WorldWideScience

Sample records for energy neutrino beam

  1. On the importance of low-energy beta-beams for supernova neutrino physics

    International Nuclear Information System (INIS)

    Jachowicz, N.; McLaughlin, G.C.

    2005-01-01

    Beta beams, which are neutrino beams produced by the beta decay of nuclei that have been accelerated to high gamma factor, were original proposed for high energy applications, such as the measurement of the third neutrino mixing angle θ 13 . Volpe suggested that a beta beam run at lower gamma factor, would be useful for neutrino measurements in the tens of MeV range. We suggest to exploit the flexibility these beta beam facilities offer, combined with the fact that beta-beam neutrino energies overlap with supernova-neutrino energies, to construct 'synthetic' spectra that approximate an incoming supernova-neutrino energy-distribution. Using these constructed spectra we are able to reproduce total and differential folded supernova-neutrino cross-sections very accurately. We illustrate this technique using Deuterium, 16 O, and 208 Pb. This technique provides an easy and straightforward way to apply the results of a beta-beam neutrino-nucleus measurement to the corresponding supernova-neutrino detector, virtually eliminating potential uncertainties due to nuclear-structure calculations. (author)

  2. Monochromatic neutrino beams

    International Nuclear Information System (INIS)

    Bernabeu, Jose; Burguet-Castell, Jordi; Espinoza, Catalina; Lindroos, Mats

    2005-01-01

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [U e3 ] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [U e3 ] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations

  3. Telecommunication with neutrino beams

    International Nuclear Information System (INIS)

    Saenz, A.W.; Ueberall, H.; Kelly, F.J.; Padgett, D.W.; Seeman, N.

    1977-01-01

    Collimated neutrino beams in the energy range 1 to 100 gigaelectron volts, now available from high-energy proton accelerators, are proposed as a potential means for telecommunication over global distances. Quantitative estimates of the feasibility of this proposal based on a particular detector configuration are presented

  4. Beam and experiments summary [neutrino studies

    CERN Document Server

    Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G

    2000-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour mixing. Many current and forthcoming experiments will. Answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. Most importantly, the neutrino factory is the only known way to generate a high- intensity beam of electron neutrinos of high energy. The neutrino beam from a neutrino factory, in particular the electron-neutrino beam, enables the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only mode...

  5. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  6. The ideal neutrino beams

    Science.gov (United States)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  7. CAPTAIN-Miner@@a. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    International Nuclear Information System (INIS)

    Mauger, Christopher M.

    2015-01-01

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NO@@A, MINER@@A and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINER@@A detector in the NuMI beamline and combining the data from the CAPTAIN, MINER@@A and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINER@@A@@@s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINER@@A experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  8. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  9. Energy dependence of CP-violation reach for monochromatic neutrino beam

    Science.gov (United States)

    Bernabéu, José; Espinoza, Catalina

    2008-06-01

    The ultimate goal of future neutrino facilities is the determination of CP violation in neutrino oscillations. Besides | U (e 3) | ≠ 0, this will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We compare the physics potential for two different configurations: (I) γ = 90 and γ = 195 (maximum achievable at present SPS) to Frejus; (II) γ = 195 and γ = 440 (maximum achievable at upgraded SPS) to Canfranc. We conclude that the SPS upgrade to 1000 GeV is important to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline.

  10. Energy dependence of CP-violation reach for monochromatic neutrino beam

    International Nuclear Information System (INIS)

    Bernabeu, Jose; Espinoza, Catalina

    2008-01-01

    The ultimate goal of future neutrino facilities is the determination of CP violation in neutrino oscillations. Besides |U(e3)|≠0, this will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We compare the physics potential for two different configurations: (I) γ=90 and γ=195 (maximum achievable at present SPS) to Frejus; (II) γ=195 and γ=440 (maximum achievable at upgraded SPS) to Canfranc. We conclude that the SPS upgrade to 1000 GeV is important to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline

  11. Applicability of neutrino beams to Earth exploration

    International Nuclear Information System (INIS)

    Dolgoshein, B.A.; Kalinovskij, A.N.

    1985-01-01

    The projects on applicability of neutrino beams from high energy accelerators for geological exploration and study of the Earth structure are discussed. The GENIUS (Geological Exploration by Neutrino Induced Underground Sound) project is among them. It covers detecting and studying space-time characteristics of acoustic signal arising in case of neutrino interaction with Earth depth rocks discussed. The GEMINI (Geological Exploration with Muons Induced by neutrino interactions) project represents one more possibility for using geotron neutrino beam for the purpose of geological exploration. The GEOSCAN project represents the possibility for applying high energy neutrino beams for the purpose of the Earth translusence to determine the changes in the density of internal part of the Earth. The necessity of detailed investigations of the problem of applicability of neutrino beams in the field of the Earth exploration is pointed out

  12. Hardron production and neutrino beams

    Science.gov (United States)

    Guglielmi, A.

    2006-11-01

    The precise measurements of the neutrino mixing parameters in the oscillation experiments at accelerators require new high-intensity and high-purity neutrino beams. Ancillary hadron-production measurements are then needed as inputs to precise calculation of neutrino beams and of atmospheric neutrino fluxes.

  13. Literature in Focus Beta Beams: Neutrino Beams

    CERN Document Server

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  14. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  15. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  16. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  17. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    positron or electron–proton plasma in the context of early universe, stars and supernova ... proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter- .... for electron also with additional electric potential term.

  18. NCenter wide band neutrino beam

    International Nuclear Information System (INIS)

    Stutte, L.G.

    1985-01-01

    This memo describes the physical properties of the currently operating N-Center wide band neutrino beam---commonly called the triplet train, following a past tradition of a triplet lens configuration. In reality, in order to gain a larger momentum acceptance and to minimize the angular divergence of the beam, a quadruplet beam (4 lenses) employing point-to-parallel optics at a central momentum of 300 GeV was built. 6 refs., 13 figs., 1 tab

  19. Intense muon beams and neutrino factories

    International Nuclear Information System (INIS)

    Parsa, Z.

    2000-01-01

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy μ + μ - colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings (μSR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included

  20. The neutrino factory beam and experiments

    CERN Document Server

    Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P M; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G

    2000-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour-mixing. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a \

  1. CERN fires up neutrino beams

    CERN Document Server

    2006-01-01

    "CERN has switched on a new neutrino beam, aimed through the earth to the INFN Gran Sasso Laboratories some 730km away near Rome. This is the latest additin to a global endeavour to understand this most elusive of particles and unlock the secrest it carries about the origins and evolution of our Universe." (2 pages)

  2. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  3. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  4. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    International Nuclear Information System (INIS)

    Marino, Alysia

    2015-01-01

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (?_?) and the appearance of electron neutrinos (?_e), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ?_e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ?_? disappearance and ?_e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  5. Catching the Highest Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2011-08-15

    We briefly discuss the possible sources of ultrahigh energy neutrinos and the methods for their detection. Then we present the results obtained by different experiments for detection of the highest energy neutrinos.

  6. Experimental use of neutrinos from ISABELLE beam dumps

    International Nuclear Information System (INIS)

    Bozoki, G.E.; Thorndike, A.M.; Mann, A.K.

    1978-01-01

    The technical feasibility and possible applicability of using ISABELLE beam dumps as powerful sources for directed high-energy neutrino bursts are investigated. In the present machine design two dump systems are applied to absorb the extracted fast beams. The expected normal beam extraction rate is 1 to 2 per day, when about (6.3 to 7.5) x 10 14 protons are hitting the external targets during a pulse length of approx. 50 μs. These protons are considered so far to be useless. The neutrinos produced could be used for the following activities: the study of coherent neutrino regeneration, calibration and permanent testing of cosmic-ray and astrophysical neutrino detectors, research on the practical applicability of neutrinos in telecommunication, and certain astro- and geophysical applications. Tailoring the system to meet these activities is illustrated. 6 figures

  7. Plasma Lens for Muon and Neutrino Beams

    International Nuclear Information System (INIS)

    Kahn, S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-01-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented

  8. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  9. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  10. Liquid Scintillation Detectors for High Energy Neutrinos

    International Nuclear Information System (INIS)

    Smith, Stefanie N.; Learned, John G.

    2010-01-01

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  11. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  12. Physics Potential of Very Intense Conventional Neutrino Beams

    CERN Document Server

    Gómez-Cadenas, J J; Burguet-Castell, J; Casper, David William; DOnega, M; Gilardoni, S S; Hernández, Pilar; Mezzetto, Mauro

    2001-01-01

    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.

  13. Workshop on low energy neutrino physics

    International Nuclear Information System (INIS)

    2009-01-01

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  14. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  15. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. Low-energy solar neutrino detection plays a fundamental role in ... the experimental point of view, there are multiple ways to shed light among the different .... compared to the two metallicity expectations [16]. ..... from the Earth; solar neutrinos; indirect dark matter searches) and GeV physics (pro-.

  16. Physics Reach with a Monochromatic Neutrino Beam from Electron Capture

    CERN Document Server

    Bernabeu, J.; Espinoza, C.; Lindroos, M.

    2005-01-01

    Neutrino oscillation experiments from different sources have demonstrated non-vanishing neutrino masses and flavour mixings. The next experiments have to address the determination of the connecting mixing U(e3) and the existence of the CP violating phase. Whereas U(e3) measures the strength of the oscillation probability in appearance experiments, the CP phase acts as a phase-shift in the interference pattern. Here we propose to separate these two parameters by energy dependence, using the novel idea of a monochromatic neutrino beam facility based on the acceleration of ions that decay fast through electron capture. Fine tuning of the boosted neutrino energy allows precision measurements able to open a window for the discovery of CP violation, even for a mixing as small as 1 degree

  17. Wide-band neutrino beams at 1000 GeV

    International Nuclear Information System (INIS)

    Malensek, A.; Stutte, L.

    1983-01-01

    In a previous publication, S. Mori discussed various broad-band neutrino and antineutrino beams using 1000 GeV protons on target. A new beam (SST) has been designed which provides the same neutrino flux as the quadrupole triplet (QT) while suppressing the wrong sign flux by a factor of 18. It also provides more than twice as much high energy antineutrino flux than the sign-selected bare target (SSBT) and in addition, has better neutrino suppression. While it is possible to increase the flux obtained from the single horn system over that previously described, the conclusion which states any horn focussing system seems to be of marginal use for Tevatron neutrino physics, is unchanged. Neutrino and antineutrino event rates and wrong sign backgrounds were computed using NUADA for a 100 metric ton detector of radius 1.5 meters. Due to radiation considerations and the existing transformer location, the horn beam is placed in its usual position inside the Target Tube. All other beams are placed in Fronthall. Thus, for the wide-band Fronthall trains a decay distance of 520 meters is used, versus 400 meters for the horn train

  18. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Kyoto Univ. (Japan)

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the

  19. Beam simulation tools for GEANT4 (and neutrino source applications)

    International Nuclear Information System (INIS)

    V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris email daniel@fnal.gov

    2002-01-01

    Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the High Energy Physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. Although there are many computer programs for beam physics simulations, Geant4 is ideal to model a beam going through material or a system with a beam line integrated to a complex detector. There are many examples in the current international High Energy Physics programs, such as studies related to a future Neutrino Factory, a Linear Collider, and a very Large Hadron Collider

  20. Influence of flavor oscillations on neutrino beam instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo SP (Brazil); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  1. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    International Nuclear Information System (INIS)

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10 9 electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE's National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE's evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc

  2. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  3. Study of different type neutrino oscillations based on neutrino beams from 600 GeV

    International Nuclear Information System (INIS)

    Aref'ev, A.S.

    1994-01-01

    The problems of the different type neutrino oscillations based on a wide-band and narrow-band neutrino beam from the 600 GeV UNK-1 machine using the Baical Neutrino Telescope (4200 km from a accelerator) are discussed. The main parameters of the neutrino channel are presented. 17 refs.; 12 figs.; 1 tab

  4. Movable detector to search for neutrino oscillations in the BNL neutrino beam

    International Nuclear Information System (INIS)

    Bozoki, G.; Fainberg, A.; Weygand, D.; Fagg, L.; Uberall, H.; Goldberg, M.; Meadows, B.; Saenz, A.W.; Seeman, N.

    1980-01-01

    A simple, straightforward, and economic experiment utilizing a set of water Cherenkov counters is proposed to search for neutrino oscillations in the AGS neutrino beam. The detector will be movable and will be able to provide reasonable counting rates up to 2 km downstream of the pion decay tunnel. Whereas previous accelerator experiments have sought to increase the ratio l/p (with l the neutrino path length and p its momentum) by decreasing p, increasing l is suggested instead. Further, by making measurements at several different values of l with the same apparatus, many sources of systematic error are eliminated. The experiment will measure beam-associated muon- and electron-type events at each position. A change in the ratio of muon- to electron-type events as a function of position would be evidence for ν/sub μ/ + ν/sub e/ oscillations. Sensitivity in terms of (Δm) 2 (the square of the mass difference in the mass eigenstates) can be as low as 0.1 eV 2 , for full mixing, which is below the most probable value found by Reines et al for Δm 2 in their electron neutrino reactor experiment. This experiment would be parasitic, running behind the usual neutrino beam experiments, assuming the nominal beam energy (peaked at 1 GeV), and would thus make a minimal demand on AGS support. It is suggested that the first two measurements be made inside the Isabelle tunnel at the points of intersection with the AGS neutrino beam. No further excavations would be required, and the data could be taken before ISA equipment is installed

  5. Plasma Lens for Muon and Neutrino Beams

    Science.gov (United States)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  6. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  7. The Case for Muon-based Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bross, Alan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Palmer, Mark [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-11-03

    For the foreseeable future, high energy physics accelerator capabilities in the US will be deployed to study the physics of the neutrino sector. In this context, it is useful to explore the sensitivities and limiting systematic effects of the planned neutrino oscillation program, so that we can evaluate the issues that must be addressed in order to ensure the success of these efforts. It is only in this way that we will ultimately be able to elucidate the fundamental physics processes involved. We conclude that success can only be guaranteed by, at some point in the future, being able to deploy muon accelerator capabilities. Such capabilities provide the only route to precision neutrino beams with which to study and mitigate, at the sub-percent level, the limiting systematic issues of future oscillation measurements. Thus this analysis argues strongly for maintaining a viable accelerator research program towards future muon accelerator capabilities.

  8. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    Low-energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND ...

  9. Homestake result, sterile neutrinos, and low energy solar neutrino experiments

    Science.gov (United States)

    de Holanda, P. C.; Smirnov, A. Yu.

    2004-06-01

    The Homestake result is about ˜2σ lower than the Ar-production rate, QAr, predicted by the large mixing angle (LMA) Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem. Also there is no apparent upturn of the energy spectrum (R≡Nobs/NSSM) at low energies in SNO and Super-Kamiokande. Both these facts can be explained if a light, Δm201˜(0.2 2)×10-5 eV2, sterile neutrino exists which mixes very weakly with active neutrinos: sin2 2α˜(10-5 10-3). We perform both the analytical and numerical study of the conversion effects in the system of two active neutrinos with the LMA parameters and one weakly mixed sterile neutrino. The presence of sterile neutrino leads to a dip in the survival probability in the intermediate energy range E=(0.5 5) MeV thus suppressing the Be, or/and pep, CNO, as well as B electron neutrino fluxes. Apart from diminishing QAr it leads to decrease of the Ge-production rate and may lead to the decrease of the BOREXINO signal as well as the CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO, and KamLAND as well as by the new low energy experiments will allow us to check this possibility.

  10. Supersymmetric theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Fardon, Rob; Nelson, Ann E.; Weiner, Neal

    2006-01-01

    We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos

  11. Ultrahigh energy cosmic rays and neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Foundation, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2008-04-01

    We discuss the relation between the highest energy cosmic rays (UHECR) and UHE neutrinos. The neutrinos produced in the sources of optically thin astrophysical sources have been linked to the UHECR emissivity of the Universe. The fluxes of cosmogenic neutrinos, generated in propagation by UHECR, also reflect the acceleration of these particles, the maximum acceleration energy, and the cosmological evolution of their sources.

  12. Neutrino mixing, flavor states and dark energy

    International Nuclear Information System (INIS)

    Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.

    2008-01-01

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe

  13. Neutrino velocity measurement with the OPERA experiment in the CNGS beam

    International Nuclear Information System (INIS)

    Brunetti, G.

    2011-05-01

    The thesis concerns the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam. There are different theoretical models that allow for Lorentz violating effects which can be investigated with measurements on terrestrial neutrino beams. The MINOS experiment published in 2007 a measure on the muon neutrinos over a distance of 730 km finding a deviation with respect to the expected time of flight of 126 ns with a statistical error of 32 ns and a systematic error of 64 ns. The OPERA experiment observes as well muon neutrinos 730 km away from the source, with a sensitivity significantly better than MINOS thanks to the higher number of interactions in the detector due to the higher energy beam and the much more sophisticated timing system explicitly upgraded in view of the neutrino velocity measurement. This system is composed by atomic cesium clocks and GPS receivers operating in 'common view mode'. Thanks to this system a time-transfer between the two sites with a precision at the level of 1 ns is possible. Moreover, a Fast Waveform Digitizer was installed along the proton beam line at CERN in order to measure the internal time structure of the proton pulses that are sent to the CNGS target. The result on the neutrino velocity is the most precise measurement so far with terrestrial neutrino beams: the neutrino time of flight was determined with a statistical uncertainty of about 10 ns and a systematic uncertainty smaller than 20 nano-seconds. (author)

  14. First events from the CNGS neutrino beam detected in the OPERA experiment

    CERN Document Server

    Acquafredda, R.; Ambrosio, M.; Anokhina, A.; Aoki, S.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bergnoli, A.; Bersani Greggio, F.; Besnier, M.; Beyer, M.; Bondil-Blin, S.; Borer, K.; Boucrot, J.; Boyarkin, V.; Bozza, C.; Brugnera, R.; Buontempo, S.; Caffari, Y.; Campagne, Jean-Eric; Carlus, B.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Ciesielski, R.; Consiglio, L.; Cozzi, M.; Dal Corso, F.; D'Ambrosio, N.; Damet, J.; De Lellis, G.; Declais, Y.; Descombes, T.; De Serio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dulach, B.; Dusini, S.; Ebert, J.; Enikeev, R.; Ereditato, A.; Esposito, L.S.; Fanin, C.; Favier, J.; Felici, G.; Ferber, T.; Fournier, L.; Franceschi, A.; Frekers, D.; Fukuda, T.; Fukushima, C.; Galkin, V.I.; Galkin, V.A.; Gallet, R.; Garfagnini, A.; Gaudiot, G.; Giacomelli, G.; Giarmana, O.; Giorgini, M.; Girard, L.; Girerd, C.; Goellnitz, C.; Goldberg, J.; Gornoushkin, Y.; Grella, G.; Grianti, F.; Guerin, C.; Guler, M.; Gustavino, C.; Hagner, C.; Hamane, T.; Hara, T.; Hauger, M.; Hess, M.; Hoshino, K.; Ieva, M.; Incurvati, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kazuyama, M.; Kim, S.H.; Kimura, M.; Knuesel, J.; Kodama, K.; Kolev, D.; Komatsu, M.; Kose, U.; Krasnoperov, A.; Kreslo, I.; Krumstein, Z.; Laktineh, I.; de La Taille, C.; Le Flour, T.; Lieunard, S.; Ljubicic, A.; Longhin, A.; Malgin, A.; Manai, K.; Mandrioli, G.; Mantello, U.; Marotta, A.; Marteau, J.; Martin-Chassard, G.; Matveev, V.; Messina, M.; Meyer, L.; Micanovic, S.; Migliozzi, P.; Miyamoto, S.; Monacelli, Piero; Monteiro, I.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Mugnier, P.; Naganawa, N.; Nakamura, M.; Nakano, T.; Napolitano, T.; Natsume, M.; Niwa, K.; Nonoyama, Y.; Nozdrin, A.; Ogawa, S.; Olchevski, A.; Orlandi, D.; Ossetski, D.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pellegrino, L.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Raux, L.; Repellin, J.P.; Roganova, T.; Romano, G.; Rosa, G.; Rubbia, A.; Ryasny, V.; Ryazhskaya, O.; Ryzhikov, D.; Sadovski, A.; Sanelli, C.; Sato, O.; Sato, Y.; Saveliev, V.; Savvinov, N.; Sazhina, G.; Schembri, A.; Schmidt Parzefall, W.; Schroeder, H.; Schutz, H.U.; Scotto Lavina, L.; Sewing, J.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spaeti, R.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strolin, Paolo Emilio; Sugonyaev, V.; Takahashi, S.; Tereschenko, V.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tikhomirov, I.; Tolun, P.; Toshito, T.; Tsarev, V.; Tsenov, R.; Ugolino, U.; Ushida, N.; Van Beek, G.; Verguilov, V.; Vilain, P.; Votano, L.; Vuilleumier, J.L.; Waelchli, T.; Waldi, R.; Weber, M.; Wilquet, G.; Wonsak, B.; Wurth, R.; Wurtz, J.; Yakushev, V.; Yoon, C.S.; Zaitsev, Y.; Zamboni, I.; Zimmerman, R.

    2006-01-01

    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.

  15. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  16. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  17. Neutrino Factory Targets and the MICE Beam

    International Nuclear Information System (INIS)

    Walaron, Kenneth A.

    2007-01-01

    The future of particle physics in the next 20 years must include detailed study of neutrinos. The first proof of physics beyond the Standard Model of particle physics is evident in results from recent neutrino experiements which imply that neutrinos have mass and flavour mixing. The Neutrino Factory is the leading contender to measure precisely the neutrino mixing parameters to probe beyond the Standard Model physics.

  18. NESSiE: an experimental search for sterile neutrinos with the CERN-SPS beam

    International Nuclear Information System (INIS)

    Sirri, G.

    2013-01-01

    Anomalies observed in neutrino oscillation experiments show a tension with the standard three-flavor neutrino framework and seem to require at least an additional sterile neutrino with a mass at the eV scale. NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment at a new CERN Short- Baseline neutrino beam proposed to definitely address the sterile neutrino issue. The experiment is composed by two magnetic spectrometers at different distances from the proton target. Their design allows to measure the charge and momentum of the muons in a wide energy range, from few hundred MeV, using a magnetic field in air, up to several GeV measuring the bending and range of the muon in a large iron dipolar magnet. The spectrometers will complement large LAr detectors used as a target. The time scale foresees to start taking data by 2016.

  19. Search for sterile neutrinos at a new short-baseline CERN neutrino beam

    International Nuclear Information System (INIS)

    Mauri, N.

    2014-01-01

    In the last few years the experimental results on neutrino/anti-neutrino oscillations at Short-Baseline (SBL) showed a tension with several phenomenological models. The recent and carefully recomputed anti-neutrino fluxes from nuclear reactors have further increased this tension drawing a picture not fully compatible with the 3 neutrino oscillation scenario. A sterile neutrino is a neutral lepton which does not couple with W/Z bosons. it is not an exotic particle, its existence being a natural consequence of neutrinos having a non-zero mass. Sterile neutrinos can mix with the active ones through additional mass eigenstates, with no necessary mass scale. We will present an experimental search for sterile neutrinos with a new CERN-SPS neutrino beam using muon spectrometers and large LAr detectors. To definitely clarify the physics issue, the proposed experiment will study oscillations in a muon neutrino / antineutrino beam both in appearance and disappearance modes, exploring the Δm 2 ∼ 1 eV 2 range

  20. Limits on neutrino oscillations in the CNGS neutrino beam and event classification with the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Ferber, Torben

    2012-09-15

    OPERA, the oscillation project with emulsion-tracking apparatus, is a long-baseline neutrino oscillation experiment. It combines an almost pure, high-energy {nu}{sub {mu}} beam produced at the SPS accelerator at CERN, Switzerland, with the OPERA neutrino detector located at a distance of about 730 km in the LNGS underground laboratory in Italy. By using a lead/photo emulsion target, {nu}{sub {tau}} charged current (CC) interactions of {nu}{sub {tau}} from {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations can be observed on an event-by-event basis with very low background rates. Within this thesis, a {nu}{sub {mu}}{yields}{nu}{sub {mu}} disappearance search is described that uses a flux normalization. independent measurement of the CC event fraction as a function of the hadronic energy as measured by the electronic detectors of OPERA. This allows to derive limits on {nu}{sub {mu}}{yields}{nu}{sub {mu}} oscillations, complementary to the main {nu}{sub {tau}} appearance analysis. For maximal mixing, vertical stroke {Delta}m{sup 2}{sub 23} vertical stroke >4.4 x 10{sup -3} eV{sup 2} is excluded at 90% C.L. by the disappearance analysis. This thesis represents the first application of this method, including systematic uncertainties, in a long-baseline neutrino oscillation experiment.

  1. Limits on neutrino oscillations in the CNGS neutrino beam and event classification with the OPERA detector

    International Nuclear Information System (INIS)

    Ferber, Torben

    2012-09-01

    OPERA, the oscillation project with emulsion-tracking apparatus, is a long-baseline neutrino oscillation experiment. It combines an almost pure, high-energy ν μ beam produced at the SPS accelerator at CERN, Switzerland, with the OPERA neutrino detector located at a distance of about 730 km in the LNGS underground laboratory in Italy. By using a lead/photo emulsion target, ν τ charged current (CC) interactions of ν τ from ν μ → ν τ oscillations can be observed on an event-by-event basis with very low background rates. Within this thesis, a ν μ →ν μ disappearance search is described that uses a flux normalization. independent measurement of the CC event fraction as a function of the hadronic energy as measured by the electronic detectors of OPERA. This allows to derive limits on ν μ →ν μ oscillations, complementary to the main ν τ appearance analysis. For maximal mixing, vertical stroke Δm 2 23 vertical stroke >4.4 x 10 -3 eV 2 is excluded at 90% C.L. by the disappearance analysis. This thesis represents the first application of this method, including systematic uncertainties, in a long-baseline neutrino oscillation experiment.

  2. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  3. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Jiajie [Univ. of South Carolina, Columbia, SC (United States)

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  4. LENS spectroscopy of low energy solar neutrinos

    CERN Document Server

    Schönert, S

    2001-01-01

    The LENS experiments will measure energy resolved sub-MeV solar electron-neutrinos ( nu /sub e/) in real time via inverse beta - transition populating an isomeric state in the daughter nuclei. The subsequent de-excitation provides a delayed coincidence tag which discriminates against background. A liquid scintillation detector loaded with 20 t of Yb would yield an event rate of 190 pp- and 175 /sup 7/Be neutrinos per year. Essential information on neutrino mixing and masses can be derived.

  5. Green light for neutrino beam to pass below the Alps

    CERN Multimedia

    Abbott, A

    1999-01-01

    CERN council have approved a plan to send a beam of muon neutrinos under the Alps from Geneva to the Gran Sasso laboratories near Rome. INFN is organising two experiments - OPERA and ICANOE, to study the neutrino oscillations as they travel (1/2 pg)

  6. Properties and interactions of neutrino (1977-1980) beam dump experiments

    International Nuclear Information System (INIS)

    Tsukerman, I.S.

    1981-01-01

    Data on search of instantaneous muon and electron neutrinos in experiments of beam dump type are presented in the review. Neutrino is formed in decays of particles rusulted from pN interactions. First experiments of the dump beam type have been realized at the CERN/SPS accelerator in 1975 and Serpukhov accelerator by the ITEF-IFVE group in 1977 with proton energies of 26 and 70 GeV, respectively. The results of beam dump experiments of the second generation in 1979 in CERN are considered in detail. These experiments have been intended for measuring the effect of instantaneous neutrino. The conclusion is drawn on the presence of instantaneous muon neutrinos in the above experiments [ru

  7. Neutrino dark energy. Revisiting the stability issue

    Energy Technology Data Exchange (ETDEWEB)

    Eggers Bjaelde, O.; Hannestad, S. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Brookfield, A.W. [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics and Dept. of Physics, Astro-Particle Theory and Cosmology Group; Van de Bruck, C. [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics, Astro-Particle Theory and Cosmology Group; Mota, D.F. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik]|[Institute of Theoretical Astrophysics, Oslo (Norway); Schrempp, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tocchini-Valentini, D. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    2007-05-15

    A coupling between a light scalar field and neutrinos has been widely discussed as a mechanism for linking (time varying) neutrino masses and the present energy density and equation of state of dark energy. However, it has been pointed out that the viability of this scenario in the non-relativistic neutrino regime is threatened by the strong growth of hydrodynamic perturbations associated with a negative adiabatic sound speed squared. In this paper we revisit the stability issue in the framework of linear perturbation theory in a model independent way. The criterion for the stability of a model is translated into a constraint on the scalar-neutrino coupling, which depends on the ratio of the energy densities in neutrinos and cold dark matter. We illustrate our results by providing meaningful examples both for stable and unstable models. (orig.)

  8. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Enrique Arrieta [Michigan State Univ., East Lansing, MI (United States)

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  9. Search for Decays of Heavy Neutrinos with the PS Beam

    CERN Multimedia

    2002-01-01

    The experiment searches for neutrino decay, primarily into the e|+e|-@n^e and @g@g@n^e modes. Neutrino masses in the region between 1 and 400~MeV will be explored. The beam used is the neutrino PS beam used for the oscillation experiments. The apparatus consists of a decay volume @=30~m long and a calorimeter @=8~radiation lengths thick and @=20~m|2 in surface. The detectors are flash-tube modules of the type developed at Saclay for the proton-stability experiment. Scintillator hodoscopes give the timing information necessary for the trigger logic and background rejection.

  10. The Low-Energy Neutrino Factory

    International Nuclear Information System (INIS)

    Brass, Alan; Geer, Steve; Ellis, Malcolm; Mena, Olga; Pascoli, Silvia

    2008-01-01

    To date most studies of Neutrino Factories have focused on facilities where the energy of the muon in the storage ring has been in the range of 25-50 GeV. In this paper we present a concept for a Low-Energy (∼ 4 GeV) neutrino factory. For baselines of O(1000 km), the rich oscillation pattern at low neutrino interaction energy (0.5 - ∼3 GeV) provides the unique performance of this facility with regard to its sensitivity to CP violation and the determination of the neutrino mass hierarchy. A unique neutrino detector is needed, however, in order to exploit this oscillation pattern. We will describe the basic accelerator facility, demonstrate the methodology of the analysis and give an estimate on how well the Low-Energy neutrino factory can measure θ 13 , CP violation and the mass hierarchy. We will also describe the detector concept that is used, show a preliminary analysis regarding its performance and indicate what R and D is still needed. Finally we will show how the Low-Energy neutrino factory could be a step towards an energy frontier muon collider.

  11. Neutral strange particle production in neutrino interactions at Tevatron energies

    International Nuclear Information System (INIS)

    De, K.

    1988-05-01

    This thesis reports on a study of neutral strange particle production by high energy muon-neutrinos. The neutrinos were obtained from a 800 GeV proton beam-dump at Fermilab. Neutrino events were observed using a hybrid bubble chamber detector system. The data contained deep inelastic neutrino-nucleon interactions with an average momentum transfer 2 > = 23 (GeV/c) 2 . Rates for K 0 and Λ production in neutrino and anti-neutrino charged current events are presented. The distributions of these particles in Feynman x and rapidity are also studied. Significant differences were observed in the production mechanism for the K 0 meson and the Λ baryon. The production rates of K 0 's were observed to increase with energy, whereas the rates for Λ production remained essentially constant. In Feynman x, the K 0 's were produced in the central region and the Λ's were produced backwards. The data are compared with the LUND monte carlo for string fragmentation. In the monte carlo, K 0 's are mostly produced from s/bar s/ pair production during fragmentation. The Λ's are generally produced through recombination with the diquark from the target nucleon. The data agree with this model for strange particle production. 39 refs., 24 figs., 10 tabs

  12. Diagram of the CNGS neutrino beam

    CERN Multimedia

    Jean-Luc Caron

    2001-01-01

    Protons accelerated in the Super Proton Synchrotron (SPS) at CERN collide with a graphite target producing mainly pions and kaons, particles with short lifetimes, which will decay in the decay tube, producing muon neutrinos. Some of these neutrinos are expected to change into another type called the tau neutrino that will be looked for by a huge detector 732 km away in Gran Sasso, Italy.

  13. International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facilities

    International Nuclear Information System (INIS)

    Abe, T; Aihara, H; Andreopoulos, C; Ankowski, A; Badertscher, A; Battistoni, G; Blondel, A; Bouchez, J; Bross, A; Ellis, M; Bueno, A; Camilleri, L; Campagne, J E; Cazes, A; Cervera-Villanueva, A; De Lellis, G; Di Capua, F; Ereditato, A; Esposito, L S

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the δ-θ 13 parameter space.

