facility has been set-up at the Inst. for Radiological Protection and Nuclear Safety (IRSN) to produce a realistic neutron field. The accurate characterisation of this neutron field is mandatory since this facility will be used as a reference neutron source. For this reason an international measuring campaign, involving four laboratories with extensive expertise in neutron metrology and spectrometry, was organised through a concerted EUROMET project. Measurements were performed with Bonner sphere (BS) systems to determine the energy distribution of the emitted neutrons over the whole energy range (from thermal energy up to a few MeV). Additional measurements were performed with proton recoil detectors to provide detailed information in the energy region above 90 keV. The results obtained by the four laboratories are in agreement with each other and are compared with a calculation performed with the MCNP4C Monte-Carlo code. As a conclusion of this exercise, a reliable characterisation of the CANEL/T400 neutron field is obtained. (authors)

  4. Fusion materials high energy-neutron studies. A status report

    International Nuclear Information System (INIS)

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections

  5. Neutron energy spectrum in graphite blankets of fusion reactors

    International Nuclear Information System (INIS)

    Tsechanski, A.

    1981-09-01

    Neutron flux measurements were performed in a graphite stack and compared with calculations made with a two dimensional transport computer code. In the present work it is observed that the calculated spectrum in the elastic and inelastic scattering ranges (the first collision range in both cases), is sensitive to details of the angular distribution of these neutrons. Regarding the discrepancies in the elastic scattering range it is concluded that the microscopic cross section library ENDF/B-IV overestimates the large angle scattering (back scattering) as can be seen from comparison of measured and calculated spectra. The two most important conclusions of the present work are: 1. Inelastic scattering interaction of D-T neutrons in graphite cannot be calculated without a proper account of energy-angle correlation. 2. An experimental setup supplying monoenergetic collimated D-T neutrons constitutes a sensitive although indirect means for measuring angular distributions in inelastic and elastic scattering

  6. The determination of neutron energy spectra of radioisotope sources

    International Nuclear Information System (INIS)

    Lutkin, J.E.

    1975-08-01

    The neutron energy spectrum of a 241 Am-Be radioisotope neutron source has been determined by use of a time of flight neutron spectrometer; this spectrometer not being subject to the same uncertainties as a scintillation spectrometer. Neutron spectra have been determined using a scintillation spectrometer with which the effects of instrumental uncertainties, particularly the pulse shape discrimination have been assessed. In the course of the development of the time flight spectrometer a zero crossover pulse shape discrimination system was developed in order to reduce the unwanted background. Using this system a quantitative survey of pulse shape discrimination with experimental and commercial liquid and plastic organic scintillators were carried out. In addition the pulse shape discrimination properties of inorganic scintillators were also examined. (author)

  7. Energy-resolved fast neutron resonance radiography at CSNS

    Science.gov (United States)

    Tan, Zhixin; Tang, Jingyu; Jing, Hantao; Fan, Ruirui; Li, Qiang; Ning, Changjun; Bao, Jie; Ruan, Xichao; Luan, Guangyuan; Feng, Changqin; Zhang, Xianpeng

    2018-05-01

    The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.

  8. Individual monitoring in high-energy stray radiation fields

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.

    1995-01-01

    Due to the lack of passive or active devices that could be considered as personal dosemeters in high-energy stray fields one can at present only perform individual monitoring around high energy accelerators. Of all detectors currently available it is shown that the NTA film is the most suitable method for individually monitoring the neutron exposure of more than 3000 persons regularly, reliably, and cost effectively like at CERN. (author)

  9. Prompt neutron fission spectrum mean energies for the fissile nuclides and 252Cf

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of 252 Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, 233 U, 235 U, 239 Pu, and 241 Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs

  10. Photon and neutron energy response of Thermoluminescent (TL) dosimeters

    International Nuclear Information System (INIS)

    Thilagam, L.; Priya, M.R.; Mohapatra, D.K.

    2018-01-01

    Theoretical Monte Carlo (MC) simulations are carried out to investigate the relative thermoluminesence (TL) response of the most commonly used TLD materials to a wide range of photon energy. The effect of polytetrafluoroethylene (PTFE) on TL response of CaSO 4 :Dy is also studied. Additionally, the neutron response of LiF:Mg,Ti TL materials with different concentrations of 6 Li is estimated in terms of the number of 6 Li(n, t) 4 He capture reactions for a wider neutron energy

  11. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  12. Determination of the total neutron cross section using average energy shift method for filtered neutron beam

    Directory of Open Access Journals (Sweden)

    О. О. Gritzay

    2016-12-01

    Full Text Available Development of the technique for determination of the total neutron cross sections from the measurements of sample transmission by filtered neutrons, scattered on hydrogen is described. One of the methods of the transmission determination TH52Cr from the measurements of 52Cr sample, using average energy shift method for filtered neutron beam is presented. Using two methods of the experimental data processing, one of which is presented in this paper (another in [1], there is presented a set of transmissions, obtained for different samples and for different measurement angles. Two methods are fundamentally different; therefore, we can consider the obtained processing results, using these methods as independent. In future, obtained set of transmissions is planned to be used for determination of the parameters E0, Гn and R/ of the resonance 52Cr at the energy of 50 keV.

  13. Response of CR-39 SSNTD to high energy neutrons using zirconium convertors - a Monte Carlo and experimental study

    International Nuclear Information System (INIS)

    Pal, Rupali; Sapra, B.K.; Bakshi, A.K.; Datta, D.; Biju, K.; Suryanarayana, S.V.; Nayak, B.K.

    2016-01-01

    Neutron dosimetry in ion accelerators is a challenging field as the neutron spectrum varies from thermal, to fast and high-energy neutrons usually extending beyond 20 MeV. Solid-state Nuclear Track Detectors (SSNTDs) have been increasingly used in numerous fields related to nuclear physics. Extensive work has also been carried out on determining the response characteristics of such detectors as nuclear spectrometers. In nuclear reaction studies, identification of reaction products according to their type and energy is frequently required. For normally incident particles, energy-dispersive track-diameter methods have become useful scientific tools using CR-39 SSNTD. CR-39 along with 1 mm polyethylene convertor can cover a neutron energy range from 100 keV to 10 MeV. The neutron interacts with the hydrogen in CR-39 producing recoil protons from elastic collisions. This detectable neutron energy range can be increased by modification in the radiator/convertor used along with CR-39. CR39 detectors placed in conjunction with judiciously chosen thicknesses of a polyethylene radiator and a lead absorber (or degrader) are used to increase energy range upto 19 MeV. A portable neutron counter has been proposed for high-energy neutron measurement with 1 cm thick Zirconium (Zr) as the converter outside a spherical HDPE shell of 7 inch diameter. Zr metal has been found to show (n,2n) cross section for energies above 10 MeV starting from 0.01 barns for 8 MeV upto 1 barns for 22 MeV. Above these energies, the experimental data is scarce. In this paper, Zr was used in conjunction with CR-39 which showed an enhancement of track density on the CR-39. This paper demonstrates the enhancement of neutron response using Zr on CR-39 with both theoretical and experimental studies

  14. High Energy Neutron Induced Gamma Production

    International Nuclear Information System (INIS)

    Brown, D.A.; Johnson, M.; Navratil, P.

    2007-01-01

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved

  15. Development of neutron-monitor detectors applicable for energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Kim, Eunjoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Takashi [Tohoku Univ., Sendai, Miyagi (Japan)

    2003-03-01

    For the purpose of monitoring of neutron doses in high energy accelerator facilities, we have been developing neutron detectors which are applicable for neutron energies up to 100 MeV. The present paper reports characteristics of a phoswitch-type neutron detector which is composed of a liquid organic scintillator and {sup 6}Li+ZnS(Ag) sheets. (author)

  16. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Science.gov (United States)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-12-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) [1] ( http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm), a spectrometric characterization was performed on the VESUVIO beamline [2] (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  17. 6LiF sandwich type detectors for low dose individual monitoring in mixed neutron-photon fields

    International Nuclear Information System (INIS)

    Olko, P.; Budzanowski, M.; Bilski, P.; Burgkhardt, B.; Piesch, E.

    1994-01-01

    ICRP Publication 60 recommends the reduction of the annual dose limit for occupational exposure from 50 to 20 mSv and a doubling of the quality factor for medium energy neutrons. If occupational doses are evaluated every month (which is obligatory e.g. in Germany and in Poland), the individual neutron dosemeter will have to measure neutron doses in the range of 100 μSv. No commercially available, automatic individual dosimetry monitoring system exists that fulfils this requirement. Some of the parameters which influence the evaluation of the neutron dose from readings of TL dosemeters have been studied in order to decrease the variance of the measured neutron signal. In mixed neutron-photon fields, clear separation of the neutron component from the total reading depends also on the uncertainty of the gamma dose measurements. While the thermal albedo neutrons are absorbed mostly at the surface of the 6 LiF detector, the reduction of the detector thickness results in a decrease of its photon sensitivity, while its neutron sensitivity is almost principally maintained. As a consequence, the uncertainty of gamma dose contributes with lower weight to the variance of the evaluated neutron signal. First tests of an optimised 200 μm thick sandwich detector and 0.9 mm thick standard LiF chips were made at low neutron and photon dose ranges using different readers, in order to determine the uncertainty versus dose for different neutron-photon combinations. The conditions under which the new sandwich type detectors may improve albedo neutron dosimetry are demonstrated. (Author)

  18. Response function measurement of plastic scintillator for high energy neutrons

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Takahashi, Kazutoshi; Takada, Masashi

    2003-01-01

    The response function and detection efficiency of 2''φ x 2''L plastic (PilotU) and NE213 liquid (2''NE213) scintillators, which were used for the measurement of secondary neutrons from high energy electron induced reactions, were measured at Heavy Ion Medical Accelerator in Chiba (HIMAC). High energy neutrons were produced via 400 MeV/n C beam bombardment on a thick graphite target. The detectors were placed at 15 deg with respect to C beam axis, 5 m away from the target. As standard, a 5''φ x 5''L NE213 liquid scintillator (5''NE213) was also placed at same position. Neutron energy was determined by the time-of-flight method with the beam pickup scintillator in front of the target. In front of the detectors, veto scintillators were placed to remove charged particle events. All detector signals were corrected with list mode event by event. We deduce neutron spectrum for each detectors. The efficiency curves for pilotU and 2''NE213 were determined on the bases of 5 N E213 neutron spectrum and its efficiency calculated by CECIL code. (author)

  19. Helium-burning flashes on accreting neutron stars: effects of stellar mass, radius, and magnetic field

    International Nuclear Information System (INIS)

    Joss, P.C.; Li, F.K.

    1980-01-01

    We have computed the evolution of the helium-burning shell in an accreting neutron star for various values of the stellar mass (M), radius (R), and surface magnetic fields strength (B). As shown in previous work, the helium-burning shell is often unstable and undergoes thermonuclear flashes that result in the emission of X-ray bursts from the neutron-star surface. The dependence of the properties of these bursts upon the values of M and R can be described by simple scaling relations. A strong magnetic field decreases the radiative and conductive opacities and inhibits convection in the neutron-star surface layers. For B 12 gauss, these effects are unimportant; for B> or approx. =10 13 gauss, the enhancement of the electron thermal conductivity is sufficiently large to stabilize the helium-burning shell against thermonuclear flashes. For intermediate values of B, the reduced opacities increase the recurrence intervals between bursts and the energy released per burst, while the inhibition of convection increases the burst rise times to about a few seconds. If the magnetic field funnels the accreting matter onto the magnetic polar caps, the instability of the helium-burning shell will be very strongly suppressed. These results suggest that it may eventually be possible to extract information on the macroscopic properties of neutron stars from the observed features of X-ray burst sources

  20. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    Science.gov (United States)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  1. Study of an integrated electronic monitor for neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossas, J.L.; Vareille, J.C. [Limoges Univ., 87 (France); Sarrabayrouse, G.J. [CNRS, 31 - Toulouse (France)

    1995-12-31

    The majority of the individual neutron monitors measure incorrectly in a certain energy range (10 keV-500 keV). For electronic devices, this problem is due to their high {gamma} sensitivity. To solve this problem a microelectronic detector design for neutron spectrometry is now being studied at LEPOFI. It is based on the measurement of the total energy which is deposited by {sup 6}Li (n, {alpha}) {sup 3}H or {sup 10}B (n {alpha}) {sup 7}Li reactions in silicon detectors. A new electronic sensor - for example a boron or lithium sandwich device -has been developed in collaboration with LAAS. Specific techniques for silicon sensor coating with boron have been developed and are briefly presented. The response of the detector has been computed using a model and a code developed at LEPOFI. Several parameters have been taken into account in the calculations: the type of layer, its thickness, the characteristics of the detector. The results of these simulations are discussed and calculated pulse height distributions for various designs are presented. The present status of the investigation only concerns thermal neutrons. (author).