  14. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Aprili, P. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Baiboussinov, B.; Baldo Ceolin, M. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Benetti, P.; Calligarich, E. [Dipartimento di Fisica Nucleare e Teorica e INFN, Universita di Pavia, Via Bassi 6, I-27100, Pavia (Italy); Canci, N. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Centro, S. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Cesana, A. [INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133, Milano (Italy); Cieslik, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Cline, D.B. [Department of Physics and Astronomy, University of California, LA (United States); Cocco, A.G. [Dipartimento di Scienze Fisiche e INFN, Universita Federico II, Napoli (Italy); Dabrowska, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Dequal, D. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Dermenev, A. [Institute for Nuclear Research of the Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Dolfini, R. [Dipartimento di Fisica Nucleare e Teorica e INFN, Universita di Pavia, Via Bassi 6, I-27100, Pavia (Italy); Farnese, C.; Fava, A. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Ferrari, A. [CERN, European Laboratory for Particle Physics, CH-1211 Geneve 23 (Switzerland); and others

    2012-06-18

    At the end of the 2011 run, the CERN CNGS neutrino beam has been briefly operated in lower intensity mode with {approx}10{sup 12} p.o.t./pulse and with a proton beam structure made of four LHC-like extractions, each with a narrow width of {approx}3 ns, separated by 524 ns. This very tightly bunched beam allowed a very accurate time-of-flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. The ICARUS T600 detector (CNGS2) has collected 7 beam-associated events, consistent with the CNGS collected neutrino flux of 2.2 Multiplication-Sign 10{sup 16} p.o.t. and in agreement with the well-known characteristics of neutrino events in the LAr-TPC. The time of flight difference between the speed of light and the arriving neutrino LAr-TPC events has been analysed. The result {delta}t=0.3{+-}4.9(stat.){+-}9.0(syst.) ns is compatible with the simultaneous arrival of all events with speed equal to that of light. This is in a striking difference with the reported result of OPERA (OPERA Collaboration, 2011) claiming that high energy neutrinos from CERN arrive at LNGS {approx}60 ns earlier than expected from luminal speed.

  15. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Niner, Evan David [Indiana Univ., Bloomington, IN (United States)

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  16. Neutrino SuperBeams at Fermilab

    International Nuclear Information System (INIS)

    Parke, Stephen J.

    2011-01-01

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  17. Mighty Murines: Neutrino Physics at very high Energy Muon Colliders

    International Nuclear Information System (INIS)

    King, B.J.

    2000-01-01

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10 8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V ub | and |V cb | and, possibly, the first measurements of |V td | in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these

  18. Neutrino energy reconstruction from one-muon and one-proton events

    Energy Technology Data Exchange (ETDEWEB)

    Furmanski, Andrew P.; Sobczyk, Jan T.

    2017-06-01

    We propose a method of selecting a high-purity sample of charged current quasielastic neutrino interactions to obtain a precise reconstruction of the neutrino energy. The performance of the method was verified with several tests using genie, neut, and nuwro Monte Carlo event generators with both carbon and argon targets. The method can be useful in neutrino oscillation studies with beams of a few GeV.

  19. High energy neutrinos from the tidal disruption of stars

    Energy Technology Data Exchange (ETDEWEB)

    Lunardini, Cecilia [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-05-17

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  20. High energy neutrinos from the tidal disruption of stars

    International Nuclear Information System (INIS)

    Lunardini, Cecilia

    2017-01-01

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  1. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    International Nuclear Information System (INIS)

    Medinaceli, E.

    2013-01-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the “Near” (600 m) and “Far” (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (>50m 2 )

  2. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    Energy Technology Data Exchange (ETDEWEB)

    Medinaceli, E., E-mail: medinaceli@pd.infn.it [INFN and University of Padova (Italy)

    2013-08-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the “Near” (600 m) and “Far” (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (>50m{sup 2})

  3. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    Science.gov (United States)

    Medinaceli, E.; NESSiE Collaboration

    2013-08-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the "Near" (600 m) and "Far" (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼ 100 MeV to few GeV over a large transverse area (> 50m2).

  4. Search for oscillations of a long-lived muon neutrino beam: a status report

    International Nuclear Information System (INIS)

    Sulak, L.R.; Soukas, A.; Wanderer, P.

    1977-01-01

    A study of the time evolution of a long-lived ν/sub mu/ beam is being performed at Brookhaven National Laboratory (Experiment 704). The proton momentum (1.5 GeV/c 2 ) is chosen to concentrate the ν/sub mu/ flux at very low energy where all background reactions are kinematically suppressed. Sensitivity to oscillations at large proper times tau varies as l/p (where l is the flight length and p is the momentum of the neutrino) is greatly enhanced by the resulting low neutrino momentum. Transformations ν/sub mu/ → ν/sub e/ are sensed via ν/sub e/n → e - p. An early exploratory test using the neutrino detector of the BNL elastic neutrino-proton scattering experiment will be run during 1977. A 200 ton detector for a definitive experiment is also discussed. 14 references

  5. Production of events with two or three muons in the final state during the interaction on nucleons of neutrinos and anti-neutrinos of the CERN narrow band beam with a maximum energy of 200 GeV

    International Nuclear Information System (INIS)

    Maillard, Jacques.

    1979-03-01

    A study was made of the production of dimuons and trimuons in the neutrino interactions using the data of the CDHS (CERN-Dortmund-Heidelberg-Saclay Cooperation) experiment taken in the CERN narrow band beam. The analysis of the quick results (since the statistics are weak) leads to significant conclusions on these events: 1) the c quark fragmentation function is approximately flat, 2) the production of heavy leptons, if this exists, only represents a very small part of the charged currents (10 -4 approximately). 3) the pair production of charmed quarks can explain some of the dimuons of same sign, the greater part of these events coming from the semi leptonic disintegration of pions and kaons (π→μν,K → μν) produced in the hadronic jet. 4) any other process (for instance the production of b quarks) is very weak ( -3 of the charged currents) [fr

  6. Neutrino parameters with magical beta-beam at INO

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar; Choubey, Sandhya; Raychaudhuri, Amitava [Harish-Chandra Research Institute, Allahabad (India)], E-mail: sanjib@hri.res.in

    2008-11-01

    We have studied the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The idea of beta-beam is based on the production of a pure, intense, collimated beam of electron neutrinos or their antiparticles via the beta decay of accelerated radioactive ions circulating in a storage ring. Interestingly, the CERN-INO distance of 7152 km happens to be tantalizingly close to the so-called 'magic' baseline where the sensitivity to the neutrino mass ordering (sign of {delta}m{sup 2}{sub 31} {identical_to} m{sup 2}{sub 3} - m{sup 2}{sub 1}) and more importantly, {theta}{sub 13}, goes up significantly, while the sensitivity to the unknown CP phase is absent. This permits such an experiment involving the golden P{sub e{mu}} channel to make precise measurements of the mixing angle {theta}{sub 13} and neutrino mass hierarchy avoiding the issues of intrinsic degeneracies and correlations which plague other baselines.

  7. A measurement of muon neutrino disappearance with the MINOS detectors and NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ospanov, Rustem [Texas U.

    2008-08-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. The neutrino beam is produced by the NuMI facility at Fermilab, Batavia, Illinois, and is observed at near and far detectors placed 734 km apart. The neutrino interactions in the near detector are used to measure the initial muon neutrino fl The vast majority of neutrinos travel through the near detector and Earth matter without interactions. A fraction of muon neutrinos oscillate into other fl vors resulting in the disappearance of muon neutrinos at the far detector. This thesis presents a measurement of the muon neutrino oscillation parameters in the framework of the two-neutrino oscillation hypothesis.

  8. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  9. 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities

    CERN Document Server

    2015-01-01

    These proceedings present the written contributions from participants of the 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities (NUFACT 2014) that was held at the University of Glasgow (Glasgow, Scotland, United Kingdom) from 25-30 August 2014. This edition of the NUFACT annual meetings, which started in 1999, consisted of 24 plenary and 92 parallel talks and various poster sessions, with the participation of 124 delegates. Furthermore, the International Neutrino Summer School 2014 was held from 10-22 August 2014 at St Andrews, Scotland, in the two weeks before NUFACT 2014. It was intended for young scientists with an interest in neutrino physics in such a way that they would be able to participate and contribute to the NUFACT workshop as well. The objectives of the NUFACT workshops are to review progress on different studies for future accelerator-based neutrino oscillation facilities, with the goal to discover the mass hierarchy of neutrinos, CP violation in the leptonic s...

  10. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, K. [Fermilab; Backfish, M. [Fermilab; Moretti, A. [Fermilab; Tollestrup, A. V. [Fermilab; Watts, A. [Fermilab; Zwaska, R. M. [Fermilab; Abrams, R. [MUONS Inc., Batavia; Cummings, M. A.; Dudas, A. [MUONS Inc., Batavia; Johnson, R. P. [MUONS Inc., Batavia; Kazakevich, G. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Liu, Q. [Case Western Reserve U.

    2017-05-01

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  11. Proton Drivers for neutrino beams and other high intensity applications

    CERN Document Server

    Garoby, R; Koseki, T; Thomason, J

    2013-01-01

    CERN, Fermilab, J-PARC and RAL tentatively plan to have proton accelerators delivering multi-MW of beam power in view of enhancing their physics reach especially in the domain of neutrinos. These plans are described, together with their benefits for other applications.

  12. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  13. Cosmic rays at ultra high energies (Neutrinos.)

    International Nuclear Information System (INIS)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  14. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  15. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  16. A new design for the CERN-Fréjus neutrino Super Beam

    CERN Document Server

    Longhin, A

    2011-01-01

    We present an optimization of the hadron focusing system for a low-energy high-intensity conventional neutrino beam (Super-Beam) proposed on the basis of the HP-SPL at CERN with a beam power of 4 MW and an energy of 4.5 GeV. The far detector would be a 440 kton Water Cherenkov detector (MEMPHYS) located at a baseline of 130 km in the Fr\\'ejus site. The neutrino fluxes simulation relies on a new GEANT4 based simulation coupled with an optimization algorithm based on the maximization of the sensitivity limit on the $\\theta_{13}$ mixing angle. A new configuration adopting a multiple horn system with solid targets is proposed which improves the sensitivity to $\\theta_{13}$ and the CP violating phase $\\delta_{CP}$.

  17. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    Heijne, E.H.M.

    1983-01-01

    The neutrino beam installations at the CERN SPS accelerator are described, with emphasis on the beam monitoring systems. Especially the muon flux measurement system is considered in detail, and the calibration procedure and systematic aspects of the measurements are discussed. An introduction is given to the use of silicon semiconductor detectors and their related electronics. Other special chapters concern non-linear phenomena in the silicon detectors, radiation damage in silicon detectors, energy loss and energy deposition in silicon and a review of energy loss phenomena for high energy muons in matter. (orig.)

  18. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    Heijne, H.M.

    1983-01-01

    The present work mainly describes the 'Neutrino Flux Monitoring' system (NFM), which has been built for the 400-GeV Super Proton Synchrotron (SPS) neutrino beams. A treatment is given of some general subjects related to the utilization of silicon detectors and the properties of high-energy muons. Energy loss of minimal-ionizing particles, which has to be distinguished from energy deposition in the detector, is considered. Secondary radiation, also called 'spray', consisting of 'delta rays' and other cascade products, is shown to play an important role in the muon flux measurement inside a shield, especially for muons of high energy (> 100 GeV). Radiation induced damage in the detectors, which determines the long term performance, is discussed. The relation between the detector response and the real muon flux is determined. The use of NFM system for on-line beam monitoring is described. (Auth.)

  19. Results of a neutrino oscillation experiment performed at a meson factory beam-stop

    International Nuclear Information System (INIS)

    Mitchell, J.W.

    1989-04-01

    This document describes a neutrino oscillation experiment performed at the Los Alamos Meson Physics Facility. The oscillation mode searched for is /bar /nu///sub μ/ → /bar /nu///sub e/. The first chapter is a review of the known properties of the neutrino and a description of the phenomenon of neutrino oscillation. Previous experimental limits on this unobserved phenomenon are also given. The second chapter describes the experimental apparatus used by the E645 experiment to detect neutrinos produced in the LAMPF beam stop. The salient features of the detector are its large mass (20 tons of CH 2 ), its fine segmentation (to allow good particle tracking), good energy resolution, its recording of the history both before and after tracks appear in the detector, an active cosmic-ray anticoincidence shield, and 2000 gm/cm 2 of passive cosmic-ray shielding. It is located 26.8 m from the neutrino source, which has a mean neutrino energy of 40 MeV. The third chapter details the reduction of the 1.3 million event data sample to a 49 event sample of neutrino candidates. Principle backgrounds are Michel electrons from stopping cosmic-ray muons and protons from np elastic scattering by cosmic-ray neutrons. The fourth chapter explains how background levels from neutrino-nuclear scattering are predicted. The result of a maximum-likelihood analysis reveals no evidence for oscillation. 90% confidence levels are set at δm 2 = .10 eV 2 for large mixing and sin 2 (2θ) = .014 for large δm 2 . 82 refs., 18 figs., 55 tabs

  20. Measurement of the neutrino component of an antineutrino beam observed by a nonmagnetized detector

    International Nuclear Information System (INIS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Fleming, B. T.; Linden, S. K.; Spitz, J.; Brice, S. J.; Brown, B. C.; Ford, R.; Garcia, F. G.; Kobilarcik, T.; Marsh, W.; Moore, C. D.; Polly, C. C.; Russell, A. D.; Stefanski, R. J.; Zeller, G. P.; Bugel, L.; Conrad, J. M.; Karagiorgi, G.; Nguyen, V.

    2011-01-01

    Two methods are employed to measure the neutrino flux of the antineutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high-purity ν μ -induced charged-current single π + (CC1π + ) sample while the second exploits the difference between the angular distributions of muons created in ν μ and ν μ charged-current quasielastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the predominately antineutrino beam is overestimated--the CC1π + analysis indicates the predicted ν μ flux should be scaled by 0.76±0.11, while the CCQE angular fit yields 0.65±0.23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well-modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of antineutrino beams observed by future nonmagnetized detectors.

  1. Search for Sterile Neutrinos Using the MiniBooNE Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, Michel [Columbia Univ., New York, NY (United States)

    2005-01-01

    The possible existence of light sterile neutrinos in Nature is motivated, and the prospects to extend sterile neutrino searches beyond current limits is substantiated, using the MiniBooNE neutrino beam and detector at Fermilab. We report on the neutrino flux predictions for the MiniBooNE experiment, on the characterization of the charged-current, quasi-elastic interactions of muon neutrinos ({nu}{sub {mu}}n {yields} {mu}{sup -}p) observed, and on the experiment's sensitivity to sterile neutrinos via muon neutrino disappearance.

  2. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.H. [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of); Kang, Sin Kyu [Insitute for Convergence Fundamental Study, School of Liberal Arts, Seoul-Tech.,Seoul, 01811 (Korea, Republic of); Kim, C.S. [Dept. of Physics and IPAP, Yonsei University,Seoul, 120-749 (Korea, Republic of)

    2016-10-18

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  3. Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452332

    The present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer u...

  4. Hadronic models and experimental data for the neutrino beam production

    CERN Document Server

    Collazuol, G; Guglielmi, A M; Sala, P R

    2000-01-01

    The predictions of meson production by 450 GeV/c protons on Be using the Monte Carlo FLUKA standalone and GEANT-FLUKA and GEANT-GHEISHA in GEANT are compared with available experimental measurements. The comparison enlightens the improvements of the hadronic generator models of the present standalone code FLUKA with respect to the 1992 version which is embedded into GEANT-FLUKA. Worse results were obtained with the GHEISHA package. A complete simulation of the SPS neutrino beam line at CERN showed significant variations in the intensity and composition of the neutrino beam when FLUKA standalone instead of the GEANT-FLUKA package is used to simulate particle production in the Be target.

  5. Hadronic models and experimental data for the neutrino beam production

    International Nuclear Information System (INIS)

    Collazuol, G.; Ferrari, A.; Guglielmi, A.; Sala, P.R.

    2000-01-01

    The predictions of meson production by 450 GeV/c protons on Be using the Monte Carlo FLUKA standalone and GEANT-FLUKA and GEANT-GHEISHA in GEANT are compared with available experimental measurements. The comparison enlightens the improvements of the hadronic generator models of the present standalone code FLUKA with respect to the 1992 version which is embedded into GEANT-FLUKA. Worse results were obtained with the GHEISHA package. A complete simulation of the SPS neutrino beam line at CERN showed significant variations in the intensity and composition of the neutrino beam when FLUKA standalone instead of the GEANT-FLUKA package is used to simulate particle production in the Be target

  6. Dedicated search for the time evolution of an electron neutrino beam at the Brookhaven AGS

    International Nuclear Information System (INIS)

    Bionta, R.; LoSecco, J.; Ong, R.; Stone, J.; Sulak, L.; Watts, R.; Cortez, B.; Foster, G.W.

    1981-01-01

    An experiment dedicated to the study of the time evolution of a neutrino beam enriched with ν/sub e/'s is suggested as feasible. It appears that the highest fluxes can be achieved with current beam lines at the Brookhaven AGS or the CERN PS. A configuration optimized for good sensitivity to neutrino eigenmass differences from 1 eV to 20 eV and mixing (Pontecorvo) angles down to 15 0 (comparable to the Cabibbo angle) is considered. The ν/sub e/ beam is formed using K/sub e3/ 0 decays. A simultaneously produced ν/sub μ/ beam from K/sub μ3/ 0 decay serves as the normalizer. Pion generated ν/sub μ/'s are suppressed to limit background. A massive detector is employed to obtain sufficient statistical power. It consists of a series of seven water Cerenkov modules (each with 180T fiducial mass), judiciously spaced along the ν line to provide flight paths from 40 m to 1000 m. The detector elements duplicate a recently developed technology that is eminently suited to this investigation. Simulation and reconstruction of neutrino events in a detector similar to the one suggested show sufficient resolution in angle, energy, position and event timing relative to the beam

  7. Ultrahigh energy neutrinos and nonlinear QCD dynamics

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2004-01-01

    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms

  8. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  9. Construction of Superconducting Magnet System for the J-PARC Neutrino Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, T.; Wanderer, P.; Sasaki, K.; Ajima, Y.; Araoka, O.; Fujii, Y.; Hastings, N.; Higashi, N.; Iida, M.; Ishii, T.; Kimura, N.; Kobayashi, T.; Makida, Y.; Nakadaira, T.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Sakashita, K.; Sugawara, S.; Suzuki, S.; Tanaka, K.; Tomaru, T.; Terashima, A.; Yamamoto, A.; Ichikawa, A.; Kakuno, H.; Anerella, M.; Escallier, J.; Ganetis, G.; gupta, R.; Jain, A.; Muratore, J.; Parker, B.; Boussuge, T.; Charrier, J.-P.; Arakawa, M.; Ichihara, T.; Minato, T.; Okada, Y.; Itou, A.; Kumaki, T.; Nagami, M.; Takahashi, T.

    2009-10-18

    Following success of a prototype R&D, construction of a superconducting magnet system for J-PARC neutrino beam line has been carried out since 2005. A new conceptual beam line with the superconducting combined function magnets demonstrated the successful beam transport to the neutrino production target.

  10. Matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos

    Science.gov (United States)

    Huang, Guo-yuan; Liu, Jun-Hao; Zhou, Shun

    2018-06-01

    Can we observe the solar eclipses in the neutrino light? In principle, this is possible by identifying the lunar matter effects on the flavor conversions of solar neutrinos when they traverse the Moon before reaching the detectors at the Earth. Unfortunately, we show that the lunar matter effects on the survival probability of solar 8B neutrinos are suppressed by an additional factor of 1.2%, compared to the day-night asymmetry. However, we point out that the matter effects on the flavor conversions of high-energy astrophysical neutrinos, when they propagate through the Sun, can be significant. Though the flavor composition of high-energy neutrinos can be remarkably modified, it is quite challenging to observe such effects even in the next-generation of neutrino telescopes.

  11. Study of Anti-Neutrino Beam with Muon Monitor in the T2K experiment

    Science.gov (United States)

    Hiraki, Takahiro

    The T2K experiment is a long-baseline neutrino oscillation experiment. In 2013, the T2K collaboration observed electron neutrino appearance in a muon neutrino beam at 7.3 sigma significance. One of the next main goals of the T2K experiment is to measure electron anti-neutrino appearance. In June 2014 we took anti-neutrino beam data for the first time. The anti-neutrino beam was obtained by reversing the polarity of horn focusing magnets. To monitor the direction and intensity of the neutrino beam which is produced from the decay of pions and kaons, the muon beam is continuously measured by Muon Monitor (MUMON). To reconstruct the profile of the muon beam, MUMON is equipped with 49 sensors distributed on a plane behind the beam dump. In this report, we show some results of the anti-neutrino beam data taken by monitors including MUMON. In particular, dependence of the muon beam intensity on electric current of the horns, correlation between the proton beam position and the MUMON profile, and beam stability are presented. Comparison between the data and Monte Carlo simulation is also discussed.

  12. Study of anti-neutrino beam with Muon Monitor in the T2K experiment

    International Nuclear Information System (INIS)

    Hiraki, Takahiro

    2015-01-01

    The T2K experiment is a long-baseline neutrino oscillation experiment. In 2013, the T2K collaboration observed electron neutrino appearance in a muon neutrino beam at 7.3 sigma significance. One of the next main goals of the T2K experiment is to measure electron anti-neutrino appearance. In June 2014 we took anti-neutrino beam data for the first time. The anti-neutrino beam was obtained by reversing the polarity of horn focusing magnets. To monitor the direction and intensity of the neutrino beam which is produced from the decay of pions and kaons, the muon beam is continuously measured by Muon Monitor (MUMON). To reconstruct the profile of the muon beam, MUMON is equipped with 49 sensors distributed on a plane behind the beam dump. In this report, we show some results of the anti-neutrino beam data taken by monitors including MUMON. In particular, dependence of the muon beam intensity on electric current of the horns, correlation between the proton beam position and the MUMON profile, and beam stability are presented. Comparison between the data and Monte Carlo simulation is also discussed. (author)

  13. Ultrahigh energy cosmic ray fluxes and cosmogenic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2013-04-15

    We discuss the possible origin of the two neutrino shower events reported by the IceCube Collaboration at the Neutrino 2012 conference in Kyoto, Japan. The suspicion early on was that these two events are due to cosmogenic neutrinos and possibly by electron antineutrinos generating the Glashow resonance. The difference of the energy of the W{sup −} in the resonance and the energy estimates of the detected cascade events makes this assumption unlikely. The conclusion then may be that these high energy neutrinos are produced at sources of high energy cosmic rays such as Active Galactic Nuclei.

  14. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters

    International Nuclear Information System (INIS)

    Ahmad, Q.R.; Bullard, T.V.; Cox, G.A.; Duba, C.A.; Formaggio, J.A.; Germani, J.V.; Hamian, A.A.; Hazama, R.; Heeger, K.M.; Howe, M.; Kazkaz, K.; Manor, J.; Meijer Drees, R.; Orrell, J.L.; Schaffer, K.K.; Smith, M.W.E.; Steiger, T.D.; Stonehill, L.C.; Allen, R.C.; Buehler, G.

    2002-01-01

    The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8 B spectrum, the night minus day rate is 14.0%±6.3% +1.5 -1.4 % of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the ν e asymmetry is found to be 7.0%±4.9% +1.3 -1.2 % . A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution

  15. Determining the hierarchy of neutrino masses with high density magnetized detectors at the Beta Beams

    International Nuclear Information System (INIS)

    Donini, A.; Fernandez-Martinez, E.; Rigolin, S.; Migliozzi, P.; Lavina, L. Scotto; Selvi, M.; De Fatis, T. Tabarelli; Terranova, F.

    2008-01-01

    Multi-kton iron detectors can be simultaneously exploited as far detectors for high energy Beta Beams and to determine the atmospheric ν μ flux in the multi-GeV range. These measurements can be combined in a highly non trivial manner to improve the sensitivity to the hierarchy of neutrino masses. Considering a Super-SPS based Beta Beam and a 40 kton far detector located ∼700 km from the source (CERN to Gran Sasso distance), we demonstrate that even with moderate detector granularities the sign of Δm 13 2 can be determined for θ 13 values greater than 4 deg.

  16. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  17. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  18. The capabilities of monochromatic EC neutrino beams with the SPS upgrade

    International Nuclear Information System (INIS)

    Espinoza, C; Bernabeu, J

    2008-01-01

    The goal for future neutrino facilities is the determination of the U(e3) mixing and CP violation in neutrino oscillations. This will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We conclude that the SPS upgrade to 1000 GeV is crucial to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline. We compare the physics potential for two different configurations: I) γ = 90 and γ = 195 (maximum achievable at present SPS) to Frejus; II) γ = 195 and γ = 440 (maximum achievable at upgraded SPS) to Canfranc. The main conclusion is that, whereas the gain in the determination of U(e3) is rather modest, setup II provides much better sensitivity to CP violation

  19. The capabilities of monochromatic EC neutrino beams with the SPS upgrade

    Science.gov (United States)

    Espinoza, C.; Bernabéu, J.

    2008-05-01

    The goal for future neutrino facilities is the determination of the U(e3) mixing and CP violation in neutrino oscillations. This will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We conclude that the SPS upgrade to 1000 GeV is crucial to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline. We compare the physics potential for two different configurations: I) γ = 90 and γ = 195 (maximum achievable at present SPS) to Frejus; II) γ = 195 and γ = 440 (maximum achievable at upgraded SPS) to Canfranc. The main conclusion is that, whereas the gain in the determination of U(e3) is rather modest, setup II provides much better sensitivity to CP violation.

  20. Inclusive quasielastic neutrino reactions in 12C and 16O at intermediate energies

    International Nuclear Information System (INIS)

    Singh, S.K.; Oset, E.

    1993-01-01

    Inclusive quasielastic neutrino (antineutrino) reactions on 12 C and 16 O at intermediate energies (50< E<400 MeV) are studied to investigate the effects of the nuclear medium on the total cross section and the energy spectrum of the outgoing leptons. The calculations are done in the local density approximation and various nuclear effects like Pauli blocking, Fermi motion, and strong-interaction renormalizations due to the presence of nucleons are taken into account. The corrections due to Coulomb effects are included which have been hitherto neglected in inclusive reactions. The results presented here are applicable to the inclusive reactions with neutrino beams planned to look for neutrino oscillations in the Los Alamos experiments or the experiments with underground detectors looking for atmospheric or solar flare neutrinos

  1. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  2. AMANDA Observations Constrain the Ultrahigh Energy Neutrino Flux

    Energy Technology Data Exchange (ETDEWEB)

    Halzen, Francis; /Wisconsin U., Madison; Hooper, Dan; /Fermilab

    2006-05-01

    A number of experimental techniques are currently being deployed in an effort to make the first detection of ultra-high energy cosmic neutrinos. To accomplish this goal, techniques using radio and acoustic detectors are being developed, which are optimally designed for studying neutrinos with energies in the PeV-EeV range and above. Data from the AMANDA experiment, in contrast, has been used to place limits on the cosmic neutrino flux at less extreme energies (up to {approx}10 PeV). In this letter, we show that by adopting a different analysis strategy, optimized for much higher energy neutrinos, the same AMANDA data can be used to place a limit competitive with radio techniques at EeV energies. We also discuss the sensitivity of the IceCube experiment, in various stages of deployment, to ultra-high energy neutrinos.

  3. How well do we need to know the beam properties at a neutrino factory?

    International Nuclear Information System (INIS)

    Geer, S.; Crisan, C.

    2000-01-01

    In principle, a neutrino factory can produce a beam with a well known ν e and ν μ flux. In practice, the uncertainties on the muon beam properties will introduce uncertainties into the calculated neutrino fluxes. The authors explore the relationship between the beam systematics and the systematic uncertainties on predicted event rates at a far site. The desired precision with which they must know the beam momentum, direction, divergence, momentum spread, and polarization are discussed

  4. Progress on a spherical TPC for low energy neutrino detection

    International Nuclear Information System (INIS)

    Aune, S; Colas, P; Deschamps, H; Dolbeau, J; Fanourakis, G; Ribas, E Ferrer; Enqvist, T; Geralis, T; Giomataris, Y; Gorodetzky, P; Gounaris, G J; Gros, M; Irastorza, I G; Kousouris, K; Lepeltier, V; Morales, J; Patzak, T; Paschos, E A; Salin, P; Savvidis, I; Vergados, J D

    2006-01-01

    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the first 1 m 3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others

  5. Leptogenesis, Dark Energy, Dark Matter and the neutrinos

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2007-01-01

    In this review we discuss how the models of neutrino masses can accommodate solutions to the problem of matter-antimatter asymmetry in the universe, dark energy or cosmological constant problem and dark matter candidates. The matter-antimatter asymmetry is explained by leptogenesis, originating from the lepton number violation associated with the neutrino masses. The dark energy problem is correlated with a mass varying neutrinos, which could originate from a pseudo-Nambu-Goldstone boson. In some radiative models of neutrino masses, there exists a Higgs doublet that does not acquire any vacuum expectation value. This field could be inert and the lightest inert particle could then be a dark matter candidate. We reviewed these scenarios in connection with models of neutrino masses with right-handed neutrinos and with triplet Higgs scalars

  6. Observing a light dark matter beam with neutrino experiments

    Science.gov (United States)

    Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam

    2011-10-01

    We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.

  7. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  8. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    deficit is taken very seriously, and has led to ideas of neutrino oscillations, and oscillation resonances. If the different neutrino varieties - electron, muon and tau - have a mass, then they can oscillate between themselves. A neutrino beam starting off as pure muon-type, for example, would change its composition as it went along. Setting limits on this behaviour is an important objective in neutrino experiments, with 'long baseline' studies - beams covering a long distance between source and detector, playing a vital role. Lincoln Wolfenstein, one of the architects of the new neutrino oscillation scenarios, says 'it is still not clear whether neutrinos have masses or not'. Laboratory experiments try to measure these masses, but so far only upper Unfits have been established. These studies are beginning to reach the limit of their sensitivity and are unlikely to improve drastically. 'But there is indirect evidence,' says Wolfenstein, 'that neutrinos are much lighter.' The solar neutrino problem is really to solar neutrino opportunity,' he continues. Future experiments with gallium and other new neutrino detection techniques, coupled with new high energy neutrino studies, will answer the question

  9. Measurement of the nucleon structure function in the deep inelastic neutrino-iron scattering with a wide-band neutrino beam

    International Nuclear Information System (INIS)

    Flottmann, T.

    1982-01-01

    In this thesis the nucleon structure function xF 3 is determined from the inclusive measurement of the deep inelastic neutrino nucleon charged current interaction. The data were taken in the CERN wide band neutrino beam using the detector of the CERN-Dortmund-Heidelberg-Saclay collaboration. This detector serves at the same time as target, as hadron energy calorimeter and as muon spectrometer. One major aspect of this work was to study the possibility of using high statistics wide band beam data for structure function analysis. The systematic errors specific to this kind of beam are investigated. To obtain the differential cross sections about 100000 neutrino and 75000 antineutrino events in the energy range 20-200 GeV are analysed. The differential cross sections are normalized to the total cross sections, as measured in the narrow band beam by the same collaboration. The calculated structure function xF 3 shows significant deviations from scaling. These scaling violations are compared quantitatively with the predictions of quantum chromodynamics. (orig.) [de

  10. Total cross section measurements for νμ, ν-barμ interactions in 3 - 30 GeV energy range with IHEP - JINR neutrino detector

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Belikov, S.V.; Borisov, A.A.

    1995-01-01

    The results of total cross section measurements for the ν μ , ν-bar μ interactions with isoscalar target in the 3 - 30 GeV energy range have been presented. The data were obtained with the IHEP - JINR Neutrino Detector in the 'natural' neutrino beams of the U - 70 accelerator. The significant deviation from the linear dependence for σ tot versus neutrino energy is determined in the energy range less than 15 GeV. 46 refs., 10 figs., 5 tabs

  11. Search for lepton number violating charged current processes with neutrino beams

    International Nuclear Information System (INIS)

    Kanemura, Shinya; Kuno, Yoshitaka; Ota, Toshihiko

    2013-01-01

    We propose a novel idea on measurements to understand which physics mechanism is responsible for the origin of a small neutrino mass, by searching for the processes of lepton number violating charged current interaction with incident of a neutrino beam. It turns out that only the proposed measurements could provide a potential to discriminate the mechanisms, in particular the ones called loop-induced mechanisms of neutrino mass generation, from the others. The expected rates of these processes based on some theoretical assumptions are estimated. They are found to be sizable so that detection of such processes could be achievable at near detectors in future highly intense neutrino-beam facilities

  12. Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2011-01-01

    The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization. (author)

  13. Detecting ultra high energy neutrinos with LOFAR

    International Nuclear Information System (INIS)

    Mevius, M.; Buitink, S.; Falcke, H.; Hörandel, J.; James, C.W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; Veen, S. ter

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (∼150MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut-off in sensitivity at lower energies. A first upper limit on the UHE neutrino flux from data of the Westerbork Radio Telescope (WSRT) has been published, while a second experiment, using the new LOFAR telescope, is in preparation. The advantages of LOFAR over WSRT are the larger collecting area, the better pointing accuracy and the use of ring buffers, which allow the implementation of a sophisticated self-trigger algorithm. The expected sensitivity of LOFAR reaches flux limits within the range of some theoretical production models.

  14. Neutrino Physics

    CERN Multimedia

    CERN. Geneva; Dydak, Friedrich

    2001-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  15. Neutrino Physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  16. RECENT DEVELOPMENTS IN ULTRA-HIGH ENERGY NEUTRINO ASTRONOMY

    Directory of Open Access Journals (Sweden)

    Peter K. F. Grieder

    2013-12-01

    Full Text Available We outline the current situation in ultrahigh energy (UHE cosmic ray physics, pointing out the remaining problems, in particular the puzzle concerning the origin of the primary radiation and the role of neutrino astronomy for locating the sources. Various methods for the detection of UHE neutrinos are briefly described and their merits compared. We give an account of the achievements of the existing optical Cherenkov neutrino telescopes, outline the possibility of using air fluorescence and particle properties of air showers to identify neutrino induced events, and discuss various pioneering experiments employing radio and acoustic detection of extremely energetic neutrinos. The next generation of space, ground and sea based neutrino telescopes now under construction or in the planning phase are listed.