  2. Evaluation of area monitor response for neutrons in radiation field generated by a 15 MV clinic accelerator

    International Nuclear Information System (INIS)

    Salgado, Ana Paula

    2011-01-01

    The clinical importance and usage of linear accelerators in cancer treatment increased significantly in the last years. Coupled with this growth came the concern about the use of accelerators with energies over to 10 MeV which produce therapeutic beam contaminated with neutrons generated when high-energy photons interact with high-atomic-number materials such as tungsten and lead present in the accelerator itself. At these facilities, measurements of the ambient dose equivalent for neutrons present difficulties owing to the existence of a mixed radiation field and possible electromagnetic interference near the accelerator. The Neutron Laboratory of the IRD - Brazilian Institute for Radioprotection and Dosimetry, aiming to evaluate the survey meters performance at these facilities, initiated studies of instrumentation response in the presence of different neutron spectra. Neutrons sources with average energies ranging from 0.55 to 4.2 MeV, four different survey meters and one ionization chamber to obtain the ratio between the dose due to neutrons and gamma radiation were used in this work. The evaluation of these measurements, performed in a 15 MV linear accelerator room is presented. This work presents results that demonstrate the complexity and care needed to make neutrons measurements in radiotherapy treatment rooms containing high energy clinical accelerators. (author)

  3. The Response of Alanine Dosimeters in Thermal Neutron Fields

    DEFF Research Database (Denmark)

    Schmitz, T.; Bassler, Niels; Sharpe, P.

    response of all pellets could be reproduced by calculations within a uncertainty of 5 %. For all experiments three dose components have been separated. A proton dose is generated in the 14N(n,p)14C reaction. Secondary gammas are generated by various (n,γ) reactions, dominated by the 2.2 MeV photon from...... experiments the dosimeters will be exposed to higher neutron energies, which are more typical for BNCT treatments. References: [1] Barth, R.F; 2009: Boron neutron capture therapy at the crossroads: Challenges and opportunities. Applied Radiation and Isotopes 67, 3-6. [2] Rogus, R.D.; Harling, O.K.; Yanch, J.C...... for treatment of liver metastases. Applied Radiation and Isotopes 67, 238-241. [4] Sharpe, P.; Sephtan, J.; 2000: An automated system for the measurement of alanine/EPR dosimeters. Applied Radiation and Isotopes 52, 1185-1188....

  4. Neutron energy spectra calculations in the low power research reactor

    International Nuclear Information System (INIS)

    Omar, H.; Khattab, K.; Ghazi, N.

    2011-01-01

    The neutron energy spectra have been calculated in the fuel region, inner and outer irradiation sites of the zero power research reactor using the MCNP-4C code and the combination of the WIMS-D/4 transport code for generation of group constants and the three-dimensional CITATION diffusion code for core analysis calculations. The neutron energy spectrum has been divided into three regions and compared with the proposed empirical correlations. The calculated thermal and fast neutron fluxes in the low power research reactor MNSR inner and outer irradiation sites have been compared with the measured results. Better agreements have been noticed between the calculated and measured results using the MCNP code than those obtained by the CITATION code. (author)

  5. Biological dosimetry for mixed gamma-neutron field

    International Nuclear Information System (INIS)

    Brandao, J.O.C.; Santos, J.A.L.; Souza, P.L.G.; Lima, F.F.; Vilela, E.C.; Calixto, M.S.; Santos, N.

    2011-01-01

    There is increasing concern about airline crew members (about one million worldwide) exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mitogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to mixed gamma-neutron field. Blood was obtained from one healthy donor and exposed to two mixed gamma-neutron field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemide accumulation and 1000 well-spread metaphases were analyzed for the presence of dicentrics by two experts after painted by giemsa 5%. The preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  6. Radiation protection metrology at a high-energy neutron therapy facility

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Sherwin, A.G.; More, B.R.

    1991-01-01

    A radiation protection survey has been carried out at a high-energy neutron therapy facility using a combination of different detectors and counters. Included in the survey were measurements with a tissue equivalent proportional counter (TEPC), a rem meter, a large volume ionisation chamber (LVI) and a Geiger counter. Dose equivalent rates, normalised to a proton beam current of 25 μA, of between 1 μSv.h -1 and 0.7 Sv.h -1 were recorded depending on the location. In general the results confirm the tendency of the rem meter to over-read in fields consisting mainly of low energy neutrons and illustrate the advantages of the diagnostic and gamma discriminating properties of the TEPC. The LVI-Geiger system was found to be the least favourable combination of dosemeters, substantially under-reading and being unable to estimate the neutron dose rate at levels below about 32 μGy.h -1 . (author)

  7. Time dependet behaviour of the neutron field in in two interacting cylindrical disks

    International Nuclear Information System (INIS)

    Hedlund, T.

    1979-01-01

    The influence of a void on the neutron flux in a moderating system has been studied mainly by the Monte Carlo method. The calculations simulate the decay of the neutron field in a pulsed neutron source measurement. The neutron flux was studied as a function of space, angle, energy and time for a system of two flat cylindrical polyethylene disks. The slab thickness was varied between 1.1 and 4.4 cm and the radius was 9.0 cm. The gap between the slabs was varied from zero to 18 cm. Some calculations have also been made for absorbers in the gap. The purpose of these absorbers was to eliminate the time delay effect for the low velocity neutrons accumulating in the gap. The calculations showed the usefulness of the absorber method. From the results in the time dependent cases the interaction parameter for the two slabs in the corresponding stationary cases has been calculated. The agreement with measurements made by Grosshoeg is good. In the one velocity cases some other methods have also been used to predict the decay rates. For small gap widths the best agreement with the Monte Carlo results was obtained with the variational method. (author)

  8. LUPIN, a new instrument for pulsed neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); Ferrarini, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Manessi, G.P., E-mail: giacomo.paolo.manessi@cern.ch [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Varoli, V. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy)

    2013-06-01

    A number of studies focused in the last decades on the development of survey meters to be used in pulsed radiation fields. This is a topic attracting widespread interest for applications such as radiation protection and beam diagnostics in accelerators. This paper describes a new instrument specifically conceived for applications in pulsed neutron fields (PNF). The detector, called LUPIN, is a rem counter type instrument consisting of a {sup 3}He proportional counter placed inside a spherical moderator. It works in current mode with a front-end electronics consisting of a current–voltage logarithmic amplifier, whose output signal is acquired with an ADC and processed on a PC. This alternative signal processing allows the instrument to be used in PNF without being affected by saturation effects. Moreover, it has a measurement capability ranging over many orders of burst intensity. Despite the fact that it works in current mode, it can measure a single neutron interaction. The LUPIN was first calibrated in CERN's calibration laboratory with a PuBe source. Measurements were carried out under various experimental conditions at the Helmholtz-Zentrum in Berlin, in the stray field at various locations of the CERN Proton Synchrotron complex and around a radiotherapy linear accelerator at the S. Raffaele hospital in Milan. The detector can withstand single bursts with values of H⁎(10) up to 16 nSv/burst without showing any saturation effect. It efficiently works in pulsed stray fields, where a conventional rem-counter underestimates by a factor of 2. It is also able to reject the very intense and pulsed photon contribution that often accompanies the neutron field with good reliability. -- Highlights: ► LUPIN is a new detector specifically conceived to work in neutron pulsed fields. ► The detector is a rem counter type instrument working in current mode. ► The performances of the detectors were studied under various experimental conditions. ► The detector

  9. Neutrons field in the neutronic measurements room of the Polytechnic University of Madrid

    International Nuclear Information System (INIS)

    Vega C, H. R.; Gallego, E.; Lorente, A.; Rubio O, I. P.

    2010-09-01

    Through of measurements and calculations of a Monte Carlo series has been characterized the neutronic field of the neutronic measurements room of Nuclear Engineering Department of the Polytechnic University of Madrid. The measurements were realized with the Bonner Spheres Spectrometer that allowed establish the spectra on the new stainless steel panel and at different distances measured regarding the source. The values of the speed of environmental equivalent dose were measured with an area monitor Bert hold Lb 6411. Through of Monte Carlo methods was built a detailed model of the room with the panel and the spectra were calculated and, with these the values of the environmental equivalent dose were obtained using the conversion coefficients of the ICRP 74 and the Bert hold Lb 6411 response. The calculated values were compared with those measured and was consistency among the results. (Author)

  10. Cosmic Rays and Clouds, 1. Formation of Lead Mesoatoms In Neutron Monitor By Soft Negative Muons and Expected Atmospheric Electric Field Effect In The Cosmic Ray Neutron Component

    Science.gov (United States)

    Dorman, L. I.; Dorman, I. V.

    We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.

  11. Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Gearheart, Michael; Hooker, Joshua; Krastev, Plamen G; Lin Weikang; Newton, William G; Wen Dehua; Xu Chang; Ko Cheming; Xu Jun

    2011-01-01

    Significant progress has been made in recent years in constraining the density dependence of nuclear symmetry energy using terrestrial nuclear laboratory data. Around and below the nuclear matter saturation density, the experimental constraints start to merge in a relatively narrow region. At supra-saturation densities, there are, however, still large uncertainties. After summarizing the latest experimental constraints on the density dependence of nuclear symmetry energy, we highlight a few recent studies examining imprints of nuclear symmetry energy on the binding energy, energy release during hadron-quark phase transitions as well as the ω-mode frequency and damping time of gravitational wave emission of neutron stars.

  12. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  13. Neutron field characterization and dosimetry at the TRIUMF proton therapy facility

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: In 1972 the 500 MeV H' Cyclotron of the TRIUMF (Tri University Meson Factory) located in Vancouver, Canada became operational. Beside Meson Physics, high-energy protons of various energy and beam current levels from the TRIUMF Cyclotron are used for scientific research and biomedical applications. Recently, a 500 MeV proton beam from the cyclotron was used as the booster beam for the radioactive ion beam facility, ISAC (Isotope Separator Accelerator) and a second beam as primary irradiation source for the Proton Irradiation Facility (PIF). The major commercial applications of the PIF are the provision of high-energy proton beams for radiation hardness testing of electronic components used in space applications (NASA) and proton therapy of ocular tumors (British Columbia Proton Therapy Facility). The PIF vault was constructed within the main accelerator hall of the TRIUMF using stacks of large concrete blocks. An intense field of fast neutrons is produced during the interaction of high-energy proton beam with target materials, such as, beam stops, collimators and beam energy degraders. The leakage of such neutrons due to insufficient radiological shielding or through the shielding discontinuities may constitute a major share of the personnel radiation exposure of the radiation workers. The neutron energy distribution and dose equivalent near a lead beam stopper bombarded with 116 MeV and 65 MeV collimated proton beams at the Ocular Tumor irradiation facility were evaluated using a Bonner-Sphere Spectrometer and a REM counter respectively. The results were utilized to investigate efficacy of the existing radiological shielding of the PIF. This paper highlights experimental methods to analyze the high-energy accelerator produced neutron beam and basic guideline for the radiological shielding designs of irradiation vault of Proton Therapy facilities

  14. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...

  15. Neutron-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)

    1980-09-06

    The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.

  16. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  17. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  18. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. This publication is a compilation of the main results and findings of the CRP, and the CD-ROM accompanying this publication contains 19 reports with additional relevant technical details

  19. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  20. Out‐of‐field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators

    Science.gov (United States)

    Cardenas, Carlos E.; Nitsch, Paige L.; Kudchadker, Rajat J.; Howell, Rebecca M.

    2016-01-01

    Out‐of‐field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high‐energy electron beams. To better understand the extent of these exposures, we measured out‐of‐field dose characteristics of electron applicators for high‐energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out‐of‐field dose profiles and percent depth‐dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out‐of‐field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out‐of‐field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central‐axis, which was found to be higher than typical out‐of‐field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for

  1. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  2. Evaluation of two personal dosemeters in polyenergetic mono- and multi-directional neutron fields

    International Nuclear Information System (INIS)

    Nunes, J. C.; Surette, R. A.

    2005-01-01

    The neutron dose-equivalent response of two commercially available electronic personal neutron dosemeters was studied in several laboratory-produced broad-spectrum neutron fields. Fluence-weighted mean energies ranged from 200 keV to 4 MeV; personal dose-equivalent rates ranged from 75 to 10 mSv h -1 ; and angles of incidence were multidirectional, 0 deg., 30 deg. and 60 deg.. Three of these fields have been shown previously to resemble ones found in CANDU (Canadian Deuterium Uranium is a registered trademark of the Atomic Energy of Canada Limited) power plant workplaces. Both dosemeters were found to perform reasonably well across the range of energy spectra and angles of incidence. One type of dosemeter displayed values of the personal dose equivalent that were, at worst, within a factor of ∼2 of the reference values and, at best, within a few per cent of the reference values. The other type displayed values of the personal dose equivalent that were consistently within unity and 20% of the reference values. Although the radiological performance of one was found to be more accurate, this device was also found to be the less rugged of the two. Some of the data acquired in this work were compared with results previously published by others. There was consistency between these sets of data. (authors)

  3. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  4. Responses of commercially available neutron electronic personal dosemeters in neutron fields simulating workplaces at MOX fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.