  17. Using Quasi-Elastic Events to Measure Neutrino Oscillations with MINOS Detectors in the NuMI Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Masaki [Texas A & M Univ., College Station, TX (United States)

    2010-05-01

    MINOS (Main Injector Neutrino Oscillation Search) experiment has been designed to search for a change in the avor composition of a beam of muon neutrinos as they travel between the Near Detector at Fermi National Accelerator Laboratory and the Far Detector in the Soudan mine in Minnesota, 735 km from the target. The MINOS oscillation analysis is mainly performed with the charged current (CC) events and sensitive to constrain high- Δm2 values. However, the quasi-elastic (QEL) charged current interaction is dominant in the energy region important to access low- m2 values. For further improvement, the QEL oscillation analysis is performed in this dissertation. A data sample based on a total of 2.50 x 1020 POT is used for this analysis. In summary, 55 QEL-like events are observed at the Far detector while 87.06 ± 13.17 (syst:) events are expected with null oscillation hypothesis. These data are consistent with disappearance via oscillation with m2 = 2:10 0.37 (stat:) ± 0.24 (syst:) eV2 and the maximal mixing angle.

  18. Exploring new features of neutrino oscillations with very low energy monoenergetic neutrinos

    CERN Document Server

    Vergados, J D

    2010-01-01

    In the present work we propose to study neutrino oscillations employing sources of monoenergetic neutrinos following electron capture by the nucleus. Since the neutrino energy is very low the smaller of the two oscillation lengths, L23, appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector and one may determine very accurately the neutrino oscillation parameters. Since in this case the oscillation probability is proportional to theta13, one can measure or set a better limit on the unknown parameter theta13. This is quite important, since, if this mixing angle vanishes, there is not going to be CP violation in the leptonic sector. The best way to detect it is by measuring electron recoils in neutrino-electron scattering. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energ...

  19. Dark energy from pNGB mediated Dirac neutrino condensate

    Directory of Open Access Journals (Sweden)

    Ujjal Kumar Dey

    2018-03-01

    Full Text Available We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1X symmetry. A light pseudo-Nambu–Goldstone Boson, associated with the spontaneously broken U(1X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.

  20. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, David W. [Columbia Univ., New York, NY (United States)

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  1. Search for Muon Neutrino Disappearance in the Booster Neutrino Beam of Fermilab; Busqueda de Desaparicion de Neutrinos del Muon en el Haz de Neutrinos del Booster de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Mendez, Diana Patricia [Univ. Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico)

    2015-01-01

    In this work we carried out the disappearance analysis of muon neutrinos produced in the Fermilab Booster Neutrino Beam, using the data released to the public by the collaborations of the MiniBooNE and SciBooNE experiments. The calculations were made with programs in C and C++, implementing the ROOT libraries. From the analysis, using both the classical Pearson method and the Feldman and Cousins frequentist corrections, we obtained the 90\\% C.L. limit for the oscillation parameters sin22θ and Δm2 in the region 0.1 ≤ Δm2 ≤ 10 eV2 using a two neutrino model. The result presented in this work is consistent with the official one, with small deviations ascribed to round-off errors in the format of the used data, as well as statistical fluctuations in the generation of fake experiments used in the Feldman and Cousins method. As the official one, our result is consistent with the null oscillation hypothesis. This work was carried out independently to the MiniBooNE and SciBooNE collaborations and its results are not official.

  2. Baryogenesis, neutrino masses, and dynamical dark energy

    International Nuclear Information System (INIS)

    Eisele, M.T.

    2007-01-01

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  3. Baryogenesis, neutrino masses, and dynamical dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, M.T.

    2007-10-09

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  4. Particle Identification in the T2K TPCs and study of the electron neutrino component in the T2K neutrino beam

    International Nuclear Information System (INIS)

    Giganti, Claudio

    2010-01-01

    This thesis describes the work done on the TPCs of the Near Detector of the T2K experiment. T2K is an experiment installed in Japan and its main purpose is the measurement of the last angle of the neutrino mixing matrix, Θ 13 . The other two angles of the matrix have already been measured in the last years, through the phenomenon of the neutrino oscillations, showing that the neutrinos have masses different from zero. The measurement of the missing angle Θ 13 is of fundamental importance for the neutrino physics as, if this angle is different from zero, CP violation in the lepton sector can occur. Up to now only upper limits on the value of Θ 13 exist: the aim of T2K is to measure this angle or to put upper limits on it with a sensitivity 20 times better than the current limit. This measurement will be done measuring the appearance at the far detector, SuperKamiokande, of electron neutrinos in the muon neutrino beam produced at JPARC. The main background to the measurement of Θ 13 is the electron neutrinos produced together with the muon neutrinos in the beam: this component, expected to be of the order of 1% of the total neutrino flux, has to be measured at the T2K Near Detector, before the oscillations. This can be done selecting neutrino interactions in the Near Detector tracker and using the TPC particle identification capabilities to distinguish electrons from muons. This allows to select a sample of electron neutrino interactions and to measure their spectrum at the Near Detector. During this thesis I have developed the methods to perform the particle identification in the TPCs: the method is based on the measurement of the truncated mean of the energy deposited by the charged particles in the gas: at the typical energy of the T2K neutrinos the difference in the deposited energy between muons and electrons is of the order of 40% and for this reason a resolution better than 10% is needed to distinguish the two particles: as we will show in the thesis, with

  5. The CERN neutrino beam to Gran Sasso (NGS). Conceptual technical design

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, K [ed.; Acquistapace, G; Baldy, J L; Ball, A E; Bonnal, P; Buhler-Broglin, M; Carminati, F; Cennini, E; Ereditato, A; Falaleev, V; Faugeras, P; Ferrari, A; Foa, L; Fortuna, G; Genand, R; Grant, A L; Henny, L; Hilaire, A; Huebner, K; Inigo-Golfin, J; Kissler, K H; Lopez-Hernandez, L A; Maugain, J M; Mayoud, M; Migliozzi, P; Missiaen, D; Palladino, V; Papadopoulos, I M; Peraire, S; Pietropaolo, F; Rangod, S; Revol, J P; Roche, J; Sala, P; Sanelli, C; Stevenson, G R; Tomat, B; Tsesmelis, E; Valbuena, R; Vincke, H; Weisse, E; Wilhelmsson, M

    1998-05-19

    The conceptual design of a new neutrino facility at CERN is presented. Starting with 400 GeV/c protons from the Super Proton Synchrotron (SPS), a neutrino beam is produced which is directed towards the underground Gran Sasso Laboratory in Italy, 732 km away from CERN, where large, complex detectors will allow long-baseline experiments searching for neutrino oscillation phenomena to be performed. (orig.)

  6. Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    CERN Document Server

    Arneodo, F.; Bonesini, M.; di Tigliole, A.Borio; Boschetti, B.; Bueno, A.; Calligarich, E.; Casagrande, F.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, E.; Cline, D.; Curioni, A.; De Mitri, I.; De Vecchi, C.; Dolfini, R.; Ferrari, A.; Ghezzi, A.; Guglielmi, A.; Kisiel, J.; Mannocchi, G.; de la Ossa, A.Martinez; Matthey, C.; Mauri, F.; Montanari, C.; Navas, S.; Negri, P.; Nicoletto, M.; Otwinowski, S.; Paganoni, M.; Palamara, O.; Pepato, A.; Periale, L.; Mortari, G.Piano; Picchi, P.; Pietropaolo, F.; Puccini, A.; Pullia, A.; Ragazzi, S.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Redaelli, N.; Rondio, E.; Rubbia, A.; Rubbia, C.; Sala, P.R.; Sergiampietri, F.; Sobczyk, J.; Suzuki, S.; de Fatis, T.Tabarelli; Terrani, M.; Terranova, F.; Tonazzo, A.; Ventura, S.; Vignoli, C.; Wang, H.; Zalewska, A.

    2006-01-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.

  7. The CERN neutrino beam to Gran Sasso (NGS). Conceptual technical design

    International Nuclear Information System (INIS)

    Elsener, K.; Acquistapace, G.; Baldy, J.L.; Ball, A.E.; Bonnal, P.; Buhler-Broglin, M.; Carminati, F.; Cennini, E.; Ereditato, A.; Falaleev, V.; Faugeras, P.; Ferrari, A.; Foa, L.; Fortuna, G.; Genand, R.; Grant, A.L.; Henny, L.; Hilaire, A.; Huebner, K.; Inigo-Golfin, J.; Kissler, K.H.; Lopez-Hernandez, L.A.; Maugain, J.M.; Mayoud, M.; Migliozzi, P.; Missiaen, D.; Palladino, V.; Papadopoulos, I.M.; Peraire, S.; Pietropaolo, F.; Rangod, S.; Revol, J.P.; Roche, J.; Sala, P.; Sanelli, C.; Stevenson, G.R.; Tomat, B.; Tsesmelis, E.; Valbuena, R.; Vincke, H.; Weisse, E.; Wilhelmsson, M.

    1998-01-01

    The conceptual design of a new neutrino facility at CERN is presented. Starting with 400 GeV/c protons from the Super Proton Synchrotron (SPS), a neutrino beam is produced which is directed towards the underground Gran Sasso Laboratory in Italy, 732 km away from CERN, where large, complex detectors will allow long-baseline experiments searching for neutrino oscillation phenomena to be performed. (orig.)

  8. Energy dependence of solar-neutrino--electron scattering as a test of neutral currents

    International Nuclear Information System (INIS)

    Kwong, W.; Rosen, S.P.

    1992-01-01

    The energy dependence of ν-e scattering of solar neutrinos is investigated in the framework of neutrino oscillations and the nonadiabatic Mikheyev-Smirnov-Wolfenstein effect. It is shown that, with sufficient data, it will be possible to establish unambiguously whether neutrino oscillations are actually occurring and whether the electron neutrino oscillates into active or inactive (sterile) neutrino flavors

  9. Beam tests of ionization chambers for the NuMI neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Zwaska et al.

    2003-09-25

    We have conducted tests at the Fermilab Booster of ionization chambers to be used as monitors of the NuMI neutrino beamline. The chambers were exposed to proton fluxes of up to 10{sup 12} particles/cm{sup 2}/1.56 {micro}s. We studied space charge effects which can reduce signal collection from the chambers at large charged particle beam intensities.

  10. On the Neutrino Opera in the CNGS Beam

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2011-10-01

    Full Text Available In this brief paper, we solve the relativistic kinematics related to the intersection be- tween a relativistic beam of particles (neutrinos, e.g. and consecutive detectors. The gravitational effects are neglected, but the effect of the Earth rotation is taken into con- sideration under a simple approach in which we consider two instantaneous inertial reference frames in relation to the fixed stars: an instantaneous inertial frame of refer- ence having got the instantaneous velocity of rotation (about the Earth axis of rotation of the Cern at one side, the lab system of reference in which the beam propagates, and another instantaneous inertial system of reference having got the instantaneous velocity of rotation of the detectors at Gran Sasso at the other side, this latter being the system of reference of the detectors. Einstein’s relativity theory provides a velocity of intersection between the beam and the detectors greater than the velocity of light in the empty space as derived in this paper, in virtue of the Earth rotation. We provide a simple calculation for the discrepancy between a correct measure for the experiment and a measure arising due to the effect derived in this paper.

  11. Physics at a future Neutrino Factory and super-beam facility

    International Nuclear Information System (INIS)

    Bandyopadhyay, A; Choubey, S; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umasankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, S; Geer, S; Campagne, J E; Rolinec, M; Blondel, A

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams, Laboratori Nazionali di Frascati, Rome, 21-26 June 2005) and NuFact06 (Ivine, CA, 24-30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second-generation super-beam experiments, beta-beam facilities and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide extremely intense muon beams and the physics potential of such beams is discussed in the final section of the report.

  12. Physics at a future Neutrino Factory and super-beam facility

    NARCIS (Netherlands)

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and

  13. Galactic neutrino communication

    Energy Technology Data Exchange (ETDEWEB)

    Learned, John G. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States)], E-mail: jgl@phys.hawaii.edu; Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States)], E-mail: pakvasa@phys.hawaii.edu; Zee, A. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)], E-mail: zee@kitp.ucsb.edu

    2009-01-12

    We examine the possibility to employ neutrinos to communicate within the galaxy. We discuss various issues associated with transmission and reception, and suggest that the resonant neutrino energy near 6.3 PeV may be most appropriate. In one scheme we propose to make Z deg. particles in an overtaking e{sup +}-e{sup -} collider such that the resulting decay neutrinos are near the W{sup -} resonance on electrons in the laboratory. Information is encoded via time structure of the beam. In another scheme we propose to use a 30 PeV pion accelerator to create neutrino or anti-neutrino beams. The latter encodes information via the beam CP state as well as timing. Moreover the latter beam requires far less power, and can be accomplished with presently foreseeable technology. Such signals from an advanced civilization, should they exist, will be eminently detectable in existing neutrino detectors.

  14. IceCube: Particle Astrophysics with High Energy Neutrinos

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  15. Study of high-energy neutrino neutral-current interactions

    International Nuclear Information System (INIS)

    Aderholz, M.; Aggarwal, M.M.; Akbari, H.; Allport, P.P.; Badyal, S.K.; Ballagh, H.C.; Barth, M.; Baton, J.P.; Bingham, H.H.; Brucker, E.B.; Burnstein, R.A.; Campbell, J.R.; Cence, R.J.; Chatterjee, T.K.; Clayton, E.F.; Corrigan, G.; Coutures, C.; DeProspo, D.; Devanand; De Wolf, E.A.; Faulkner, P.J.W.; Foeth, H.; Fretter, W.B.; Gupta, V.K.; Hanlon, J.; Harigel, G.; Harris, F.A.; Jabiol, M.A.; Jacques, P.; Jain, V.; Jones, G.T.; Jones, M.D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J.M.; Koller, E.L.; Krawiec, R.J.; Lauko, M.; Lys, J.E.; Marage, P.; Milburn, R.H.; Miller, D.B.; Mittra, I.S.; Mobayyen, M.M.; Moreels, J.; Morrison, D.R.O.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M.W.; Peterson, V.Z.; Plano, R.; Rao, N.K.; Rubin, H.A.; Sacton, J.; Sambyal, S.S.; Schmitz, N.; Schneps, J.; Singh, J.B.; Smart, W.; Stamer, P.; Varvell, K.E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G.P.

    1992-01-01

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288±0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(bar ν) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and bar ν events. A value of 0.274±0.038 is obtained for the dominant ν component assuming bar ν NC/CC=0.39±0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323±0.025 and the K 0 production rates are 0.375±0.064 per CC and 0.322±0.073 per NC event. The corresponding Λ rates are 0.161±0.030 per CC and 0.113±0.030 per NC event. The K 0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events

  16. Study of high-energy neutrino neutral-current interactions

    Science.gov (United States)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Deprospo, D.; Devanand; de Wolf, E. A.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1992-04-01

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288+/-0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(ν¯) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and ν¯ events. A value of 0.274+/-0.038 is obtained for the dominant ν component assuming ν¯ NC/CC=0.39+/-0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323+/-0.025 and the K0 production rates are 0.375+/-0.064 per CC and 0.322+/-0.073 per NC event. The corresponding Λ rates are 0.161+/-0.030 per CC and 0.113+/-0.030 per NC event. The K0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events.

  17. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    CERN Document Server

    Antonello, M.; Bellini, V.; Benetti, P.; Bertolucci, S.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Bremer, J.; Calligarich, E.; Centro, S.; Cocco, A.G.; Dermenev, A.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Golubev, N.; Guglielmi, A.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kose, U.; Mammoliti, F.; Mannocchi, G.; Menegolli, A.; Meng, G.; Mladenov, D.; Montanari, C.; Nessi, M.; Nicoletto, M.; Noto, F.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Potenza, R.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Sobczyk, J.; Spanu, M.; Stefan, D.; Sulej, R.; Sutera, C.M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Wachala, T.; Zani, A.; Adams, C.; Andreopoulos, C.; Ankowski, A.M.; Asaadi, J.; Bagby, L.; Baller, B.; Barros, N.; Bass, M.; Bishai, M.; Bitadze, A.; Bugel, L.; Camilleri, L.; Cavanna, F.; Chen, H.; Chi, C.; Church, E.; Cianci, D.; Collin, G.H.; Conrad, J.M.; De Geronimo, G.; Dharmapalan, R.; Djurcic, Z.; Ereditato, A.; Esquivel, J.; Evans, J.; Fleming, B.T.; Foreman, W.M.; Freestone, J.; Gamble, T.; Garvey, G.; Genty, V.; Goldi, D.; Gramellini, E.; Greenlee, H.; Guenette, R.; Hackenburg, A.; Hanni, R.; Ho, J.; Howell, J.; James, C.; Jen, C.M.; Jones, B.J.P.; Kalousis, L.N.; Karagiorgi, G.; Ketchum, W.; Klein, J.; Klinger, J.; Kreslo, I.; Kudryavtsev, V.A.; Lissauer, D.; Livesly, P.; Louis, W.C.; Luthi, M.; Mariani, C.; Mavrokoridis, K.; McCauley, N.; McConkey, N.; Mercer, I.; Miao, T.; Mills, G.B.; Montanari, D.; Moon, J.; Moss, Z.; Mufson, S.; Norris, B.; Nowak, J.; Pal, S.; Palamara, O.; Pater, J.; Pavlovic, Z.; Perkin, J.; Pulliam, G.; Qian, X.; Qiuguang, L.; Radeka, V.; Rameika, R.; Ratoff, P.N.; Richardson, M.; von Rohr, C.Rudolf; Russell, B.; Schmitz, D.W.; Shaevitz, M.H.; Sippach, B.; Soderberg, M.; Soldner-Rembold, S.; Spitz, J.; Spooner, N.; Strauss, T.; Szelc, A.M.; Taylor, C.E.; Terao, K.; Thiesse, M.; Thompson, L.; Thomson, M.; Thorn, C.; Toups, M.; Touramanis, C.; Van de Water, R.G.; Weber, M.; Whittington, D.; Wongjirad, T.; Yu, B.; Zeller, G.P.; Zennamo, J.; Acciarri, R.; An, R.; Barr, G.; Blake, A.; Bolton, T.; Bromberg, C.; Caratelli, D.; Carls, B.; Convery, M.; Dytmam, S.; Eberly, B.; Gollapinni, S.; Graham, M.; Grosso, R.; Hen, O.; Hewes, J.; Horton-Smith, G.; Johnson, R.A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Li, Y.; Littlejohn, B.; Lockwitz, S.; Lundberg, B.; Marchionni, A.; Marshall, J.; McDonald, K.; Meddage, V.; Miceli, T.; Mooney, M.; Moulai, M.H.; Murrells, R.; Naples, D.; Nienaber, P.; Paolone, V.; Papavassiliou, V.; Pate, S.; Pordes, S.; Raaf, J.L.; Rebel, B.; Rochester, L.; Schukraft, A.; Seligman, W.; St. John, J.; Tagg, N.; Tsai, Y.; Usher, T.; Wolbers, S.; Woodruff, K.; Xu, M.; Yang, T.; Zhang, C.; Badgett, W.; Biery, K.; Brice, S.J.; Dixon, S.; Geynisman, M.; Moore, C.; Snider, E.; Wilson, P.

    2015-01-01

    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible...

  18. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  19. Neutrino Beam Simulations and Data Checks for the NOvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Del Tutto, Marco [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    This thesis presents a study of the NuMI beam line intended to clarify how the particle trajectories through the focusing system and consequently the neutrino event yield are affected by the variation of the Horn Currents.

  20. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  1. First Detection of Low Energy Electron Neutrinos in Liquid Argon Time Projection Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Corey James [Yale U.

    2016-01-01

    Electron neutrino appearance is the signature channel to address the most pressing questions in neutrino oscillations physics, at both long and short baselines. This includes the search for CP violation in the neutrino sector, which the U.S. flagship neutrino experiment DUNE will address. In addition, the Short Baseline Neutrino Program at Fermilab (MicroBooNE, SBND, ICARUS-T600) searches for new physics, such as sterile neutrinos, through electron neutrino appearance. Liquid argon time projection chambers are the forefront of neutrino detection technology, and the detector of choice for both short and long baseline neutrino oscillation experiments. This work presents the first experimental observation and study of electron neutrinos in the 1-10 GeV range, the essential oscillation energy regime for the above experiments. The systematic uncertainties for an electron neutrino appearance search for the Fermilab Short Baseline Neutrino Program are carefully quantified, and the characterization of separation between electrons and high energy photons is examined.

  2. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  3. High energy cosmic neutrinos and the equivalence principle

    International Nuclear Information System (INIS)

    Minakata, H.

    1996-01-01

    Observation of ultra-high energy neutrinos, in particular detection of ν τ , from cosmologically distant sources like active galactic nuclei (AGN) opens new possibilities to search for neutrino flavor conversion. We consider the effects of violation of the equivalence principle (VEP) on propagation of these cosmic neutrinos. In particular, we discuss two effects: (1) the oscillations of neutrinos due to VEP in the gravitational field of our Galaxy and in the intergalactic space; (2) resonance flavor conversion driven by the gravitational potential of AGN. We show that ultra-high energies of the neutrinos as well as cosmological distances to AGN, or strong AGN gravitational potential allow to improve the accuracy of testing of the equivalence principle by 25 orders of magnitude for massless neutrinos (Δf ∼ 10 -41 ) and by 11 orders of magnitude for massive neutrinos (Δf ∼ 10 -28 x (Δm 2 /1eV 2 )). The experimental signatures of the transitions induced by VEP are discussed. (author). 17 refs

  4. Leptogenesis and low energy CP-violation in neutrino physics

    International Nuclear Information System (INIS)

    Pascoli, S.; Petcov, S.T.; Riotto, A.

    2007-01-01

    Taking into account the recent progress in the understanding of the lepton flavor effects in leptogenesis, we investigate in detail the possibility that the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana CP-violating phases in the PMNS neutrino mixing matrix U, and thus is directly related to the low energy CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). We first derive the conditions of CP-invariance of the neutrino Yukawa couplings λ in the see-saw Lagrangian, and of the complex orthogonal matrix R in the 'orthogonal' parametrization of λ. We show, e.g. that under certain conditions (i) real R and specific CP-conserving values of the Majorana and Dirac phases can imply CP-violation, and (ii) purely imaginary R does not necessarily imply breaking of CP-symmetry. We study in detail the case of hierarchical heavy Majorana neutrino mass spectrum, presenting results for three possible types of light neutrino mass spectrum: (i) normal hierarchical, (ii) inverted hierarchical, and (iii) quasi-degenerate. Results in the alternative case of quasi-degenerate in mass heavy Majorana neutrinos, are also derived. The minimal supersymmetric extension of the standard theory with right-handed Majorana neutrinos and see-saw mechanism of neutrino mass generation is discussed as well. We illustrate the possible correlations between the baryon asymmetry of the Universe and (i) the rephasing invariant J CP controlling the magnitude of CP-violation in neutrino oscillations, or (ii) the effective Majorana mass in neutrinoless double beta decay, in the cases when the only source of CP-violation is respectively the Dirac or the Majorana phases in the neutrino mixing matrix

  5. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Auty, David John [Univ. of Sussex, Brighton (United Kingdom)

    2010-03-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0%$\\bar{v}$μ, which can be separated from the vμ because the MINOS detectors are magnetized. This makes it possible to study $\\bar{v}$μ oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the $\\bar{v}$μ oscillation parameters and comparing them with those for vμ, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam $\\bar{v}$μ before. It is also possible to produce an almost pure $\\bar{v}$μ beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% $\\bar{v}$μ component of the forward horn current NuMI beam. The $\\bar{v}$μ of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3-7.6+7.6(stat.)-3.6+3.6(syst.) events. This corresponds to a 1.9 σ deficit, and a best fit value of Δ$\\bar{m}$322 = 18 x 10-3 eV2 and sin2 2$\\bar{θ}$23 = 0.55. This thesis focuses particularly on the selection of $\\bar{v}$μ events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The

  6. Determining neutrino mass hierarchy from electron disappearance at a low energy neutrino factory

    International Nuclear Information System (INIS)

    Raut, Sushant K.

    2013-01-01

    Reactor neutrino experiments have recently measured the value of θ 13 , to be non-zero and moderately large. This makes the determination of the neutrino mass hierarchy possible. However, our lack of knowledge of δ CP results in a parameter degeneracy, which makes this task difficult. The electron neutrino disappearance probability does not depend on δ CP . Therefore, in principle, it is possible to determine the hierarchy independently of δ CP using this channel. Previous studies of neutrino factories have not considered this channel, because the effect of systematics in electron disappearance is substantial. However, we show that for the moderately large value of θ 13 measured, hierarchy determination is possible in spite of systematic effects. We consider a low energy neutrino factory (LENF) setup with a totally active scintillator detector (TASD) with charge-identification. We optimize the setup in muon energy and baseline, for different allowed values of θ 13 and runtime. We find that a LENF with baseline of around 1300 km and muon energy around 3-4 GeV is well suited for hierarchy determination. For the RENO best-fit value of θ 13 , this setup can determine the hierarchy at 5ω, for all values of δ CP and for both hierarchies. (author)

  7. A search for muon neutrino and antineutrino disappearance in the Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Mahn, Kendall Brianna McConnel [Columbia Univ., New York, NY (United States)

    2009-04-01

    This dissertation presents a search for vμ and $\\bar{v}$μ disappearance with the MiniBooNE experiment in the Δm2 region of a few eV2. Disappearance measurements in this oscillation region constrain sterile neutrino models and CPT violation in the lepton sector. Fits to the shape of the vμ and $\\bar{v}$μ energy spectra reveal no evidence for disappearance in either mode. This is the first test of $\\bar{v}$μ disappearance between Δm2 = 0.1 - 10 eV2. In addition, prospects for performing a joint analysis using the SciBooNE detector in conjunction with MiniBooNE are discussed.

  8. High energy neutrinos from Cyg X-3

    International Nuclear Information System (INIS)

    Walker, T.P.; Kolb, E.W.; Turner, M.S.

    1985-07-01

    Assuming that the UHE air showers from Cyg X-3 are produced by photons, we calculate the expected neutrino emission from a model which produces the γ-rays in the atmosphere of the Cyg X-3 companion. We discuss the possibility of detecting such neutrinos in underground detectors and the constraints that such a signal places on the use of this model in other particle production scenarios. 16 refs., 5 figs

  9. High-energy neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dermer, Charles D.; Atoyan, Armen

    2003-01-01

    We treat high-energy neutrino production in gamma ray bursts (GRBs). Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > or approx. 10 TeV neutrinos from GRBs with Doppler factors > or approx. 200, inferred from γ-ray observations, would support the supranova model. Detection of or approx. 3x10 -4 erg cm -2 offer a realistic prospect for detection of ν μ

  10. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  11. Study of the appearance of oscillating electron neutrinos issued from muon neutrino beam in the K2K experiment

    International Nuclear Information System (INIS)

    Argyriades, J.

    2006-05-01

    The work presented in this thesis has been done in the K2K experiment. His principle consists in the use of a beam of muon neutrinos, which flux has been measured at short and long distances. Those data enable us to study the effects of neutrino oscillation, particularly by measuring ν μ disappearance. Although this is not an appearance experiment, electronic neutrinos oscillation has been searched. In spite of no signal of appearance, this study enables to constrain oscillation parameters (Δm 23 2 , sin 2 2θ 13 ). With one event for 1,07 expected event from background, the exclusion area edges are close to the best actual limits, provided by Chooz experiment. By setting Δm 23 2 .= 2,8.10 -3 eV 2 , a limit at 90% confident level is reached: sin 2 2θ 13 < 0,2. (author)

  12. Diffuse fluxes of cosmic high-energy neutrinos

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic γ-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought

  13. ORIC Beam Energy Increase

    CERN Document Server

    Mallory, Merrit L; Dowling, Darryl; Hudson, Ed; Lord, Dick; Tatum, Alan

    2005-01-01

    The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it...

  14. Energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    International Nuclear Information System (INIS)

    Tseng, J.-J.; Yeh, T.-W.; Lee, F.-F.; Lin, G.-L.; Athar, H.; Huang, M.A.

    2003-01-01

    We present a semianalytic calculation of the tau-lepton flux emerging from the Earth induced by incident high energy neutrinos interacting inside the Earth for 10 5 ≤E ν /GeV≤10 10 . We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant ν(bar sign) e e - scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and the Greisen-Zatsepin-Kuzmin neutrino fluxes. The tau-lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information about the spectral indices of incident neutrino fluxes

  15. Proposal for characterization of muon spectrometers for neutrino beam lines with the Baby MIND

    CERN Document Server

    Noah, E

    2015-01-01

    Neutrino detectors based on state-of-the-art plastic scintillators read out with solid state photo-sensors, as well as new magnetization schemes, have been developed in the framework of AIDA. Meaningful size prototypes are under construction. In the framework of the CERN neutrino platform, we propose to test a Totally Active Scintillator Detector (TASD) and a prototype of a Magnetized Iron Neutrino Detector (MIND), called Baby MIND in the H8 beam line in 2016-2018. The design of the detectors and the purpose and plans for the beam tests are presented. An opportunity to use the Baby MIND detector in a real neutrino beam at JPARC for the measurement of the cross-section ratio between Water and scintillator (WAGASCI experiment) is described.

  16. CrossRef Neutrino factories

    CERN Document Server

    Wildner, Elena

    2016-01-01

    Neutrinos are produced by many processes in our universe. These elusive particles reach the earth having a certain energy permitting them to react with nuclei in detectors that are specifically designed to probe their properties. However, to get higher intensities and higher energy neutrinos for better statistics and better physics reach, the use of accelerators is necessary to advance in the field of neutrino research. To produce neutrinos with an accelerator, one needs to send a high power beam onto a target to get particles or isotopes that produce neutrinos with the required properties, by decay. The parent particles have to be collected and prepared for injection into an accelerating structure. Accelerator-based experiments can tune the energy of the produced neutrinos by boosting and controlling the energy of the parent particle. The produced neutrinos will travel the distance between the source and the detector, generally through earth; the distance the neutrino travels through earth, the energy of the...

  17. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaewon [Univ. of Rochester, NY (United States)

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  18. High energy neutrinos to see inside the Earth

    International Nuclear Information System (INIS)

    Borriello, E.; De Lellis, G.; Mangano, G.

    2010-01-01

    The new chances offered by elementary particles as probes of the internal structure of our planet are briefly reviewed, by paying particular attention to the case of high energy neutrinos. In particular, the new results concerning the shadow of mountains on ν τ flux at Pierre Auger Observatory is briefly discussed, and moreover the possibility to use the tail of atmospheric neutrinos to probe the core/mantle transition region is just sketched. (author)

  19. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  20. Physics at a future Neutrino Factory and super-beam facility

    CERN Document Server

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umansankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, Silvia; Geer, S; Rolinec, M; Blondel, A; Campanelli, M; Kopp, J; Lindner, M; Peltoniemi, J; Dornan, P J; Long, K; Matsushita, T; Rogers, C; Uchida, Y; Dracos, M; Whisnant, K; Casper, D; Chen, Mu-Chun; Popov, B; Aysto, J; Marfatia, D; Okada, Y; Sugiyama, H; Jungmann, K; Lesgourgues, J; Murayama, France H; Zisman, M; Tortola, M A; Friedland, A; Antusch, S; Biggio, C; Donini, A; Fernandez-Martinez, E; Gavela, B; Maltoni, M; Lopez-Pavon, J; Rigolin, S; Mondal, N; Palladino, V; Filthaut, F; Albright, C; de Gouvea, A; Kuno, Y; Nagashima, Y; Mezzetoo, M; Lola, S; Langacker, P; Baldini, A; Nunokawa, H; Meloni, D; Diaz, M; King, S F; Zuber, K; Akeroyd, A G; Grossman, Y; Farzan, Y; Tobe, K; Aoki, Mayumi; Kitazawa, N; Yasuda, O; Petcov, S; Romanino, A; Chimenti, P; Vacchi, A; Smirnov, A Yu; Couce, Italy E; Gomez-Cadenas, J J; Hernandez, P; Sorel, M; Valle, J W F; Harrison, P F; Lundardini, C; Nelson, J K; Barger, V; Everett, L; Huber, P; Winter, W; Fetscher, W; van der Schaaf, A

    2009-01-01

    The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, beta-beam facilities, and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide ...

  1. Search for Muon Neutrino Disappearance in a Short-Baseline Accelerator Neutrino Beam

    OpenAIRE

    Nakajima, Yasuhiro; Collaboration, for the SciBooNE

    2010-01-01

    We report a search for muon neutrino disappearance in the $\\Delta m^{2}$ region of 0.5-40 $eV^2$ using data from both SciBooNE and MiniBooNE experiments. SciBooNE data provides a constraint on the neutrino flux, so that the sensitivity to $\

  2. Searching for sterile neutrinos in dynamical dark energy cosmologies

    Science.gov (United States)

    Feng, Lu; Zhang, Jing-Fei; Zhang, Xin

    2018-05-01

    We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff energy properties could significantly influence the constraint limits of sterile neutrino parameters.