    2011-01-01

    The authors investigated the performance of three commercially available electronic personal dosemeters (EPDs) in evaluating neutron dose equivalents and discussed their suitability to work environments in MOX fuel fabrication facilities. The EPDs selected for this study were NRY21 (Fuji Electric Systems), PDM-313 (Aloka) and DMC 2000 GN (MGP Instruments). All tests were conducted in moderated 252 Cf neutron fields with neutron spectral and dosimetric characteristics similar to those found in MOX fuel facilities. The test results revealed trends and the magnitude of response variations in relation to neutron spectral changes expected in work environments.

  5. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  6. Symmetry Energy Effects in the Neutron Star Properties

    Science.gov (United States)

    Alvarez-Castillo, D. E.; Kubis, S.

    2012-12-01

    The functional form of the nuclear symmetry energy has only been determined in a very narrow range of densities. Uncertainties concern both the low as well as the high density behaviour of this function. In this work different shapes of the symmetry energy, consistent with the experimental data, were introduced and their consequences for the crustal properties of neutron stars are presented. The resulting models are in agreement with astrophysical observations.

  7. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  8. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  9. Neutron scattering studies of crude oil viscosity reduction with electric field

    Science.gov (United States)

    Du, Enpeng

    topic. Dr. Tao with his group at Temple University, using his electro or magnetic rheological viscosity theory has developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. After we successfully reduced the viscosity of crude oil with field and investigated the microstructure changing in various crude oil samples with SANS, we have continued to reduce the viscosity of heavy crude oil, bunker diesel, ultra low sulfur diesel, bio-diesel and crude oil and ultra low temperature with electric field treatment. Our research group developed the viscosity electrorheology theory and investigated flow rate with laboratory and field pipeline. But we never visualize this aggregation. The small angle neutron scattering experiment has confirmed the theoretical prediction that a strong electric field induces the suspended nano-particles inside crude oil to aggregate into short chains along the field direction. This aggregation breaks the symmetry, making the viscosity anisotropic: along the field direction, the viscosity is significantly reduced. The experiment enables us to determine the induced chain size and shape, verifies that the electric field works for all kinds of crude oils, paraffin-based, asphalt-based, and mix-based. The basic physics of such field induced viscosity reduction is applicable to all kinds of suspensions.

  10. Study of PIN diode energy traps created by neutrons

    International Nuclear Information System (INIS)

    Sopko, V; Dammer, J; Sopko, B; Chren, D

    2013-01-01

    Characterization of radiation defects is still ongoing and finds greater application in the increasing radiation doses on semiconductor detectors in experiments. Studying the changes of silicon PIN diode for high doses of radiation is the fundamental motivation for our measurements. In this article we describe the behavior of the PIN diode and development of the disorder caused by neutrons from a 252Cf and doses up to 8 Gy. The calibration curve for PIN diode shows the effect of disorders as the changes of the voltampere characteristics depending on the dose of neutron irradiation. The measured values for defects are in good agreement with created energy traps.

  11. Spin observables in proton-neutron scattering at intermediate energy

    International Nuclear Information System (INIS)

    Spinka, H.

    1986-05-01

    A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs

  12. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  13. Measurement and analysis of leakage neutron energy spectra around the Kinki University Reactor, UTR-KINKI

    CERN Document Server

    Ogawa, Y; Sagawa, H; Tsujimoto, T

    2002-01-01

    The highly sensitive cylindrical multi-moderator type neutron spectrometer was constructed for measurement of low level environmental neutrons. This neutron spectrometer was applied for the determination of leakage neutron energy spectra around the Kinki University Reactor. The analysis of the leakage neutron energy spectra was performed by MCNP Monte Carlo code. From the obtained results, the agreement between the MCNP predictions and the experimentally determined values is fairly good, which indicates the MCNP model is correctly simulating the UTR-KINKI.

  14. Some Principal Problems in Physics and Low-Energy Neutron Physics

    CERN Document Server

    Alexandrov, Yu A

    2004-01-01

    The first question deals with the charge neutron radius $^{1/2}$ connected with the value of neutron-electron scattering length $a_{ne}$ determined at low neutron energies. At present, the obtained accuracy allows us to speak not only about the value of $$ but also on the segmentation of $$ into Dirac and Foldy addenda. The sign of the Dirac addendum is connected directly with the fundamental Yukawa theory explaining the origin of nuclear forces. One of the popular experimental values of the Dirac addendum (from ${a}_{ne} = (-1.32 \\pm 0.03) \\cdot 10^{ - 16}$ cm) contradicts the Yukawa theory. The second question also concerns the subject of the structure of the neutron, namely its deformation. The notion of deformation (polarizability) of the nucleon in electromagnetic field was introduced in the mid-1950s. The reasons are given in favor of the opinion that the neutron polarizability was observed for the first time in neutron experiments as far back as 1957, i.\\,e. earlier than proton polarizability was detec...

  15. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  16. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  17. Experimental possibilities and fast neutron dose map of the fast neutron fields at the RB reactor facility

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1993-01-01

    The RB is an unshielded, zero power nuclear facility with natural and enriched uranium fuel (2% and 80%) and D 2 O as moderator. It is possible to create different configurations of non-reflected and partially reflected critical systems and to make experiments in the fields of thermal neutrons. The fields of fast neutrons with 'softened' fission spectrum are made by modifying the system: modified experimental fuel channel EFC, coupled fast-thermal system in two configurations CFTS-1 and CFTS-2, coupled fast-thermal core HERBE. The intermediate and fast neutron absorbed doses in fast neutron fields are given. In first configuration of RB reactor it was almost impossible to perform dosimetric and other experiments. By creating these fields, with in our circumstances available fuel elements, the possibilities for different experiments are greatly improved. Now we can irradiate food samples, soil samples, electronic devices, study material properties, perform various dosimetry experiments, etc. (1 tab.)

  18. A portable and wide energy range semiconductor-based neutron spectrometer

    International Nuclear Information System (INIS)

    Hoshor, C.B.; Oakes, T.M.; Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R.; Miller, W.H.; Bellinger, S.L.; Sobering, T.J.; Fronk, R.G.; Shultis, J.K.; McGregor, D.S.; Caruso, A.N.

    2015-01-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  19. A portable and wide energy range semiconductor-based neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hoshor, C.B. [Department of Physics, University of Missouri, Kansas City, MO (United States); Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS (United States); Fronk, R.G.; Shultis, J.K.; McGregor, D.S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2015-12-11

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  20. Magnetic Field Monitoring in the SNS and LANL Neutron EDM Experiments

    Science.gov (United States)

    Aleksandrova, Alina; SNS nEDM Collaboration; LANL nEDM Collaboration

    2017-09-01

    The SNS neutron EDM experiment requires the ability to precisely control and monitor the magnetic field inside of the fiducial volume. However, it is not always practical (or even possible) to measure the field within the region of interest directly. To remedy this issue, we have designed a field monitoring system that will allow us to reconstruct the field inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. A prototype probe array (consisting of 12 single-axis fluxgate magnetometer sensors) was used to monitor the magnetic field within the fiducial volume of an in-house magnetic testing apparatus. In this talk, the design and results of this test will be presented, and the possible implementation of this field monitoring method may have in the room temperature LANL neutron EDM experiment will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.

  1. To the problem of spatial focusing of ultracold neutrons by nonuniform magnetic field. Eikonal approximation

    CERN Document Server

    Chen, T

    2002-01-01

    Motion of the ultracold neutrons in the nonuniform magnetic field with a square nonuniformity by two coordinates is considered. The Schroedinger equation is solved with application of the quasi-classical (eikonal) approach. The theoretical possibility of the neutrons spatial focusing with formation of the point focus and also the neutrons bunches is shown

  2. Constraints on the symmetry energy from neutron star observations

    International Nuclear Information System (INIS)

    Newton, W G; Gearheart, M; Wen, De-Hua; Li, Bao-An

    2013-01-01

    The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density L. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict L < 70 MeV.

  3. Neutrons and gamma transport in atmosphere by Tripoli-2 code. Energy deposit and electron current time function

    International Nuclear Information System (INIS)

    Vergnaud, T.; Nimal, J.C.; Ulpat, J.P.; Faucheux, G.

    1988-01-01

    The Tripoli-2 computer code has been adapted to calculate, in addition to energy deposit in matter by neutrons (Kerma) the energy deposit by gamma produced in neutronic impacts and the induced recoil electron current. The energy deposit conduces at air ionization, consequently at a conductibility. This knowledge added at that of electron current permit to resolve the Maxwell equations of electromagnetic field. The study is realized for an atmospheric explosion 100 meters high. The calculations of energy deposit and electron current have been conducted as far as 2.5km [fr

  4. A high gain energy amplifier operated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [CERN, Geneva (Switzerland)

    1995-10-01

    The basic concept and the main practical considerations of an Energy Amplifier (EA) have been exhaustively described elsewhere. Here the concept of the EA is further explored and additional schemes are described which offer a higher gain, a larger maximum power density and an extended burn-up. All these benefits stem from the use of fast neutrons, instead of thermal or epithermal ones, which was the case in the original study. The higher gain is due both to a more efficient high energy target configuration and to a larger, practical value of the multiplication factor. The higher power density results from the higher permissible neutron flux, which in turn is related to the reduced rate of {sup 233}Pa neutron captures (which, as is well known, suppress the formation of the fissile {sup 233}U fuel) and the much smaller k variations after switch-off due to {sup 233}Pa decays for a given burn-up rate. Finally a longer integrated burn-up is made possible by reduced capture rate by fission fragments of fast neutrons. In practice a 20 MW proton beam (20 mA @ 1 GeV) accelerated by a cyclotron will suffice to operate a compact EA at the level of {approx} 1 GW{sub e}. The integrated fuel burn-up can be extended in excess of 100 GW d/ton, limited by the mechanical survival of the fuel elements. Radio-Toxicity accumulated at the end of the cycle is found to be largely inferior to the one of an ordinary Reactor for the same energy produced. Schemes are proposed which make a {open_quotes}melt-down{close_quotes} virtually impossible. The conversion ratio, namely the rate of production of {sup 233}U relative to consumption is generally larger than unity, which permits production of fuel for other uses. Alternatively the neutron excess can be used to transform unwanted {open_quotes}ashes{close_quotes} into more acceptable elements.

  5. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  6. Neutron spectometers

    International Nuclear Information System (INIS)

    Poortmans, F.

    1977-01-01

    Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)

  7. Determination for energy response and directionality of neutron survey meters

    International Nuclear Information System (INIS)

    Chen Changmao; Liu Jinhua; Xie Jianlun; Su Jingling

    1992-01-01

    The energy response and directionality of neutron survey meter type MK7 and 2202D are determined. The reactor thermal column beam, reactor filtered beams (6 eV, 24.4 keV and 144 keV), 226 Ra-Be, 241 Am-Be, 252 Cf and its moderated sources are used for the measurement. The results shows: the survey meters are influenced obviously by the direction; the response of middle-energy region is large, the energy response of 2202D is better than MK7

  8. Recent research on nuclear reaction using high-energy proton and neutron

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  9. SU(2) symmetry and degeneracy from SUSY QM of a neutron in the magnetic field of a linear current

    International Nuclear Information System (INIS)

    Martinez, D.; Granados, V.D.; Mota, R.D.

    2006-01-01

    From SUSY ladder operators in momentum space of a neutron in the magnetic field of a linear current, we construct 2x2 matrix operators that together with the z-component of the total angular momentum satisfy the su(2) Lie algebra. We use this fact to explain the degeneracy of the energy spectrum

  10. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter

    CERN Document Server

    Parizzi, A A; Klose, F

    2002-01-01

    A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)

  11. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    Science.gov (United States)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  12. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)

  13. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-04-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases

  14. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    International Nuclear Information System (INIS)

    Kroc, T.K.

    2009-01-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  15. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  16. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  17. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  18. Development of the neutron reference calibration field using a {sup 252}Cf standard source surrounded with PMMA moderators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Kanai, K.; Tsujimura, N. [Japan Nuclear Cycle Development Institute, Ibaraki-ken (Japan)

    2002-07-01

    The authors developed the neutron reference calibration fields using a {sup 252} Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252} Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments.

  19. Development of the neutron reference calibration field using a 252Cf standard source surrounded with PMMA moderators

    International Nuclear Information System (INIS)

    Yoshida, T.; Kanai, K.; Tsujimura, N.

    2002-01-01

    The authors developed the neutron reference calibration fields using a 252 Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the 252 Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO 2 -UO 2 mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments

  20. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    International Nuclear Information System (INIS)

    Bergmann, B.; Caicedo, I.; Pospisil, S.; Vykydal, Z.; Leroy, C.

    2016-01-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  1. Dose determination of Neutron contamination in radiothrapy rooms equiped with high energy linear accelerators

    International Nuclear Information System (INIS)

    Shweikani, R.; Anjak, O.

    2014-03-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high-energy linear accelerators are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. A high-energy (23 MV) linear accelerator (Varian 21EX) was studied. The CR-39 nuclear track detectors (NTDs) were used to study the variation of fast neutron relative intensities around a linear accelerator high energy photon beam and to determined the its variation on the patient plane at 0, 50, 100, 150 and 200 cm from the center of the photon beam was. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the fields. Photoneutron intensity and distributions at isocenter level with the field sizes of 40*40 cm'2 at SSD=100cm around 23 MV photon beam using Nuclear Track Detectors were determined. The advantages of CR-39 NTD s over active detectors: 1- there is no pulse pileup problem. 2- no photon interference with neutron measurement. 3- no electronics are required. 4 - less prone to noise and interference. The photoneutron intensities were rapidly decreased as we move away from the isocenter of linear accelerators. As the use of simulation software MCNP match in the results we have obtained through direct measurements and the modeling results using the code MCNP (author).

  2. Neutron Reference Benchmark Field Specifications: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Environment (ACRR-PLG-CC-32-CL).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parm, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the Polyethylene-Lead-Graphite (PLG) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 37 integral dosimetry measurements in the neutron field are reported.

  3. Spatial and energy distributions of skyshine neutron and gamma radiation from nuclear reactors on the ground-air boundary

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Y.; Netecha, M.E.; Vasiliev, A.P.; Avaev, V.N.; Vasiliev, G.A. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Zelensky, D.I.; Istomin, Y.L.; Cherepnin, Y.S. [Institute of Atomic Energy of the National Nuclear Center of the Republic of Kazakhstan, Semipalatinsk-21 (Kazakhstan); Nomura, Y. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    A set of measurements on skyshine radiation was conducted at two special research reactors. A broad range of detectors was used in the measurements to record neutron and gamma radiations. Dosimetric and radiometric field measurements of the neutrons and gamma quanta of the radiation scattered in the air were performed at distances of 50 to 1000 m from the reactor during different weather conditions. The neutron spectra in the energy range of 1 eV to 10 MeV and the gamma quanta spectra in the range of 0.1-10 MeV were measured. (author)

  4. On the problem of monitoring the neutron parameters of the Fast Energy Amplifier

    International Nuclear Information System (INIS)

    Behringer, K.; Wydler, P.

    1998-10-01

    The conceptual Fast Energy Amplifier, proposed by Rubbia et al. (1995), consists of a combination of a U-233/Th-232 fuelled fast-neutron subcritical facility with a proton accelerator. An intense beam of 1 GeV protons is injected into liquid lead at the core centre and drives the reactor by producing spallation neutrons. The burst of spallation neutrons produced by a single proton alters the basic neutron statistics which are well known for thermal neutrons in conventional nuclear reactors. A short assessment of standard neutron noise analysis methods is made with respect to monitoring neutron parameter data. (author)

  5. Application of thin-film breakdown counters for characterization of neutron field of the VESUVIO instrument at the ISIS spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.N. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Pietropaolo, A., E-mail: antonino.pietropaolo@roma2.infn.it [CNISM UdR Tor Vergata, and Centro NAST Roma, Italy Scientifica 1 I-00133 Roma Italy (Italy); Prokofiev, A.V. [The Svedberg Laboratory, Uppsala University, Uppsala (Sweden); Rodionova, E.E. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Frost, C.D.; Ansell, S.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton (United Kingdom); Gorini, G. [Dipartimento di Fisica ' G. Occhialini,' Universita degli Studi di Milano-Bicocca, Milano (Italy)

    2012-09-21

    The high-energy neutron field of the VESUVIO instrument at the ISIS facility has been characterized using the technique of thin-film breakdown counters (TFBC). The technique utilizes neutron-induced fission reactions of {sup nat}U and {sup 209}Bi with detection of fission fragments by TFBCs. Experimentally determined count rates of the fragments are Almost-Equal-To 50% higher than those calculated using spectral neutron flux simulated with the MCNPX code. This work is a part of the project to develop ChipIr, a new dedicated facility for the accelerated testing of electronic components and systems for neutron-induced single event effects in the new Target Station 2 at ISIS. The TFBC technique has shown to be applicable for on-line monitoring of the neutron flux in the neutron energy range 1-800 MeV at the position of the device under test (DUT).

  6. Application of thin-film breakdown counters for characterization of neutron field of the VESUVIO instrument at the ISIS spallation source

    Science.gov (United States)

    Smirnov, A. N.; Pietropaolo, A.; Prokofiev, A. V.; Rodionova, E. E.; Frost, C. D.; Ansell, S.; Schooneveld, E. M.; Gorini, G.

    2012-09-01

    The high-energy neutron field of the VESUVIO instrument at the ISIS facility has been characterized using the technique of thin-film breakdown counters (TFBC). The technique utilizes neutron-induced fission reactions of natU and 209Bi with detection of fission fragments by TFBCs. Experimentally determined count rates of the fragments are ≈50% higher than those calculated using spectral neutron flux simulated with the MCNPX code. This work is a part of the project to develop ChipIr, a new dedicated facility for the accelerated testing of electronic components and systems for neutron-induced single event effects in the new Target Station 2 at ISIS. The TFBC technique has shown to be applicable for on-line monitoring of the neutron flux in the neutron energy range 1-800 MeV at the position of the device under test (DUT).

  7. Application of thin-film breakdown counters for characterization of neutron field of the VESUVIO instrument at the ISIS spallation source

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Pietropaolo, A.; Prokofiev, A.V.; Rodionova, E.E.; Frost, C.D.; Ansell, S.; Schooneveld, E.M.; Gorini, G.

    2012-01-01

    The high-energy neutron field of the VESUVIO instrument at the ISIS facility has been characterized using the technique of thin-film breakdown counters (TFBC). The technique utilizes neutron-induced fission reactions of nat U and 209 Bi with detection of fission fragments by TFBCs. Experimentally determined count rates of the fragments are ≈50% higher than those calculated using spectral neutron flux simulated with the MCNPX code. This work is a part of the project to develop ChipIr, a new dedicated facility for the accelerated testing of electronic components and systems for neutron-induced single event effects in the new Target Station 2 at ISIS. The TFBC technique has shown to be applicable for on-line monitoring of the neutron flux in the neutron energy range 1–800 MeV at the position of the device under test (DUT).

  8. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  9. Cosmic-ray neutron transport at a forest field site

    DEFF Research Database (Denmark)

    Andreasen, Mie; Jensen, Karsten Høgh; Desilets, Darin

    2017-01-01

    -ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different...

  10. Neutron data library for transactinides at energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Artisyuk, V.V.; Konobeyev, A.Y. [Obninsk Institute of Nuclear Power Engineering (Russian Federation)

    1995-10-01

    New neutron data library for transactinides is briefly described. The library includes evaluated cross-sections for fission and threshold neutron induced reactions for isotopes of U, Np and Pu at energies 0-100 MeV.

  11. Fast neutron fields at the RB reactor; Polja brzih neutron na reacktoru RB

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Pesic, M; Dasic, N [Institut za nuklearne nauke Boris Kidric Vinca, Beograd (Yugoslavia)

    1984-07-01

    Paper deals with the reasons and methods of realization of the RB neutron converters. The methods and results of neutron flux intensities and spectra measurements as well as gamma dose determination are presented. (author)

  12. Range and energy functions of interest in neutron dosimetry

    International Nuclear Information System (INIS)

    Bhatia, D.P.; Nagarajan, P.S.

    1978-01-01

    This report documents the energy and range functions generated and used in fast neutron interface dosimetry studies. The basic data of stopping power employed are the most recent. The present report covers a number of media mainly air, oxygen, nitrogen, polythene, graphite, bone and tissue, and a number of charged particles, namely protons, alphas, 9 Be, 11 B, 12 C, 13 C, 14 N and 16 O. These functions would be useful for generation of energy and range values for any of the above particles in any of the above media within +- 1% in any dosimetric calculations. (author)

  13. Bubble detector's evaluation for neutron field measurement in a very known source

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Eduardo; Silva, Ademir X. da, E-mail: ademir@nuclear.ufrj.b, E-mail: jdantas@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Reina, Luiz, E-mail: reina@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Facure, Alessandro, E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Measurements on neutron fields, mainly for dosimetric purposes, have been a major concern for ionizing radiation workers, because of the radiation protection issues. The present work aims to study the using of bubble detectors in neutron dosimetry and the Bubble Detector Spectrometer (BDS) was chosen for this task. Several experiments were performed in order to obtain spectra from such devices and their respective analysis and then they were compared to those which were obtained by other ways. An Am-Be calibration neutron source from Instituto de Radioprotecao e Dosimetria/Comissao Nacional de Energia Nuclear (IRD/CNEN) was used and its spectrum was compared to the one obtained by BDS. The possibility of the use of such devices as ambient dosimeters was also evaluated. Despite the uncertainties, especially in the lowest energy thresholds, the spectrum from BDS is in good agreement with the known ones and the use of BDS as a dosimeter demands a more detailed study due to some characteristics of the Am-Be source that produce high uncertainties in low energy thresholds. (author)

  14. Equation of state of neutron-rich nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Norbert; Strohmeier, Susanne [Technische Universitaet Muenchen (Germany)

    2016-07-01

    Based on chiral effective field theory, the equation of state of neutron-rich nuclear matter is investigated systematically. The contributing diagrams include one- and two-pion exchange together with three-body terms arising from virtual Δ(1232)-isobar excitations. The proper expansion of the energy per particle, anti E(k{sub f},δ) = anti E{sub n}(k{sub f}) + δB{sub 1}(k{sub f}) + δ{sup 5/3}B{sub 5/3}(k{sub f}) + δ{sup 2}B{sub 2}(k{sub f}) +.., for the system with neutron density ρ{sub n} = k{sub f}{sup 3}(1-δ)/3π{sup 2} and proton density ρ{sub p} = k{sub f}{sup 3}δ/3π{sup 2} is performed analytically for the various interaction contributions. One observes essential structural differences to the commonly used quadratic approximation. The density dependent coefficient B{sub 1}(k{sub f}) turns out to be unrelated to the isospin-asymmetry of nuclear matter. The coefficient B{sub 5/3}(k{sub f}) of the non-analytical δ{sup 5/3}-term receives contributions from the proton kinetic energy and from the one- and two-pion exchange interactions. The physical consequences for neutron star matter are studied.

  15. Neutron flux density and secondary-particle energy spectra at the 184-inch synchrocyclotron medical facility

    International Nuclear Information System (INIS)

    Smith, A.R.; Schimmerling, W.; Henson, A.M.; Kanstein, L.L.; McCaslin, J.B.; Stephens, L.D.; Thomas, R.H.; Ozawa, J.; Yeater, F.W.

    1978-07-01

    Helium ions, with an energy of 920 MeV, produced by the 184-inch synchrocyclotron of the Lawrence Berkeley Laboratory are now being used in a pilot series to determine their efficacy in the treatment of tumors of large volume. The techniques for production of the large uniform radiation fields required for these treatments involve the use of beam-limiting collimators and energy degraders. Interaction of the primary beam with these beam components produces secondary charged particles and neutrons. The sources of neutron production in the beam transport system of the alpha-particle beam have been identified and their magnitudes have been determined. Measurements with activation detectors and pulse counters of differing energy responses have been used to determine secondary particle spectra at various locations on the patient table. These spectra are compared to a calculation of neutron production based on best estimates derived from published cross sections. Agreement between the calculated spectra and those derived from experimental measurements is obtained (at the 10 to 20% level) when the presence of charged particles is taken into account. The adsorbed dose in soft tissue is not very sensitive to the shape of the incident neutron energy spectrum, and the values obtained from unfolding the experimental measurements agree with the values obtained from the calculated spectra within the estimated uncertainty of +-25%. These values are about 3 x 10 -3 rad on the beam axis and about 1 x 10 -3 rad at 20 cm or more from the beam axis, per rad deposited by the incident alpha-particle beam. Estimates of upper limit dose to the lens of the eye and red bone marrow are approximately 10 rad and approximately 1 rad, respectively, for a typical treatment plan. The absorbed dose to the lens of the eye is thus well below the threshold value for cataractogenesis estimated for fission neutrons. An upper limit for the risk of leukemia is estimated to be approximately 0.04%

  16. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig

  17. On the Pressure of a Neutron Gas Interacting with the Non-Uniform Magnetic Field of a Neutron Star

    Science.gov (United States)

    Skobelev, V. V.