  3. Issues in Acceleration of A Muon Beam for a Neutrino Factory

    International Nuclear Information System (INIS)

    J. Delayen; D. Douglas; L. Harwood; V. Lebedev; C. Leemann; L. Merminga

    2001-01-01

    We have developed a concept for acceleration of a large phase-space, pulsed muon beam from 190 MeV to 50 GeV as part of a collaborative study of the feasibility of a neutrino factory based on in-flight decay of muons. The muon beam's initial energy spread was ∼20% and each bunch has the physical size of a soccer ball. Production of the muons will be quite expensive, so prevention of loss due to scraping or decay is critical. The former drives the system to large apertures and the latter calls for high real-estate-average gradients. The solution to be presented utilizes a 3 GeV linac to capture the beam, a 4-pass recirculating linac to get the beam to 10 GeV, and then a 5-pass linac to get the beam to 50 GeV. Throughout the system, longitudinal dynamics issues far outweighed transverse dynamics issues. This paper focuses on the issues surrounding the choice of superconducting rf structures over copper structures

  4. Search for high energy cosmic neutrino point sources with ANTARES

    International Nuclear Information System (INIS)

    Halladjian, G.

    2010-01-01

    The aim of this thesis is the search for high energy cosmic neutrinos emitted by point sources with the ANTARES neutrino telescope. The detection of high energy cosmic neutrinos can bring answers to important questions such as the origin of cosmic rays and the γ-rays emission processes. In the first part of the thesis, the neutrino flux emitted by galactic and extragalactic sources and the number of events which can be detected by ANTARES are estimated. This study uses the measured γ-ray spectra of known sources taking into account the γ-ray absorption by the extragalactic background light. In the second part of the thesis, the absolute pointing of the ANTARES telescope is evaluated. Being located at a depth of 2475 m in sea water, the orientation of the detector is determined by an acoustic positioning system which relies on low and high frequency acoustic waves measurements between the sea surface and the bottom. The third part of the thesis is a search for neutrino point sources in the ANTARES data. The search algorithm is based on a likelihood ratio maximization method. It is used in two search strategies; 'the candidate sources list strategy' and 'the all sky search strategy'. Analysing 2007+2008 data, no discovery is made and the world's best upper limits on neutrino fluxes from various sources in the Southern sky are established. (author)

  5. From neutrino physics to beam polarisation. A high precision story at the ILC

    International Nuclear Information System (INIS)

    Vormwald, Benedikt

    2014-03-01

    In this thesis, we investigate the experimental prospects of studying a supersymmetric model with bilinearly broken R parity at the International Linear Collider. In this model, neutrinos mix with the supersymmetric neutralinos such that neutrino properties can be probed by examining neutralino decays, which incorporate usually a lepton and a W/Z boson. As a study case, we focus on the determination of the atmospheric neutrino mixing angle θ 23 , which is accessible via the ratio of the neutralino branching ratios BR(χ 0 1 →Wμ)/BR(χ 0 1 →Wτ). A detailed simulation of the International Large Detector has been performed for all Standard Model backgrounds and for χ 0 1 -pair production within a simplified model. The study is based on ILC beam parameters according to the Technical Design Report for a center-of-mass energy of √(s)=500 GeV. From muonic χ 0 1 decays, we find that the χ 0 1 mass can be reconstructed with an uncertainty of δ(m χ 0 1 )=(40(stat.)+35(syst.)) MeV for an integrated luminosity of ∫Ldt=500 fb -1 . The ratio of branching ratios can be determined to a precision of δ(BR(χ 0 1 →Wμ)/BR(χ 0 1 →Wτ))=2.9%. Due to this, the atmospheric neutrino mixing angle can be deduced with a precision comparable to modern neutrino experiments. Thus, the ILC is capable to test whether bRPV SUSY is the mechanism of neutrino mass generation. As also shown in the bRPV SUSY study of this thesis, beam polarisation is an important parameter in physics analyses at the ILC. The beam polarisation is measured with two Compton polarimeters per electron/positron beam. In order to achieve the design goal of an envisaged precision of 0.25%, the detector nonlinearity of the used Cherenkov detectors has to be determined very precisely. Herein, the main source of nonlinearity is expected to originate from the involved photomultipliers. For this reason, a differential nonlinearity measurement as well as a linearisation method is developed. The working

  6. From neutrino physics to beam polarisation. A high precision story at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vormwald, Benedikt

    2014-03-15

    In this thesis, we investigate the experimental prospects of studying a supersymmetric model with bilinearly broken R parity at the International Linear Collider. In this model, neutrinos mix with the supersymmetric neutralinos such that neutrino properties can be probed by examining neutralino decays, which incorporate usually a lepton and a W/Z boson. As a study case, we focus on the determination of the atmospheric neutrino mixing angle θ{sub 23}, which is accessible via the ratio of the neutralino branching ratios BR(χ{sup 0}{sub 1}→Wμ)/BR(χ{sup 0}{sub 1}→Wτ). A detailed simulation of the International Large Detector has been performed for all Standard Model backgrounds and for χ{sup 0}{sub 1}-pair production within a simplified model. The study is based on ILC beam parameters according to the Technical Design Report for a center-of-mass energy of √(s)=500 GeV. From muonic χ{sup 0}{sub 1} decays, we find that the χ{sup 0}{sub 1} mass can be reconstructed with an uncertainty of δ(m{sub χ{sup 0}{sub 1}})=(40(stat.)+35(syst.)) MeV for an integrated luminosity of ∫Ldt=500 fb{sup -1}. The ratio of branching ratios can be determined to a precision of δ(BR(χ{sup 0}{sub 1}→Wμ)/BR(χ{sup 0}{sub 1}→Wτ))=2.9%. Due to this, the atmospheric neutrino mixing angle can be deduced with a precision comparable to modern neutrino experiments. Thus, the ILC is capable to test whether bRPV SUSY is the mechanism of neutrino mass generation. As also shown in the bRPV SUSY study of this thesis, beam polarisation is an important parameter in physics analyses at the ILC. The beam polarisation is measured with two Compton polarimeters per electron/positron beam. In order to achieve the design goal of an envisaged precision of 0.25%, the detector nonlinearity of the used Cherenkov detectors has to be determined very precisely. Herein, the main source of nonlinearity is expected to originate from the involved photomultipliers. For this reason, a differential

  7. Results of a beam dump experiment at the CERN SPS neutrino facility

    Directory of Open Access Journals (Sweden)

    T. Hansl

    1978-03-01

    Full Text Available We report results from a beam dump experiment that has been performed at the CERN SPS neutrino facility using the CDHS neutrino counter detector. Limits on dimuon and trimuon production by new penetrating neutral particles are given. A new source of prompt electron and muon neutrinos has been observed giving (1.2±0.4× 10−7 νe or νμ per incident proton with neutrino angle smaller than 1.85 mrad and Eν > 20 GeV. If these prompt neutrinos are attributed to charmed meson pair production, the inclusive DD production cross section could be of the order of 30 ωb. If axions are existing their production rate relative to π0 mesons is found to be less than 0.5 × 10−8.

  8. Design of a neutrino source based on beta beams

    Directory of Open Access Journals (Sweden)

    E. Wildner

    2014-07-01

    Full Text Available “Beta beams” produce collimated pure electron (antineutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is ^{6}He and ^{18}Ne. However, before the EUROnu studies one of the required isotopes, ^{18}Ne, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, ^{8}Li and ^{8}B, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the ^{8}Li and ^{8}B isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of ^{8}Li and ^{8}B, using the production ring for production of ^{8}Li and ^{8}B, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the ^{18}Ne isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the ^{8}Li and ^{8}B have been developed and the lattice for ^{6}He and ^{18}Ne has been optimized to ensure the high intensity ion beam stability.

  9. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    Directory of Open Access Journals (Sweden)

    Han-Jie Cai

    2017-02-01

    Full Text Available A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  10. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  11. A study of the interactions of high energy electron-neutrinos

    International Nuclear Information System (INIS)

    Nieuwenhuis, C.H.M.

    1986-01-01

    This thesis describes an analysis of electron-neutrino and anti-neutrino interactions with nuclei. The data were collected with the calorimeter of the Amsterdam-CERN-Hamburg-Moscow-Rome (CHARM) group in a beam dump exposure to 400 GeV/c protons from the CERN SPS in 1982. The predictions of the Standard Model for the quantities measured in this experiment are given. The results of the analysis of events without a primary muon in the final state are given in the form of an experimental y-distribution. The measured quantities are compared with the predictions of the theory and the measurements of other experiments. Presented are the cross-section ratio of neutral current and charged current electron-neutrino induced events, the prompt CC ν(anti ν) e interaction rate, the prompt (ν e +anti ν e )/(ν μ +anti ν μ ) flux ratio, the energy dependence of the prompt electron-neutrino flux and a measurement of the DantiD cross-section times semileptonic branching ratio based on prompt electron-neutrino interactions. (Auth.)

  12. Do high-energy neutrinos travel faster than photons in a discrete space-time?

    Energy Technology Data Exchange (ETDEWEB)

    Xue Shesheng, E-mail: xue@icra.it [ICRANeT, Piazzale della Repubblica, 10-65122, Pescara, Physics Department, University of Rome ' ' La Sapienza' ' , Rome (Italy)

    2011-12-06

    The recent OPERA measurement of high-energy neutrino velocity, once independently verified, implies new physics in the neutrino sector. We revisit the theoretical inconsistency of the fundamental high-energy cutoff attributing to quantum gravity with the parity-violating gauge symmetry of local quantum field theory describing neutrinos. This inconsistency suggests high-dimension operators of neutrino interactions. Based on these studies, we try to view the OPERA result, high-energy neutrino oscillations and indicate to observe the restoration of parity conservation by measuring the asymmetry of high-energy neutrinos colliding with left- and right-handed polarized electrons.

  13. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    Science.gov (United States)

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  14. Results from the AMANDA high-energy neutrino detector

    International Nuclear Information System (INIS)

    Biron, A.

    2001-01-01

    This paper briefly summarizes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector. The complete data set from 1997 was analyzed. For E μ > 10 TeV, the detector exceeds 10,000 m 2 in effective area between declinations of 25 and 90 degrees. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the overall sensitivity of the coincident events between the SPASE air shower array and the AMANDA detector. Preliminary flux limits from point source candidates are presented. For declinations larger than +45 degrees, our results compare favourably to existing limits for sources in the Southern sky. We also present the current status of the searches for high-energy neutrino emission from diffusely distributed sources, GRBs, and WIMPs from the center of the Earth

  15. Multiplicity distributions in high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Chapman, J.W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Vander Velde, J.C.; Berge, J.P.; Bogert, D.V.; DiBianca, F.A.; Cundy, D.C.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.

    1976-01-01

    Results from the Fermilab 15-ft bubble chamber on the charged-particle multiplicity distributions produced in high-energy charged-current neutrino-proton interactions are presented. Comparisons are made to γp, ep, μp, and inclusive pp scattering. The mean hadronic multiplicity appears to depend only on the mass of the excited hadronic state, independent of the mode of excitation. A fit to the neutrino data gives = (1.09+-0.38) +(1.09+-0.03)lnW 2

  16. Indirect search for neutralino dark matter with high energy neutrinos

    International Nuclear Information System (INIS)

    Barger, V.; Halzen, Francis; Hooper, Dan; Kao, Chung

    2002-01-01

    We investigate the prospects of indirect searches for supersymmetric neutralino dark matter. Relic neutralinos gravitationally accumulate in the Sun and their annihilations produce high energy neutrinos. Muon neutrinos of this origin can be seen in large detectors such as AMANDA, IceCube, and ANTARES. We evaluate the relic density and the detection rate in several models--the minimal supersymmetric model, minimal supergravity, and supergravity with nonuniversal Higgs boson masses at the grand unification scale. We make realistic estimates for the indirect detection rates including effects of the muon detection threshold, quark hadronization, and solar absorption. We find good prospects for detection of neutralinos with mass above 200 GeV

  17. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    P. Abreu

    2013-01-01

    Full Text Available The observation of ultrahigh energy neutrinos (UHEνs has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν or in the Earth crust (Earth-skimming ν, producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere. In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.

  18. A deep sea telescope for high energy neutrinos

    International Nuclear Information System (INIS)

    Aslanides, E.; Aubert, J.J.; Basa, S.

    1999-05-01

    This document presents the scientific motivation for building a high energy neutrino undersea detector, with an effective area of 0.1 km 2 , along with a review of the technical issues involved in its design and construction. It contents: the scientific program, the detection principles, the research and development program, the detector design and performances and complementary technique. (A.L.B.)

  19. Fiber based hydrophones for ultra-high energy neutrino detection

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Eijk, D. van; Lahmann, R.; Nieuwland, R.A.; Toet, P.M.

    2014-01-01

    It is a well studied process [1, 2] that energy deposition of cosmic ray particles in water that generate thermo-acoustic signals. Hydrophones of sufficient sensitivity could measure this signal and provide a means of detecting ultra-high energetic cosmic neutrinos. We investigate optical

  20. HIGH-ENERGY NEUTRINOS FROM RECENT BLAZAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Halzen, Francis; Kheirandish, Ali [Wisconsin IceCube Particle Astrophysics Center and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2016-11-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In 2015 June, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of 40 for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  1. Towards a large scale high energy cosmic neutrino undersea detector

    International Nuclear Information System (INIS)

    Azoulay, R.; Berthier, R.; Arpesella, C.

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.)

  2. Towards a large scale high energy cosmic neutrino undersea detector

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, R.; Berthier, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; Arpesella, C. [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France). Centre de Physique Theorique] [and others

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.) 50 refs.

  3. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  4. THE PRIMARY TARGET FACILITY FOR A NEUTRINO FACTORY BASED ON MUON BEAMS

    International Nuclear Information System (INIS)

    HASSENEIN, A.; KAHN, S.A.; KING, B.J.; KIRK, H.G.; LUDEWIG, H.; PALMER, R.B.; PEARSON, C.E.; SAMULYAK, R.; SIMOS, N.; STUMER, I.; THIEBERGER, P.; WEGGEL, R.J.

    2001-01-01

    Neutrino beams from the decay of muons in a storage ring offer the prospect of very high flux, well-understood spectra, and equal numbers of electron and muon neutrinos, as desirable for detailed exploration of neutrino oscillations via long baseline detectors [1]. Such beams require. large numbers of muons, and hence a high performance target station at which a 1-4 MW proton beam of 16-24 GeV impinges on a compact target, all inside a high field solenoid channel to capture as much of the phase volume of soft pions as possible. A first concept was based on a carbon target, as reported in 2000 the Neutrino Factory Study-I [2]. A higher performance option based on a free mercury jet has been studied in 2001 as part of the Neutrino Factory Feasibility Study-II [3,4]. An overview of a mercury jet target facility is presented here, including requirements, design concept and summaries of simulated performance. Further details are presented in related papers at this conference

  5. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  6. Study and conception of the decay ring of a neutrino facility using the β decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets

    International Nuclear Information System (INIS)

    Chance, A.

    2007-09-01

    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  7. Proton-beam energy analyzer

    International Nuclear Information System (INIS)

    Belan, V.N.; Bolotin, L.I.; Kiselev, V.A.; Linnik, A.F.; Uskov, V.V.

    1989-01-01

    The authors describe a magnetic analyzer for measurement of proton-beam energy in the range from 100 keV to 25 MeV. The beam is deflected in a uniform transverse magnetic field and is registered by photographing a scintillation screen. The energy spectrum of the beam is constructed by microphotometry of the photographic film

  8. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  9. Electrons for Neutrinos: Using Electron Scattering to Develop New Energy Reconstruction for Future Deuterium-Based Neutrino Detectors

    Science.gov (United States)

    Silva, Adrian; Schmookler, Barak; Papadopoulou, Afroditi; Schmidt, Axel; Hen, Or; Khachatryan, Mariana; Weinstein, Lawrence

    2017-09-01

    Using wide phase-space electron scattering data, we study a novel technique for neutrino energy reconstruction for future neutrino oscillation experiments. Accelerator-based neutrino oscillation experiments require detailed understanding of neutrino-nucleus interactions, which are complicated by the underlying nuclear physics that governs the process. One area of concern is that neutrino energy must be reconstructed event-by-event from the final-state kinematics. In charged-current quasielastic scattering, Fermi motion of nucleons prevents exact energy reconstruction. However, in scattering from deuterium, the momentum of the electron and proton constrain the neutrino energy exactly, offering a new avenue for reducing systematic uncertainties. To test this approach, we analyzed d (e ,e' p) data taken with the CLAS detector at Jefferson Lab Hall B and made kinematic selection cuts to obtain quasielastic events. We estimated the remaining inelastic background by using d (e ,e' pπ-) events to produce a simulated dataset of events with an undetected π-. These results demonstrate the feasibility of energy reconstruction in a hypothetical future deuterium-based neutrino detector. Supported by the Paul E. Gray UROP Fund, MIT.

  10. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Alexander [Univ. College London, Bloomsbury (United Kingdom)

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  11. Measurement of low energy neutrino absorption probability in thallium 205

    International Nuclear Information System (INIS)

    Freedman, M.S.

    1986-01-01

    A major aspect of the P-P neutrino flux determination using thallium 205 is the very difficult problem of experimentally demonstrating the neutrino reaction cross section with about 10% accuracy. One will soon be able to completely strip the electrons from atomic thallium 205 and to maintain the bare nucleus in this state in the heavy storage ring to be built at GSI Darmstadt. This nucleus can decay by emitting a beta-minus particle into the bound K-level of the daughter lead 205 ion as the only energetically open decay channel, (plus, of course, an antineutrino). This single channel beta decay explores the same nuclear wave functions of initial and final states as does the neutrino capture in atomic thallium 205, and thus its probability or rate is governed by the same nuclear matrix elements that affect both weak interactions. Measuring the rate of accumulation of lead 205 ions in the circulating beam of thallium 205 ions gives directly the cross section of the neutrino capture reaction. The calculations of the expected rates under realistic experimental conditions will be shown to be very favorable for the measurement. A special calibration experiment to verify this method and check the theoretical calculations will be suggested. Finally, the neutrino cross section calculation based on the observed rate of the single channel beta-minus decay reaction will be shown. Demonstrating bound state beta decay may be the first verification of the theory of this very important process that influences beta decay rates of several isotopes in stellar interiors, e.g., Re-187, that play important roles in geologic and cosmologic dating and nucleosynthesis. 21 refs., 2 figs

  12. High pressure argon detector of high energy neutrinos

    International Nuclear Information System (INIS)

    Vishnevskii, A.V.; Golutvin, I.A.; Sarantsev, V.L.; Sviridov, V.A.; Dolgoshein, B.A.; Kalinovskii, A.N.; Sosnovtsev, V.V.; Chernyatin, V.K.; Kaftanov, V.S.; Khovanskii, V.D.; Shevchenko, V.G.

    1979-01-01

    In the present paper, we suggest an electron neutrino detector of a new type where track information is available for all charged particles. As a working medium we use Argon compressed up to a pressure of 100 to 150 atm (approximately 0.2-0.3 g/cm 3 ). The spatial reconstruction of tracks are accomplished with an accuracy not inferior to that of bubble chambers. The detector has a high sensitivity in ionization measurements. An assembly with a working medium mass of approximately 100 tons seem to be realisable. This makes it possible to perform tasks with cross-sections of (10 -5 + 10 -3 ) x delty tot at an intensity of the neutrino beam which is available in present-day accelerators. (orig.)

  13. Explanation for the Low Flux of High Energy Astrophysical Muon Neutrinos

    International Nuclear Information System (INIS)

    Pakvasa, Sandip; Joshipura, Anjan; Mohanty, Subhendra

    2014-01-01

    There has been some concern about the unexpected paucity of cosmic high energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider: (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the reduction of high energy muon events in the IceCube detector, for example

  14. Neutrino mass, dark energy, and the linear growth factor

    International Nuclear Information System (INIS)

    Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein

    2008-01-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].

  15. The highest energy cosmic rays, photons and neutrinos

    International Nuclear Information System (INIS)

    Zas, Enrique

    1998-01-01

    In these lectures I introduce and discuss aspects of currently active fields of interest related to the production, transport and detection of high energy particles from extraterrestrial sources. I have payed most attention to the highest energies and I have divided the material according to the types of particles which will be searched for with different experimental facilities in planning: hadrons, gamma rays and neutrinos. Particular attention is given to shower development, stochastic acceleration and detection techniques

  16. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  17. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C.; Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E.; Bruijn, R.; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Caramete, L.; Pavalas, G.E.; Popa, V.; Chiarusi, T.; Circella, M.; Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V.; Dekeyser, I.; Lefevre, D.; Tamburini, C.; Deschamps, A.; Hello, Y.; Donzaud, C.; Dumas, A.; Gay, P.; Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Giordano, V.; Haren, H. van; Hugon, C.; Taiuti, M.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Loucatos, S.; Marinelli, A.; Migliozzi, P.; Moussa, A.; Pradier, T.; Sanguineti, M.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vivolo, D.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  18. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE-Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM-Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Chiarusi, T. [INFN-Sezione di Bologna, Bologna (Italy); Circella, M. [INFN-Sezione di Bari, Bari (Italy); Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Dekeyser, I.; Lefevre, D.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dumas, A.; Gay, P. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M. [INFN-Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Giordano, V. [INFN-Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje, Texel (Netherlands); Hugon, C.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kouchner, A. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E. [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (France); Marinelli, A. [INFN-Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Migliozzi, P. [INFN-Sezione di Napoli, Naples (IT); Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, Oujda (MA); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Sanguineti, M. [Dipartimento di Fisica dell' Universita, Genoa (IT); Schuessler, F.; Stolarczyk, T.; Vallage, B. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Vivolo, D. [INFN-Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT)

    2017-01-15

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  19. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

    CERN Document Server

    Adam, T.; Aleksandrov, A.; Altinok, O.; Alvarez Sanchez, P.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Dhahbi, A.Ben; Bertolin, A.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Carlus, B.; Cavanna, F.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chukanov, A.; Colosimo, G.; Crespi, M.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Declais, Y.; del Amo Sanchez, P.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Efthymiopoulos, I.; Egorov, O.; Ereditato, A.; Esposito, L.S.; Favier, J.; Ferber, T.; Fini, R.A.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Giovannozzi, M.; Girerd, C.; Goldberg, J.; Gollnitz, C.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Gschwendtner, E.; Guerin, C.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Enikeev, R.; Hierholzer, M.; Hollnagel, A.; Ieva, M.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Jones, M.; Juget, F.; Kamiscioglu, M.; Kawada, J.; Kim, S.H.; Kimura, M.; Kiritsis, E.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Malgin, A.; Mandrioli, G.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Mazzoni, A.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Missiaen, D.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Naumov, D.; Nikitina, V.; Nitti, F.; Ogawa, S.; Okateva, N.; Olchevsky, A.; Palamara, O.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, Laura; Pennacchio, E.; Pessard, H.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Pupilli, F.; Rescigno, R.; Riguzzi, F.; Roganova, T.; Rokujo, H.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Sahnoun, Z.; Schembri, A.; Schuler, J.; Scotto Lavina, L.; Serrano, J.; Shakiryanova, I.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S.; Stipcevic, M.; Strauss, T.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; N.T. Tran,i; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yakushev, V.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.

    2012-01-01

    The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km with much higher accuracy than previous studies conducted with accelerator neutrinos. The measurement is based on high-statistics data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies. An early arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (60.7 \\pm 6.9 (stat.) \\pm 7.4 (sys.)) ns was measured. This anomaly corresponds to a relative difference of the muon neutrino velocity with respect to the speed of light (v-c)/c = (2.48 \\pm 0.28 (stat.) \\pm 0.30 (sys.)) \\times 10-5.

  20. Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Pasquale Di; Ludl, Patrick Otto [Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2016-11-21

    We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N{sub DM} with mass M{sub DM}, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, N{sub S} with mass M{sub S}, induced by Higgs portal interactions. The same interactions are also responsible for N{sub DM} decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M{sub DM}≫M{sub S}, there is an allowed window on M{sub DM} values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV ≲M{sub S}energy neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.

  1. The status of the search for muonless events in the broad band neutrino beam at NAL

    International Nuclear Information System (INIS)

    Aubert, B.; Benvenuti, A.; Cline, D.; Ford, W.T.; Imlay, R.; Ling, T.Y.; Mann, A.K.; Messing, F.; Piccioni, R.; Pilcher, J.; Reeder, D.D.; Rubbia, C.; Stefanski, R.; Sulak, L.

    The current status and results of the search for muonless events in the broad band neutrino beam at NAL are presented. An excess of events unaccompanied by muon is observed which cannot be explained by instrumental effects. The ratio of the unaccompanied events to the customary charged current events is 0.20+-0.05 for the mixture of ν and anti ν in this beam

  2. Solar neutrino flux at keV energies

    Science.gov (United States)

    Vitagliano, Edoardo; Redondo, Javier; Raffelt, Georg

    2017-12-01

    We calculate the solar neutrino and antineutrino flux in the keV energy range. The dominant thermal source processes are photo production (γ e→ e νbar nu), bremsstrahlung (e+Ze→ Ze+e+νbar nu), plasmon decay (γ→νbar nu), and νbar nu emission in free-bound and bound-bound transitions of partially ionized elements heavier than hydrogen and helium. These latter processes dominate in the energy range of a few keV and thus carry information about the solar metallicity. To calculate their rate we use libraries of monochromatic photon radiative opacities in analogy to a previous calculation of solar axion emission. Our overall flux spectrum and many details differ significantly from previous works. While this low-energy flux is not measurable with present-day technology, it could become a significant background for future direct searches for keV-mass sterile neutrino dark matter.

  3. High energy neutrino astronomy; past, present and future

    International Nuclear Information System (INIS)

    Learned, J.G.

    1993-01-01

    The nascent field of high energy neutrino astronomy seems to be near to blossoming in the next few years, after decades of speculation and preliminary experimental work. The motivation for the endeavor, anticipated types of sources, consideration of energy regime for first attempts, scale size needed, and techniques are qualitatively reviewed. A summary of relevant current projects is presented with emphasis on the new initiatives with detectors of the 10,000m 2 class. It seems that by the end of the decade there may be a few such new generation instruments in operation, and that with luck the business of high energy neutrino astrophysics will be underway by the turn of the century. (orig.)

  4. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  5. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    CERN Document Server

    Di Bari, Pasquale

    2011-01-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N_2 dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ~ 10^10 GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m_1 \\simeq (1-5)\\times 10^-3 eV and m_1\\simeq (0.03-0.1) eV. For m_1\\lesssim 0.01 eV the allowed region in the plane theta_13-thet...

  6. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-01-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no

  7. Thermal management of magnetic focussing horns used in the narrow and broad band neutrino beams at the AGS

    International Nuclear Information System (INIS)

    Leonhardt, W.; Carroll, A.; Monaghan, R.

    1987-01-01

    Operation of the AGS Neutrino Horns and their internal and external targets takes place in an environment of high voltage, severe shock and vibration, and high radiation. To insure reliable operation, energy from Joulean heating and the proton beam interaction must be dissipated to keep component temperatures at the lowest levels practical. This has been accomplished by carefully choosing component materials and providing dedicated air and water cooling systems to transfer the 6 kW of heat efficiently and safely to the environment. This paper describes how the rigid horn and target thermal design constraints were satisfied, and provides some record of the current operating experience

  8. Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes

    CERN Document Server

    Asfandiyarov, R.; Blondel, A.; Bogomilov, M.; Bross, A.; Cadoux, F.; Cervera, A.; Izmaylov, A.; Karadzhov, Y.; Karpikov, I.; Khabibulin, M.; Khotyantsev, A.; Kopylov, A.; Kudenko, Y.; Matev, R.; Mineev, O.; Musienko, Y.; Nessi, M.; Noah, E.; Rubbia, A.; Shaykiev, A.; Soler, P.; Tsenov, R.; Vankova-Kirilova, G.; Yershov, N.

    2015-01-01

    The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. It is hoped that this will allow for the current proposal to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020.

  9. Ultra-High Energy Cosmic Rays and Neutrinos

    International Nuclear Information System (INIS)

    Nagataki, Shigehiro

    2011-01-01

    In this paper, simulation of propagation of UHE-protons from nearby galaxies is presented. We found good parameter sets to explain the arrival distribution of UHECRs reported by AGASA and energy spectrum reported by HiRes. Using a good parameter set, we demonstrated how the distribution of arrival direction of UHECRs will be as a function of event numbers. We showed clearly that 1000-10000 events are necessary to see the clear source distribution. We also showed that effects of interactions and trapping of UHE-Nuclei in a galaxy cluster are very important. Especially, when a UHECR source is a bursting source such as GRB/AGN flare, heavy UHE-Nuclei are trapped for a long time in the galaxy cluster, which changes the spectrum and chemical composition of UHECRs coming from the galaxy cluster. We also showed that such effects can be also important when there have been sources of UHE-Nuclei in Milky Way. Since light nuclei escape from Milky Way in a short timescale, the chemical composition of UHECRs observed at the Earth can be heavy at high-energy range. Finally, we showed how much high-energy neutrinos are produced in GRBs. Since GRB neutrinos do not suffer from magnetic field bending, detection of high-energy neutrinos are very important to identify sources of UHECRs. Especially, for the case of GRBs, high-energy neutrinos arrive at the earth with gamma-rays simultaneously, which is very strong feature to identify the sources of UHECRs.

  10. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    International Nuclear Information System (INIS)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )

    2009-01-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics

  11. Neutrino physics at the AGS

    International Nuclear Information System (INIS)

    Sokolsky, P.

    1978-01-01

    The AGS neutrino beam is the last low energy (1 to 2 GeV) neutrino beam left. As more work is done at higher energies and as the whole realm of new physics (whose threshold seems barely attainable at AGS ν energies) is explored in increasing detail, it is appropriate to ask what physics remains to be done here. To answer this question, current theory and experiment are confronted, not in an attempt to confirm or refute theoretical (or experimental) prejudices, but to ask if present experiments at low energies are good enough. In the process, the recent AGS neutrino experimental program are reviewed

  12. A deep sea telescope for high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, E.; Aubert, J.J.; Basa, S. [and others

    1999-05-01

    This document presents the scientific motivation for building a high energy neutrino undersea detector, with an effective area of 0.1 km{sup 2}, along with a review of the technical issues involved in its design and construction. It contents: the scientific program, the detection principles, the research and development program, the detector design and performances and complementary technique. (A.L.B.)

  13. Possible energy dependence of Θ13 in neutrino oscillations

    International Nuclear Information System (INIS)

    Klinkhamer, Frans R.

    2005-01-01

    A simple three-flavor neutrino-oscillation model is discussed which has both nonzero mass differences and timelike Fermi-point splittings, together with a combined bi-maximal and trimaximal mixing pattern. One possible consequence would be new effects in ν μ →ν e oscillations, characterized by an energy-dependent effective mixing angle Θ 13 . Future experiments such as T2K and NOνA, and perhaps even the current MINOS experiment, could look for these effects

  14. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    . Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ˜400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the {θ }23 mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with {10}-5 {{{eV}}}2\\lt {{Δ }}{m}412\\lt {10}-2 {{{eV}}}2 and a sufficiently large mixing angle {θ }14 could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the p\\to {K}++\\bar{ν } decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one

  15. Neutrino oscillations on and off the beam: studies of the OPERA acquisition system performance

    International Nuclear Information System (INIS)

    Brugiere, T.

    2011-01-01

    OPERA (Oscillation Project with Emulsion-tracking Apparatus) is a neutrino beam experiment located in hall C of the Gran Sasso underground laboratory (LNGS), in Italia, under a equivalent of 3.8 km water (corresponding to a cut at 1.5 TeV for the muons). The first purpose of OPERA is the direct observation of the ν μ → ν τ oscillation in the atmospheric sector observing a ν τ appearance 730 km away from the target in a quasi pure ν μ beam (CNGS). OPERA is an hybrid detector with an instrumented target part (about 125000 bricks made with emulsion and lead sheets) and a spectrometer. Collecting data started in 2006 and 55000 events have been recorded. The first ν τ candidate have been observed this year. The work done during this thesis is oriented around three main topics: Define the trigger rules of the target tracker acquisition system for beam neutrino events, synchronise target tracker and RPC elements, implement the results inside the simulation and the study of the feasibility of an atmospheric neutrino analysis using o-beam data. The new trigger rules succeeds to reach the values of OPERA proposal, i.e. a trigger efficiency greater than 99%. This improvement have been done thanks to coincidence time windows with the CNGS beam during which lower cut are applied, allowing low multiplicity events to be kept. A deep study of electronic detectors intercalibration makes possible the target tracker and RPC data synchronisation. The analysis results are now included in the official simulation. This calibration work have been then used for a study of 'off-beam' atmospheric neutrino oscillation thanks to the selection of up-going particles. The analysis shown in the thesis has improved the OPERA detector understanding and demonstrates the feasibility of an observation of phenomena independent from the Cgs beam. Analysis on atmospherics neutrino detection and muons flux characterisation (seasonal variations for example) are now possible thanks to the

  16. Structure of the neutral current coupling in high energy neutrino--nucleon interactions

    International Nuclear Information System (INIS)

    Merritt, F.S.

    1977-01-01

    The primary objective of this experiment was to determine the Lorentz structure of the neutral current coupling--that is, to determine what combination of V-A and V+A (or possibly S, P, and T) components make up the neutral coupling. The experiment used the Fermilab narrow band neutrino beam to provide separated neutrino and antineutrino fluxes, each consisting of two energy bands at approximately equal to 55 and approximately equal to 150 GeV. Deep inelastic inclusive neutrino-nucleon interactions of the form ν(anti ν) + N = μ - (μ + ) + hadrons (CC event) ν(anti ν) + N = ν(anti ν) + hadrons (NC event) were observed in an instrumented steel target-calorimeter, which measured the total energy of the hadrons produced in each event. The neutral current coupling was determined by comparing the hadron energy distributions of neutrino and antineutrino neutral current events. An analysis of the charged-current data was carried out in order to determine the background of charged-current events with unobserved muons, and to provide a normalization for the neutral current data. Various parameterizations of the CC interaction were tested, and their effects on the neutral current analysis were studied in detail. The neutral current analysis indicates that, if only vector and axial-vector components exist, then the neutral current coupling lies between V and V-A. A pure scalar coupling is excluded. The data were compared to the Weinberg--Salam theory (extended to semileptonic interactions), and are in very good agreement with its predictions. Comparison of these data to the low energy Gargamelle data indicates consistency with a scaling hypothesis

  17. Search for heavy neutrino decays in the BEBC beam dump experiment

    Science.gov (United States)

    Cooper-Sarkar, A. M.; Haywood, S. J.; Parker, M. A.; Sarkar, S.; Barnham, K. W. J.; Bostock, P.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits | Uøi| 2, | Ue i| 2 < 10 -6-10 -7 are obtained for neutrino mass eigenstates vi of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on | Uøi| 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate v3 in particular, we obtain the limits | Uø3 | 2 < 10 -7-10 -8, | Ue3 | 2 < 10 -9-10 -10 for the mass range 150-190 MeV, assuming the v3 to be produced directly in charmed F meson decays.

  18. The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy

    CERN Document Server

    Baussan, E.; Ekelof, T.; Martinez, E.Fernandez; Ohman, H.; Vassilopoulos, N.

    2012-01-01

    It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 10$^{23}$ 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect $\

  19. Single pion production by high energy neutrinos in a hydrogen bubble chamber

    International Nuclear Information System (INIS)

    French, H.T.

    1977-01-01

    The reaction νp → μ - pπ + was observed in the Fermilab 15 foot bubble chamber. The wide band horn focused neutrino beam provided neutrinos with energies from less than 5 GeV to more than 100 GeV. Of 51 νp → μ - pπ + events seen 33 are consistent with the pπ + coming from the Δ ++ (1232) resonance, corresponding to a cross section for νp → μ - Δ ++ 0.65 +- 20 x 10 -38 cm 2 . The data are consistent with the hypothesis that the cross section is independent of neutrino energy above 1 GeV. No evidence is seen for production of higher mass Δ resonances. More events are seen at high Q 2 (four momentum transfer squared to the hadron system) than are expected for presently accepted axial vector form factors. The values of M/sub A/ in the axial vector form factors were found which maximize likelihood that Adler's model fits the cross section and kinematic distribution of the Δ ++ events. For dipole form factors M/sub A/ = 1.6 +- 3 GeV. For monopole form factors M/sub A/ = 0.9 +- 3 GeV. No preference is shown between the monopole and the dipole pages

  20. Sterile Neutrino Search with MINOS

    International Nuclear Information System (INIS)

    Devan, Alena V.

    2015-01-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm 2 . An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Δm s 2 ~ 1 eV 2 . The results of the 2013 sterile neutrino search are presented here.

  1. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  2. Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam

    CERN Document Server

    Antonello, M; Benetti, P.; Boffelli, F.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.; Alvarez Sanchez, P.; Biagi, L.; Barzaghi, R.; Betti, B.; Bernier, L.G.; Cerretto, G.; de Gaetani, C.; Esteban, H.; Feldmann, T.; Gonzalez Cobas, J.D.; Passoni, D.; Pettiti, V.; Pinto, L.; Serrano, J.; Spinnato, P.; Visconti, M.G.; Wlostowski, T.

    2012-01-01

    During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton beam bunches, separated by 100 ns. This tightly bunched beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing synchronization have been substantially improved for this campaign, taking ad-vantage of additional independent GPS receivers, both at CERN and LNGS as well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS. The ICARUS-T600 detector has collected 25 beam-associated events; the corresponding time of flight has been accurately evaluated, using all different time synchronization paths. The measured neutrino time of flight is compatible with the arrival of all events with speed equivalent to the one of light: the difference between the expected value based on the speed of light and the measured value is tof_...

  3. Neutrino Oscillation Results from NOvA

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    NOvA is an accelerator long-baseline neutrino oscillation experiment optimised to measure electron neutrino appearance in a high-purity beam of muon neutrinos from Fermilab. The exciting discovery of the theta13 neutrino mixing angle in 2012 has opened a door to making multiple new measurements of neutrinos. These include leptonic CP violation, the neutrino mass ordering and the octant of theta23. NOvA with its 810km baseline and higher energy beam has about triple the matter effect of T2K which opens a new window on the neutrino mass ordering. With about 20% of our design beam exposure and significant analysis improvements we have recently released updated results. I will present both our disappearance and appearance measurements.

  4. The search for neutrino oscillations in the appearance mode nu/sub μ/ → nu/sub e/ for neutrino energies near the muon threshold

    International Nuclear Information System (INIS)

    Huang, Ying-Chiang.

    1986-12-01

    To investigate the possibility of neutrino oscillation, a search for the exclusive mode, nu/sub μ/ → nu/sub e/, was performed at LAMPF. The reactions studied were nu/sub μ/ + C → μ - + X; μ - → e - + anti nu/sub e/ + nu/sub μ/, and nu/sub e/ + C → e - + X (if nu/sub μ/ → nu/sub e/). The detector was located at an effective distance of 20 m from the water target. The beam was composed primarily of muon-neutrinos from pion decay, and the neutrino flux (of mean energy 150 MeV) was computed to be 6.2 x 10 5 nu/cm 2 -sec for 20 μA of proton beam on our target. We saw no evidence for oscillations, and were able to set upper limits sin 2 (2Θ) ≤ 8.8 x 10 -3 (90% C.L.) (in the limit of large Δm 2 ) and Δm 2 sin(2Θ) ≤ 0.59 eV 2 (in the limit of small Δm 2 )

  5. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data

    CERN Document Server

    Adam, T.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Dhahbi, A.Ben; Beretta, M.; Bertolin, A.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buettner, B.; Buontempo, S.; Carlus, B.; Cavanna, F.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chukanov, A.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Esposito, L.S.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.A.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Girerd, C.; Goellnitz, C.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guerin, C.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Hierholzer, M.; Hollnagel, A.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J.H.; Kim, S.H.; Kimura, M.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Mancini-Terracciano, C.; Malgin, A.; Mandrioli, G.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Monacelli, P.; Montesi, M.C.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Naumov, D.; Nikitina, V.; Ogawa, S.; Olchevsky, A.; Ozaki, K.; Palamara, O.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Pupilli, F.; Rescigno, R.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Schmidt-Parzefall, W.; Schuler, J.; Shakiryanova, I.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S.M.; Stipcevic, M.; Strauss, T.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tolun, P.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2013-01-01

    In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to the 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of $\\sim$1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be $\\delta t_\

  6. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  7. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    Energy Technology Data Exchange (ETDEWEB)

    Morfin, J.G.; /Fermilab; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  8. Measurement of neutrino flux from neutrino-electron elastic scattering

    Science.gov (United States)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  9. High precision flux measurements in conventional neutrino beams: the ENUBET project

    CERN Document Server

    Longhin, Andrea

    2017-01-01

    The challenges of precision neutrino physics require measurements of absolute neutrino cross sec- tions at the GeV scale with exquisite (1%) precision. This precision is presently limited to by the uncertainties on neutrino flux at the source. A reduction of this uncertainty by one order of mag- nitude can be achieved monitoring the positron production in the decay tunnel originating from the K e 3 decays of charged kaons in a sign and momentum selected narrow band beam. This novel technique enables the measurement of the most relevant cross-sections for CP violation ( ν e and ̄ ν e ) with a precision of 1% and requires a special instrumented beam-line. Such non-conventional beam-line will be developed in the framework of the ENUBET Horizon-2020 Consolidator Grant, recently approved by the European Research Council. We present the Project, the first experimen- tal results on ultra-compact calorimeters that can embedded in the instrumented decay tunnel and the advances on the simulation of the beamline. A r...

  10. A search for neutral, heavy particles decaying to a neutriNO1and a single photon at the SPS wide-band neutrino beam

    CERN Document Server

    Steele, D M

    1996-01-01

    A search is performed for single, isolated photons from X 0 decay, where X 0 represents either a neutrino excited state or an unknown, neutral, massive particle produced in a rare pi+ decay along the neutrino beam line as hypothesized by the KARMEN Collaboration[1] as a possible solution to their anomalous time spectra for pi+ -> u+ + vu. The analysis is performed using data from the NOMAD (WA96) experiment in the wide-band vu beam using the SPS accelerator situated at the European Center for Nuclear Research near Geneva, Switzerland. Out of a flux of vu resulting from 6.13 x 10*18 protons on target, seven events pass all cuts. The relative abundance of these events is entirely consistent with those expected from neutrino interactions in the detector. Upper limits are set at 90% condence level for the production rate of this particle as a function of its lifetime.

  11. Modeling the radar scatter off of high-energy neutrino-induced particle cascades in ice

    NARCIS (Netherlands)

    de Vries, Krijn D.; van Eijndhoven, Nick; O'Murchadha, Aongus; Toscano, Simona; Scholten, Olaf

    2017-01-01

    We discuss the radar detection method as a probe for high-energy neutrino induced particle cascades in ice. In a previous work we showed that the radar detection techniqe is a promising method to probe the high-energy cosmic neutrino flux above PeV energies. This was done by considering a simplified

  12. High-energy neutrino background: Limitations on models of deuterium production

    International Nuclear Information System (INIS)

    Eichler, D.

    1979-01-01

    It is pointed out that Epstein's model for deuterium production via high-energy spallation reactions produces high-energy neutrinos in sufficient quantity to stand out above those that are produced by cosmic-ray interactions in the Earth's atmosphere. That the Reines experiment detected neutrinos of atmospheric origin without detecting any cosmic component restricts deuterium production by spallation reactions to very high redshifts (z> or approx. =300). Improved neutrino experiments may be able to push these limits back to recombination

  13. On the High-Energy Neutrino Emission from Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Emma Kun

    2018-02-01

    Full Text Available We review observational aspects of the active galactic nuclei and their jets in connection with the detection of high-energy neutrinos by the Antarctic IceCube Neutrino Observatory. We propose that a reoriented jet generated by the spin-flipping supermassive black hole in a binary merger is likely the source of such high-energy neutrinos. Hence they encode important information on the afterlife of coalescing supermassive black hole binaries. As the gravitational radiation emanating from them will be monitored by the future LISA space mission, high-energy neutrino detections could be considered a contributor to multi-messenger astronomy.

  14. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  15. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    International Nuclear Information System (INIS)

    Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Eberl, T.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D.; Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Belhorma, B.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T.; Branzas, H.; Caramete, L.; Pavalas, G.E.; Popa, V.; Bruijn, R.; Melis, K.; Capone, A.; Di Palma, I.; Perrina, C.; Vizzoca, A.; Celli, S.; Cherkaoui El Moursli, R.; El Khayati, N.; Ettahiri, A.; Fassi, F.; Tayalati, Y.; Chiarusi, T.; Circella, M.; Sanchez-Losa, A.; Coleiro, A.; Diaz, A.F.; Deschamps, A.; Hello, Y.; De Bonis, G.; Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M.; Donzaud, C.; El Bojaddaini, I.; Moussa, A.; Elsaesser, D.; Kadler, M.; Kreter, M.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F.; Gay, P.; Giordano, V.; Glotin, H.; Haren, H. van; Kouchner, A.; Van Elewyck, V.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Lefevre, D.; Leonora, E.; Loucatos, S.; Vallage, B.; Marinelli, A.; Mele, R.; Vivolo, D.; Migliozzi, P.; Navas, S.; Organokov, M.; Pradier, T.; Schuessler, F.; Stolarczyk, T.

    2017-01-01

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500 s around the GW event time nor any time clustering of events over an extended time window of ±3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∝ 1.2 x 10 55 erg for a E -2 spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time. (orig.)

  16. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A.; Drouhin, D.; Racca, C. [Universite de Haute Alsace - Institut Universitaire de Technologie de Colmar, GRPHE, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Eberl, T.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D. [Aix Marseille Univ., CNRS/IN2P3, CPPM, Marseille (France); Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [IFIC-Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM-Laboratoire d' Astrophysique de Marseille (France); Belhorma, B. [National Center for Energy Sciences and Nuclear Techniques, Rabat (Morocco); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Universiteit Leiden, Huygens-Kamerlingh Onnes Laboratorium, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T. [Nikhef, Amsterdam (Netherlands); Branzas, H.; Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Science, Bucharest (Romania); Bruijn, R.; Melis, K. [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; Di Palma, I.; Perrina, C.; Vizzoca, A. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Celli, S. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Cherkaoui El Moursli, R.; El Khayati, N.; Ettahiri, A.; Fassi, F.; Tayalati, Y. [University Mohammed V, Faculty of Sciences, Rabat (Morocco); Chiarusi, T. [INFN-Sezione di Bologna, Bologna (Italy); Circella, M.; Sanchez-Losa, A. [INFN-Sezione di Bari, Bari (Italy); Coleiro, A. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); IFIC-Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain); Diaz, A.F. [University of Granada, Department of Computer Architecture and Technology/CITIC, Granada (Spain); Deschamps, A.; Hello, Y. [Geoazur, UCA, CNRS, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); De Bonis, G. [Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Donzaud, C. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); Universite Paris-Sud, Orsay (France); El Bojaddaini, I.; Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, Oujda (Morocco); Elsaesser, D.; Kadler, M.; Kreter, M. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F. [INFN-Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia dell' Universita, Bologna (Italy); Gay, P. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); Clermont Universite, Universite Blaise Pascal, Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand (France); Giordano, V. [INFN-Sezione di Catania, Catania (Italy); Glotin, H. [LSIS, Aix Marseille Universite CNRS ENSAM LSIS UMR 7296, Marseille (France); Universite de Toulon CNRS LSIS UMR 7296, La Garde (FR); Institut Universitaire de France, Paris (FR); Haren, H. van [Utrecht University, Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (NL); Kouchner, A.; Van Elewyck, V. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (FR); Institut Universitaire de France, Paris (FR); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (DE); Kulikovskiy, V. [Aix Marseille Univ., CNRS/IN2P3, CPPM, Marseille (FR); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (RU); Lefevre, D. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille (FR); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde (FR); Leonora, E. [INFN-Sezione di Catania, Catania (IT); Dipartimento di Fisica e Astronomia dell' Universita, Catania (IT); Loucatos, S.; Vallage, B. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (FR); Direction des Sciences de la Matiere-Institut de Recherche sur les Lois Fondamentales de l' Univers-Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Marinelli, A. [INFN-Sezione di Pisa, Pisa (IT); Dipartimento di Fisica dell' Universita, Pisa (IT); Mele, R.; Vivolo, D. [INFN-Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT); Migliozzi, P. [INFN-Sezione di Napoli, Naples (IT); Navas, S. [University of Granada, Dept. de Fisica Teorica y del Cosmos y C.A.F.P.E., Granada (ES); Organokov, M.; Pradier, T. [Universite de Strasbourg, CNRS, Strasbourg (FR); Schuessler, F.; Stolarczyk, T. [Direction des Sciences de la Matiere-Institut de Recherche sur les Lois Fondamentales de l' Univers-Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Collaboration: The ANTARES Collaboration

    2017-12-15

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500 s around the GW event time nor any time clustering of events over an extended time window of ±3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∝ 1.2 x 10{sup 55} erg for a E{sup -2} spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time. (orig.)

  17. High energy photons and neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble space telescope has recently discovered thousands of gigantic comet-like objects in a ring around the central star in the nearest planetary nebula. It is suggested that such circumstellar rings exist around most of stars. Collisions of the relativistic debris from gamma ray bursts in dense stellar regions with such gigantic comet-like objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy gamma-rays and neutrinos from gamma ray bursts

  18. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  19. Neutrino--proton interactions at Fermilab energies: Experimental arrangement, analysis procedures, and qualitative features of the data

    International Nuclear Information System (INIS)

    Chapman, J.W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Vander Velde, J.C.; Berge, J.P.; Bogert, D.; DiBianca, F.A.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.; Truxton, R.

    1976-01-01

    The Fermilab 15-ft bubble chamber filled with hydrogen was exposed to a broad-momentum-band horn-focused neutrino beam produced by 300-GeV interacting protons. The selection procedure to choose a charged-current neutrino event sample is discussed. Fewer than three percent of the events are due to neutral hadron interactions. We present and experimentally test a method that can be used to identify the muon, estimate the incident neutrino energy, and eliminate most neutral-current interactions from the charged-current sample. Above 10 GeV the method produces an approximately 86% pure sample of charged-current events with an error in energy estimation of the order of 8% over a broad region of the data. In addition we establish experimentally several important properties of high-energy charged-current neutrino interactions. The hadrons are produced in a jet, the individual particles having sharply limited momenta perpendicular to the hadronic axis. The jet structure is maintained with constant properties to very high values of Q 2 and hadronic mass. The fraction of energy going into invisible particles is moderate, consistent with that expected. The average number of neutral pions rises linearly with the average number of charged particles

  20. Energy reconstruction in the long-baseline neutrino experiment.

    Science.gov (United States)

    Mosel, U; Lalakulich, O; Gallmeister, K

    2014-04-18

    The Long-Baseline Neutrino Experiment aims at measuring fundamental physical parameters to high precision and exploring physics beyond the standard model. Nuclear targets introduce complications towards that aim. We investigate the uncertainties in the energy reconstruction, based on quasielastic scattering relations, due to nuclear effects. The reconstructed event distributions as a function of energy tend to be smeared out and shifted by several 100 MeV in their oscillatory structure if standard event selection is used. We show that a more restrictive experimental event selection offers the possibility to reach the accuracy needed for a determination of the mass ordering and the CP-violating phase. Quasielastic-based energy reconstruction could thus be a viable alternative to the calorimetric reconstruction also at higher energies.

  1. Low-energy solar neutrino spectroscopy with Borexino. Towards the detection of the solar pep and CNO neutrino flux

    International Nuclear Information System (INIS)

    Maneschg, Werner

    2011-01-01

    Borexino is a large-volume organic liquid scintillator detector of unprecedented high radiopurity which has been designed for low-energy neutrino spectroscopy in real time. Besides the main objective of the experiment, the measurement of the solar 7 Be neutrino flux, Borexino also aims at detecting solar neutrinos from the pep fusion process and from the CNO cycle. The detectability of these neutrinos is strictly connected to a successful rejection of all relevant background components. The identification and reduction of these background signals is the central subject of this dissertation. In the first part, contaminants induced by cosmic-ray muons and muon showers were analyzed. The dominant background is the cosmogenic radioisotope 11 C. Its rate is ∝10 times higher than the expected combined pep and CNO neutrino rate in the preferred energy window of observation at [0.8,1.3] MeV. Since 11 C is mostly produced under the release of a free neutron, 11 C can be tagged with a threefold coincidence (TFC) consisting of the muon signal, the neutron capture and the subsequent 11 C decay. By optimizing the TFC method and other rejection techniques, a 11 C rejection efficiency of 80% was achieved. This led to a neutrino-to-background ratio of 1:1.7, whereby 61% of statistics is lost. The second part of the work concerns the study of the external background. Especially long-range 2.6 MeV gamma rays from 208 Tl decays in the outer detector parts can reach the scintillator in the innermost region of the detector. For the determination of the resultant spectral shape, a custom-made ∝5 MBq 228 Th source was produced and an external calibration was carried out for the first time. The obtained calibration data and the achieved 11 C rejection efficiency will allow for the direct detection of solar pep and possibly also CNO neutrinos with Borexino. (orig.)

  2. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  3. Study and conception of the decay ring of a neutrino facility using the {beta} decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets; Etude et conception de l'anneau de desintegration d'une usine a neutrinos utilisant les decroissances {beta} des noyaux helium 6 et neon 18 produits par un faisceau intense de protons frappant diverses cibles

    Energy Technology Data Exchange (ETDEWEB)

    Chance, A

    2007-09-15

    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  4. Cosmic PeV neutrinos and the sources of ultrahigh energy protons

    Science.gov (United States)

    Kistler, Matthew D.; Stanev, Todor; Yüksel, Hasan

    2014-12-01

    The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ˜1 018 eV , where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

  5. LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?

    CERN Document Server

    Schwetz, Thomas

    2008-01-01

    Standard active-sterile neutrino oscillations do not provide a satisfactory description of the LSND evidence for neutrino oscillations together with the constraints from MiniBooNE and other null-result short-baseline oscillation experiments. However, if the mass or the mixing of the sterile neutrino depends in an exotic way on its energy all data become consistent. I explore the phenomenological consequences of the assumption that either the mass or the mixing scales with the neutrino energy as $1/E_\

  6. Low energy neutrino astronomy with the large liquid-scintillation detector LENA

    International Nuclear Information System (INIS)

    Undagoitia, T Marrodan; Feilitzsch, F von; Goeger-Neff, M; Hochmuth, K A; Oberauer, L; Potzel, W; Wurm, M

    2006-01-01

    The detection of low energy neutrinos in a large liquid scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50 kt scintillation detector is presented

  7. One-point fluctuation analysis of the high-energy neutrino sky

    DEFF Research Database (Denmark)

    Feyereisen, Michael R.; Tamborra, Irene; Ando, Shin'ichiro

    2017-01-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even...

  8. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    NARCIS (Netherlands)

    Ando, S.; Baret, B.; Bartos, I.; Bouhou, B.; Chassande-Mottin, E.; Corsi, A.; Di Palma, I.; Dietz, A.; Donzaud, C.; Eichler, D.; Finley, C.; Guetta, D.; Halzen, F.; Jones, G.; Kandhasamy, S.; Kotake, K.; Kouchner, A.; Mandic, V.; Márka, S.; Márka, Z.; Moscoso, L.; Papa, M.A.; Piran, T.; Pradier, T.; Romero, G.E.; Sutton, P.; Thrane, E.; van Elewyck, V.; Waxman, E.

    2013-01-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic

  9. From eV to EeV: Neutrino cross sections across energy scales

    Energy Technology Data Exchange (ETDEWEB)

    Formaggio, J. A.; Zeller, G. P.

    2012-09-01

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man-made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becoming even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low energy nuclear interactions, quasi-elastic scattering, resonant pion production, kaon production, deep inelastic scattering and ultra-high energy interactions. Strong emphasis is placed on experimental data whenever such measurements are available.

  10. Monitoring of the energy scale in the KATRIN neutrino experiment

    CERN Document Server

    AUTHOR|(CDS)2083282

    The question of the absolute mass scale of neutrinos is of particular interest for particle physics, astrophysics, and cosmology. The KATRIN experiment (KArlsruhe TRItium Neutrino experiment) aims to address the effective electron antineutrino mass from the shape of the tritium $\\beta$-spectrum with an unprecedented sensitivity of 0.2 eV/c$^2$. One of the major systematic effects concerns the experimental energy scale, which has to be stable at the level of only a few parts in a million. For its calibration and monitoring the monoenergetic electrons emitted in the internal conversion of $\\gamma$-transition of the metastable isotope $^{83\\mathrm{m}}$Kr will be extensively applied. The aim of this thesis is to address the problem of KATRIN energy scale distortions and its monitoring in detail. The source of electrons based on $^{83\\mathrm{m}}$Kr embedded in a solid as well as the source based on gaseous $^{83\\mathrm{m}}$Kr are studied. Based on the experimental results an approach for the continuous stability m...

  11. Measurement of νμ and νe Events in an Off-Axis Horn-Focused Neutrino Beam

    International Nuclear Information System (INIS)

    Adamson, P.; Brice, S. J.; Brown, B. C.; Choudhary, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Harris, D.; Hylen, J.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marchionni, A.; Marsh, W.; Mills, F.; Moore, C. D.; Prebys, E.; Russell, A. D.; Smart, W.; Spentzouris, P.

    2009-01-01

    We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beam line at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle (6.3 deg.) with respect to the NuMI beam axis. Samples of charged-current quasielastic ν μ and ν e interactions are analyzed and found to be in agreement with expectation. This provides a direct verification of the expected pion and kaon contributions to the neutrino flux and validates the modeling of the NuMI off-axis beam.

  12. Superconducting magnet system for the J-PARC neutrino beam line. Development, construction and operation of superconducting magnets

    International Nuclear Information System (INIS)

    Sasaki, Ken-ichi; Nakamoto, Tatsushi; Ajima, Yasuo; Okamura, Takahiro; Ogitsu, Toru; Kimura, Nobuhiro; Terashima, Akio; Tomaru, Takayuki; Higashi, Norio

    2010-01-01

    Superconducting combined-function magnets have been utilized for the 50-GeV, 750-kW proton beam line in the J-PARC neutrino experiment. The magnets are designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7,345 A. Following the success of a prototype R and D project, a superconducting magnet system for the J-PARC neutrino beam line has been constructed since 2005. Using a new conceptual beam line with the superconducting combined-function magnets has demonstrated successful beam transport to the target neutrino production. (author)

  13. Extending the search for high-energy muon neutrinos from GRBs with ANTARES

    CERN Multimedia

    2017-01-01

    Gamma-ray bursts (GRBs) are transient sources, potential sites of cosmic-rays acceleration: they are expected to produce high-energy neutrinos in pγ interactions through the decay of charged mesons, thus they constitute promising targets for neutrino telescopes. A search for muon neutrinos from GRBs using 9 years of ANTARES data is here presented, assuming particle acceleration at internal shocks, as expected in the fireball model.

  14. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  15. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  16. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  17. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  18. Neutrino energy loss rate in a stellar plasma

    International Nuclear Information System (INIS)

    Esposito, S.; Mangano, G.; Miele, G.; Picardi, I.; Pisanti, O.

    2003-01-01

    We review the purely leptonic neutrino emission processes, contributing to the energy loss rate of the stellar plasma. We perform a complete analysis up to the first order in the electromagnetic coupling constant. In particular the radiative electromagnetic corrections, at order α, to the process e + e - →νν-bar at finite density and temperature have been computed. This process gives one of the main contributions to the cooling of stellar interior in the late stages of star evolution. As a result of the analysis we find that the corrections affect the energy loss rate, computed at tree level, by a factor (-4-1)% in the temperature and density region where the pair annihilation is the most efficient cooling mechanism

  19. Higgs boson production by very high energy neutrinos

    International Nuclear Information System (INIS)

    Mikaelian, K.O.; Oakes, R.J.

    1978-11-01

    Higgs bosons may be produced by bremsstrahlung off a virtual W/sup +-/ or a Z 0 exchanged in a charged or neutral current neutrino interaction. The production cross sections are calculated, and it is pointed out that they cannot grow quadratically with E/sub nu/ as had been suggested earlier, and it is argued that at best they can increase like the square of ln s/M 2 /sub W,Z/ at very high energies. Using a simple approximation for the propagator effect, numerical results in the high energy regime 1 TeV less than or equal to E/sub nu/ less than or equal to 1000 TeV appropriate for DUMAND. 9 references

  20. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  1. Sterile Neutrinos in Cold Climates

    International Nuclear Information System (INIS)

    Jones, Benjamin J.P.

    2015-01-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin 2 2θ 24 ≤ 0.02 at m 2 ~ 0.3 eV 2 , and the LSND and MiniBooNE allowed regions are excluded at

  2. Search for Quarks in High-Energy Neutrino Interactions

    CERN Document Server

    2002-01-01

    This experiment is a search for quarks produced in high energy neutrino interactions. Neutrino interactions take place in a 23-ton lead target and are recognized by one or more particles crossing the counter hodoscopes S1 and S2, together with the absence of an incident particle signal in the initial veto counter V^0.\\\\ \\\\ The lead is viewed by an avalanche chamber to measure the specific ionization of the charged secondaries produced in the @n-interaction with high accuracy even in jet-like events, and by a series of two pairs of scintillation counter hodoscopes (ST1, ST2). The latter provide time-of-flight measurements and dE/dx measurements for a fast analysis in low and medium multiplicity provide a trigger for the chamber. \\\\ \\\\ In order to reduce the background in the set-up, very low momentum particles (mainly due to cascading processes in the target) are separated out by a @= 1 T.m magnet placed behind the target. \\\\ \\\\ A system of wire chambers W1, W2, which register both the position and the time at...

  3. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Science.gov (United States)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  4. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Zas Enrique

    2017-01-01

    Full Text Available The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth’s crust. It covers a large field of view between −85◦ and 60◦ declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  5. First measurement of muon-neutrino disappearance in NOvA

    Czech Academy of Sciences Publication Activity Database

    Adamson, P.; Ader, C.; Andrews, M.; Lokajíček, Miloš; Zálešák, Jaroslav

    2016-01-01

    Roč. 93, č. 5 (2016), 1-8, č. článku 051104. ISSN 2470-0010 R&D Projects: GA MŠk(CZ) LG15047; GA MŠk LM2015068 Institutional support: RVO:68378271 Keywords : neutrino: oscillation * neutrino/mu: beam * neutrino * mixing angle * neutrino: mass difference * neutrino * mass: hierarchy * NOvA Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.568, year: 2016

  6. Oscillation Physics with a Neutrino Factory

    CERN Document Server

    Apollonio, M.; Broncano, A.; Bonesini, M.; Bouchez, J.; Bueno, A.; Burguet-Castell, J.; Casper, D.; Catanesi, G.; Cervera, A.; Cooper, S.; Donega, M.; Donini, A.; de Gouvea, A.; de Min, A.; Edgecock, R.; Ellis, J.; Fechner, M.; Fernandez, E.; Ferri, F.; Gavela, B.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gomez-Cadenas, J.J.; Gruber, P.; Guglielmi, A.; Hernandez, P.; Huber, P.; Laveder, M.; Lindner, M.; Meloni, D.; Mena, O.; Menghetti, H.; Mezzetto, M.; Migliozzi, P.; Navas-Concha, S.; Palladino, V.; Papadopoulos, I.; Peach, K.; Radicioni, E.; Ragazzi, S.; Rigolin, S.; Romanino, A.; Rico, J.; Rubbia, A.; Santin, G.; Sartorelli, G.; Selvi, M.; Spiro, M.; Tabarelli, T.; Tonazzo, A.; Velasco, M.; Volkov, G.; Winter, W.; Zucchelli, P.

    2004-01-01

    A generation of neutrino experiments have established that neutrinos mix and probably have mass. The mixing phenomenon points to processes beyond those of the Standard Model, possibly at the Grand Unification energy scale. A extensive sequence of of experiments will be required to measure precisely all the parameters of the neutrino mixing matrix, culminating with the discovery and study of leptonic CP violation. As a first step, extensions of conventional pion/kaon decay beams, such as off-axis beams or low-energy super-beams, have been considered. These could yield first observations of $\

  7. Low energy neutrino astrophysics with the large liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Undagoitia, T. Marrodan; Oberauer, L.; Potzel, W.; Winter, J.

    2007-01-01

    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will cover a broad field of physics. Apart from the detection of terrestrial and artificial neutrinos, and the search for proton decay, important contributions can be made to the astrophysics of stars by high-precision spectroscopy of low-energetic solar neutrinos and by the observation of neutrinos emitted by a galactic supernova. Moreover, the detection of the diffuse supernova neutrino background in LENA will offer the opportunity of studying both supernova core-collapse models and the supernova rate on cosmological timescales (z e events in an almost background-free energy window from ∼10 to 25 MeV. The search for such rare low-energetic events takes advantage of the high energy resolution and excellent background rejection possible in the LENA detector

  8. Search for heavy neutrino decays in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Cooper-Sarkar, A.M.; Haywood, S.J.; Parker, M.A.; Sarkar, S.; Klein, H.; Morrison, D.R.O.; Wachsmuth, H.; Barnham, K.W.J.; Mobayyen, M.M.; Talebzadeh, M.; Bostock, P.; Krstic, J.; Graessler, H.

    1985-01-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits vertical strokeUsub(μi)vertical stroke 2 , vertical strokeUsub(ei)vertical stroke 2 -6 -10 -7 are obtained for neutrino mass eigenstates νsub(i) of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on vertical strokeUsub(νi)vertical stroke 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate ν 3 in particular, we obtain the limits vertical strokeUsub(μ3)vertical stroke 2 -7 -10 -8 . vertical strokeUsub(e3)vertical stroke 2 -9 -10 -10 for the mass range 150-190 MeV, assuming the ν 3 to be produced directly in charmed F meson decays. (orig.)

  9. Astrophysical searches for exotic phenomena in ultrahigh energy neutrino-nucleon scattering

    International Nuclear Information System (INIS)

    Morris, D.A.; Ringwald, A.

    1994-03-01

    We investigate the potential of near-future neutrino telescopes like NESTOR for searches for exotic processes in ultrahigh energy neutrino-quark scattering. We consider signatures such as muon bundles and/or contained cascades from the nonperturbative production of multiple weak gauge bosons in the Standard Model, compositeness and leptoquark production. (orig.)

  10. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Buitink, S.; Docters, W.; Dorosti Hasankiadeh, Q.; Ferguson, A P.; Lu, L.; Messina, S.; Scholten, O.; van den Berg, A. M.