    2018-04-01

    On the basis of simple arguments, practically not going beyond the scope of an undergraduate course in general physics, we estimate the additional pressure (at zero temperature) of degenerate neutron matter due to its interaction with the non-uniform magnetic field of a neutron star. This work has methodological and possibly scientific value as an intuitive application of the content of such a course to a solution of topical problems of astrophysics.

  18. Constraints on the symmetry energy from observational probes of the neutron star crust

    International Nuclear Information System (INIS)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An; Murphy, Kyleah; Wen, De-Hua

    2014-01-01

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  19. Constraints on the symmetry energy from observational probes of the neutron star crust

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Murphy, Kyleah [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Umpqua Community College, Roseburg, Oregon (United States); Wen, De-Hua [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); South China University of Technology, Department of Physics, Guangzhou (China)

    2014-02-15

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  20. Four energy group neutron flux distribution in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION code

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2009-01-01

    A 3-D (R, θ , Z) neutronic model for the Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis. The group constants for all the reactor components were generated using the WIMSD4 code. The reactor excess reactivity and the four group neutron flux distributions were calculated using the CITATION code. This model is used in this paper to calculate the point wise four energy group neutron flux distributions in the MNSR versus the radius, angle and reactor axial directions. Good agreement is noticed between the measured and the calculated thermal neutron flux in the inner and the outer irradiation site with relative difference less than 7% and 5% respectively. (author)

  1. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  2. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.

    Science.gov (United States)

    Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K

    2004-01-01

    Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.

  3. Multilayer detector for operative estimation of spectral composition of neutron fields

    CERN Document Server

    Dedenko, G L; Kaplun, A A; Kolesnikov, S V; Samosadnyj, A V; Samosadnyj, V T

    2002-01-01

    Paper describes measuring and control equipment to detect and to identify neutron sources. The equipment comprises two multilayer detectors based on sup 3 He-counters of slow neutron and poly ethylene moderator of fast neutrons, as well as, intensifiers-signal shapers, power multichannel intensifies, power unit, 8-bit microprocessor base information acquisition and processing system. Paper contains the results of measurements of energy dependence of sensitivity of neutron recording by detector layers with application of monoenergetic neutron fluxes. Difference of the experimental data and the Monte Carlo method base calculation results is 10% maximum

  4. The effect of the scalar-isovector meson field on hyperon-rich neutron star matter

    International Nuclear Information System (INIS)

    Mi, Aijun; Zuo, Wei; Li, Ang

    2008-01-01

    We investigate the effect of the scalar-isovector δ-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the framework of the relativistic mean field theory. The influence of the δ-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npeμ neutron star matter. We find that inclusion of the δ-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the δ-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the δ-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, whereas inclusion of the δ-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the δ-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Σ hyperons. (author)

  5. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.; Sajo-Bohus, L. [Universidad Simón Bolívar, Nuclear Physics Laboratory, Sartenejas, Caracas (Venezuela, Bolivarian Republic of); Dávila, J. [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  6. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  7. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  8. Evaluation of mixed energy neutron doses using TLD NG-67 type

    International Nuclear Information System (INIS)

    Akhadi, Mukhlis; Thoyib Thamrin, M; Usmiyati Dewi, K.

    2000-01-01

    A research has been carried out to develop dose evaluation method of mixed neutron source with its neutron doses can be classified to two groups, I.e neutron doses with energy ≥ 0.5 eV and thermal neutron doses with energy less than 0.5 e V consist of epithermal and fast neutron, but in this research they were classified as fast neutron. Development of this dose evaluation method was carried out by sensitivity (S) intercomparison of TLD-600 to fast neutron, mixed energy neutron of nuclear rectors, and thermal neutron. From the experiment it was obtained that the value of Sfast : Sreactor : Sthermal = 0.005 : 0.010 : 1. Calibration factor (CF) of TLD is defined as 1/S. from the sensitivity data it can be obtained that the value of Cffast : Cfreactor : Cfthermal = 200 :100 : 1. The value of Cfreactor can be applied for mixed energy neutron doses evaluation of TLD-600. Key word : dosemeter, neutron dose, calibration factor, fast neutron, thermal neutron, nuclear reactor

  9. Significant change in the construction of a door to a room with slowed down neutron field by means of commonly used inexpensive protective materials

    International Nuclear Information System (INIS)

    Konefal, Adam; Laciak, Marcin; Dawidowska, Anna; Osewski, Wojciech

    2014-01-01

    The detailed analysis of nuclear reactions occurring in materials of the door is presented for the typical construction of an entrance door to a room with a slowed down neutron field. The changes in the construction of the door were determined to reduce effectively the level of neutron and gamma radiation in the vicinity of the door in a room adjoining the neutron field room. Optimisation of the door construction was performed with the use of Monte Carlo calculations (GEANT4). The construction proposed in this paper bases on the commonly used inexpensive protective materials such as borax (13.4 cm), lead (4 cm) and stainless steel (0.1 and 0.5 cm on the side of the neutron field room and of the adjoining room, respectively). The improved construction of the door, worked out in the presented studies, can be an effective protection against neutrons with energies up to 1 MeV (authors)

  10. Analysis of a neutron scattering integral experiment on iron for neutron energies from 1 to 15 MeV

    International Nuclear Information System (INIS)

    Cramer, S.N.; Oblow, E.M.

    1976-11-01

    Monte Carlo calculations were made to analyze the results of an integral experiment with an iron sample to determine the adequacy of neutron scattering cross section data for iron. The experimental results analyzed included energy-dependent NE-213 detector count rates at a scattering angle of 90 deg and pulse-height spectra for scattered neutrons produced in an iron ring pulsed with a 1- to 20-MeV neutron source. The pulse-height data were unfolded to generate secondary neutron spectra at 90 deg as a function of incident neutron energy. Multigroup Monte Carlo calculations using the MORSE code and ENDF/B-IV cross sections were made to analyze all reported results. Discrepancies between calculated and measured responses were found for inelastic scattering reactions in the range from 1 to 4 MeV. These results were related to deficiencies in ENDF/B-IV iron cross section data

  11. Accuracy estimation for intermediate and low energy neutron transport calculation with Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Sasamoto, Nobuo; Tanaka, Shun-ichi

    1987-02-01

    Both ''measured radioactive inventory due to neutron activation in the shield concrete of JPDR'' and ''measured intermediate and low energy neutron spectra penetrating through a graphite sphere'' are analyzed using a continuous energy model Monte Carlo code MCNP so as to estimate calculational accuracy of the code for neutron transport in thermal and epithermal energy regions. Analyses reveal that MCNP calculates thermal neutron spectra fairly accurately, while it apparently over-estimates epithermal neutron spectra (of approximate 1/E distribution) as compared with the measurements. (author)

  12. A Kinematically Beamed, Low Energy Pulsed Neutron Source for Active Interrogation

    International Nuclear Information System (INIS)

    Dietrich, D.; Hagmann, C.; Kerr, P.; Nakae, L.; Rowland, M.; Snyderman, N.; Stoeffl, W.; Hamm, R.

    2004-01-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n,n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM

  13. Monte Carlo calculations of energy and angular distributions of transmitted and backscattered neutrons of 15 MeV incident energy

    International Nuclear Information System (INIS)

    Gaber, M.; Faied, A.

    1994-01-01

    The Monte Carlo technique was used to generate both energy and angular distributions of transmitted and backscattered neutrons incident on infinite graphite slabs of thicknesses ranging from 1-90 cm. Point isotropic and parallel beams of 15 MeV neutrons were used. A computer program was developed to simulate collisions by fast neutrons. (author)

  14. Investigation of Fe3O4 Colloid Behaviour in a Magnetic Field by Polarized Neutron Transmission

    International Nuclear Information System (INIS)

    Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1994-01-01

    Experiments were conducted to measure the dependence of neutron polarization following their transmission through a magnetic colloid on the concentration of magnetic particles, magnetic field strength and wavelength of neutrons. In a magnetic field up to 500 Oe the precession of the neutron polarization is seen. Comparison of the experimental data and theory is made and colloid magnetization is determined. The measurement was carried out with the SPN-1 polarized neutron spectrometer at the high-flux pulsed reactor IBR-2 in Dubna. 7 refs., 2 figs

  15. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.

    2010-01-01

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated...

  16. Dipole polarizability of neutron rich nuclei and the symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Johansen, Jacob; Miki, Kenjiro; Schindler, Fabia; Schrock, Philipp [IKP, TU Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt (Germany); GSI, Darmstadt (Germany); Boretzky, Konstanze [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    As a part of a systematic investigation of the dipole response of stable up to very neutron rich tin isotopes, nuclear and electromagnetic excitation of {sup 124}Sn-{sup 134}Sn has been investigated at relativistic energies in inverse kinematics induced by carbon and lead targets at the LAND-R3B setup at GSI in Darmstadt. The electric dipole response and the nuclear reaction cross section, total and charge-changing, are obtained from the kinematically complete determination of momenta of all particles on an event by event basis. The dipole polarizability is extracted from the Coulomb excitation interaction channel, in order to make use of relevant correlations of this observable with nuclear matter properties such as the symmetry energy at saturation density (J) and it's slope (L). The systematics of the low-lying ''pygmy'' dipole strength, the giant dipole resonance (GDR) and the neutron skin thickness are determined with respect to increasing isospin asymmetry. This talk also discusses the correlations and sensitivities of these variables and observables obtained within the framework of nuclear energy density functional theory.

  17. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  18. The use of multi-energy-group neutron diffusion theory to numerically evaluate the relative utility of three dial-detector neutron porosity well logging tools

    International Nuclear Information System (INIS)

    Zalan, T.A.

    1988-01-01

    Multi-energy-group neutron diffusion theory is used to numerically evaluate the utility of two different dual-detector neutron porosity logging devices, a 14 MeV (accelerator) neutron source - epithermal neutron detector device and a 4 MeV neutron source - capture gamma-ray detector device, relative to the traditional 4 MeV neutron source - thermal neutron detector device. Fast and epithermal neutron diffusion parameters are calculated using Monte Carlo - derived neutron flux distributions. Thermal parameters are calculated from tabulated cross sections. An existing analytical method to describe the transport of gamma-rays through common earth materials is modified in order to accommodate the modeling of the 4 MeV neutron - capture gamma-ray device. The 14 MeV neutron - epithermal neutron device is found to be less sensitive to porosity than the 4 MeV neutron - capture gamma-ray device, which in turn is found to be less sensitive to porosity than the traditional 4 MeV neutron - thermal neutron device. Salinity effects are found to be comparable for the 4 MeV neutron - capture gamma-ray and 4 MeV neutron - thermal neutron devices. The 4 MeV neutron capture gamma-ray measurement is found to be deepest investigating

  19. Evaluation of the Neutron Detector Response for Cosmic Ray Energy Spectrum by Monte Carlo Transport Simulation

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Gonzalez, Odair L.

    2011-01-01

    Neutrons generated by the interaction of cosmic rays with the atmosphere make an important contribution to the dose accumulated in electronic circuits and aircraft crew members at flight altitude. High-energy neutrons are produced in spallation reactions and intranuclear cascade processes by primary cosmic-ray particle interactions with atoms in the atmosphere. These neutrons can produce secondary neutrons and also undergo a moderation process due to atmosphere interactions, resulting in a wider energy spectrum, ranging from thermal energies (0.025 eV) to energies of several hundreds of MeV. The Long-Counter (LC) detector is a widely used neutron detector designed to measure the directional flux of neutrons with about constant response over a wide energy range (thermal to 20 MeV). ). Its calibration process and the determination of its energy response for the wide-energy of cosmic ray induced neutron spectrum is a very difficult process due to the lack of installations with these capabilities. The goal of this study is to assess the behavior of the response of a Long Counter using the Monte Carlo (MC) computational code MCNPX (Monte Carlo N-Particle eXtended). The dependence of the Long Counter response on the angle of incidence, as well as on the neutron energy, will be carefully investigated, compared with the experimental data previously obtained with 241 Am-Be and 252 Cf neutron sources and extended to the neutron spectrum produced by cosmic rays. (Author)

  20. Studies of neutron dissociation at FermiLab energies

    International Nuclear Information System (INIS)

    Ferbel, T.

    1975-01-01

    The characteristics of diffraction dissociation of neutrons into pπ - systems at high energies were examined. A substantial correlation is observed between the mass and the t of the produced system. The spin structure of the pπ - amplitudes at low mass is very complex, but is described surprisingly well by the simple Deck Mechanism. Both π-exchange and proton-exchange contributions are evident in diffractive production. The t-channel and s-channel helicity amplitudes contain comparable contributions from flip and nonflip terms and the produced states are not restricted to those expected on the basis of the Morrison rule

  1. Criticality problems in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1979-01-01

    The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed

  2. High energy fast neutrons from the Harwell variable energy cyclotron. II. Biologic studies in mammalian systems

    International Nuclear Information System (INIS)

    Berry, R.J.; Bance, D.A.; Barnes, D.W.H.; Cox, R.; Goodhead, D.T.; Sansom, J.M.; Thacker, J.

    1977-01-01

    A high energy fast neutron beam potentially suitable for radiotherapy has been described in a companion paper. Its biologic effects have been studied in the following experimental systems: clonal survival and mutation induction after irradiation in vitro in Chinese hamster cells and human diploid fibroblasts; survival of reproductive capacity in vivo of murine hemopoietic colony-forming cells and murine intestinal crypts after irradiation in vivo; survival of reproductive capacity in vivo after irradiation in vitro or in vivo of murine lymphocytic leukemia cells; acute intestinal death following total body irradiation of mice and guinea pigs; and hemopoietic death following total body irradiation of mice and guinea pigs. The relative biologic effectiveness of these high energy neutrons varied among the different biologic systems, and in several cases varied with the size of the radiation dose. The oxygen enhancement ratio was studied in murine lymphocytic leukemia cells irradiated under aerobic or hypoxic conditions in vitro and assayed for survival of reproductive capacity in vivo. Compared with x-rays, the potential therapeutic gain factor for these neutrons was about 1.5. This work represents a ''radiobiologic calibration'' program which it is suggested should be undertaken before new and unknown fast neutron spectra are used for experimental radiotherapy. The results are compared with biologic studies carried out at high energy fast neutron generators in the United States

  3. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  4. Transport calculation of medium-energy protons and neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.

    1978-09-01

    A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)

  5. Dispersive versus constant-geometry models of the neutron-208Pb mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Sartor, R.

    1990-01-01

    Phenomenological optical-model analyses of differential elastic scattering cross sections of neutrons by 208 Pb indicate that the radius of the real part of the potential decreases with increasing energy in the domain 4< E<40 MeV. On the other hand, the experimental total cross section is compatible with a real potential whose radial shape is energy independent. In order to clarify this situation, we compare a 'constant geometry' model whose real part has an energy-independent radial shape with a 'dispersive model' whose real part has an energy-dependent radial shape calculated from the dispersion relation which connects the real and imaginary parts of the field. The following three main features are considered. (i) The junction of the optical-model potential with the shell-model potential at negative energy. (ii) The agreement between the calculated total and differential cross sections and their experimental values. (iii) The extent to which the real part of the optical-model potential can be accurately determined by analyzing the total cross section only. It is concluded that the presently available experimental data support the existence of an energy dependence of the radial shape of the real potential, in keeping with the dispersion relation. A new parametrization of a 'dispersive' mean field is also presented. It does not involve more parameters than the previously published one but takes better account of the physical properties of the spectral functions; it is shown to improve the agreement between predicted and experimental scattering data. (orig.)

  6. Thermoluminescent analyses of mean photon energy of a field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, T. A.; De Paiva, F.; Fonseca, G.; Dalledone S, P. de T.; Yoriyaz, H., E-mail: tassio.cavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Nowadays a common method of dosimetry is utilize the thermoluminescent dosimetry (TLD) of LiF, where for pure gamma field is typically used the LiF or CaF{sub 2} TLDs and for mixed neutron and gamma field dosimetry is used the pair TLD-600/TLD-700. The difference between these three LiF TLDs is the amount of isotope {sup 6}Li in their composition. The isotope {sup 6}Li has a great cross section for thermal neutrons, making the TLD-600 sensitive to thermal neutrons beyond the radiation gamma. Whereas the TLD-700 is considered sensitive only for radiation gamma. Some studies showed an energetic dependence of these TLDs for gammas rays. So the goal of this work was study these energetic dependence of TLDs from the angular coefficient of their response versus dose calibration curves when they were irradiated in four fields with photons of different energies: 43 keV, 662 keV, 1.2 MeV, 3 MeV. In order to create the calibration curves TLD, it was performed three irradiations with distinct exposure times for each photon energy. These studies showed a different angular coefficient to each curve; demonstrate the energetic dependence of these TLDs. By simulation with Monte Carlo based code, MCNP-5, it was observed the deposited photon dose due to different photons energies. From these simulations, it was also possible to observe a difference of dose deposition in TLDs when they were exposed to the same dose provided from different photons energies. These work showed the previously study of photon energetic dependence of LiF TLDs. (Author)

  7. Dosimetry Characterization of the Neutron Fields of the Intermediate Temporary Storage of the Trillo Nuclear Power Plant

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The Neutron Standards Laboratory of CIEMAT, in collaboration with the Trillo Nuclear Power Plant, has conducted a detailed dosimetric and spectrometric characterization of the neutron fields at the Intermediate Temporary Storage of the Trillo Nuclear Power Plant, as well as the neutron fields of ENSA-DPT spent fuel casks. For neutron measurements, neutron monitors and a Bonner spheres spectrometry system have been used. In addition, a Monte Carlo model of the installation and the cask has been developed and validated.

  8. Asymmetry of neutrino emission from neutron beta-decay in superdense matter and strong magnetic field

    International Nuclear Information System (INIS)

    Kauts, V.L.; Savochkin, A.M.; Studenikin, A.I.

    2006-01-01

    Exact solution of Dirac equation for charged particles in homogenous magnetic field for computation of probability in presence of degenerate magnetized Fermi-gas consisting of protons, neutrons, and electrons has been used. Angular distribution of antineutrino momenta is investigated. Values of main parameters of medium is realistic for physics of neutron stars. This investigation may be applied for consideration of cooling of neutron stars [ru

  9. Neutron response study

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Fix, J.J.; Thorson, M.R.; Nichols, L.L.

    1981-01-01

    Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry

  10. Ten year's activity in the field of neutron scattering workshop

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    2003-01-01

    'Neutron scattering' is in the frame of the 'Utilization of Research Reactor's of the FNCA (Forum for Nuclear Cooperation in Asia) project, which held the workshops from FY 1992. This report is a summary of the results and activities of neutron scattering workshops and sub-workshops since the start in FY 1992. (author)

  11. Applications of Bonner sphere detectors in neutron field dosimetry

    International Nuclear Information System (INIS)

    Awschalom, M.; Sanna, R.S.

    1983-09-01

    The theory of neutron moderation and spectroscopy are briefly reviewed, and moderators that are useful for Bonner sphere spectrometers are discussed. The choice of the neutron detector for a Bonner sphere spectrometer is examined. Spectral deconvolution methods are briefly reviewed, including derivative, parametric, quadrature, and Monte Carlo methods. Calibration is then discussed

  12. Calculating the energy spectrum of neutrons from tritium target of the NG-150 type generator

    International Nuclear Information System (INIS)

    Bortash, A.I.; Kuznetsov, V.S.

    1987-01-01

    Calculation procedure of neutron spectra yielding from the NG-150 generator target chamber with regard to deutron moderation is suggested. Using the suggested procedure, neutron spectra for different escape angles formed in the tritium target are calculated. The spectrum of neutrons scattered in cooling water is calculated. The mean energy of neutrons escaping at the angle of 0 deg equalling 14.5 MeV is obtained

  13. Presentation of a semiempirical method for the calculation of doses due to neutrons and capture gamma rays inside high energy accelerators rooms

    International Nuclear Information System (INIS)

    Larcher, A.M.; Bonet Duran, S.M.

    1998-01-01

    Full text: Medical electron accelerators operating above 10 MeV produce radiation beams that are contaminated with neutrons. Therefore, shielding design for high energy accelerator rooms must consider the neutron component of the radiation field. In this paper a semiempirical method is presented to calculate doses due to neutrons and capture gamma rays inside the room and the maze. The calculation method is based on the knowledge of the neutron yield Q (neutrons/Gy of photons at isocenter) and the average energy of the primary beam of neutrons Eo (MeV). The method constitutes an appropriate tool for shielding facilities evaluation. The accuracy of the method has been contrasted with data obtained from the literature and an excellent correlation among the calculations and the measured values was achieved. In addition, the method has been used in the verification of experimental data corresponding to a 15 MeV linear accelerator installed in the country with similar results. (author) [es

  14. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  15. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  16. Evaluation of area monitor response for neutrons in radiation field generated by a 15 MV clinic accelerator; Avaliacao da resposta dos monitores de area para neutrons em campo de radiacao gerado por um acelerador clinico de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula

    2011-07-01

    The clinical importance and usage of linear accelerators in cancer treatment increased significantly in the last years. Coupled with this growth came the concern about the use of accelerators with energies over to 10 MeV which produce therapeutic beam contaminated with neutrons generated when high-energy photons interact with high-atomic-number materials such as tungsten and lead present in the accelerator itself. At these facilities, measurements of the ambient dose equivalent for neutrons present difficulties owing to the existence of a mixed radiation field and possible electromagnetic interference near the accelerator. The Neutron Laboratory of the IRD - Brazilian Institute for Radioprotection and Dosimetry, aiming to evaluate the survey meters performance at these facilities, initiated studies of instrumentation response in the presence of different neutron spectra. Neutrons sources with average energies ranging from 0.55 to 4.2 MeV, four different survey meters and one ionization chamber to obtain the ratio between the dose due to neutrons and gamma radiation were used in this work. The evaluation of these measurements, performed in a 15 MV linear accelerator room is presented. This work presents results that demonstrate the complexity and care needed to make neutrons measurements in radiotherapy treatment rooms containing high energy clinical accelerators. (author)

  17. Experimental research of plastic scintillation detector loaded 6Li neutron energy response

    International Nuclear Information System (INIS)

    Wang Lizong; Zhang Chuanfei; Peng Taiping; Guo Cun; Yang Hongqiong; Zhang Jianhua

    2005-01-01

    A new plastic scintillator, plastic scintillator loaded 6 Li, is brought forward and developed in this paper in order to increase low energy neutron sensitivity. Neutron sensitivity of several plastic scintillation detectors loaded 6 Li new developed in neutron energy range 0.2 MeV-5.0 MeV are calibrated by direct current at serial accelerator. Energy response curves of the detectors are obtained in this experiment. It is shown that this new plastic scintillation detector can increase low energy neutron sensitivity in experimental results. (authors)

  18. Investigation of dose distribution in mixed neutron-gamma field of boron neutron capture therapy using N isopropylacrylamide gel

    Energy Technology Data Exchange (ETDEWEB)

    Bavarmegin, Elham; Sadremomtaz, Alireza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Khalafi, Hossein; Kasesaz, Yaser [Dept. of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khajeali, Azim [Medical Education Research Center, Tabriz (Iran, Islamic Republic of)

    2017-02-15

    Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

  19. Determining of the intermediate neutron spectrum in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-01-01

    The activation method for intermediate neutron spectrum determination is given in this paper. The intermediate neutron spectrum in experimental fuel channel (EFC) at the RB reactor is determined om the basis of this method. The results of measurements are treated with PRAG code and will be treated with KRIFIT and TENET codes that are also developed. (author)

  20. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  1. Leading neutron energy and pT distributions in deep inelastic scattering and photoproduction at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-02-01

    The production of energetic neutrons in ep collisions has been studied with the ZEUS detector at HERA. The neutron energy and p T 2 distributions were measured with a forward neutron calorimeter and tracker in a 40 pb -1 sample of inclusive deep inelastic scattering (DIS) data and a 6 pb -1 sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper p T 2 distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data. (orig.)

  2. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  3. Energy spectra of neutrons accompanying the emission fission of 238U

    International Nuclear Information System (INIS)

    Smirenkin, G.N.; Lovchikova, G.N.; Trufanov, A.M.; Svirin, M.I.; Polyakov, A.V.; Vinogradov, V.A.; Dmitriev, V.D.; Boykov, G.S.