    2015-01-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the

  11. Reconstruction of GeV Neutrino Events in LENA

    International Nuclear Information System (INIS)

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-01-01

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  12. High Energy Neutrino Physics with NOvA

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Thomas [Southern Methodist Univ. , Dallas, TX (United States)

    2016-09-09

    Knowledge of the position of energy deposition in “hit” detector cells of the NOvA neutrino detector is required by algorithms for pattern reconstruction and particle identification necessary to interpret the raw data. To increase the accuracy of this process, the majority of NOvA's 350 000 far detector cell shapes, including distortions, were measured as they were constructed. Using a special laser scanning system installed at the site of the NOvA far detector in Ash River, MN, we completed algorithmic development and measured shape parameters for the far detector. The algorithm and the measurements are “published” in NOνA’s document database (doc #10389, “Cell Center Finder for the NOνA Far Detector Modules”).

  13. Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources

    International Nuclear Information System (INIS)

    Mena, Olga; Mocioiu, Irina; Razzaque, Soebur

    2007-01-01

    High-energy neutrinos are expected to be produced in a variety of astrophysical sources as well as in optically thick hidden sources. We explore the matter-induced oscillation effects on emitted neutrino fluxes of three different flavors from the latter class. We use the ratio of electron and tau induced showers to muon tracks, in upcoming neutrino telescopes, as the principal observable in our analysis. This ratio depends on the neutrino energy, density profile of the sources, and on the oscillation parameters. The largely unknown flux normalization drops out of our calculation and only affects the statistics. For the current knowledge of the oscillation parameters we find that the matter-induced effects are non-negligible and the enhancement of the ratio from its vacuum value takes place in an energy range where the neutrino telescopes are the most sensitive. Quantifying the effect would be useful to learn about the astrophysics of the sources as well as the oscillation parameters. If the neutrino telescopes mostly detect diffuse neutrinos without identifying their sources, then any deviation of the measured flux ratios from the vacuum expectation values would be most naturally explained by a large population of hidden sources for which matter-induced neutrino oscillation effects are important

  14. Penetration of the Earth by Ultrahigh Energy Neutrinos Predicted by Low x QCD

    International Nuclear Information System (INIS)

    Kwiecinski, J.; Stasto, A.; Martin, A.D.

    1999-01-01

    Full text: We calculate the cross sections for neutrino interactions with (isoscalar) nuclear targets in the energy domain all the way up to 10 12 GeV. Small x QCD effects are included by using a unified BFKL/DGLAP formalism which embodies non-leading ln(1/x) contributions. The few free parameters which specify the input parton distributions are determined by fitting to HERA deep inelastic data. The attenuation of neutrinos transversing the Earth at different nadir angles is calculated for a variety of energy spectra for neutrinos originating from different sources (from Active Galactic Nuclei, Gamma ray bursts, top-down models), as well as for atmospheric neutrinos. For this purpose we solve the transport equation which includes regeneration due to neutral current neutrino interactions besides attenuation. (author)

  15. Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    International Nuclear Information System (INIS)

    Ahrens, J.; Bai, X.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Binon, F.; Boeser, S.; Botner, O.; Bouchta, A.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chirkin, D.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Doksus, P.; Ekstrom, P.; Feser, T.; Gaisser, T.K.; Ganugapati, R.; Gaug, M.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Herquet, P.; Hill, G.C.; Hulth, P.O.; Hughey, B.; Hultqvist, K.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kuehn, K.; Kim, J.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Mandli, K.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Messarius, T.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, P.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schlenstedt, S.; Schinarakis, K.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Stamatikos, M.; Spiczak, G.M.; Spiering, C.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sulanke, K.-H.; Taboada, I.; Tilav, S.; Wagner, W.; Walck, C.; Wang, Y.-R.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2003-01-01

    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E -2 spectrum, a 90 percent classical confidence level upper limit has been placed at a level E 2 Phi(E) = 8.4 x 10 -7 GeV cm -2 s -1 1 sr -1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded

  16. Neutral strange particle production in high energy charged current neutrino deuterium interactions

    International Nuclear Information System (INIS)

    Son, D.

    1982-01-01

    In an exposure of the Fermilab 15-foot deuterium filled bubble chamber to a single horn focused wide band neutrino beam with energies between 10 and 250 GeV, 311 K/sub s/, 219 lambda and 7 Anti lambda are observed. These correspond to K 0 anti(K 0 ), lambda(Σ 0 ) and anti lambda production rates per charged current interaction of 0.170 +/- 0.010, 0.060 +/- 0.004, and 0.002 +/- 0.001, respectively, in 18.9 +/- 0.09% V 0 events of total charged current events. The inclusive lambda rate in nun interactions is significantly higher than that in nup interactions. The multiplicity of K 0 increases (or decreases) with increasing E/sub nu/, W, and Q 2 (or x/sub BETA), while that of lambda shows no significant variations. From a detailed study of lambda, lambda K 0 ], lambda K/sup */ +0 systems, the production rate of lambda from the charm quark decay is found to be (2.1 +/- 1.0)% of the total charged current, which leads to a small cross section for charmed baryon quasielastic production -40 cm 2 (90% CL) and a small semileptonic branching ratio of lambda/sub c/ + decay, B(lambda/sub c/ + → e + lambda x + , K 0 p, lambda π + π + π - , and antiK 0 pπ + π - decay modes of lambda/sub c/ + are studied and found consistent with our previous results. The gross probability that an (ss) pair is produced in lambda S = 0 neutrino reactions is estimated to be 0.19 +/- 0.06, which agrees well with that in hadronic experiments. The inclusive x/sub F/ and p/sub T 2 / distributions and their average values are very similar to those in hadronic experiments, which suggest that the majority of neutral strange particles are produced in neutrino reactions via the associated production mechanism

  17. Neutrino radiation hazards: A paper tiger

    International Nuclear Information System (INIS)

    Cossairt, J.D.; Grossman, N.L.; Marshall, E.T.

    1996-09-01

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the 'exotic' particles produced, including the neutrinos. Furthermore, the very word neutrino ('little neutral one', as coined by Enrico Fermi) can lead to public concern due to confusion with 'neutron', a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a 'paper tiger'. 14 refs., 1 fig., 1 tab

  18. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  19. Acoustic detection of high energy neutrinos in sea water: status and prospects

    Directory of Open Access Journals (Sweden)

    Lahmann Robert

    2017-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of neutrinos at energies in the EeV-range and above. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade – resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties – leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. Current or recent test setups for acoustic neutrino detection have either been add-ons to optical neutrino telescopes or have been using acoustic arrays built for other purposes, typically for military use. While these arrays have been too small to derive competitive limits on neutrino fluxes, they allowed for detailed studies of the experimental technique. With the advent of the research infrastructure KM3NeT in the Mediterranean Sea, new possibilities will arise for acoustic neutrino detection. In this article, results from the “first generation” of acoustic arrays will be summarized and implications for the future of acoustic neutrino detection will be discussed.

  20. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  1. Low-energy solar neutrino spectroscopy with Borexino. Towards the detection of the solar pep and CNO neutrino flux

    Energy Technology Data Exchange (ETDEWEB)

    Maneschg, Werner

    2011-05-11

    Borexino is a large-volume organic liquid scintillator detector of unprecedented high radiopurity which has been designed for low-energy neutrino spectroscopy in real time. Besides the main objective of the experiment, the measurement of the solar {sup 7}Be neutrino flux, Borexino also aims at detecting solar neutrinos from the pep fusion process and from the CNO cycle. The detectability of these neutrinos is strictly connected to a successful rejection of all relevant background components. The identification and reduction of these background signals is the central subject of this dissertation. In the first part, contaminants induced by cosmic-ray muons and muon showers were analyzed. The dominant background is the cosmogenic radioisotope {sup 11}C. Its rate is {proportional_to}10 times higher than the expected combined pep and CNO neutrino rate in the preferred energy window of observation at [0.8,1.3] MeV. Since {sup 11}C is mostly produced under the release of a free neutron, {sup 11}C can be tagged with a threefold coincidence (TFC) consisting of the muon signal, the neutron capture and the subsequent {sup 11}C decay. By optimizing the TFC method and other rejection techniques, a {sup 11}C rejection efficiency of 80% was achieved. This led to a neutrino-to-background ratio of 1:1.7, whereby 61% of statistics is lost. The second part of the work concerns the study of the external background. Especially long-range 2.6 MeV gamma rays from {sup 208}Tl decays in the outer detector parts can reach the scintillator in the innermost region of the detector. For the determination of the resultant spectral shape, a custom-made {proportional_to}5 MBq {sup 228}Th source was produced and an external calibration was carried out for the first time. The obtained calibration data and the achieved {sup 11}C rejection efficiency will allow for the direct detection of solar pep and possibly also CNO neutrinos with Borexino. (orig.)

  2. Phased arrays: A strategy to lower the energy threshold for neutrinos

    Directory of Open Access Journals (Sweden)

    Wissel Stephanie

    2017-01-01

    Full Text Available In-ice radio arrays are optimized for detecting the highest energy, cosmogenic neutrinos expected to be produced though cosmic ray interactions with background photons. However, there are two expected populations of high energy neutrinos: the astrophysical flux observed by IceCube (~1 PeV and the cosmogenic flux (~ 1017 eV or 100 PeV. Typical radio arrays employ a noise-riding trigger, which limits their minimum energy threshold based on the background noise temperature of the ice. Phased radio arrays could lower the energy threshold by combining the signals from several channels before triggering, thereby improving the signal-to-noise at the trigger level. Reducing the energy threshold would allow radio experiments to more efficiently overlap with optical Cherenkov neutrino telescopes as well as for more efficient searches for cosmogenic neutrinos. We discuss the proposed technique and prototypical phased arrays deployed in an anechoic chamber and at Greenland’s Summit Station.

  3. Neutrino energy loss rates due to key iron isotopes for core-collapse physics

    International Nuclear Information System (INIS)

    Nabi, J.-U.

    2008-07-01

    Accurate estimates of neutrino energy loss rates are needed for the study of the late stages of the stellar evolution, in particular for the cooling of neutron stars and white dwarfs. The energy spectra of neutrinos and antineutrinos arriving at the Earth can also provide useful information on the primary neutrino fluxes as well as neutrino mixing scenario. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently being used for a microscopic calculation of stellar weak interaction rates of fp-shell nuclide, particularly iron isotopes, with success. Here I present the calculation of neutrino and antineutrino energy loss rates due to key iron isotopes in stellar matter using the pn-QRPA theory. The rates are calculated on a fine grid of temperature-density scale suitable for core-collapse simulators. The calculated rates are compared against earlier calculations. The neutrino cooling rates due to even-even isotopes of iron, 54,56 Fe, are in good agreement with the rates calculated using the large-scale shell model. The pn-QRPA calculated neutrino energy loss rates due to 55 Fe are enhanced roughly around an order of magnitude compared to the large-scale shell model calculation during the oxygen and silicon shell burning stages of massive stars and favor a lower entropy for the cores of massive stars. (author)

  4. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Brânzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope,

  5. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, C.O.A.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhofer, A.; Felis, I.; Folger, F.; Fusco, L.A.; Galata, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sanchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schussler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zuniga, J.

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6∘ for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with

  6. Study of neutrino- and antineutrino interactions in a neon-hydrogen mixture using the CERN narrow band beam

    International Nuclear Information System (INIS)

    Schultze, K.

    1977-01-01

    The charged-current cross sections for neutrinos and antineutrinos on nucleons in the energy range 20-200 GeV are given. Taken in conjunction with the previous Gargamelle results, they show that sigma/E is almost constant with energy for antineutrinos, and falls with energy for neutrinos. Above 50 GeV, sigma/E is compatible with being constant for neutrinos and antineutrinos. Rates for the production of neutral current events, di-lepton events and strange particles are given. The rate of di-lepton production shows no evidence for the production of 'bottom' states. Finally there is no indication for a charged heavy lepton coupled to the muon neutrino. (orig./WL) [de

  7. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  8. Search for high energy skimming neutrinos at a surface detector array

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh; Pham Ngoc Diep

    2010-01-01

    In the present study we propose a new method for detection of high energy cosmological muon neutrinos by transition radiations at a medium interface. The emerging electro-magnetic radiations induced by earth-skimming heavy charged leptons are able to trigger a few of aligned neighboring local water Cherenkov stations at a surface detector array similar to the Pierre Auger Observatory. The estimation applied to the model of Gamma Ray Burst induced neutrino fluxes and the spherical earth surface shows a competitive rate of muon neutrino events in the energy range below the GZK cut-off. (author)

  9. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube

    NARCIS (Netherlands)

    Adrian-Martinez, S.; van Haren, H.; ANTARES Collaboration; IceCube Collaboration; Ligo Scientific Collaboration; Virgo Collaboration

    2016-01-01

    We present the high-energy-neutrino follow-up observations of the ?rst gravitational wave tran-sient GW150914 observed by the Advanced LIGO detectors on Sept. 14th, 2015. We search forcoincident neutrino candidates within the data recorded by the IceCube and Antares neutrino de-tectors. A possible

  10. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Albert, M.A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J-J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, J.R.; Brunner, J; Busto, J.A.A.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.K.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsaesser, D.; Enzenhoefer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galata, S.; Gay, P.; Geisselsoeder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hoessl, J.; Hofestaedt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, E.M.M.; Kadler, M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, AW; Martinez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C. L.; Nezri, E.; Pavalas, G. E.; Pellegrino, A.C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldana, M.; Samtleben, D. F. E.; Sanchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.A.; Schuessler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Toennis, C.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms-Schopman, F.J.; Zornoza, J. D.; Zuniga, J.; Aartsen, M. G.; Abraham, K.; Ackermann, M; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D.J.; Bohm, C.K.; Boerner, M.; Bos, M.F.; Bose, D.; Boeser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H-P.; Buzinsky, N.; Casey, B.J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J.C.; Day, B.M.; de Andre, J. P. A. M.; le Clercq, C.M.C.; Rosendo, E. del Pino; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, L.M.; DeYoung, T.; Diaz-Velez, J. C.; De Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Foesig, C-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.M.S.; Ghorbani, K.; de Gier, L.; Gladstone, L.; Glagla, M.; Gluesenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez-Macias, J.; Gora, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, B.E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Schulte in den Baumen, T.; Ishihara, A.; Jacobi, C.E.; Japaridze, G. S.; Jeong, M.H.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koepke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.L.; Krings, K.; Kroll, G.; Kroll, M.; Krueckl, G.; Kunnen, S.J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Luenemann, J.D.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher-Villemure, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; de los Heros, C. Perez; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Raedel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H-G.; Sandrock, A.W.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schoeneberg, S.; Schoenwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, Michael; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stoessl, A.; Stroem, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tesic, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.P.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.M.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible

  11. Radiative corrections to high-energy neutrino scattering

    International Nuclear Information System (INIS)

    Rujula, A. de; Petronzio, R.; Savoy-Navarro, A.

    1979-01-01

    Motivated by precise neutrino experiments, the electromagnetic radiative corrections to the data are reconsidered. The usefulness is investigated and the simplicity demonstrated of the 'leading log' approximation: the calculation to order α ln (Q/μ), α ln (Q/msub(q)). Here Q is an energy scale of the overall process, μ is the lepton mass and msub(q) is a hadronic mass, the effective quark mass in a parton model. The leading log radiative corrections to dsigma/dy distributions and to suitably interpreted dsigma/dx distributions are quark-mass independent. The authors improve upon the conventional leading log approximation and compute explicitly the largest terms that lie beyond the leading log level. In practice this means that the model-independent formulae, though approximate, are likely to be excellent estimates everywhere except at low energy or very large y. It is pointed out that radiative corrections to measurements of deviations from the Callan-Gross relation and to measurements of the 'sea' constituency of nucleons are gigantic. The QCD inspired study of deviations from scaling is of particular interest. The authors compute, beyond the leading log level, the radiative corrections of the QCD predictions. (Auth.)

  12. Origin of the High-energy Neutrino Flux at IceCube

    Science.gov (United States)

    Carceller, J. M.; Illana, J. I.; Masip, M.; Meloni, D.

    2018-01-01

    We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth, and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray (CR) interactions with gas in our galaxy implies just two events among the 54-event sample. We argue that the neutrino flux from CR interactions in the intergalactic (intracluster) space depends critically on the transport parameter δ describing the energy dependence in the diffusion coefficient of galactic CRs. Our analysis motivates a {E}-2.1 neutrino spectrum with a drop at PeV energies that fits the data well, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a CR flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the CR composition.

  13. A search for the oscillations of a vμ beam at the BNL AGS

    International Nuclear Information System (INIS)

    Cortez, B.; LoSecco, J.; Soukas, A.; Sulak, L.; Weng, W.

    1981-01-01

    This chapter reports on a sensitive search for neutrino oscillations. To maximize sensitivity, the energy of the neutrino beam was reduced to 150 MeV. Calculates the expected event rate for pion production in the target, horn focusing, and neutrino interactions in the detector. Examines the fine time structure of the beam events with respect to the RF timing of the beam

  14. A time-dependent search for high-energy neutrinos from bright GRBs with ANTARES

    Directory of Open Access Journals (Sweden)

    Celli Silvia

    2017-01-01

    Full Text Available Astrophysical point-like neutrino sources, like Gamma-Ray Bursts (GRBs, are one of the main targets for neutrino telescopes, since they are among the best candidates for Ultra-High-Energy Cosmic Ray (UHECR acceleration. From the interaction between the accelerated protons and the intense radiation fields of the source jet, charged mesons are produced, which then decay into neutrinos. The methods and the results of a search for high-energy neutrinos in spatial and temporal correlation with the detected gamma-ray emission are presented for four bright GRBs observed between 2008 and 2013: a time-dependent analysis, optimised for each flare of the selected bursts, is performed to predict detailed neutrino spectra. The internal shock scenario of the fireball model is investigated, relying on the neutrino spectra computed through the numerical code NeuCosmA. The analysis is optimized on a per burst basis, through the maximization of the signal discovery probability. Since no events in ANTARES data passed the optimised cuts, 90% C.L. upper limits are derived on the expected neutrino fluences.

  15. New prospects for detecting high-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Murase, Kohta

    2018-04-01

    Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.

  16. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    Energy Technology Data Exchange (ETDEWEB)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.

  17. THERMODYNAMIC INTERACTION OF THE PRIMARY PROTON BEAM WITH A MERCURY JET TARGET AT A NEUTRINO FACTORY SOURCE

    International Nuclear Information System (INIS)

    SIMOS, N.; LUDEWIG, H.; KIRK, H.; THIEBERGER, P.; MCDONALD, K.

    2001-01-01

    This paper addresses the thermodynamic interaction of an intense proton beam with the proposed mercury jet target at a neutrino factory or muon collider source, and the consequences of the generated pressure waves on the target integrity. Specifically, a 24 GeV proton beam with approximately 1.6e13 protons per pulse and a pulse length of 2 nanosec will interact with a 1 cm diameter mercury jet within a 20 Tesla magnetic field. In one option, a train of six such proton pulses is to be delivered on target within 2 microsec, in which case the state of the mercury jet following the interaction with each pulse is critical. Using the equation of state for mercury from the SESAME library, in combination with the energy deposition rates calculated the by the hadron interaction code MARS, the induced 3-D pressure field in the target is estimated. The consequent pressure wave propagation and attenuation in the mercury jet is calculated using an ANSYS code transient analysis, and the state of the mercury jet at the time of arrival of the subsequent pulse is assessed. The amplitude of the pressure wave reaching the nozzle that ejects the mercury jet into the magnetic field is estimated and the potential for mechanical damage is addressed

  18. Study of the pulse power supply unit for the four-horn system of the CERN to Fréjus neutrino super beam

    CERN Document Server

    Baussan, E; Dracos, M; Gaudiot, G; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V

    2013-01-01

    The power supply studies for the four-horn system for the CERN to Fréjus neutrino Super Beam oscillation experiment are discussed here. The power supply is being studied to meet the physics potential and the mega-watt (MW) power requirements of the proton driver of the Super Beam. A one-half sinusoid current waveform with a 350 kA maximum current and pulse length of 100 \\mu s at 50 Hz frequency is generated and distributed to four-horns. In order to provide the necessary current needed to focus the charged mesons producing the neutrino beam, a bench of capacitors is charged at 50 Hz frequency to a +12 kV reference voltage and then discharged through a large switch to each horn via a set of strip-lines at the same rate. A current recovery stage allows to invert rapidly the negative voltage of the capacitor after the discharging stage in order to recuperate large part of the injected energy and thus to limit the power consuption. The energy recovery efficiency of that system is very high at 97%. For feasibilit...

  19. Production of radioactivity in local soil at AGS fast neutrino beam

    International Nuclear Information System (INIS)

    Gollon, P.J.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

    1984-01-01

    Brookhaven National Laboratory (BNL) has recently decided to construct a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). To determine the environmental impact of this addition, a study is being conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Typical BNL soil samples were placed at two locations near an operating target: at right angles to the target and behind thick shielding close to the direction of the incident beam. These samples were used to determine radionuclide production and leaching information. A core was taken from beneath the concrete floor of the old target area and a monitoring well was installed down-gradient of the facility. Preliminary results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 9 figures

  20. Search for tau-neutrino interactions in the BEBC beam dump experiment

    Science.gov (United States)

    Talebzadeh, M.; Guy, J.; Venus, W.; Aderholz, M.; Barnham, K. W. J.; Bostock, P.; Clayton, E. F.; Cooper-Sarkar, A. M.; Faccini-Turluer, M. L.; Grässler, H.; Hultquist, K.; Hulth, P. O.; Kreutzmann, H.; Krstic, J.; Miller, D. B.; Mobayyen, M. M.; Myatt, G.; Nellen, B.; Parker, M. A.; Schmitz, N.; Sewell, S.; Simopoulou, E.; Vayaki, A.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; BEBC WA66 Collaboration

    A novel and efficient kinematic method is used to estimate the number of ντ charged current interactions with Eν > 20 GeV in the BEBC beam dump experiment. The result, -14±12 ντ events, is consistent with zero. The ratio of D s to D meson production in 400 GeV proton interactions in copper is estimated to be below 0.65 at 90% c.l. The oscillation probability P( νe→ ντ) averaged over the electron-(anti)neutrino spectrum is found to be below 18%. The hypothesis that νe and ντ are identical is excluded by about 6 standard deviations. A remarkable event is described: it contains a muon, a high pT photon and a high pT hadron.

  1. Search for tau-neutrino interactions in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Talebzadeh, M.; Barnham, K.W.J.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Guy, J.; Venus, W.; Cooper-Sarkar, A.M.; Sewell, S.; Bostock, P.; Krstic, J.; Myatt, G.; Simopoulou, E.; Vayaki, A.

    1987-01-01

    A novel and efficient kinematic method is used to estimate the number of ν τ charged current interactions with E ν > 20 GeV in the BEBC beam dump experiment. The result, -14±12 ν τ events, is consistent with zero. The ratio of D s to D meson production in 400 GeV proton interactions in copper is estimated to be below 0.65 at 90% c.l. The oscillation probability P(ν c → ν τ ) averaged over the electron-(anti)neutrino spectrum is found to be below 18%. The hypothesis that ν c and ν τ are identical is excluded by about 6 standard deviations. A remarkable event is described: it contains a muon, a high p T photon and a high p T hadron. (orig.)

  2. Probing the stability of superheavy dark matter particles with high-energy neutrinos

    International Nuclear Information System (INIS)

    Esmaili, Arman; Peres, O.L.G.

    2012-01-01

    Full text: There is currently mounting evidence for the existence of dark matter in our Universe from various astrophysical and cosmological observations, but the two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive lower limits on the lifetime of dark matter particles with masses in the range 10 TeV - 10 18 GeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. All these experiments probe different energy windows and perfectly complement each other. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than ∼ 10 26 s for masses between 10 TeV and the Grand Unification scale. We will consider various scenarios where the decay of the dark matter particle produces high energy neutrinos. Neutrinos travel in the Universe without suffering an appreciable attenuation, even for EeV neutrinos, in contrast to photons which rapidly lose their energy via pair production. This remarkable property makes neutrinos a very suitable messenger to constrain the lifetime of superheavy dark matter particles. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay. (author)

  3. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  4. The acceptance of surface detector arrays for high energy cosmological muon neutrinos

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh

    2011-01-01

    In order to search for ultra-high energy cosmological earth-skimming muon neutrinos by the surface detector array (SD) similar to one of the Pierre Auger Observatory (PAO), we propose to use the transition electromagnetic radiation at the medium interface induced by earth-skimming muons for triggering a few of aligned neighboring Cherenkov SD stations. Simulations of the acceptance of a modeling SD array have been done to estimate the detection probability of earth-skimming muon neutrinos.

  5. 7Be(p, γ)8B and the high-energy solar neutrino flux

    International Nuclear Information System (INIS)

    Csoto, A.

    1997-01-01

    Despite thirty years of extensive experimental and theoretical work, the predicted solar neutrino flux is still in sharp disagreement with measurements. The solar neutrino measurements strongly suggest that the problem cannot be solved within the standard electroweak and astrophysical theories. Thus, the solar neutrino problem constitutes the strongest evidence for physics beyond the Standard Model. Whatever the solution of the solar neutrino problem turns out to be, it is of paramount importance that the input parameters of the underlying electroweak and solar theories rest upon solid ground. The most uncertain nuclear input parameter in standard solar models is the low-energy 7 Be(p, γ) 8 B radiative capture cross section. This reaction produces 8 B in the Sun, whose β + decay is the main source of the high-energy solar neutrinos. Here, the importance of the 7 Be(p, γ) 8 B reaction in predicting the high energy solar neutrino flux is discussed. The author presents a microscopic eight-body model and a potential model for the calculation of the 7 Be(p, γ) 8 B cross section

  6. Neutrinos and ultra-high-energy cosmic-ray nuclei from blazars

    International Nuclear Information System (INIS)

    Rodrigues, Xavier; Fedynitch, Anatoli; Gao, Shan; Boncioli, Denise; Winter, Walter

    2017-11-01

    We discuss the production of ultra-high-energy cosmic ray (UHECR) nuclei and neutrinos from blazars. We compute the nuclear cascade in the jet for both BL Lac objects and flat-spectrum radio quasars (FSRQs), and in the ambient radiation zones for FSRQs as well. By modeling representative spectral energy distributions along the blazar sequence, two distinct regimes are identified, which we call ''nuclear survival'' - typically found in low-luminosity BL Lacs, and ''nuclear cascade'' - typically found in high-luminosity FSRQs. We quantify how the neutrino and cosmic-ray (CR) emission efficiencies evolve over the blazar sequence, and demonstrate that neutrinos and CRs come from very different object classes. For example, high-frequency peaked BL Lacs (HBLs) tend to produce CRs, and HL-FSRQs are the more efficient neutrino emitters. This conclusion does not depend on the CR escape mechanism, for which we discuss two alternatives (diffusive and advective escape). Finally, the neutrino spectrum from blazars is shown to significantly depend on the injection composition into the jet, especially in the nuclear cascade case: Injection compositions heavier than protons lead to reduced neutrino production at the peak, which moves at the same time to lower energies. Thus, these sources will exhibit better compatibility with the observed IceCube and UHECR data.

  7. Neutrinos and ultra-high-energy cosmic-ray nuclei from blazars

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Xavier; Fedynitch, Anatoli; Gao, Shan; Boncioli, Denise; Winter, Walter

    2017-11-15

    We discuss the production of ultra-high-energy cosmic ray (UHECR) nuclei and neutrinos from blazars. We compute the nuclear cascade in the jet for both BL Lac objects and flat-spectrum radio quasars (FSRQs), and in the ambient radiation zones for FSRQs as well. By modeling representative spectral energy distributions along the blazar sequence, two distinct regimes are identified, which we call ''nuclear survival'' - typically found in low-luminosity BL Lacs, and ''nuclear cascade'' - typically found in high-luminosity FSRQs. We quantify how the neutrino and cosmic-ray (CR) emission efficiencies evolve over the blazar sequence, and demonstrate that neutrinos and CRs come from very different object classes. For example, high-frequency peaked BL Lacs (HBLs) tend to produce CRs, and HL-FSRQs are the more efficient neutrino emitters. This conclusion does not depend on the CR escape mechanism, for which we discuss two alternatives (diffusive and advective escape). Finally, the neutrino spectrum from blazars is shown to significantly depend on the injection composition into the jet, especially in the nuclear cascade case: Injection compositions heavier than protons lead to reduced neutrino production at the peak, which moves at the same time to lower energies. Thus, these sources will exhibit better compatibility with the observed IceCube and UHECR data.

  8. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    International Nuclear Information System (INIS)

    Voigt, Bernhard

    2008-01-01

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km 3 of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10 -8 E -2 GeVs -1 sr -1 cm -2 is reached, which is valid for a diffuse electron neutrino flux proportional to E -2 in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  9. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Bernhard

    2008-07-16

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km{sup 3} of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2} is reached, which is valid for a diffuse electron neutrino flux proportional to E{sup -2} in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  10. Letter on intent to build an off-axis detector to study nu sub m sub u-> nu sub e oscillations with the NuMI neutrino beam. Version 6.0

    CERN Document Server

    Ayres, D; Guarino, V; Joffe-Minor, T M; Reyna, D; Talaga, R; Thron, J

    2003-01-01

    The question of neutrino masses is of fundamental importance. Neutrino oscillations seem to be the only tool available to us to unravel the pattern of neutrino masses and, perhaps, shed some light on the origin of masses in general. The NuMI neutrino beam line and the MINOS experiment represent a major investment of US High Energy Physics in the area of neutrino physics. the forthcoming results could decisively establish neutrino oscillations as the underlying physics mechanism for the atmospheric nu submu deficit and provide a precise measurement of the corresponding oscillation parameters, DELTA m sub 3 sub 2 sup 2 and sin sup 2 2 theta sub 2 sub 3. This, however, is just a beginning of a long journey into uncharted territories. The key to these new territories is the detection of nu submu -> nu sub e oscillations associated with the atmospheric nu submu deficit, controlled by the little known mixing angle sin sup 2 2 theta sub 1 sub 3. A precise measurement of the amplitude of these oscillations will enabl...

  11. Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin.

    Science.gov (United States)

    Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio

    2015-11-27

    Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (pp) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E^{-2.1} as a main component of the neutrino background, if its evolution is slower than (1+z)^{3}. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.

  12. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, A.; Chimienti, L.; Leonhardt, W.; Monaghan, R.; Ryan, G.; Sandberg, J.; Sims, W.; Smith, G.; Stillman, P.; Thorwarth, H.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10/sup 13/ proton/sec. These systems were designed for simplicity, reliability, and easy replacement.

  13. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    International Nuclear Information System (INIS)

    Carroll, A.; Chimienti, L.; Leonhardt, W.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10 13 proton/sec. These systems were designed for simplicity, reliability, and easy replacement

  14. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  15. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  16. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  17. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  18. Probing Dark Energy via Neutrino and Supernova Observatories

    International Nuclear Information System (INIS)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-01-01

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes

  19. Probing Dark Energy via Neutrino and Supernova Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  20. Right-handed currents and heavy neutrinos in high energy ep and e+e- scattering

    International Nuclear Information System (INIS)

    Buchmueller, W.; Greub, C.

    1992-03-01

    Heavy Dirac or Majorana neutrinos can be produced via right-handed charged currents which occur in extensions of the standard model with SU(2) L x SU(2) R x U(1) B-L gauge symmetry. Low energy processes, Z precision experiments and direct search experiments in pp collisions are consistent with W R bosons heavier than 300 GeV, if the right-handed neutrinos are heavy. We study the production of heavy neutrinos via right-handed currents in e + e - annihilation and ep scattering which appears particularly promising. At HERA heavy neutrinos and W R bosons can be discovered with masses up to 170 GeV and 700 GeV, respectively. (orig.)

  1. High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment

    International Nuclear Information System (INIS)

    IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube

    2008-01-01

    The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated into IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section

  2. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    Science.gov (United States)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W

  3. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    Mathieu Aurore

    2016-01-01

    Full Text Available The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER and the Swift-XRT telescope, which are triggered when an “interesting” neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  4. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    Science.gov (United States)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  5. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Science.gov (United States)

    Mathieu, Aurore

    2016-04-01

    The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER) and the Swift-XRT telescope, which are triggered when an "interesting" neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  6. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  7. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  8. The CERN Neutrino Platform

    CERN Document Server

    Bordoni, Stefania

    2018-01-01

    The long-baseline neutrino programme has been classified as one of the four highest-priority sci- entific objectives in 2013 by the European Strategy for Particle Physics. The Neutrino Platform is the CERN venture to foster and support the next generation of accelerator-based neutrino os- cillation experiments. Part of the present CERN Medium-Term Plan, the Neutrino Platform provide facilities to develop and prototype the next generation of neutrino detectors and contribute to unify the European neu- trino community towards the US and Japanese projects. A significative effort is made on R&D; for LAr TPC technologies: two big LAr TPC prototypes for the DUNE far detector are under con- struction at CERN. Those detectors will be exposed in 2018 to an entirely new and NP-dedicated beam-line from the SPS which will provide electron, muon and hadron beams with energies in the range of sub-GeV to a few GeV. Other projects are also presently under development: one can cite the refurbishing and shipping to the US ...

  9. MINERvA neutrino detector response measured with test beam data

    International Nuclear Information System (INIS)

    Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; Bagby, L.; Bellantoni, L.; Bergan, W.F.; Bodek, A.; Bradford, R.; Bravar, A.; Budd, H.; Butkevich, A.; Martinez Caicedo, D.A.; Carneiro, M.F.; Christy, M.E.; Chvojka, J.; Motta, H. da; Devan, J.

    2015-01-01

    The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program

  10. MINERvA neutrino detector response measured with test beam data

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Altinok, O. [Physics Department, Tufts University, Medford, MA 02155 (United States); Araujo Del Castillo, C. [Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Apartado 1761, Lima (Peru); Bagby, L.; Bellantoni, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bergan, W.F. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Bodek, A.; Bradford, R. [University of Rochester, Rochester, New York 14627 (United States); Bravar, A. [University of Geneva, 1211 Geneva 4 (Switzerland); Budd, H. [University of Rochester, Rochester, New York 14627 (United States); Butkevich, A. [Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow (Russian Federation); Martinez Caicedo, D.A. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro 22290-180 (Brazil); Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Carneiro, M.F. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro 22290-180 (Brazil); Christy, M.E. [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Chvojka, J. [University of Rochester, Rochester, New York 14627 (United States); Motta, H. da [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro 22290-180 (Brazil); Devan, J. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); and others

    2015-07-21

    The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program.

  11. To Test a Prototype of a Proton Lifetime Detector in a Neutrino Beam at the PS

    CERN Multimedia

    2002-01-01

    In order to test the performances of the calorimeter method in a nucleon lifetime experiment, a 3 ton prototype calorimeter made of iron and polystyrene scintillator sandwiches and of fine-grain counters has been designed by our collaboration. The energy and angular resolution will be tested by exposing this prototype to charged particles ($e, \\mu , \\pi$) in the 0.5 GeV/c range at Orsay and at CERN in Summer 1980. Since an unavoidable background to any experiment on nucleon decay consists of atmospheric neutrino events, which could in some cases simulate a nucleon decay, the knowledge of the configuration of such events in our detector is essential. It has been shown that the energy distribution of the $\

  12. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  13. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  14. Geometric scaling in ultrahigh-energy neutrino scattering and nonlinear perturbative QCD

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2005-01-01

    It is shown that in ultrahigh-energy inelastic neutrino-nucleon(nucleus) scattering the cross sections for the boson-hadron(nucleus) reactions should exhibit geometric scaling on the single variable τ A =Q 2 /Q sat,A 2 . The dependence on energy and atomic number of the charged/neutral current cross sections are encoded in the saturation momentum Q sat,A . This fact allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization based on the scaling property

  15. Energy transparency and symmetries in the beam-beam interaction

    CERN Document Server

    Krishnagopal, S

    2000-01-01

    We have modified the beam-beam simulation code CBI to handle asymmetric beams and used it to look at energy transparency and symmetries in the beam-beam interaction. We find that even a small violation of energy transparency, or of the symmetry between the two beams, changes the character of the collective (coherent) motion; in particular, period-n oscillations are no longer seen. We speculate that the one-time observation of these oscillations at LEP, and the more ubiquitous observation of the flip-flop instability in colliders around the world, may be a consequence of breaking the symmetry between the electron and positron beams. We also apply this code to the asymmetric collider PEP-II, and find that for the nominal parameters of PEP-II, in particular, the nominal tune-shift parameter of xi /sub 0/=0.03, there are no collective beam-beam issues. Collective quadrupole motion sets in only at xi /sub 0/=0.06 and above, consistent with earlier observations for symmetric beams. (6 refs).

  16. Supernova pointing with low- and high-energy neutrino detectors

    CERN Document Server

    Tomás, R; Raffelt, Georg G; Kachelriess, M; Dighe, Amol S

    2003-01-01

    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of $nu$-$e$-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is $8^circ$ at 95% C.L. in the absence of tagging, which improves to $3^circ$ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as $0.6^circ$. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical ex...

  17. Neutrino cross-section in ultrahigh energy regime using double ...

    Indian Academy of Sciences (India)

    Kalpana Bora

    2017-10-05

    Oct 5, 2017 ... of precision measurements, as they are needed as an ingredient in all neutrino experiments. In this work, we use the QCD-inspired double asymptotic limit fit of electron–proton structure function F ep ... NC , which appear to be of Reggeon exchange type. ..... We used Monte Carlo integration technique in.

  18. Hadron production of Majorana neutrinos at VLHC energies

    International Nuclear Information System (INIS)

    Almeida Junior, F.M.L. de; Coutinho, Y.A.; Martins Simoes, J.A.; Vale, M.A.B. do

    2003-01-01

    The Very Large Hadron Collider (VLHC) is being proposed as a 50+50 TeV hadron collider to extend the energy frontier beyond the LHC. Since 1998-1999 the option of a ep collider operating with the 3 TeV proton booster has been considered. This design uses a 80 GeV electron beam to produce ep collisions with a luminosity of 2600 Pb-1/yr with a center of mass energy of 1 TeV. We study the discovery potential of this proposed ep collider for detecting new neutral heavy Majorana leptons suggested by different extensions of the Standard Model, using the channel e - p →e + = jets. (author)

  19. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Kiuchi, Kenta [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto, Kyoto 606-8502 (Japan)

    2017-10-10

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detection of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.

  20. Search for Ultra High-Energy Neutrinos with AMANDA-II

    International Nuclear Information System (INIS)

    IceCube Collaboration; Klein, Spencer; Ackermann, M.

    2007-01-01

    A search for diffuse neutrinos with energies in excess of 10 5 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10 7 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E 2 Φ 90%CL -7 GeV cm -2 s -1 sr -1 valid over the energy range of 2 x 10 5 GeV to 10 9 GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level

  1. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  2. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Besson, D. [Department of Physics and Astronomy, University of Kansas, Lawrence 66045, KS (United States); Dagkesamanskii, R.; Kravchenko, E. [Radio Astronomy Observatory LPI RAS, Pushchino 142290, Moscow Region (Russian Federation); Kravchenko, I., E-mail: ikrav@cern.ch [Department of Physics and Astronomy, University of Nebraska, Lincoln, 68588, NE (United States); Zheleznykh, I. [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation)

    2012-01-11

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  3. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    International Nuclear Information System (INIS)

    Besson, D.; Dagkesamanskii, R.; Kravchenko, E.; Kravchenko, I.; Zheleznykh, I.

    2012-01-01

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  4. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  5. Beam energy reduction in an acceleration gap

    International Nuclear Information System (INIS)

    Rhee, M.J.

    1990-01-01

    The subject of high-current accelerators has recently attracted considerable attention. The high-current beam accompanies a substantial amount of field energy in the space between the beam and the drift tube wall, as it propagates through a conducting drift tube of accelerator system. While such a beam is being accelerated in a gap, this field energy is subject to leak through the opening of the gap. The amount of energy lost in the gap is replenished by the beam at the expense of its kinetic energy. In this paper, the authors present a simple analysis of field energy loss in an acceleration gap for a relativistic beam for which beam particle velocity equals to c. It is found that the energy loss, which in turn reduces the beam kinetic energy, is ΔV = IZ 0 : the beam current times the characteristic impedance of the acceleration gap. As a result, the apparent acceleration voltage of the gap is reduced from the applied voltage by ΔV. This effect, especially for generation of high-current beam accelerated by a multigap accelerator, appears to be an important design consideration. The energy reduction mechanism and a few examples are presented

  6. One-point fluctuation analysis of the high-energy neutrino sky

    Energy Technology Data Exchange (ETDEWEB)

    Feyereisen, Michael R.; Ando, Shin' ichiro [GRAPPA Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Tamborra, Irene, E-mail: m.r.feyereisen@uva.nl, E-mail: tamborra@nbi.ku.dk, E-mail: s.ando@uva.nl [Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-03-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even with low statistics and in the absence of point source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple model of the high-energy neutrino background by assuming two main extra-galactic components: star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and Fermi , we predict the spectral and anisotropic probability distributions for their expected neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse background due to the poor angular resolution of IceCube, and we determine an upper limit on the number of shower events that can reasonably be associated to blazars. We also find that upper limits on the contribution of blazars to the measured flux are unfavourably affected by the skewness of the blazar flux distribution. One-point event clustering and likelihood analyses of the IceCube HESE data suggest that this method has the potential to dramatically improve over more conventional model-based analyses, especially for the next generation of neutrino telescopes.

  7. Astrophysics and neutrinos

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is primarily intended for CERN guides. The formation of sun-like stars, their life cycle, and their final destiny will be explained in simple terms, appropriate for the majority of our visitors. An overview of the nuclear reaction chains in our sun will presented (Standard Solar Model), with special emphasis on the production of neutrinos and their measurement in underground detectors. These detectors are also able to record high-energy cosmic neutrinos. Since many properties of neutrinos are still unknown, a brief description of table-top and nuclear reactor experiments is included, as well as those using beams from particle accelerators. Measurements with a variety of space telescopes complement the knowledge of our universe, previously limited to the visible range of the electromagnetic spectrum.

  8. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  9. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    NARCIS (Netherlands)

    Adrián-Martínez, S.; et al., [Unknown; Decowski, M.P.; Kooijman, P.; Lim, G.; Palioselitis, D.; Presani, E.; de Wolf, E.

    2013-01-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the

  10. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Capone, A.; Arloganu, C. C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J-P.; Kavatsyuk, O.; Loehner, H.

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the

  11. Measurement of coherent $\\pi^{+}$ production in low energy neutrino-Carbon scattering

    CERN Document Server

    Abe, K.

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent $\\pi^{+}$ production on carbon for neutrino energies less than 1.5 GeV to a restricted final state phase space region in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso {\\it et al.}, the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. This results contradicts the null results reported by K2K and SciBooNE in a similar neutrino energy region.

  12. CERN: something new in neutrinos; bubble chamber spectators

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    An unexplained effect in neutrino interactions has been observed by the 'CHARM' collaboration in a beam dump experiment. Large numbers of unaccounted for hadron showers have been detected and some possible explanations are suggested. Also, the use of the deuterium filled BEBC bubble chamber for the study of high energy neutrino and antineutrino interactions is described. (W.D.L.).

  13. Effects of fermionic singlet neutrinos on high- and low-energy observables

    International Nuclear Information System (INIS)

    Weiland, C.

    2013-01-01

    In this doctoral thesis, we study both low- and high-energy observables related to massive neutrinos. Neutrino oscillations have provided indisputable evidence in favour of non-zero neutrino masses and mixings. However, the original formulation of the standard model cannot account for these observations, which calls for the introduction of new physics. Among many possibilities, we focus here on the inverse seesaw, a neutrino mass generation mechanism in which the standard model is extended with fermionic gauge singlets. This model offers an attractive alternative to the usual seesaw realisations since it can potentially have natural Yukawa couplings (O(1)) while keeping the new physics scale at energies within the reach of the LHC. Among the many possible effects, this scenario can lead to deviations from lepton flavour universality. We have investigated these signatures and found that the ratios R K and R π provide new, additional constraints on the inverse seesaw. We have also considered the embedding of the inverse seesaw in supersymmetric models. This leads to increased rates for various lepton flavour violating processes, due to enhanced contributions from penguin diagrams mediated by the Higgs and Z 0 bosons. Finally, we also found that the new invisible decay channels associated with the sterile neutrinos present in the super-symmetric inverse seesaw could significantly weaken the constraints on the mass and couplings of a light CP-odd Higgs boson. (author)

  14. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below

  15. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    International Nuclear Information System (INIS)

    BIGI, I.; BOLTON, T.; FORMAGGIO, J.; HARRIS, D.; MORFIN, J.; SPENTZOURIS, P.; YU, J.; KAYSER, B.; KING, B.J.; MCFARLAND, K.; PETROV, A.; SCHELLMAN, H.; VELASCO, M.; SHROCK, R.

    2000-01-01

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  16. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  17. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  18. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  19. Long-baseline neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Crane, D.; Goodman, M.

    1994-01-01

    There is no unambiguous definition for long baseline neutrino oscillation experiments. The term is generally used for accelerator neutrino oscillation experiments which are sensitive to Δm 2 2 , and for which the detector is not on the accelerator site. The Snowmass N2L working group met to discuss the issues facing such experiments. The Fermilab Program Advisory Committee adopted several recommendations concerning the Fermilab neutrino program at their Aspen meeting immediately prior to the Snowmass Workshop. This heightened the attention for the proposals to use Fermilab for a long-baseline neutrino experiment at the workshop. The plan for a neutrino oscillation program at Brookhaven was also thoroughly discussed. Opportunities at CERN were considered, particularly the use of detectors at the Gran Sasso laboratory. The idea to build a neutrino beam from KEK towards Superkamiokande was not discussed at the Snowmass meeting, but there has been considerable development of this idea since then. Brookhaven and KEK would use low energy neutrino beams, while FNAL and CERN would plan have medium energy beams. This report will summarize a few topics common to LBL proposals and attempt to give a snapshot of where things stand in this fast developing field

  20. Sterile Neutrinos in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Benjamin J.P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  1. Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts

    Science.gov (United States)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-11-01

    Detection of ultrahigh energy (UHE, ≳1 PeV ) neutrinos from astrophysical sources will be a major advancement in identifying and understanding the sources of UHE cosmic rays (CRs) in nature. Long duration gamma-ray burst (GRB) blast waves have been considered as potential acceleration sites of UHECRs. These CRs are expected to interact with GRB afterglow photons, which are synchrotron radiation from relativistic electrons coaccelerated with CRs in the blast wave, and naturally produce UHE neutrinos. Fluxes of these neutrinos are uncertain, however, and crucially depend on the observed afterglow modeling. We have selected a sample of 23 long duration GRBs within redshift 0.5 for which adequate electromagnetic afterglow data are available and which could produce high flux of UHE afterglow neutrinos, being nearby. We fit optical, x-ray, and γ -ray afterglow data with an adiabatic blast wave model in a constant density interstellar medium and in a wind environment where the density of the wind decreases as the inverse square of the radius from the center of the GRB. The blast wave model parameters extracted from these fits are then used for calculating UHECR acceleration and p γ interactions to produce UHE neutrino fluxes from these GRBs. We have also explored the detectability of these neutrinos by currently running and upcoming large area neutrino detectors, such as the Pierre Auger Observatory, IceCube Gen-2, and KM3NeT observatories. We find that our realistic flux models from nearby GRBs will be unconstrained in the foreseeable future.

  2. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  3. Study of the sensibility of the Antares neutrino telescope to very high energy photons: Contribution to the time calibration of the detector

    International Nuclear Information System (INIS)

    Guillard, G.

    2010-10-01

    From the sea-floor, the 900-odd photomultiplier tubes of the Antares neutrino telescope scrutinize the abysses attempting to discern, amid bioluminescence and marine radioactivity, Cerenkov photons emitted by muons from astrophysical neutrinos, and to distinguish these muons from those generated by air showers produced by cosmic rays. Antares has been collecting data since 2006; this feat of engineering has paved the way for submarine neutrino astronomy: Antares is expected to be the forerunner of a larger instrument, KM3NeT. Telescope's performance is characterized in part by its angular resolution. In the case of Antares, the angular resolution is directly related to the time resolution of the detector's elements. This manuscript presents a correction for one of the main sources of deterioration of this time resolution, the walk effect induced by the set up of a fixed threshold for triggering the photomultiplier tubes signal. This correction, implemented in the official software chain of the Antares collaboration, improves in particular the events reconstruction quality estimator. This implementation allows further optimizations. The author also attempts to evaluate, using a complete Monte-Carlo simulation, the possibility of using very high energy photon sources as calibrated muon beams in order to estimate the absolute pointing and the angular resolution of the telescope. Although limited by large uncertainties, it is demonstrated that the possibility to detect such sources is extremely small. In addition, it is shown that the atmospheric neutrino background induced by very high-energy photons is negligible. (author)

  4. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, Laura Jean [Univ. of Texas, Austin, TX (United States)

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  5. CrossRef Neutrino factory proton driver and target design

    CERN Document Server

    Garoby, Roland; Thomason, John; Davenne, Tristan; Caretta, Ottone; Back, John J

    2016-01-01

    Neutrinos are very elusive particles belonging to the lepton family. They exist in different types corresponding to the different charged leptons, namely electrons, muons and taus. Contrary to electrons, neutrinos hardly interact with matter which makes them very difficult to detect and study. To the best of today’s knowledge, neutrinos have hardly any mass and they can change from one type to another (so-called “neutrino oscillation”). Most physicists think that this oscillation occurs because neutrinos have mass. A Neutrino Factory [1] is a special facility producing a large amount of neutrinos every year (typically 10$^{21}$ neutrinos/year). Its main purpose is to study the change of type of neutrinos between the place where they are generated and a remote location. In a Neutrino Factory, neutrinos result from the decay of muons, unstable particles with a mean lifetime of 2.2 $\\mu$s in their rest frame. Sharp beams of high energy neutrinos are obtained at the end of the long straight sections of a mu...

  6. NEUTRINO EMISSION FROM HIGH-ENERGY COMPONENT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Becker, Julia K.; Olivo, Martino; Halzen, Francis; O Murchadha, Aongus

    2010-01-01

    Gamma-ray bursts (GRBs) have the potential to produce the particle energies (up to 10 21 eV) and energy budget (10 44 erg yr -1 Mpc -3 ) to accommodate the spectrum of the highest energy cosmic rays; on the other hand, there is no observational evidence that they accelerate hadrons. The Fermi Gamma-ray Space Telescope recently observed two bursts that exhibit a power-law high-energy extension of a typical (Band) photon spectrum that extends to ∼30 GeV. On the basis of fireball phenomenology we argue that these two bursts, along with GRB941017 observed by EGRET in 1994, show indirect evidence for considerable baryon loading. Since the detection of neutrinos is the only unambiguous way to establish that GRBs accelerate protons, we use two methods to estimate the neutrino flux produced when they interact with fireball photons to produce charged pions and neutrinos. While the number of events expected from the two Fermi bursts discussed is small, should GRBs be the sources of the observed cosmic rays, a GRB941017-like event that has a hadronic power-law tail extending to several tens of GeV will be detected by the IceCube neutrino telescope.

  7. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  8. Low-energy photon-neutrino inelastic processes beyond the Standard Model

    CERN Document Server

    Abada, A.; Pittau, R.

    1999-01-01

    We investigate in this work the leading contributions of the MSSM with R-parity violation and of Left-Right models to the low-energy five-leg photon-neutrino processes. We discuss the results and compare them to the Standard Model ones.

  9. Unified picture for Dirac neutrinos, dark matter, dark energy and matter–antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2008-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  10. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    International Nuclear Information System (INIS)

    Mueller, Bernhard

    2009-01-01

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  11. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard

    2009-05-07

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  12. Uncertainties in modeling low-energy neutrino-induced reactions on iron-group nuclei

    International Nuclear Information System (INIS)

    Paar, N.; Vretenar, D.; Suzuki, T.; Honma, M.; Marketin, T.

    2011-01-01

    Charged-current neutrino-nucleus cross sections for 54,56 Fe and 58,60 Ni are calculated and compared using frameworks based on relativistic and Skyrme energy-density functionals and on the shell model. The current theoretical uncertainties in modeling neutrino-nucleus cross sections are assessed in relation to the predicted Gamow-Teller transition strength and available data, to multipole decomposition of the cross sections, and to cross sections averaged over the Michel flux and Fermi-Dirac distribution. By employing different microscopic approaches and models, the decay-at-rest (DAR) neutrino- 56 Fe cross section and its theoretical uncertainty are estimated to be th =(258±57)x10 -42 cm 2 , in very good agreement with the experimental value exp =(256±108±43)x10 -42 cm 2 .

  13. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Folger, F.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D.; Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Galata, S.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T.; Bruijn, R.; Melis, K.; Capone, A.; De Bonis, G.; Di Palma, I.; Perrina, C.; Vizzoca, A.; Caramete, L.; Pavalas, G.E.; Popa, V.; Celli, S.; Chiarusi, T.; Circella, M.; Sanchez-Losa, A.; Coleiro, A.; Deschamps, A.; Hello, Y.; Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M.; Donzaud, C.; Eberl, T.; El Bojaddaini, I.; Moussa, A.; Elsaesser, D.; Kadler, M.; Kreter, M.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F.; Gay, P.; Giordano, V.; Glotin, H.; Haren, H. van; Kouchner, A.; Van Elewyck, V.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Lefevre, D.; Leonora, E.; Loucatos, S.; Vallage, B.; Marinelli, A.; Mele, R.; Vivolo, D.; Migliozzi, P.; Organokov, M.; Pradier, T.; Schuessler, F.; Stolarczyk, T.; Tayalati, Y.

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6 "c"i"r"c"l"e for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E"2 . Φ"9"0"% = 4.9 . 10"-"8 GeV . cm"-"2 . s"-"1 . sr"-"1 is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken E"-"2 spectrum and neutrino flavour equipartition at Earth. (orig.)

  14. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Folger, F.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Galata, S.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [LAM, Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Universiteit Leiden, Huygens-Kamerlingh Onnes Laboratorium, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T. [Nikhef, Amsterdam (Netherlands); Bruijn, R.; Melis, K. [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Di Palma, I.; Perrina, C.; Vizzoca, A. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Science, 077125, Bucharest, Magurele (Romania); Celli, S. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Circella, M.; Sanchez-Losa, A. [INFN, Sezione di Bari, Bari (Italy); Coleiro, A. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Deschamps, A.; Hello, Y. [CNRS, IRD, Observatoire de la Cote d' Azur, Geoazur, UCA, Sophia Antipolis (France); Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Donzaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Eberl, T. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); El Bojaddaini, I.; Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (Morocco); Elsaesser, D.; Kadler, M.; Kreter, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia dell' Universita, Bologna (Italy); Gay, P. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Clermont Universite, BP 10448, Clermont-Ferrand (France); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Glotin, H. [LSIS, Aix Marseille Universite CNRS ENSAM LSIS UMR 7296, Marseille (France); Universite de Toulon CNRS LSIS UMR 7296, La Garde (France); Institut Universitaire de France, Paris (France); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kouchner, A.; Van Elewyck, V. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (RU); Lefevre, D. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (FR); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (FR); Leonora, E. [INFN, Sezione di Catania, Catania (IT); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Vallage, B. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (FR); Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Marinelli, A. [INFN, Sezione di Pisa, Pisa (IT); Dipartimento di Fisica dell' Universita, Pisa (IT); Mele, R.; Vivolo, D. [INFN, Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT); Migliozzi, P. [INFN, Sezione di Napoli, Naples (IT); Organokov, M.; Pradier, T. [Universite de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg (FR); Schuessler, F.; Stolarczyk, T. [Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Tayalati, Y. [University Mohammed V in Rabat, Faculty of Sciences, Rabat (MA)

    2017-06-15

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6 {sup circle} for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E{sup 2} . Φ{sup 90%} = 4.9 . 10{sup -8} GeV . cm{sup -2} . s{sup -1} . sr{sup -1} is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken E{sup -2} spectrum and neutrino flavour equipartition at Earth. (orig.)

  15. A First Search for Coincident Gravitational Waves and High Energy Neutrinos Using LIGO, Virgo and ANTARES Data from 2007

    Science.gov (United States)

    Adrian-Martinez, S.; Samarai, Al; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M; Astraatmadja, T.; Aubert, J.-J.; hide

    2013-01-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

  16. Neutrinos: from the Workshop to the Factory

    CERN Multimedia

    2001-01-01

    Over the next 5 years much work will be done to reach a theoretical and practical description of a neutrino factory. How could this project turn out to be an interesting future option for CERN? Neutrino beams travelling from CERN to the Canary Islands? And to the Svalbard archipelago in Norway? Or even to the Pyhaesalmi Mine in Finland? Why neutrinos? And why so far? The answers provide one of CERN's next challenging options: the construction of a high-energy muon storage ring to provide neutrino beams. This project, nicknamed 'neutrino factory', now figures in CERN's middle term plan as a recognized and supported research and development project. International collaborations, with other European laboratories and also with America and Japan, are now being set up. Long baseline locations for neutrino oscillations studies at a CERN based neutrino factory. Early in its history, LEP established that there exist just three kinds of light neutrinos, those associated with the electron, muon, and tau leptons. For a...

  17. Low energy neutrino astronomy and particle physics with LENA

    Energy Technology Data Exchange (ETDEWEB)

    Marrodan Undagoitia, Teresa [Physik-Department E15, TU-Muenchen, Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland); Feilitzsch, Franz von; Goeger-Neff, Marianne; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Winter, Juergen; Wurm, Michael [Physik-Department E15, TU-Muenchen, Garching (Germany)

    2009-07-01

    LENA is proposed to be a large-volume liquid-scintillation detector for neutrino astronomy and for the search for proton decay. In the current design, it is planned as a vertical cylinder of 30m diameter and 100m height. The detection medium consists of 50 kt organic liquid scintillator, the emitted light of which is detected by about 15000 photomultipliers. In this talk the main physics topics of LENA are presented together with calculations and Monte Carlo simulations to demonstrate the capabilities of the detector. Key goals of this project are for example the measurement of solar, supernovae and geo-neutrinos, as well as to extend the search for proton decay beyond the current lifetime limits. LENA is part of an European design study, LAGUNA, which evaluates the feasibility of an underground location for a large detector. Three detector concepts have been proposed, a megaton water-Cherenkov, a 100 kt liquid-argon TPC and the LENA detector. The status of the engineering studies for different locations is reported.

  18. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  19. Pathlength distributions of atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    1999-01-01

    We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributions can be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.

  20. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  1. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  2. T2K neutrino flux prediction

    CERN Document Server

    Abe, K.

    2013-01-02

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector -- Super-Kamiokande (SK) -- located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is re-weighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA...

  3. Neutrino sunshine

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1992-09-15

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history.

  4. Neutrino sunshine

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1992-01-01

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history

  5. A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    CERN Document Server

    Baussan, E; Bogomilov, M.; Bouquerel, E.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.P.; Lindroos, M.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J.Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wildner, E.; Wurtz, J.

    2014-01-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground ...

  6. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  7. Modulation above Pump Beam Energy in Photoreflectance

    Directory of Open Access Journals (Sweden)

    D. Fuertes Marrón

    2017-01-01

    Full Text Available Photoreflectance is used for the characterisation of semiconductor samples, usually by sweeping the monochromatized probe beam within the energy range comprised between the highest value set up by the pump beam and the lowest absorption threshold of the sample. There is, however, no fundamental upper limit for the probe beam other than the limited spectral content of the source and the responsivity of the detector. As long as the modulation mechanism behind photoreflectance does affect the complete electronic structure of the material under study, sweeping the probe beam towards higher energies from that of the pump source is equally effective in order to probe high-energy critical points. This fact, up to now largely overseen, is shown experimentally in this work. E1 and E0 + Δ0 critical points of bulk GaAs are unambiguously resolved using pump light of lower energy. This type of upstream modulation may widen further applications of the technique.

  8. OPERA-reassessing data on the energy dependence of the speed of neutrinos

    CERN Document Server

    Amelino-Camelia, Giovanni; Loret, Niccoló; Mercati, Flavio; Rosati, Giacomo; Lipari, Paolo

    2011-01-01

    We offer a preliminary exploration of the two sides of the challenge provided by the recent OPERA data on superluminal neutrinos. On one side we stress that some aspects of this result are puzzling even from the perspective of the wild quantum-gravity literature, where arguments in favor of the possibility of superluminal propagation have been presented, but not considering the possibility of such a sizeable effect for neutrinos of such low energies. We feel this must encourage particularly severe scrutiny of the OPERA result. On the other side, we notice that the OPERA result is reasonably consistent with $\\mu$-neutrino-speed data previously obtained at FERMILAB, reported in papers of 2007 and 1979. And it is intriguing that these FERMILAB79 and FERMILAB07 results, when combined with the new OPERA result, in principle provide a window on $\\mu$-neutrino speeds at different energies broad enough to compare alternative phenomenological models. We test the discriminating power of such an approach by using as ill...

  9. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 (Switzerland); McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720 (United States); Slosar, Anže, E-mail: afont@lbl.gov, E-mail: PVMcDonald@lbl.gov, E-mail: njmostek@lbl.gov, E-mail: BAReid@lbl.gov, E-mail: hee-jongseo@lbl.gov, E-mail: anze@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  10. High-energy cosmic rays: Puzzles, models, and giga-ton neutrino ...

    Indian Academy of Sciences (India)

    magnetic field, it is believed that cosmic rays of energy <1019 eV are of galactic ... high energy near the central source is impossible due to the high density of pho- .... 1020 eV, the Fly's Eye, HiRes and Yakutsk experiments are in agreement .... detection rate of ~20 neutrino-induced muon events per year (over 4π sr) in a.

  11. Neutrino physics with short baseline experiments

    International Nuclear Information System (INIS)

    Zimmerman, E.D.

    2006-01-01

    Neutrino physics with low- to medium-energy beams has progressed steadily over the last several years. Neutrino oscillation searches at short baseline (defined as 2 - -> 0.1eV 2 . One positive signal, from the LSND collaboration, exists and is being tested by the MiniBooNE experiment. Neutrino cross-section measurements are being made by MiniBooNE and K2K, which will be important for reducing systematic errors in present and future oscillation measurements. In the near future, dedicated cross- section experiments will begin operating at Fermilab. (author)

  12. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  13. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  14. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  15. Energy spectrum control for modulated proton beams

    International Nuclear Information System (INIS)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  16. The history of neutrinos, 1930–1985. What have we learned about neutrinos? What have we learned using neutrinos?

    International Nuclear Information System (INIS)

    Steinberger, J.

    2012-01-01

    An attempt to remember some of the main events which highlight the evolution of our knowledge of the neutrinos and their properties, the “families” of particles, a few of the very interesting persons who contributed to this progress, as well as the contribution of neutrino beam experiments to the validation of the electro-weak and quantum-chromo-dynamic theories, and the structure of the nucleon. - Highlights: ► Early history: continuity of β-spectrum, Pauli letter, universal Fermi interaction. ► Neutrino beams and the discovery of the muon neutrino. ► Gargamelle, the discovery of the neutral current and the verification of the quark–gluon nature of the parton. ► Deep inelastic scattering at higher energies: scaling, quantitative verification of QCD, structure functions.

  17. Beam energy control device for thermonuclear device

    International Nuclear Information System (INIS)

    Arimoto, Kimiko.

    1991-01-01

    The present invention comprises a setting section for the previously allowed penetration ratio, a correlation graph setting section for the penetration ratio, a beam energy and a plasma density, a control clock output section for transmitting clocks for every control period, a plasma density collecting section for collecting a plasma density from a plasma main body and a calculating section for a beam energy based on the plasma density. Since the value of the beam energy is controlled on real time based on the density of the plasma main body and the correlation graph of the penetration rate, the beam energy and the plasma density is used as a calculation parameter to conduct calculation such that the penetrating ratio is constant, there is no worry that beams at a high energy are entered to plasmas of low density, to damage a vacuum vessel. Further, when a state of plasmas is satisfactory, beams at an effective energy value can be entered as much as possible, thereby enabling to improve heating efficiency. (N.H.)

  18. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Paris Mark

    2017-01-01

    Full Text Available We introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN. Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and 'ow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These e↑ects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger e↑ect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties

  19. Low Energy 8 B Solar Neutrinos with the Wideband Intelligent Trigger at Super-Kamiokande

    Science.gov (United States)

    Elnimr, Muhammad; Super-Kamiokande Collaboration

    2017-09-01

    The water Cherenkov experiment Super-Kamiokande (SK) has accumulated a sample of ˜ 90k solar neutrino data in the past two decades. Currently, the detector measures recoil electrons from solar 8 B neutrino-electron scattering above a kinetic energy of ˜ 3.5 MeV, limited by the capacity of the software trigger, although electrons as low as 2.5 MeV can be reconstructed. The next frontier for the low energy program at Super-K is the current operation of the Wideband Intelligent Trigger (WIT) to push the trigger threshold to the event reconstruction limit of 2.5 MeV. This opens up the possibility to explore the lower energy edge of the Mikheyev-Smirnov-Wolfenstein (MSW) effect in the sun. In this work we will present the prelimiary analysis of the accumlated WIT data taken so far as well as future prospects.

  20. Status of a Deep Learning Based Measurement of the Inclusive Muon Neutrino Charged-current Cross Section in the NOvA Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Biswaranjan [Indian Inst. Tech., Hyderabad

    2017-10-10

    NOvA is a long-baseline neutrino oscillation experiment. It uses the NuMI beam from Fermilab and two sampling calorimeter detectors placed off-axis from the beam. The 293 ton Near Detector measures the unoscillated neutrino energy spectrum, which can be used to predict the neutrino energy spectrum observed at the 14 kton Far Detector. The Near Detector also provides an excellent opportunity to measure neutrino interaction cross sections with high statistics, which will benefit current and future long-baseline neutrino oscillation experiments. This analysis implements new algorithms to identify $\

  1. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  2. Capability of the HAWC Gamma-Ray Observatory for the Indirect Detection of Ultrahigh-Energy Neutrinos

    Directory of Open Access Journals (Sweden)

    Hermes León Vargas

    2017-01-01

    Full Text Available The detection of ultrahigh-energy neutrinos, with energies in the PeV range or above, is a topic of great interest in modern astroparticle physics. The importance comes from the fact that these neutrinos point back to the most energetic particle accelerators in the Universe and provide information about their underlying acceleration mechanisms. Atmospheric neutrinos are a background for these challenging measurements, but their rate is expected to be negligible above ≈1 PeV. In this work we describe the feasibility to study ultrahigh-energy neutrinos based on the Earth-skimming technique, by detecting the charged leptons produced in neutrino-nucleon interactions in a high mass target. We propose to detect the charged leptons, or their decay products, with the High Altitude Water Cherenkov (HAWC observatory and use as a large-mass target for the neutrino interactions the Pico de Orizaba volcano, the highest mountain in Mexico. In this work we develop an estimate of the detection rate using a geometrical model to calculate the effective area of the observatory. Our results show that it may be feasible to perform measurements of the ultrahigh-energy neutrino flux from cosmic origin during the expected lifetime of the HAWC observatory.