    1996-01-01

    The spectra of fission neutrons emitted from 238U are measured for the first time by the time-of-flight method at incident-neutron energies of 16.0 and 17.7 MeV. Analysis of the neutron spectra shows that experimental results at incident-neutron energies of 14.7, 16.0, and 17.7 MeV (above the threshold of chance fission) differ significantly from those obtained at a neutron energy of 2.9 MeV (below the threshold of chance fission). Owing to the prefission emission of neutrons, the observed spectra of neutrons from emission fission exhibit a characteristic growth of the neutron yield in both hard and soft sections of the spectrum of secondary neutrons. This growth manifests itself as a step in the first case and as a rise in the second case, where it results in a noticeable excess of neutrons over the statistical-model predictions for E<2 MeV. The first feature in the spectra of neutrons from emission fission can be associated with the nonequilibrium decay of an excited fissile nucleus. On the contrary, the origin of the second feature has yet to be clarified. Additional measurements of angular distributions of secondary neutrons may prove helpful in this respect

  4. Compact deuterium-tritium neutron generator using a novel field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Sanchez, J.; Tang, V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Wang, H. [Department of Computer Science, Stanford University, Stanford, California 94305 (United States)

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  5. Effect of neutrons scattered from boundary of neutron field on shielding experiment

    International Nuclear Information System (INIS)

    Ogawa, Tatsuhiko; Abe, Takuya; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    Neutron shielding experiment with 49 cm-thick ordinary concrete was carried out at the reactor 'Yayoi' The University of Tokyo. System of this experiment is enclosed by heavy concrete where neutrons backscattered from heavy concrete likely affected neutron flux on the back surface of shielding concrete. Reaction rate of 197 Au(n, γ), cadmium covered 197 Au(n, γ) and 115 In(n, n') in the shielding concrete was measured using foil activation method. Neutron transport calculation was carried out in order to simulate reaction rate by calculating neutron spectra and convoluting with neutron capture cross-section in neutron shielding concrete. Comparison was made between calculated reaction rate and experimental one, and almost satisfactory agreement was found except for the back surface of shielding. To compose adequate simulation model, description of heavy concrete behind the shielding was thought to be of importance. For example, disregarding neutrons backscattered from heavy concrete, calculation underestimated reaction rate by the factor of 10. In another example, assuming that chemical composition of heavy concrete is equal to the composition adopted from a literature, the reaction rate was overestimated by factor of 5. By making the composition of heavy concrete equal to that based on facility design, overestimation was found to be the factor of 2. Therefore, adequate description of chemical composition of heavy concrete is found to be of importance in order to simulate neutron induced reaction rate on the back surface of neutron shielding concrete in shielding experiment performed in a system enclosed by heavy concrete. (author)

  6. Response functions of the Andersson-Braun and extended range rem counters for neutron energies from thermal to 10 GeV

    CERN Document Server

    Mares, V; Schraube, H

    2002-01-01

    This work is devoted to the calculation of responses as functions of neutron energy for a paired set of Andersson-Braun rem counters, which is commercially available. Different Monte Carlo codes such as MCNP, LAHET, HADRON and MCNPX were applied in the calculations. The study extended to frontal, lateral and isotropic neutron incidence. For an estimation of the contribution of charged high-energy particles to the reading, the responses to protons and pions were also determined. The results obtained give good bases for the practical use of the new instrument in high-energy neutron fields.

  7. Method of energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Hoek, M.; Drozdowicz, K.; Aronsson, D.

    1990-03-01

    A method to calibrate an array of scintillation neutron detectors, using a γ source, is presented. The count rate is measured as a function of high voltage at a given discrimination level. The obtained distribution is differentiated and a maximum value is determined which corresponds to the voltage at which the gamma peak passes through the discrimination level. By repeating the measurement at different discrimination levels the experimental dependence between the discrimination level and the high voltage is found as a straight line in a log-log diagram. Two calibration parameter for each detector are determined from a fit of these straight lines. A recalculation from the energy of the used γ source to any other energy is then possible and the obtained relation can be used to calculate discrimination levels and high voltages for each detector. Verification procedures are described. (authors)

  8. Neutronics issues and inertial fusion energy: a summary of findings

    International Nuclear Information System (INIS)

    Latkowski, J.F.

    1998-01-01

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES ampersand H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES ampersand H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES ampersand H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions

  9. Neutron dosimetry at a high-energy electron-positron collider

    Science.gov (United States)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  10. Neutron and proton densities and the symmetry energy

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.

    2003-01-01

    The neutron/proton distributions in nuclei, in particular, the n-p difference, are considered in a 'macroscopic' Thomas-Fermi approach. The density dependence F(ρ) of the symmetry-energy density, where ρ is the total density, drives this difference in the absence of Coulomb and density-gradient contributions when we obtain an explicit solution for the difference in terms of F. If F is constant then the n-p difference and, in particular, the difference δR between the neutron and proton rms radii are zero. The Coulomb energy and gradient terms are treated variationally. The latter make only a small contribution to the n-p difference, and this is then effectively determined by F. The Coulomb energy reduces δR. Switching off the Coulomb contribution to the n-p difference then gives the maximum δR for a given F. Our numerical results are for 208 Pb. We consider a wide range of F; for these, both δR and the ratio χ of the surface to volume symmetry-energy coefficient depend, approximately, only on an integral involving F -1 . For δR < or approx. 0.45 fm this dependence is one valued and approximately linear for small δR, and this integral is then effectively determined by δR. There is a strong correlation between δR and χ, allowing an approximate determination of χ from δR. δR has a maximum of congruent with 0.65 fm

  11. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1988-11-01

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  12. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and Eparallel formation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs

  13. Designing research of fast neutron radiation field based on the reactor

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Zhang Xiaomin

    2009-01-01

    Based on the Tsinghua University experimental nuclear reactor neutron source, this research designed moderate theory technical scheme, and the thickness of materials in the scheme were selected by means of Monte Carlo simulating method. An fast neutron radiation field was gained. (authors)

  14. Program system for calculating streaming neutron radiation field in reactor cavity

    International Nuclear Information System (INIS)

    He Zhongliang; Zhao Shu.

    1986-01-01

    The A23 neutron albedo data base based on Monte Carlo method well agrees with SAIL albedo data base. RSCAM program system, using Monte Carlo method with albedo approach, is used to calculate streaming neutron radiation field in reactor cavity and containment operating hall. The dose rate distributions calculated with RSCAM in square concrete duct well agree with experiments

  15. Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields

    NARCIS (Netherlands)

    Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.

    2011-01-01

    The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with

  16. Assessment of radiation fields from neutron irradiated structural components of the 40 MW research reactor CIRUS

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sharma, S.K.

    1993-01-01

    The paper summarizes the results of an assessment of the radiation fields from the long-lived neutron activation products (including the decay chain products) in the various structural components of the CIRUS reactor. Special attention is given for the analysis of neutron activation of impurity elements present in the materials of the structure. 16 refs, 4 figs, 4 tabs

  17. Cold neutron interaction with a classical electric field: Some basic theoretical and experimental considerations

    International Nuclear Information System (INIS)

    Bruce, S.; Diaz-Valdes, J.; Bennun, L.; Minning, P.C.

    2008-01-01

    We explore the feasibility of performing an experiment to measure the interaction of cold neutrons with a given classical electric field. Bound and scattering states could be detected by means of an approximate Aharonov-Casher configuration. The theoretical background is presented and then some primary elements for building a neutron detector of this nature are proposed

  18. Dose Determination using alanine detectors in a Mixed Neutron and Gamma Field for Boron Neutron Capture Therapy of Liver Malignancies

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Ziegner, M.

    2011-01-01

    Introduction Boron Neutron Capture Therapy for liver malignancies is being investigated at the University of Mainz. One important aim is the set-up of a reliable dosimetry system. Alanine dosimeters have previously been applied for dosimetry of mixed radiation fields in antiproton therapy, and ma...

  19. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  20. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Science.gov (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  1. Neutron scattering study of magnetic and crystalline electirc field interactions in RCrO3

    International Nuclear Information System (INIS)

    Shamir, N.

    1978-05-01

    Magnetic and crystalline electric field interactions in the compounds RCrO 3 (R-rare earth) , were studied by neutron scattering. Elastic neutron scattering was utilized in the study of the temperature dependence of the Cr 3+ and Ho 3+ magnetic reflections in Lu CrO 3 and HoCrO 3 , respectively. Analysis of this temperature dependence yielde constant canting angles for the Cr 3+ and Ho 3+ magnetic moments. Molecular magnetic field constants and crystalline electric field splitting were also calculated from the temperature dependence of the Ho 3+ magnetic reflection. These parameters were obtained directly by inelastic neutron scattering measurement. Inelastic neutron scattering measurements of crystlline electric field transitions of R 3+ (R=Pr, Nd, Tb, Ho, Er, Tm, Yb) in RCrO 3 , formed the basis for the calculation of the common crystalline electirc field parameters of the heavy R 3+ ions. (author)

  2. Neutron-photon multigroup cross sections for neutron energies up to 400 MeV: HILO86R

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Nakane, Yoshihiro; Hasegawa, Akira; Tanaka, Shun-ichi

    1993-02-01

    A macroscopic multigroup cross section library of 66 neutron and 22 photon groups for neutron energies up to 400 MeV: HILO86R is prepared for 10 typical shielding materials; water, concrete, iron, air, graphite, polyethylene, heavy concrete, lead, aluminum and soil. The library is a revision of the DLC-119/HILO86, in which only the cross sections below 19.6 MeV have been exchanged with a group cross section processed from the JENDL-3 microscopic cross section library. In the HILO86R library, self shielding factors are used to produce effective cross sections for neutrons less than 19.6 MeV considering rather coarse energy meshes. Energy spectra and dose attenuation in water, concrete and iron have been compared among the HILO, HILO86 and HILO86R libraries for different energy neutron sources. Significant discrepancy has been observed in the energy spectra less than a couple of MeV energy in iron among the libraries, resulting large difference in the dose attenuation. The difference was attributed to the effect of self-shielding factor, namely to the difference between infinite dilution and effective cross sections. Even for 400 MeV neutron source the influence of the self-shielding factor is significant, nevertheless only the cross sections below 19.6 MeV are exchanged. (author)

  3. Exposure times and ratio of readings produced by irradiation of thermoluminescence dosemeters in PTB neutron standard fields between 0.1 MeV and 19 MeV

    International Nuclear Information System (INIS)

    Jahr, R.; Guldbakke, S.; Cosack, M.

    1979-06-01

    6 LiF and 7 LiF thermoluminescence dosimeters (TLD) irradiated in a standard field of monoenergetic neutrons (Esub(n) = 0.1 MeV to 19 MeV), respond as well to the photon as to the neutron component of this radiation field. The ratio of the two TLD readings as well as the duration of irradiation required to obtain a preset TLD reading are calculated as a function of the neutron energy. (orig.) [de

  4. Logic Estimation of the Optimum Source Neutron Energy for BNCT of Brain Tumors

    International Nuclear Information System (INIS)

    Dorrah, M.A.; Gaber, F.A.; Abd Elwahab, M.A.; Kotb, M.A.; Mohammed, M.M.

    2012-01-01

    BNCT is very complicated technique; primarily due to the complexity of element composition of the brain. Moreover; numerous components contributes to the over all radiation dose both to normal brain and to tumor. Simple algebraic summation cannot be applied to these dose components, since each component should at first be weighed by its relative biological effectiveness (RBE) value. Unfortunately, there is no worldwide agreement on these RBE values. For that reason, the parameters required for accurate planning of BNCT of brain tumors located at different depths in brain remained obscure. The most important of these parameters is; the source neutron energy. Thermal neutrons were formerly employed for BNCT, but they failed to prove therapeutic efficacy. Later on; epithermal neutrons were suggested proposing that they would be enough thermalized while transporting in the brain tissues. However; debate aroused regarding the source neutrons energy appropriate for treating brain tumors located at different depths in brain. Again, the insufficient knowledge regarding the RBE values of the different dose components was a major obstacle. A new concept was adopted for estimating the optimum source neutrons energy appropriate for different circumstances of BNCT. Four postulations on the optimum source neutrons energy were worked out, almost entirely independent of the RBE values of the different dose components. Four corresponding condition on the optimum source neutrons energy were deduced. An energy escalation study was carried out investigating 65 different source neutron energies, between 0.01 eV and 13.2 MeV. MCNP4B Monte C arlo neutron transport code was utilized to study the behavior of neutrons in the brain. The deduced four conditions were applied to the results of the 65 steps of the neutron energy escalation study. A source neutron energy range of few electron volts (eV) to about 30 keV was estimated to be the most appropriate for BNCT of brain tumors located at

  5. Measurement of Neutron Energy Spectrum Emitted by Cf-252 Source Using Time-of-Flight Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Lee, Sangmin; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The techniques proposed to detect the neutrons usually require the detection of a secondary recoiling nucleus in a scintillator (or other type of detector) to indicate the rare collision of a neutron with a nucleus. This is the same basic technique, in this case detection of a recoil proton that was used by Chadwick in the 1930 s to discover and identify the neutron and determine its mass. It is primary technique still used today for detection of fast neutron, which typically involves the use of a hydrogen based organic plastic or liquid scintillator coupled to a photo-multiplier tube. The light output from such scintillators is a function of the cross section and nuclear kinematics of the n + nucleus collision. With the exception of deuterated scintillators, the scintillator signal does not necessarily produce a distinct peak in the scintillator spectrum directly related to the incident neutron energy. Instead neutron time-of-flight (TOF) often must be utilized to determine the neutron energy, which requires generation of a prompt start signal from the nuclear source emitting the neutrons. This method takes advantage of the high number of prompt gamma rays. The Time-of-Flight method was used to measure neutron energy spectrum emitted by the Cf-252 neutron source. Plastic scintillator that has a superior discrimination ability of neutron and gamma-ray was used as a stop signal detector and liquid scintillator was used as a stat signal detector. In experiment, neutron and gamma-ray spectrum was firstly measured and discriminated using the TOF method. Secondly, neutron energy spectrum was obtained through spectrum analysis. Equation of neutron energy spectrum that was emitted by Cf-252 source using the Gaussian fitting was obtained.