  3. Neutrino-argon interactions in the T2K near detector

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Lukas; Radermacher, Thomas; Roth, Stefan; Steinmann, Jochen [III. Physikalisches Institut B, RWTH Aachen (Germany)

    2016-07-01

    The T2K near detector employs three large, argon-filled TPCs with a total fiducial volume of about 10 m{sup 3} at ambient pressure. These TPCs have been exposed to the intense T2K muon-neutrino beam since the start of the experiment. The beam has a mean neutrino energy of 600 MeV and so far, data corresponding to over 6 . 10{sup 20}(4 . 10{sup 20}) protons on target was recorded in neutrino (anti-neutrino) mode. We expect about 600 charged current neutrino-argon interactions in the data. That enables us to do the world's first neutrino-Argon cross section measurement in gaseous argon, thus making an important contribution to constraining nuclear interaction models for future neutrino oscillation measurements. This talk describes the physics goals and present the current status of the analysis.

  4. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  5. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy 8 B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure ν e , which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of θ 12 and, together with other solar neutrino measurements, either a measurement of θ 13 or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the 7 Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and 7 Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a

  6. Radio-wave detection of ultra-high-energy neutrinos and cosmic rays

    Science.gov (United States)

    Huege, Tim; Besson, Dave

    2017-12-01

    Radio waves, perhaps because our terrestrial atmosphere and the cosmos beyond are uniquely transparent to them, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructible, arguably occupy a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for the measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.

  7. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-03-20

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  8. Physics reach of CERN-based SuperBeam neutrino oscillation experiments

    CERN Document Server

    Coloma, Pilar; Labarga, Luis

    2012-01-01

    We compare the physics potential of two representative options for a SuperBeam in Europe, studying the achievable precision at 1\\sigma with which the CP violation phase (\\delta) could be measured, as well as the mass hierarchy and CP violation discovery potentials. The first setup corresponds to a high energy beam aiming from CERN to a 100 kt liquid argon detector placed at the Pyh\\"asalmi mine (2300 km), one of the LAGUNA candidate sites. The second setup corresponds to a much lower energy beam, aiming from CERN to a 500 kt water \\v{C}erenkov detector placed at the Gran Sasso underground laboratory (730 km). This second option is also studied for a baseline of 650 km, corresponding to the LAGUNA candidate sites of Umbria and the Canfranc underground laboratory. All results are presented also for scenarios with statistics lowered by factors of 2, 4, 8 and 16 to study the possible reductions of flux, detector mass or running time allowed by the large value of \\theta_{13} recently measured.

  9. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  10. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  11. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  12. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Kee [State University of New York at Stony Brook; Douglas, Michaek [State University of New York at Stony Brook; Hobbs, John [State University of New York at Stony Brook; McGrew, Clark [State University of New York at Stony Brook; Rijssenbeek, Michael [State University of New York at Stony Brook

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  13. High-energy photons and neutrinos from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble Space Telescope has recently discovered thousands of gigantic cometlike objects in a ring around the central star in the nearest planetary nebula. It is assumed that such circumstellar rings exist around the majority of stars. Collisions of relativistic debris from gamma-ray bursts (GRB) in dense stellar regions with such gigantic cometlike objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy γ rays and neutrinos from GRBs

  14. Surface sterilization by low energy electron beams

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  15. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  16. Visible neutrino decay at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste

    2017-05-09

    If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\

  17. Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    International Nuclear Information System (INIS)

    Donini, A.; Fernandez-Martinez, E.; Rigolin, S.; Migliozzi, P.; Scotto Lavina, L.; Selvi, M.; Tabarelli de Fatis, T.; Terranova, F.

    2008-01-01

    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like neutrino factories and beta beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kT iron detector and a high energy beta beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ 13 values greater than 4 . (orig.)

  18. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  19. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  20. Detectors and flux instrumentation for future neutrino facilities

    CERN Document Server

    Abe, T.; Andreopoulos, C.; Ankowski, A.; Badertscher, A.; Battistoni, G.; Blondel, A.; Bouchez, J.; Bross, A.; Bueno, A.; Camilleri, L.; Campagne, Jean-Eric; Cazes, A.; Cervera-Villanueva, A.; De Lellis, G.; Di Capua, F.; Ellis, Malcolm; Ereditato, A.; Esposito, L.S.; Fukushima, C.; Gschwendtner, E.; Gomez-Cadenas, J.J.; Iwasaki, M.; Kaneyuki, K.; Karadzhov, Y.; Kashikhin, V.; Kawai, Y.; Komatsu, M.; Kozlovskaya, E.; Kudenko, Y.; Kusaka, A.; Kyushima, H.; Longhin, A.; Marchionni, A.; Marotta, A.; McGrew, C.; Menary, S.; Meregaglia, A.; Mezzeto, M.; Migliozzi, P.; Mondal, N.K.; Montanari, C.; Nakadaira, T.; Nakamura, M.; Nakumo, H.; Nakayama, H.; Nelson, J.; Nowak, J.; Ogawa, S.; Peltoniemi, J.; Pla-Dalmau, A.; Ragazzi, S.; Rubbia, A.; Sanchez, F.; Sarkamo, J.; Sato, O.; Selvi, M.; Shibuya, H.; Shozawa, M.; Sobczyk, J.; Soler, F.J.P.; Strolin, Paolo Emilio; Suyama, M.; Tanak, M.; Terranova, F.; Tsenov, R.; Uchida, Y.; Weber, A.; Zlobin, A.

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the $\\delta$-$\\theta_{13}$...

  1. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  2. Hints on the high-energy seesaw mechanism from the low-energy neutrino spectrum

    International Nuclear Information System (INIS)

    Casas, J.A.; Jimenez-Alburquerque, F.

    2006-12-01

    It is an experimental fact that the mass ratio for the two heavier neutrinos, h=m 3 /m 2 3 /m 2 >> m 3 /m 2 , so m 1 should be extremely tiny. Also, the V R matrix associated to the neutrino Yukawa couplings has a far from random structure, naturally resembling V CKM . In fact we show that identifying V R and V CKM , as well as neutrino and u-quark Yukawa couplings can reproduce h exp in a highly non-trivial way, which is very suggestive. The physical implications of these results are also discussed. (orig.)

  3. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Ignatovich, V.K.

    1995-01-01

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10 -6 , whereas the observational accuracy is at the level of 7x10 -3 , and agrees with the predicted rate of gravitational radiation. 10 refs

  4. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Stephen James [College of William and Mary, Williamsburg, VA (United States)

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  5. LHC beam energy in 2012

    International Nuclear Information System (INIS)

    Siemko, A.; Charifouline, Z.; Dahlerup-Petersen, K.; Denz, R.; Ravaioli, E.; Schmidt, R.; Verweij, A.

    2012-01-01

    The interconnections between the LHC main magnets are made of soldered joints (splices) of two superconducting cables stabilized by a copper bus bar. The measurements performed in 2009 in the whole machine, in particular in sector 3-4 during the repair after the 2008 accident, demonstrated that there is a significant fraction of defective copper bus bar joints in the machine. In this paper, the limiting factors for operating the LHC at higher energies with defective 13 kA bus bar joints are briefly reviewed. The experience gained during the 2011 run, including the quench statistics and dedicated quench propagation tests impacting on maximum safe energy are presented. The impact of the by-pass diode contact resistance issue is also addressed. Finally, a proposal for running at the highest possible safe energy compatible with the pre-defined risk level is presented. (authors)

  6. LHC Beam Energy in 2012

    CERN Document Server

    Siemko, A; Dahlerup-Petersen, K; Denz, R; Ravaioli, E; Schmidt, R; Verweij, A

    2012-01-01

    The interconnections between the LHC main magnets are made of soldered joints (splices) of two superconducting cables stabilized by a copper bus bar. The measurements performed in 2009 in the whole machine, in particular in sector 3-4 during the repair after the 2008 accident, demonstrated that there is a significant fraction of defective copper bus bar joints in the machine. In this paper, the limiting factors for operating the LHC at higher energies with defective 13 kA bus bar joints are briefly reviewed. The experience gained during the 2011 run, including the quench statistics and dedicated quench propagation tests impacting on maximum safe energy are presented. The impact of the by-pass diode contact resistance issue is also addressed. Finally, a proposal for running at the highest possible safe energy compatible with the pre-defined risk level is presented.

  7. Light sterile neutrino sensitivity at the nuSTORM facility

    CERN Document Server

    Adey, D; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S.A.; Booth, C.; Boyd, S.B.; Bramsiepe, S.G.; Bravar, A.; Brice, S.J.; Bross, A.D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Geelhoed, M.; Uchida, M.A.; Ghosh, T.; Gomez-Cadenas, J.J.; de Gouvea, A.; Haesler, A.; Hanson, G.; Harrison, P.F.; Hartz, M.; Hernandez, P.; Hernando Morata, J.A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J.B.; Laing, A.; Liu, A.; Link, J.M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K.T.; Mena, O.; Mishra, S.R.; Mokhov, N.; Morfin, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M.A.; Parke, S.; Pascoli, S.; Pasternak, J.; Plunkett, R.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J.K.; Smith, D.R.; Smith, P.J.; Sobczyk, J.T.; Sby, L.; Soler, F.J.P.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H.A.; Taylor, I.J.; Touramanis, C.; Tunnell, C.D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M.O.; Weber, A.; Wilking, M.J.; Wildner, E.; Winter, W.

    2014-01-01

    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simulta...

  8. E1 Working Group summary: Neutrino factories and muon colliders Neutrino Factories and Muon Colliders

    CERN Document Server

    Adams, T.; Balbekov, V.; Barenboim, G.; Harris, Deborah A.; Chou, W.; DeJongh, F.; Geer, S.; Johnstone, C.; Mokhov, N.; Morfin, J.; Neuffer, D.; Raja, R.; Romanino, A.; Shanahan, P.; Spentzouris, P.; Yu, J.; Barger, V.; Marfatia, D.; Han, Tao; Aoki, M.; Kuno, Y.; Sato, A.; Ichikawa, K.; Nakaya, T.; Machida, S.; Nagamine, K.; Yoshimura, K.; Ball, R.D.; Campanelli, Mario; Casper, D.; Molzon, W.; sobel, H.; Cline, D.B.; Cushman, P.; Diwan, M.; Kahn, S.; Morse, W.; Palmer, R.; Parsa, Zohreh; Roser, T.; Fleming, Bonnie T.; Formaggio, J.A.; Garren, A.; Gavela, M.B.; Gonzalez-Garcia, M.C.; Hanson, G.; Berger, M.; Kayser, Boris; Jung, C.K.; Shrock, R.; McGrew, C.; Mocioiu, I.; Lindner, M.; McDonald, K.; McFarland, Kevin Scott; Nienaber, P.; Olness, F.; Pope, B.; Rigolin, S.; Roberts, L.; Schellman, H.; Shiozawa, M.; Wai, L.; Wang, Y.F.; Whisnant, K.; Zeller, M.

    2001-01-01

    We are in the middle of a time of exciting discovery, namely that neutrinos have mass and oscillate. In order to take the next steps to understand this potential window onto what well might be the mechanism that links the quarks and leptons, we need both new neutrino beams and new detectors. The new beamlines can and should also provide new laboratories for doing charged lepton flavor physics, and the new detectors can and should also provide laboratories for doing other physics like proton decay, supernovae searches, etc. The new neutrino beams serve as milestones along the way to a muon collider, which can answer questions in yet another sector of particle physics, namely the Higgs sector or ultimately the energy frontier. In this report we discuss the current status of neutrino oscillation physics, what other oscillation measurements are needed to fully explore the phenomenon, and finally, what other new physics can be explored as a result of building of these facilities.

  9. Precise measurement of neutrino and anti-neutrino differential cross sections on iron

    Energy Technology Data Exchange (ETDEWEB)

    Tzanov, Martin Mihaylov [Pittsburgh U.

    2005-11-01

    This thesis will present a precise measurement of the differential cross section for charged current neutrino and anti-neutrino scattering from iron. The NuTeV experiment took data during 1996-97 and collected 8.6 10 º and 2.4 10 º charged-current (CC) interactions. The experiment combines sign-selected neutrino and antineutrino beams and the upgraded CCFR iron-scintillator neutrino detector. A precision continuous calibration beam was used to determine the muon and hadron energy scales to a precision of about a factor of two better than previous experiments. The structure functions F (x,Q2) and xF3(x,Q2) are extracted and compared with theory and previous measurements.

  10. Beam-energy and laser beam-profile monitor at the BNL LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  11. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  12. Time-resolved beam energy measurements at LAMPF

    International Nuclear Information System (INIS)

    Hudgings, D.W.; Clark, D.A.; Bryant, H.C.

    1979-01-01

    A narrow atomic photodetachment resonance is used to measure the LAMPF beam energy. Energy and time resolution are adequate to permit the use of this method in studying transient changes in accelerated beam energy

  13. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Energy spectra of neutrino sources. ASPERA. Page 4. Some unique features of neutrinos. The second most abundant particles in the universe. Cosmic microwave background photons: 400 / cm3. Cosmic background neutrinos: 330 / cm3. The lightest massive particles. A million times lighter than the electron. No direct mass ...

  14. Solar neutrinos and gravity

    International Nuclear Information System (INIS)

    Kuo, T.K.

    2001-01-01

    We review the possibility that the solar neutrino problem can be explained by neutrinos violating the equivalence principle. It is found that such a scenario can be ruled out when one takes into account data from high energy accelerator neutrino experiments

  15. High-energy electroweak neutrino-nucleon deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2007-01-01

    In this work we estimate the differential and total cross sections for the high-energy deeply virtual Compton scattering in the weak sector. In the weak neutral sector one considers neutrino scattering off an unpolarized proton target through the exchange of Z 0 . We numerically compute the process Z*p→γp within the QCD color dipole formalism, which successfully describes the current high-energy electromagnetic DVCS experimental data. We also discuss possible applications for the weak charged sector and perform predictions for scattering on nuclear targets

  16. Invited review article: IceCube: an instrument for neutrino astronomy.

    Science.gov (United States)

    Halzen, Francis; Klein, Spencer R

    2010-08-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km(3) of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects.

  17. Search for high-energy muon neutrinos from the "naked-eye" GRB 080319B with the IceCube neutrino telescope

    DEFF Research Database (Denmark)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.

    2009-01-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the ......V and 2.2 PeV, which contains 90% of the expected events....

  18. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  19. Production of radioactivity in local soil at AGS [Alternating Gradient Synchrotron] fast neutrino beam

    International Nuclear Information System (INIS)

    Gollon, P.J.; Rohrig, N.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

    1989-10-01

    Brookhaven National Laboratory (BNL) has constructed a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). A study has been conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 12 refs., 15 figs., 3 tabs

  20. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  1. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  2. New detection technologies for ultra-high energy cosmic rays and neutrinos

    Directory of Open Access Journals (Sweden)

    Böser Sebastian

    2013-06-01

    Full Text Available Even with an accumulated data set from an integrated six years of lifetime from the Auger experiment, no point sources of charged cosmic rays have be identified at the highest energies. Significantly increased apertures such as promised by the JEMEUSO mission will be required to identify these sources from the cosmic ray signatures themselves. However, in employing water-cherenkov surface detectors as well as fluorescence telescopes, Auger has demonstrated the power provided by the hybrid technology approach. New detection technologies thus provide a valuable tool, in particular for the study of systematic effects. Over the past decade, in particular radio detection of cosmic ray air-showers has become a viable future detection technology to enhance and complement existing air-shower experiments. Following the proof-of-principle provided by the Lopes experiment, this technology is now being pursued in all major air-shower detectors. In the MHz regime, the radio signal is dominated by geomagnetic emission from the electrons deflected in the earth magnetic field, with secondary contributions from a global charge excess. As the majority of the energy in the shower is carried by these electron and the radio signal traverses the atmosphere basically unattenuated, this approach not only promises superior energy resolution but may also provide an independent handle on the longitudinal shower development and hence the primary composition. Theoretical signal predictions provided by detailed Monte-Carlo simulations as well as analytic shower parametrizations are in good agreement with measurements provided by the AERA and Codalema experiments. Recent efforts also include studies of the radio emission in the GHz regime, where the ambient noise is significantly reduced, yet the emission mechanism in this regime has not been firmly established yet. As neutrinos are not deflected in the intergalactic magnetic fields, the detection of neutrino-induced cascades

  3. Measurement of the electroweak coupling of neutrinos and antineutrinos on electrons

    International Nuclear Information System (INIS)

    Jonker, M.

    1983-01-01

    This thesis describes the analysis of the events induced by elastic scattering of neutrinos and antineutrinos on electrons and interprets the results in terms of the coupling strength of (anti)neutrino on electrons. The data for this analysis were obtained with the electronic calorimeter of the CHARM (Amsterdam, Cern, Hamburg, Moscow, Rome) collaboration during the wide band neutrino beam exposures of 1979, 1980 and 1981 in the neutrino facility of the SPS (Super Proton Synchrotron) at CERN (Conseil Europeen pour la Recherche Nucleaire, Geneva, Switzerland). In chapter 1 a historical overview of the early neutrino physics and a description of the phenomenological Lagrangian is given, followed by an introduction to the electroweak unification model. The neutrino detector of the CHARM collaboration is described in chapter 2. Chapter 3 deals with the on-line monitoring system of this detector which has been under the responsibility of the author. The wide band neutrino facility of the CERN SPS is described in chapter 4, followed by a discussion of the experimental method to measure the neutrino energy spectra of the neutrino beams. The electromagnetic shower development process is reviewed in chapter 5 and is followed by a description of the technique that was used to separate showers of electromagnetic and hadronic origin. Chapter 6 discusses the observed signal of the (anti)neutrinos scattering on electrons and interprets these events in terms of the parameters related to the strength of the coupling of neutrinos to electrons. (Auth.)

  4. A hydrophone prototype for ultra high energy neutrino acoustic detection

    International Nuclear Information System (INIS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-01-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  5. A hydrophone prototype for ultra high energy neutrino acoustic detection

    Energy Technology Data Exchange (ETDEWEB)

    Cotrufo, A. [University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)], E-mail: cotrufo@ge.infn.it; Plotnikov, A.; Yershova, O. [GSI Helmholtz Centre for Heavy Ion Research, GmbH Planckstrasse1, 64291 Darmstadt (Germany); Anghinolfi, M.; Piombo, D. [INFN, University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  6. Dark energy and neutrino constraints from a future EUCLID-like survey

    DEFF Research Database (Denmark)

    Basse, Tobias; Eggers Bjaelde, Ole; Hamann, Jan

    2013-01-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes...... vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (sigma(w_0) sigma(w_a))^-1, we find a value of 454 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background (CMB) anisotropies...... alone. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w_0 deviates by as much as is currently observationally allowed...

  7. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method

    Science.gov (United States)

    Devan, J.; Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Minerva Collaboration

    2016-12-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2-50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν ) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.

  8. On the determination of neutrino masses and dark energy evolution from the cross-correlation of CMB and LSS

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Takahashi, Tomo

    2008-01-01

    We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation

  9. Coincident searches between high energy neutrinos and gravitational waves with ANTARES, VIRGO and LIGO detectors

    International Nuclear Information System (INIS)

    Bouhou, B.

    2012-01-01

    The aim of this work is the joint detection of gravitational waves and high energy neutrinos in a multi-messengers context. The neutrino and gravitational waves astronomies are still in the phase of development, but they are expected to play a fundamental role in the future. In fact, these messengers can travel big distances because of their weak interaction with matter (contrary to photons that at high energy are rapidly absorbed) without being affected by magnetic fields (contrary to charged cosmic rays). They can also escape dense media and provide information on the processes taking place in the heart of astrophysics sources. Particularly, GW+HEN multi-messenger astronomy may open a new observational window on the Universe. ANTARES collaboration has built a telescope of area 0.1 km 2 in the Mediterranean Sea for the detection of high energy neutrinos. This is the most sensitive telescope for the observed part of the sky. LIGO and VIRGO interferometers are ground-based detector for direct observation of gravitational waves, installed in Europe and the USA respectively. Instruments ANTARES, VIRGO and LIGO offer unrivaled sensitivity in the area of joint observation. The first chapter of this thesis introduces the theoretical motivations for GW+HEN search by developing different emission scenarios. The second and third chapters we give an overview of the experiments and review the data analysis tools. The fourth and fifth chapters of this work present the results of the analysis of the combined data from ANTARES, VIRGO and LIGO taken separately in 2007 and 2009-2010. (author)

  10. Short distance neutrino oscillations with Borexino

    Directory of Open Access Journals (Sweden)

    Caminata A.

    2016-01-01

    Full Text Available The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr and anti-neutrinos (Ce. Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  11. Energy spread in ion beam analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2000-01-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures

  12. Energy spread in ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kkfki.hu

    2000-03-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures.

  13. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  14. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  15. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  16. Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2011-01-01

    Roč. 84, č. 12 (2011), "122005-1"-"122005-16" ISSN 1550-7998 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * neutrinos Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.558, year: 2011 http://prd.aps.org/abstract/PRD/v84/i12/e122005

  17. HIGH ENERGY NEUTRINOS PRODUCED IN THE ACCRETION DISKS BY NEUTRONS FROM NUCLEI DISINTEGRATED IN THE AGN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Bednarek, W., E-mail: bednar@uni.lodz.pl [Department of Astrophysics, The University of Lodz, 90-236 Lodz, ul. Pomorska 149/153 (Poland)

    2016-12-20

    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.

  18. Search for low energy quasi-vertical muons with an underwater cosmic neutrino detector, environmental study of the detector setting

    International Nuclear Information System (INIS)

    Blondeau, F.

    1999-06-01

    The European collaboration named ANTARES aims at operating a large submarine neutrino telescope. Mooring lines make up this detector. Each is about four hundred metres high and equipped with photomultiplier tubes. These tubes record the Cherenkov light emitted by muons resulting from the interaction of neutrinos with matter. It was chosen to install the telescope in the Mediterranean, off the shore of Toulon, by a depth of twenty-three hundred metres. One chapter of this dissertation is devoted to the environment parameters of this site: amount of natural light, fouling of glass elements and water transparency is reviewed. Such a disposal is originally designed to look for possible astronomic neutrino sources emitting neutrinos, thus being complementary with the study of our Universe relying on gamma rays. It is shown in this dissertation that two other current riddles in physics can be investigated by ANTARES, when a specific analysis is taken into account: what is the mass of the neutrinos on the one hand (via the phenomenon called neutrino oscillations), and in the other hand the evidence for a new particle which could participate to the nature of the dark matter in the Universe. This analysis is based upon the detection of nearly vertical muons (zenith angle less than fifteen degrees), with an energy lower than 100 GeV. (author)

  19. Search for neutrino oscillations and measurements of neutrino-nucleus cross sections. Technical progress report, 16 January 1985-15 October 1985

    International Nuclear Information System (INIS)

    Koetke, D.D.

    1985-01-01

    Progress is reported in these areas: work done at LANL on experiment E764, including beam line modification, new target installation, system testing, on-line software development, beam tuning, and data acquisition; neutrino Monte Carlo program development; flux calculations for the DC modified torroidal pion focussing device for the low energy decay-in-flight neutrino source; and prototype preparation for a large modular segmented detector

  20. Experimentation with low-energy positron beams

    International Nuclear Information System (INIS)

    Mills, A.P. Jr.

    1983-01-01

    The capability of studying the interactions of positrons with surfaces has recently been exploited by using ultra-high-vacuum techniques. The result has been a new understanding of how positrons interact with surfaces and because of this we are now able to make much stronger fluxes of slow positrons. The higher beam strengths in turn are opening up new possibilities for experimentation on surfaces and solids and for studying the atomic physics of positronium and positron-molecule scattering at low energies. The lectures are intended to review some of the history of this subject and to outline the present state of our knowledge of experimentation with low-energy positron beams. (orig./TW)

  1. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  2. Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source

    Energy Technology Data Exchange (ETDEWEB)

    Kuksenko, V., E-mail: viacheslav.kuksenko@materials.ox.ac.uk [University of Oxford, Oxford (United Kingdom); Ammigan, K.; Hartsell, B. [Fermi National Accelerator Laboratory, Batavia (United States); Densham, C. [Rutherford Appleton Laboratory, Didcot (United Kingdom); Hurh, P. [Fermi National Accelerator Laboratory, Batavia (United States); Roberts, S. [University of Oxford, Oxford (United Kingdom)

    2017-07-15

    A beryllium primary vacuum-to-air beam ‘window’ of the 'Neutrinos at the Main Injector' (NuMI) beamline at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, USA, has been irradiated by 120 GeV protons over 7 years, with a maximum integrated fluence at the window centre of 2.06 10{sup 22} p/cm{sup 2} corresponding to a radiation damage level of 0.48 dpa. The proton beam is pulsed at 0.5 Hz leading to an instantaneous temperature rise of 40 °C per pulse. The window is cooled by natural convection and is estimated to operate at an average of around 50 °C. The microstructure of this irradiated material was investigated by SEM/EBSD and Atom Probe Tomography, and compared to that of unirradiated regions of the beam window and that of stock material of the same PF-60 grade. Microstructural investigations revealed a highly inhomogeneous distribution of impurity elements in both unirradiated and irradiated conditions. Impurities were mainly localised in precipitates, and as segregations at grain boundary and dislocation lines. Low levels of Fe, Cu, Ni, C and O were also found to be homogeneously distributed in the beryllium matrix. In the irradiated materials, up to 440 appm of Li, derived from transmutation of beryllium was homogeneously distributed in solution in the beryllium matrix.

  3. Single spectrometer station for neutrino-tagging

    International Nuclear Information System (INIS)

    Nedyalkov, I.P.

    1984-01-01

    A neutrino tagging station built with respect to the following scheme is proposed. A beam of muons and kaons passes through a magnetic spectrometer, where the energy of each particle is measured. There are coordinate detectors behind the spectrometer in several planes, where the direction of the trajectory of a given particle is determined. Thus, mesons enter the decay point wth the known 4-momentum. Behind the decay point the direction of μ-meson generated by the decay of parent mesons is measured. It is shown that information is sufficient for determining the kind of parent particle (pion or kaon), the energy and the direction of trajectory of the neutrino

  4. Earth to Orbit Beamed Energy Experiment

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.

  5. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    Science.gov (United States)

    Ando, Shin'ichiro; Baret, Bruny; Bartos, Imre; Bouhou, Boutayeb; Chassande-Mottin, Eric; Corsi, Alessandra; Di Palma, Irene; Dietz, Alexander; Donzaud, Corinne; Eichler, David; Finley, Chad; Guetta, Dafne; Halzen, Francis; Jones, Gareth; Kandhasamy, Shivaraj; Kotake, Kei; Kouchner, Antoine; Mandic, Vuk; Márka, Szabolcs; Márka, Zsuzsa; Moscoso, Luciano; Papa, Maria Alessandra; Piran, Tsvi; Pradier, Thierry; Romero, Gustavo E.; Sutton, Patrick; Thrane, Eric; Van Elewyck, Véronique; Waxman, Eli

    2013-10-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic messengers that may escape much denser media than photons. They travel unaffected over cosmological distances, carrying information from the inner regions of the astrophysical engines from which they are emitted (and from which photons and charged cosmic rays cannot reach us). For the same reasons, such messengers could also reveal new, hidden sources that have not been observed by conventional photon-based astronomy. Coincident observation of GWs and HENs may thus play a critical role in multimessenger astronomy. This is particularly true at the present time owing to the advent of a new generation of dedicated detectors: the neutrino telescopes IceCube at the South Pole and ANTARES in the Mediterranean Sea, as well as the GW interferometers Virgo in Italy and LIGO in the United States. Starting from 2007, several periods of concomitant data taking involving these detectors have been conducted. More joint data sets are expected with the next generation of advanced detectors that are to be operational by 2015, with other detectors, such as KAGRA in Japan, joining in the future. Combining information from these independent detectors can provide original ways of constraining the physical processes driving the sources and also help confirm the astrophysical origin of a GW or HEN signal in case of coincident observation. Given the complexity of the instruments, a successful joint analysis of this combined GW and HEN observational data set will be possible only if the expertise and knowledge of the data is shared between the two communities. This Colloquium aims at providing an overview of both theoretical and experimental state of the art and perspectives for GW and HEN

  6. An Exploration Perspective of Beamed Energy Propulsion

    International Nuclear Information System (INIS)

    Cole, John

    2008-01-01

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed

  7. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Univ. of Rochester, NY (United States)

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  8. Study of the appearance of oscillating electron neutrinos issued from muon neutrino beam in the K2K experiment; Etude de l'apparition de neutrinos electroniques oscillant a partir de neutrinos muoniques du faisceau de l'experience K2K

    Energy Technology Data Exchange (ETDEWEB)

    Argyriades, J

    2006-05-15

    The work presented in this thesis has been done in the K2K experiment. His principle consists in the use of a beam of muon neutrinos, which flux has been measured at short and long distances. Those data enable us to study the effects of neutrino oscillation, particularly by measuring {nu}{sub {mu}} disappearance. Although this is not an appearance experiment, electronic neutrinos oscillation has been searched. In spite of no signal of appearance, this study enables to constrain oscillation parameters ({delta}m{sub 23}{sup 2}, sin{sup 2}2{theta}{sub 13}). With one event for 1,07 expected event from background, the exclusion area edges are close to the best actual limits, provided by Chooz experiment. By setting {delta}m{sub 23}{sup 2}.= 2,8.10{sup -3} eV{sup 2}, a limit at 90% confident level is reached: sin{sup 2}2{theta}{sub 13} < 0,2. (author)

  9. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    Science.gov (United States)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  10. Status of Heavy Neutrino Experiments

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2017-01-01

    The observation of neutrino oscillations raises the possibility that there exist additional, undiscovered high-mass neutrinos, giving mass to Standard Model neutrinos via the seesaw mechanism. By pushing the collider energy frontier at the LHC, the possibility arises that these heavy neutrinos may be produced and identified. We summarise the latest LHC results of searches for heavy neutrinos in a variety of final states.

  11. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  12. Overview of the APT high-energy beam transport and beam expanders

    International Nuclear Information System (INIS)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-01-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented

  13. Inner conductor of the magnetic double-horn for the neutrino oscillation experiment with BEBC

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    In 1980 renewed interest arose in probing for neutrino non-zero masses and associated neutrino oscillations. Low-energy muon-neutrino beams (produced with a proton beam from the PS) were directed towards the SPS neutrino detectors, BEBC, WA1 and WA18 (Annual Report 1982, p.43, Fig.13). Experiments PS169 (WA1) and PS181 (WA18) were "disappearence" experiments and used a "bare" production target, whereas experiment PS180 (BEBC), looked for electron-neutrino "appearence" and used a horn-focused beam. The manufacture of the inner conductor of the double-horn (a particular breed of current-sheet lens) required exceedingly delicate machining. For further pictures see 8304055 and Annual Report 1982, p.137; and p.43 for a description of the experiments.

  14. Light sterile neutrino sensitivity at the nuSTORM facility

    Energy Technology Data Exchange (ETDEWEB)

    Adey, D.; Agarwalla, S. K.; Ankenbrandt, C. M.; Asfandiyarov, R.; Back, J. J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S. A.; Booth, C.; Boyd, S. B.; Bramsiepe, S. G.; Bravar, A.; Brice, S. J.; Bross, A. D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Geelhoed, M.; Uchida, M. A.; Ghosh, T.; Gómez-Cadenas, J. J.; de Gouvêa, A.; Haesler, A.; Hanson, G.; Harrison, P. F.; Hartz, M.; Hernández, P.; Hernando Morata, J. A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J. B.; Laing, A.; Liu, A.; Link, J. M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K. T.; Mena, O.; Mishra, S. R.; Mokhov, N.; Morfín, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M. A.; Parke, S.; Pascoli, S.; Pasternak, J.; Plunkett, R.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J. K.; Smith, D. R.; Smith, P. J.; Sobczyk, J. T.; Søby, L.; Soler, F. J. P.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H. A.; Taylor, I. J.; Touramanis, C.; Tunnell, C. D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M. O.; Weber, A.; Wilking, M. J.; Wildner, E.; Winter, W.

    2014-04-01

    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8GeV/c±10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10σ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simultaneous muon neutrino disappearance analysis that will facilitate tests of various sterile neutrino models.

  15. Born–Infeld condensate as a possible origin of neutrino masses and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Addazi, Andrea [Dipartimento di Fisica, Università di L' Aquila, 67010 Coppito AQ (Italy); Laboratori Nazionali del Gran Sasso (INFN), 67010 Assergi AQ (Italy); Capozziello, Salvatore [Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi 7, I-67100, L' Aquila (Italy); Odintsov, Sergei [Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Lab. Theor. Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation)

    2016-09-10

    We discuss the possibility that a Born–Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born–Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

  16. Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory.

    Science.gov (United States)

    Abraham, J; Abreu, P; Aglietta, M; Aguirre, C; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Argirò, S; Arisaka, K; Armengaud, E; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Atulugama, B S; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barbosa, A F; Barnhill, D; Barroso, S L C; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellido, J A; BenZvi, S; Berat, C; Bergmann, T; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blasi, P; Bleve, C; Blümer, H; Bohácová, M; Bonifazi, C; Bonino, R; Boratav, M; Brack, J; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Cai, B; Camin, D V; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Daumiller, K; Dawson