  6. Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.

    Science.gov (United States)

    Colonna, N; Altieri, S

    2002-06-01

    The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.

  7. Study of the neutron field in the vicinity of an unshielded PET cyclotron

    International Nuclear Information System (INIS)

    Mendez, R; Iniguez, M P; MartI-Climent, J M; Penuelas, I; Vega-Carrillo, H R; Barquero, R

    2005-01-01

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 μA h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses

  8. Study of the neutron field in the vicinity of an unshielded PET cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R [Dpto. Fisica Teorica, Atomica y Optica, Universidad de Valladolid (Spain); Iniguez, M P [Dpto. Fisica Teorica, Atomica y Optica, Universidad de Valladolid (Spain); MartI-Climent, J M [Servicio de Medicina Nuclear, ClInica Universitaria de Navarra (Spain); Penuelas, I [Servicio de Medicina Nuclear, ClInica Universitaria de Navarra (Spain); Vega-Carrillo, H R [Dpto. Estudios Nucleares, IngenierIa Electrica, Matematicas, Universidad Autonoma de Zacatecas (Mexico); Barquero, R [Hospital Universitario RIo Hortega, Valladolid (Spain)

    2005-11-07

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during {sup 18}F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 {mu}A h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses.

  9. Radiation hygiene aspects of mixed neutron-gamma field dosimetry

    International Nuclear Information System (INIS)

    Nikodemova, O.; Hrabovcova, A.

    1982-01-01

    Various possibilities are analyzed of determining the dose equivalent of neutrons, as is the reliability of the techniques and the correct interpretation for the purposes of radiation hygiene. (author)

  10. Revisiting Field Burial by Accretion onto Neutron Stars

    Indian Academy of Sciences (India)

    Dipanjan Mukherjee

    2017-09-12

    Sep 12, 2017 ... review the recent work on magnetic confinement of accreted matter on neutron stars poles. We present ..... hours to days, see Brown & Bildsten 1998) where the ...... Radhakrishnan, V., Srinivasan, G. 1984, in: Second Asian-.

  11. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    OpenAIRE

    Dimovasili, Evangelia; Valley, Jean-Francois; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    2016-01-01

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner S...

  12. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  13. Single event upset and charge collection measurements using high energy protons and neutrons

    International Nuclear Information System (INIS)

    Normand, E.; Oberg, D.L.; Wert, J.L.; Ness, J.D.; Majewski, P.P.; Wender, S.; Gavron, A.

    1994-01-01

    RAMs, microcontrollers and surface barrier detectors were exposed to beams of high energy protons and neutrons to measure the induced number of upsets as well as energy deposition. The WNR facility at Los Alamos provided a neutron spectrum similar to that of the atmospheric neutrons. Its effect on devices was compared to that of protons with energies of 200, 400, 500, and 800 MeV. Measurements indicate that SEU cross sections for 400 MeV protons are similar to those induced by the atmospheric neutron spectrum

  14. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.; Horwood, N.

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields

  15. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    CERN Document Server

    Tanner, R J; Bartlett, D T; Horwood, N

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields.

  16. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  17. Oncogenic transformation in C3H10T1/2 cells by low-energy neutrons.

    Science.gov (United States)

    Miller, R C; Marino, S A; Napoli, J; Shah, H; Hall, E J; Geard, C R; Brenner, D J

    2000-03-01

    Occupational exposure to neutrons typically includes significant doses of low-energy neutrons, with energies below 100 keV. In addition, the normal-tissue dose from boron neutron capture therapy will largely be from low-energy neutrons. Microdosimetric theory predicts decreasing biological effectiveness for neutrons with energies below about 350 keV compared with that for higher-energy neutrons; based on such considerations, and limited biological data, the current radiation weighting factor (quality factor) for neutrons with energies from 10 keV to 100 keV is less than that for higher-energy neutrons. By contrast, some reports have suggested that the biological effectiveness of low-energy neutrons is similar to that of fast neutrons. The purpose of the current work is to assess the relative biological effectiveness of low-energy neutrons for an endpoint of relevance to carcinogenesis: in vitro oncogenic transformation. Oncogenic transformation induction frequencies were determined for C3H10T1/2 cells exposed to two low-energy neutron beams, respectively, with dose-averaged energies of 40 and 70 keV, and the results were compared with those for higher-energy neutrons and X-rays. These results for oncogenic transformation provide evidence for a significant decrease in biological effectiveness for 40 keV neutrons compared with 350 keV neutrons. The 70 keV neutrons were intermediate in effectiveness between the 70 and 350 keV beams. A decrease in biological effectiveness for low-energy neutrons is in agreement with most (but not all) earlier biological studies, as well as microdosimetric considerations. The results for oncogenic transformation were consistent with the currently recommended decreased values for low-energy neutron radiation weighting factors compared with fast neutrons.

  18. Systematic studies of binding energy dependence of neutron-proton momentum correlation function

    International Nuclear Information System (INIS)

    Wei, Y B; Ma, Y G; Shen, W Q; Ma, G L; Wang, K; Cai, X Z; Zhong, C; Guo, W; Chen, J G; Fang, D Q; Tian, W D; Zhou, X F

    2004-01-01

    Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function have been systematically investigated for a series of nuclear reactions with light projectiles with the help of the isospin-dependent quantum molecular dynamics model. The relationship between the binding energy per nucleon of the projectiles and the strength of the neutron-proton HBT at small relative momentum has been obtained. Results show that neutron-proton HBT results are sensitive to the binding energy per nucleon

  19. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  20. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  1. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Carneiro Junior, Valdeci

    2008-01-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10 8 ± 0,12.10 8 n/cm 2 s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  2. Measurement of Neutron Field Characteristics at Nuclear-Physics Instalations for Personal Radiation Monitoring

    CERN Document Server

    Alekseev, A G; Britvich, G I; Kosyanenko, E V; Pikalov, V A; Gomonov, I P

    2003-01-01

    n this work the observed data of neutron spectra on Rostov NEP, Kursk NEP and Smolensk NEP and on the reactor IRT MIPHI are submitted. For measurement of neutron spectra two types of spectrometer were used: SHANS (IHEP design ) and SDN-MS01 (FEI design). The comparison of the data measurements per-formed by those spectrometers above one-type cells on the reactor RBMK is submitted. On the basis of the 1-st horizontal experimental channel HEC-1 of the IRT reactor 4 reference fields of neutrons are investigated. It is shown, that spectra of neutrons of reference fields can be used for imitation of neutron spectra for conditions of NEP with VVER and RBMK type reactors.

  3. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Holley, A. T.; Pattie, R. W.; Young, A. R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Broussard, L. J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Davis, J. L.; Ito, T. M.; Lyles, J. T. M.; Makela, M.; Morris, C. L.; Mortensen, R.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hickerson, K.; Mendenhall, M. P. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Liu, C.-Y. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Mammei, R. R. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Rios, R. [Department of Physics, Idaho State University, Pocatello, Idaho 83209 (United States)

    2012-07-15

    The UCNA collaboration is making a precision measurement of the {beta} asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be {epsilon}=0.9985(4).

  4. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    Directory of Open Access Journals (Sweden)

    He Xiao-Tao

    2016-01-01

    Full Text Available A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope L of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope L or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  5. Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    of the oceanic lithosphere. An entire modelling of the shallow Geopotential Energy is hereby approached, not taking into account possible deeper signals but all lithospheric signals for the subsequent stress calculation. Therefore a global lithospheric density model is necessary to calculate the corresponding...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  6. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    International Nuclear Information System (INIS)

    Charbonneau, James; Zhitnitsky, Ariel

    2010-01-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation

  7. On the origin of low energy tail for monoenergetic neutron sources

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.

    1995-01-01

    The problems of data processing when measuring inelastic neutron scattering cross sections for separated nuclei levels are studied. The model describing the neutron energy distribution for monoenergetic neutron sources is developed. The factors which make the major contributions into spectrometer response function formation are discussed. It is shown that the model considered predicts well neutron energy distribution from metal Li-target. The model parameters should be estimated on the basis of the experimental data. The neutron scattering on target environment contributes much into the low energy region of the neutron spectrum. An additional neutron source is introduced into the model in order to describe the low energy peak asymmetry (the so-called low energy tail). The tail neutron contribution dependence on incident energy and angle turns out to be rather unexpected. The conclusion is made that it is difficult to explain the origin and the properties of the tail neutron source by slit proton scattering or some Li-nuclei distribution regularities. 3 refs., 6 figs

  8. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States); Lattimer, James M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Ohnishi, Akira [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Kolomeitsev, Evgeni E., E-mail: itews@uw.edu, E-mail: james.lattimer@stonybrook.edu, E-mail: ohnishi@yukawa.kyoto-u.ac.jp, E-mail: e.kolomeitsev@gsi.de [Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, SK-97401 Banska Bystrica (Slovakia)

    2017-10-20

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  9. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  10. Characterization of the neutronic fields obtained by means of neutron traps inside the nuclear reactor core IPEN/MB-01

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio

    2011-01-01

    This paper presents the results of the neutron flux values obtained from the deployment of a Flux Trap of neutrons in the reactor core IPEN/MB-01. We analyzed several configurations of Flux Traps deployed in the reactor core IPEN/MB-01 in order to get elected to Flux Trap configuration more efficient. To characterize the neutron spectrum were irradiated in the center of the Flux Trap activation detectors of different materials (Au, Sc, In, Ti, Ni). The respective gamma spectroscopy of these elements after irradiation with and without cadmium cover, provided the experimental values of the nuclear reaction rates (saturation activity) by the target nuclei and their uncertainties used as input to the code SANDBP who calculated the energy spectrum of neutrons in the center of the 'Flux-Trap' in 50 energy groups, using the input spectra calculated at the irradiation position (center of the 'Flux Trap') by codes for Reactor Physics. The results found an increase in the thermal neutron flux in the center of the Flux Trap configuration 203 for the standard configuration (default) of about 350% without having the need to increase the reactor power. We also made comparisons between the spectra obtained by SANDBP deployed, compared to those calculated by MCNP-4C code and XSDRNPM. The spatial characterization of the thermal neutron flux is made with activation foils in the form of an infinitely dilute bulk alloy of 1% Au and 99% Al in some internal points of the configuration 203 (axially to Flux Trap a nd adjacent radial) and the results showed a significant increase in the magnitude of their values when compared to standard rectangular configuration. (author)

  11. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  12. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  13. TRIPOLI calculation of the neutron field in the hall of the SILENE reactor

    International Nuclear Information System (INIS)

    Bourdet, L.

    1986-05-01

    This study concerns the utilization of the experimental reactor SILENE as radiation source. Its aim is to get a theoretical estimation of the neutron field characteristics in different points of the irradiation hall (spectra, fluences, equivalents of biological doses and reaction yields). These estimations are compared to results obtained by several experimental techniques; they allow to know better this neutron field with or without lead shield [fr

  14. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  15. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  16. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)], e-mail: psouza@cnen.gov.br, e-mail: jodinilson@cnen.gov.br; Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  17. Comparison of neutron scattering, gravimetric and tensiometric methods for measuring soil water content in the field

    International Nuclear Information System (INIS)

    Jat, R.L.; Das, D.K.; Naskar, G.C.

    1975-01-01

    Water content of a sandy clay loam soil was measured by neutron scattering, gravimetric and tensiometric methods. Tensiometric measurement based on laboratory moisture retention curve gave comparatively higher moisture content than those obtained by other methods. No significant differences were observed among neutron meter, gravimetric and tensiometric measurement based on field calibration curve. Though for irrigation purposes all the methods can be used equally, use of tensiometric method with field calibration curve is suggested for easy and more accurate soil water content measurement where neutron meter is not available. (author)

  18. Measurement of prompt neutron spectra from the "2"3"9Pu(n, f ) fission reaction for incident neutron energies from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Chatillon, A.; Belier, G.; Granier, T.; Laurent, B.; Morillon, B.; Taieb, J.; Haight, R.C.; Devlin, M.; Nelson, R.O.; Noda, R.S.; O'Donnell, J.M.

    2014-01-01

    Prompt fission neutron spectra in the neutron-induced fission of "2"3"9Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Mean energies deduced from the prompt fission neutron spectra (PFNS) lead to the observation of the opening of the second chance fission at 7 MeV and to indications for the openings of fission channels of third and fourth chances. Moreover, the general trend of the measured PFNS is well reproduced by the different models. The comparison between data and models presents, however, two discrepancies. First, the prompt neutron mean energy seems constant for neutron energy, at least up to 7 MeV, whereas in the theoretical calculations it is continuously increasing. Second, data disagree with models on the shape of the high energy part of the PFNS, where our data suggest a softer spectrum than the predictions. (authors)

  19. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  20. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions